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INVARIANTS FOR TAME PARAMETRISED CHAIN COMPLEXES

WOJCIECH CHACHÓLSKI, BARBARA GIUNTI and CLAUDIA LANDI

(communicated by Peter Bubenik)

Abstract
We set the foundations for a new approach to Topological Data

Analysis (TDA) based on homotopical methods at the chain com-
plex level. We present the category of tame parametrised chain
complexes as a comprehensive environment that includes several
cases that usually TDA handles separately, such as persistence
modules, zigzag modules, and commutative ladders. We extract
new invariants in this category using a model structure and vari-
ous minimal cofibrant approximations. Such approximations and
their invariants retain some of the topological, and not just homo-
logical, aspects of the objects they approximate.

Introduction

Data analysis is often about simplifying, ignoring most of the information available
and extracting what might be meaningful for the task at hand. The same strategy
of extracting summaries is also at the core of topology. In recent years, these two
branches have merged, giving rise to Topological Data Analysis (TDA) [7].

TDA can benefit from a broad spectrum of existing homotopical tools for extract-
ing such summaries. Currently, the most popular is persistent homology. The first
step in persistence theory is to transform data into spatial information via, for exam-
ple, the Vietoris–Rips construction. The second step is typically the extraction of
the homology of the obtained spaces, resulting in a so-called persistence module,
effectively studied by enumerating its indecomposables [20].

Despite its success, TDA based on persistent homology has some limitations.
Firstly, one is limited to objects for which it is possible to list their indecompos-
able summands [20], and whose decompositions can be computed algorithmically.
For example, the class of commutative ladders cannot be analysed using its inde-
composables because it is of wild representation type [6,12]. On the other hand, the
indecomposables of the class of zigzag modules are fully described, but so far there
is no efficient software to analyse them [8,9]. Secondly, applying homology might be
too drastic, disregarding a large amount of geometric information.

The main goal of this paper is to show how to use homotopy theory not only to
overcome the previous issues but also to open the way towards new invariants. The
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same strategy of disregarding some information and focusing on aspects that might be
relevant is also at the core of homotopy theory, with colocalization being an example
of such a process. In colocalization, the simplification is achieved by approximating
arbitrary objects by other objects that are simpler and more manageable, such as the
class of cofibrant objects in a model category. Our work is based on the realisation
that the category tame

(
[0,∞), ch

)
of tame [0,∞)-parametrised chain complexes over

a field admits a model structure for which there is a surprisingly simple decomposition
theorem describing all indecomposable cofibrant objects (see Theorem 4.2). This is so
even though the entire category tame

(
[0,∞), ch

)
is of wild representation type. The

structure Theorem 4.2 identifies cofibrant objects in tame
(
[0,∞), ch

)
with sequences

of persistence diagrams augmented with points on the diagonal (see Section 5) which
we call Betti diagrams.

The cofibrant objects can be then used to approximate arbitrary objects in
tame

(
[0,∞), ch

)
. Proving that such minimal approximations exist (see Theorem 2.4)

has been essential in this work.
Model categories are convenient for ensuring the existence of certain morphisms or

approximations. A common difficulty in working with model categories, however, is
the lack of algorithmic constructions producing such morphisms and approximations.
Approximations in model categories are often constructed using universal proper-
ties and require performing large limits. Extracting calculable invariants from such
approximations, which is essential in TDA, is often not feasible. In this article, we
make a great effort to describe all the constructions, factorisations, and approxi-
mations explicitly. All the steps we perform for the tame [0,∞)-parametrised chain
complexes in perspective can be implemented.

Considering tame [0,∞)-parametrised chain complexes instead of vector spaces has
another advantage. Persistence modules, zigzag modules, and commutative ladders
are special objects in tame

(
[0,∞), ch

)
. Thus, this category allows for a comprehensive

theory in which different objects that are handled separately by standard persistence
theory can be studied and compared together. Furthermore, for persistence modules,
cofibrant minimal approximations provide complete invariants (see Section 5.1).

In conclusion, we propose a refined approach to the persistence pipeline: first, con-
vert the input into a parametrised simplicial complex. Second, extract a parametrised
chain complex. Third, form a minimal cofibrant approximation of the extracted
parametrised chain complex. Finally, represent the minimal cofibrant approximation
by its Betti diagrams.

Related works
The model structure described in Section 2 is a special case of a projective model

structures on a tame subcategory of functor categories [15,16].
The structure Theorem 4.2 describing cofibrant objects in tame

(
[0,∞), ch

)
appears

also in, for example, [4, 19, 23], although the language of model categories is not
used there. An interpretation from the point of view of Morse theory was given
in [4]. In [19], Meehan, Pavlichenko and Segert show that the category of filtered
chain complexes is a Krull–Schmidt category. In [23], Usher and Zhang generalise
the theory of barcodes to filtered Floer-type complexes, considering chain complexes
of infinite dimension whose parametrisation is not tame. They prove a singular value
decomposition theorem for such complexes and identify two types of barcodes of them:
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the verbose and the concise. In the finite case, such barcodes correspond respectively
to the Betti diagrams and the minimal Betti diagrams of cofibrant objects in our
setting (see Section 5).

The point of view of homotopy theory is entering the TDA subject also for purposes
different from ours. For example, [5,13,14,17] are about lifting the stability theorem
of persistence to homotopy stability theorems, to make it applicable to a wider class
of datasets.
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1. Minimality

LetM be a model category [10,21]. This means that three classes of morphisms
inM are chosen: weak equivalences (

∼
−→), fibrations (։), and cofibrations (→֒).

These classes andM are required to satisfy the following axioms:

MC1. Finite limits and colimits exist inM.

MC2. If f and g are morphisms inM such that gf is defined and if two of the three
morphisms f , g, gf are weak equivalences, then so is the third.

MC3. If f is a retract of g and g is a fibration, a cofibration, or a weak equivalence,
then so is f .

MC4. Consider a commutative square inM consisting of the solid morphisms:

X E

Y B

α β

Then a morphism, depicted by the dotted arrow and making this diagram
commutative, exists under either of the following two assumptions: (i) α is a
cofibration and a weak equivalence and β is a fibration, or (ii) α is a cofibration
and β is a fibration and a weak equivalence.

MC5. Any morphism g can be factored in two ways: (i) g = βα, where α is a cofi-
bration and β is both a fibration and a weak equivalence, and (ii) g = βα,
where α is both a cofibration and a weak equivalence and β is a fibration.

In particular, MC1 guarantees the existence of the initial object, denoted by ∅,
and of the terminal object, denoted by ∗. An object X in a model category M is
called cofibrant if the morphism ∅ → X is a cofibration. If the morphism X → ∗ is
a fibration, then X is called fibrant.
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Axiom MC5 above guarantees existence of certain factorisations of morphisms. It
does not specify any uniqueness. Typically, a morphism in a model category admits
many such factorisations. There are however model categories in which among all
these factorisations there is a canonical one called minimal [3,22]:

Definition 1.1. Let g : X → Y be a morphism inM. A factorisation g = βα, where
α is cofibration and β is a fibration and a weak equivalence, is called minimal if every
morphism φ which makes the following diagram commutative is an isomorphism:

A

X Y

A

β

∼

φ

α

α

g

β

∼

φ

A minimal factorisation of ∅ → X is called a minimal cover of X.

According to the above definition, we can think about a minimal cover of X as a
morphism β : cov(X)→ X such that: (i) cov(X) is cofibrant, (ii) β is both a fibration
and a weak equivalence, and (iii) any morphism φ which makes the following diagram
commutative is an isomorphism:

cov(X)

cov(X) X

β∼

β

∼

φ

Minimal factorisations are unique:

Proposition 1.2. Let g : X → Y be a morphism in M. Assume βα = g = β′α′ are
minimal factorisations. Then there is an isomorphism φ making the following diagram
commutative:

X A′

A Y

α′

α β′∼

β

∼

φ

Proof. Let φ and ψ be any morphisms making the following diagram commute, which
exist by the lifting axiom MC4:

X A′

A Y

α′

α β′∼
ψ

β

∼

φ

Then by the definition of minimal factorisations, the compositions φψ and ψφ are
isomorphisms. Consequently, so are φ and ψ.

Two objects X and Y inM are called weakly equivalent if there is a sequence
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of weak equivalences of the form:

X A0 A1 · · · Ak Y∼ ∼ ∼ ∼ ∼

Similarly to factorisations of morphisms in a model category, the collection of
objects weakly equivalent to a given object is large. There are model categories, how-
ever, where this collection contains a canonical object called a minimal representative:

Definition 1.3. An object X inM is called minimal if it is cofibrant, fibrant, and
any weak equivalence φ : X → X is an isomorphism. A minimal representative of
an object X inM is a minimal object inM which is weakly equivalent to X.

Minimal representatives are unique up to isomorphisms:

Proposition 1.4. Let X ′ and Y ′ be minimal representatives of respectively X and Y .
Then X and Y are weakly equivalent if and only if X ′ and Y ′ are isomorphic.

Proof. If X ′ and Y ′ are isomorphic, then X and Y are weakly equivalent. Assume
X and Y are weakly equivalent. Then X ′ and Y ′ are also weakly equivalent. Since
they are both cofibrant and fibrant there are weak equivalences φ : X ′ ∼

−→ Y ′ and
ψ : Y ′ ∼

−→ X ′. By the definition of the minimality, the compositions φψ and ψφ are
isomorphisms. Consequently, so are φ and ψ and hence X ′ and Y ′ are isomorphic.

Proposition 1.2 and Proposition 1.4 ensure the uniqueness of minimal factorisa-
tions, minimal covers and minimal representatives. These propositions however do
not imply their existence, which has to be proven separately and it does depend on
the considered model category.

Definition 1.5. A model category satisfies the minimal factorisation axiom if all
minimal factorisations exist in this category. It satisfies theminimal representative
axiom if all minimal representatives exist in this category.

Many model categories, particularly of combinatorial flavour, satisfy the minimal
factorisation axiom. However the standard model structure on topological spaces [10]
does not.

2. Tame [0,∞)-parametrised objects

Let M be a category. The symbol [0,∞) denotes the poset of non-negative real
numbers. Functors of the form X : [0,∞)→M are also referred to as [0,∞)-parame-
trised objects. The value of X at t in [0,∞) is denoted by Xt and Xs6t : Xs → Xt

denotes the morphism in M that X assigns to s 6 t. The morphism Xs6t is also
referred to as the transition morphism in X from s to t.

Definition 2.1. A sequence τ0 < · · · < τk in [0,∞) discretises X : [0,∞)→M if
Xs6t : Xs → Xt may fail to be an isomorphism only when there is a ∈ {0, . . . , k}
such that s < τa 6 t. A functor X : [0,∞)→M is called tame if there is a sequence
that discretises it. The symbol tame

(
[0,∞),M

)
denotes the category whose objects

are tame functors X : [0,∞)→M and whose morphisms are all of the natural trans-
formations.
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If τ0 < · · · < τk discretises X : [0,∞)→M, then the transitions of the restric-
tions of X to the intervals [0, τ0), . . . , [τk−1, τk), and [τk,∞) are isomorphisms. Note
that if τ0 < · · · < τk discretises X : [0,∞)→M, then so does any of its refinements
(a sequence µ0 < · · · < µn is a refinement of τ0 < · · · < τk if {τ0 . . . , τk} is a subset
of {µ0 . . . , µn}).

2.1. Kan extensions
Consider a sequence of k composable morphisms inM:

X0 · · · XkX0<1 Xk−1<k

Such a sequence encodes a functor X : [k]→M, where [k] is the standard poset on
the set {0, . . . , k}. Consider also a sequence τ0 < · · · < τk of elements in [0,∞), which
encodes an inclusion of categories τ : [k] ⊂ [0,∞). The (left) Kan extension of X
along τ [18, Sect. X.3] is a functor LX : [0,∞)→M whose values are given by:

LXt =

{
∅ if t < τ0,

Xmax{a | τa6t} if t > τ0.

For morphisms, LXs<t is the identity if max{a | τa 6 s} = max{a | τa 6 t}, and
otherwise it is the composition of:

Xmax{a | τa6s}<max{a | τa6s}+1, . . . , Xmax{a | τa6t}−1<max{a | τa6t}

The functor LX : [0,∞)→M is tame with τ0< · · · <τk as a discretising sequence.
To describe a natural transformation g : LX→Y to any other functor Y : [0,∞)→

M, it is enough to specify a sequence of morphisms {gτa : Xτa → Y τa}a=0,...,k for
which the following diagram commutes for every a = 1, . . . , k:

Xτa−1 Xτa

Y τa−1 Y τa

Xτa−1<τa

gτa−1 gτa

Y τa−1<τa

If k = 0, for an objectX inM (representing a functorX : [0]→M) and an element
τ0 in [0,∞) (representing an inclusion τ0 : [0] ⊂ [0,∞)), the induced Kan extension
is a functor LX : [0,∞)→M such that LXt = ∅ if t < τ0 and LXt = X if τ0 6 t.
In this case, the set of natural transformations LX → Y is in bijection with the
set of morphisms in M from X to Y τ0 . If k = 1, for a morphism X0<1 : X0 → X1

(representing a functor X : [1]→M) and two elements τ0 < τ1 in [0,∞) (representing
an inclusion [1] ⊂ [0,∞)), the induced Kan extension is a functor LX : [0,∞)→M
such that LXt = ∅ if t < τ0, LX

t = X0 if τ0 6 t < τ1, and LX
t = X1 if τ1 6 t. In this

case, the set of natural transformations LX → Y is in bijection with commutative
squares of the form:

X0 X1

Y τ0 Y τ1

X0<1

Y τ0<τ1

Let X : [0,∞)→M be tame with 0 = τ0 < · · · < τk as a discretising sequence.
Then X is isomorphic to the Kan extension along 0 = τ0 < · · · < τk of the following
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sequence of morphisms:

X0 · · · XτkX06τ1 X
τk−1<τk

2.2. Factorisation
LetM admit all finite colimits. Let g : X → Y be a morphism in tame

(
[0,∞),M

)

and 0 = τ0 < · · · < τk a sequence discretising both X and Y . By induction on a in
[k], define morphisms ḡτa : Xτa → Qτa and ĝτa : Qτa → Y τa inM as follows:

For a = 0: (ḡ0 : X0 → Q0) := (1: X0 → X0) (ĝ0 : Q0 → Y 0) := (g0 : X0 → Y 0)

For a = 1 . . . , k: Qτa := colim(Y τa−1
gτa−1

←−−−− Xτa−1
Xτa−1<τa

−−−−−−−→ Xτa)

ḡτa : Xτa → Qτa and ĝτa : Qτa → Xτa are the unique morphisms making the following
diagram commutative, where the inside square is a pushout:

Xτa−1 Xτa

Y τa−1 Qτa

Y τa

Xτa−1<τa

gτa−1 gτa
ḡτa

Y τa−1<τa

ĝτa

For a = 1, . . . , k, define Qτa−1<τa : Qτa−1 → Qτa to be the composition of the mor-
phism Y τa−1 → Qτa represented by the bottom horizontal arrow in the above diagram
and ĝτa−1 : Qτa−1 → Y τa−1 . Let Q : [0,∞)→M be the tame functor given by the Kan
extension of the sequence of morphisms {Qτa−1<τa} along 0 = τ0 < · · · < τk (see Sec-
tion 2.1). Finally, denote by ḡ : X → Q and ĝ : Q→ Y the natural transformation
given by {ḡτa}a=0,...,k and {ĝτa}a=0,...,k (see Section 2.1). Note that g = ĝḡ.

The isomorphism type of the functor Q and the factorisation g = ĝḡ do not depend
on the choice of the sequence that discretises X and Y . If f̄ : X → P and f̂ : P → Y
are natural transformations constructed with respect to another such a sequence, then
there is a unique isomorphism φ : Q→ P for which the following diagram commutes:

Q

X Y

P

ĝḡ

f̄

g

f̂

φ

Theorem 2.2. Let M be a model category. The following choices of weak equiva-
lences, fibrations and cofibrations form a model structure on tame

(
[0,∞),M

)
. A mor-

phism g : X → Y in tame
(
[0,∞),M

)
is a

� weak equivalence if gt : Xt → Y t is a weak equivalence for all t,

� fibration if gt : Xt → Y t is a fibration for all t,

� cofibration if ĝt : Qt → Y t (see Section 2.2) is a cofibration for all t.

Due to tameness, to prove g : X → Y in tame
(
[0,∞),M

)
is a weak equivalence,

or a fibration, or a cofibration, only finitely many verifications need to be performed.
If 0 = τ0 < · · · < τk discretises both X and Y , then g is a weak equivalence (respec-
tively, a fibration) if and only if gτa : Xτa → Y τa is a weak equivalence (respectively,
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a fibration) in M for any a = 0, . . . , k. Similarly, g is a cofibration if and only if
ĝτa : Qτa → Y τa is a cofibration inM for any a = 0, . . . , k. It is important to realise
however that for g to be a cofibration is it not enough for gt to be a cofibration for all t.

Proposition 2.3. LetM be a model category.

1. If g : X → Y is a cofibration in tame
(
[0,∞),M

)
, then gt : Xt → Y t is a cofi-

bration inM for any t in [0,∞).

2. An object X in tame
(
[0,∞),M

)
is cofibrant if and only if X0 is cofibrant and,

for any s < t in [0,∞), the transition morphism Xs<t : Xs → Xt is a cofibration
inM.

Proof. 1. Assume g : X →֒ Y is a cofibration. Let 0 = τ0 < · · · < τk be a sequence
discretising both X and Y . By definition g0 = gτ0 = ĝτ0 is a cofibration. Since in
a model category cofibrations are preserved by compositions and taking pushouts
along any morphism, the indicated arrows in the following commutative diagram are
cofibrations for any a = 1, . . . , k:

Xτa−1 Xτa

Y τa−1 Qτa

Y τa

Xτa−1<τa

gτa−1 gτaḡτa

Y τa−1<τa

ĝτa

Thus, for any a in [k], the morphism gτa : Xτa → Y τa is a cofibration. Tameness can
be then used to conclude that gt is a cofibration for any t in [0,∞).

2. Let ∅ : [0,∞)→M be the initial object in tame
(
[0,∞),M

)
, which is the con-

stant functor whose value is the initial object inM. Consider a morphism g : ∅ → X in
tame

(
[0,∞),M

)
. Let 0 = τ0 < · · · < τk be a sequence discretising X. Then Q0 = ∅

and Qτa = Xτa−1 for a > 0. Furthermore, ĝ0 = (∅ → X0) and ĝτa : Qτa = Xτa−1 →
Xτa is the transition morphism in X for a > 0. The statement is then a direct con-
sequence of the definition of a cofibration in tame

(
[0,∞),M

)
.

Proof of Theorem 2.2. MC1: This is a consequence of the fact that there is a sequence
that discretises all elements in a finite collection of tame functors.

MC2 and MC3: These follows from the fact that M satisfies these axioms, and
from the functoriality of the mediating morphism ĝ.

MC4: Consider a commutative square in tame
(
[0,∞),M

)
:

X E

Y B

α β

where either α is a cofibration and β is a fibration and a weak equivalence, or α is a
cofibration and a weak equivalence and β is a fibration. We need to show that there is
a morphism φ : Y → E which if added to the above square would make the obtained
diagram commutative. Let us choose a sequence 0 = τ0 < · · · < τk that discretises all
functors in this square. We are going to define by induction on a in [k] morphisms
φτa : Y τa → Eτa . We then use this sequence to get the desired φ : Y → E.
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Set φ0 : Y 0 → E0 to be any morphism in M that makes the following square
commutative. It exists by the axiom MC4 inM.

X0 E0

Y 0 B0

α0 β0
φ0

Assume a > 1 and that we have defined φτb : Y τb → Eτb for b < a. We can then form
the following commutative diagram, where the indicated arrows are cofibrations by
Proposition 2.3.1:

Xτa−1 Xτa

Eτa−1 Eτa

Qτa

Y τa−1 Y τa

Bτa−1 Bτa

ατa−1 ατa

ᾱτa

βτa−1 α̂τa

φ′

φτa−1

φτaφτa

βτa

All the horizontal arrows represent the transition morphisms, φ′ : Qτa → Eτa is in-
duced by the universal property of a pushout, and φτa : Y τa → Eτa is any mor-
phism that makes the following diagram commute, whose existence is guaranteed
by axiom MC4:

Eτa Qτa

Bτa Y τa

βτa
α̂τa

φ′

φτa

MC5: Consider a morphism g : A→ X in tame
(
[0,∞),M

)
. Let us choose a se-

quence 0 = τ0 < · · · < τk that discretises both A and X. By induction on a = 0, . . . , k,
we are going to construct the appropriate factorisations gτa = βτaατa . Set α0 : A0 →֒
Y 0 and β0 : Y 0 ։ X0 to be the factorisation of g0 : A→ X, where one of α0, β0 is
also a weak equivalence. Such a factorisation exists by MC5 inM. Assume a > 1 and
that we have defined ατb : Aτb →֒ Y τb and βτb : Y τb ։ Xτb for b < a. We can then
define:

Qτa := colim( Aτa Aτa−1 Y τa−1
Aτa−1<τa ατa−1

)

and form the following commutative diagram:

Aτa−1 Y τa−1 Xτa−1

Y τa

Aτa Qτa Xτa

gτa−1

ατa−1

Aτa−1<τa

βτa−1

Xτa−1<τa
βτa

α′

gτa

ατa

β′

α′′
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where the left square is pushout and β′ : Qτa → Xτa is induced by the universal
property of the pushout. The morphisms α′′ : Qτa→Y τa and βτa : Y τa→Xτa form the
appropriate factorisation of β′ into the composition of either a cofibration which is a
weak equivalence and a fibration, or a cofibration and a fibration which is a weak equi-
valence. Set ατa : Aτa → Y τa to be the composition α′′α′, and Y τa−1<τa : Y τa−1 → Y τa

to be the composition of Y τa−1 → Qτa and α′′ : Qτa → Y τa . Define Y to be the Kan
extension along 0 = τ0 < · · · < τk of the sequence {Y

τa−1<τa}a=1,...,k (see Section 2.1).
Let α : A→ Y and β : Y → X be the natural transformations induced by the se-
quences of morphisms {ατa : Aτa → Y τa}a=0,...,k and {βτa : Y τa → Xτa}a=0...,k. By
construction, α is a cofibration and β is a fibration. Furthermore, depending on the
choice of the factorisations of β′ : Qτa → Xτa , either α or β is a weak equivalence.

2.3. Minimal factorisations
Assume M satisfies the minimality axiom. Consider a morphism g : A→ X in

tame
(
[0,∞),M

)
. Perform the same constructions as in the proof of MC5 but instead

of taking arbitrary factorisations consider the minimal ones. In step zero, we take
morphisms α0 : X0 →֒ Y 0 and β0 : Y 0 ∼

−→→ X0 that form a minimal factorisation of
g0 : A→ X. Analogously, in the a-th step we take morphisms α′′ : Qτa →֒ Y τa and
βτa : Y τa

∼
−→→ Xτa which form a minimal factorisation of β′ : Qτa → Xτa . We claim

that the obtained morphisms α : A →֒ Y and β : Y
∼
−→→ X form a minimal factorisation

of g : A→ X. We just proved:

Theorem 2.4. If the model category M satisfies the minimal factorisation axiom,
then so does tame

(
[0,∞),M

)
.

Corollary 2.5. If the model category M satisfies the minimal factorisation axiom,
then so does tame([0,∞)k,M) for any k = 1, 2, . . ..

3. Chain complexes of vector spaces

Let K be a field and N = {0, 1, . . .} the set of natural numbers. A (non-negatively
graded) chain complex of K-vector spaces is a sequence of linear functions X =
{δn : Xn+1 → Xn}n∈N of K-vector spaces, called differentials, such that δnδn+1 = 0
for all n in N. In the notation of the differentials we often ignore their indexes and
simply denote them by δ, or δX to indicate which chain complex is considered.

A chain complex X is called compact if
⊕

n∈N
Xn is finite dimensional [1]. This

happens if and only if Xn is finite dimensional for all n and Xn is trivial for n≫ 0.

3.1. Homology
The following vector spaces are called respectively the n-th cycles and the n-th

boundaries of X:

ZnX :=

{
X0 if n = 0,

ker(δn−1 : Xn → Xn−1) if n > 1,
BnX := im(δn : Xn+1 → Xn).

Since δnδn+1 = 0, the n-th boundaries BnX are vector subspaces of the n-th cycles
ZnX. The quotient ZnX/BnX is called the n-th homology of X and is denoted by
HnX. We write ZX, BX and HX to denote the non-negatively graded vector spaces
{ZnX}n∈N, {BnX}n∈N, and {HnX}n∈N (see Section 3.7).
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3.2. Model structure

A morphism of chain complexes g : X → Y is a sequence of linear functions
{gn : Xn → Yn}n∈N such that gnδX = δY gn+1 for all n. Such a morphism maps
boundaries and cycles in X to boundaries and cycles in Y . The induced map on
homologies is denoted by Hg : HX → HY . If Hg : HX → HY is an isomorphism,
then g is a weak equivalence. If gn : Xn → Yn is an epimorphism for all n > 1 (no
assumption is made for n = 0), then g is a fibration. If gn : Xn → Yn is a monomor-
phism for all n > 0, then g is a cofibration. This choice of weak equivalences, fibra-
tions and cofibrations defines a model structure on the category of chain complexes,
denoted by Ch (see [10,21]). Consider the full subcategory of Ch given by compact
chain complexes. The same choices of weak equivalences, fibrations, and cofibrations,
as for Ch, define a model structure on such a subcategory, denoted by ch.

3.3. Suspension

The suspension of a chain complex X, denoted by SX is a chain complex such
that:

δn : (SX)n+1 → (SX)n =

{
X0 → 0 if n = 0,

−δn−1 : Xn → Xn−1 if n > 0.

Analogously, the suspension of a morphism g : X → Y of chain complex is a morphism
Sg : SX → SX such that:

(Sg)n : (SX)n → (SY )n =

{
0: 0→ 0 if n = 0,

gn−1 : Xn−1 → Yn−1 if n > 0.

The assignment g 7→ Sg is a functor denoted by S : Ch→ Ch.

Note that H0SX = 0 and HnSX is isomorphic to Hn−1X for all n > 0. Further-
more, if f is a cofibration or a weak equivalence, then so is Sf , and if f is a fibration,
then Sf is a fibration if and only if f0 is an epimorphism.

The desuspension of a chain complex X, denoted by S−1X, is a chain complex
such that:

δn : (S
−1X)n+1 → (S−1X)n =

{
−δ1 : X2 → Z1X if n = 0,

−δn+1 : Xn+2 → Xn+1 if n > 0.

Analogously, the desuspension of a morphism g : X → Y of chain complex is a
morphism S−1g : S−1X → S−1X such that:

(S−1g)n : (S
−1X)n → (S−1Y )n =

{
g1 : Z1X → Z1Y if n = 0,

gn+1 : Xn+1 → Yn+1 if n > 0.

The assignment g 7→ S−1g is a functor denoted by S−1 : Ch→ Ch.

Note that HnS
−1X is isomorphic to Hn+1X. If f is a fibration, cofibration or a

weak equivalence, then so is S−1f . Furthermore, S−1SX is isomorphic to X, and
SS−1X is isomorphic to X if and only if X0 = 0.

We now provide some explicit constructions of chain complexes used essentially in
Section 3.8 to compute the standard decomposition and the minimal representative
in ch.
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3.4. Cofiber sequences
Let f : X → Y be a morphism of chain complexes. Define a chain complex Cf ,

called the cofiber of f , a cofibration i : Y →֒ Cf , and a fibration p : Cf ։ SX, as
follows:

Y = · · · Y3 Y2 Y1 Y0

Cf = · · · Y3 ⊕X2 Y2 ⊕X1 Y1 ⊕X0 Y0

SX = · · · X2 X1 X0 0

i

δY δY

[ 1
0
]

δY

[ 1
0
]

δY

[ 1
0
] 1

p

[
δY f

0 −δX

]

[ 0 1 ]

[
δY f

0 −δX

]

[ 0 1 ]

[
δY f

0 −δX

]

[ 0 1 ]

[ δY f ]

0

−δX −δX −δX

The cofibration i and the fibration p form an exact sequence, called the cofiber
sequence of f :

0 Y Cf SX 0i p

Consider two maps of chain complexes f : X → Y and g : W → Z. Each of them
leads to a cofiber sequence. A natural transformation between these exact sequences
is by definition a triple of morphisms of chain complexes Sα : SX → SW , β : Y → Z
and γ : Cf → Cg which make the following diagram commute:

0 Y Cf SX 0

0 Z Cg SW 0

i

β

p

γ Sα

i p

Commutativity of this diagram has two consequences. First, γ is of the form:

γn =

{
β0 : Y0 → Z0 if n = 0,[
βn hn−1

0 αn−1

]
: Yn ⊕Xn−1 → Zn ⊕Wn−1 if n > 0.

Second, the sequence of linear functions h = {hn : Xn → Zn+1}n>0 satisfies the equa-
tion βf − gα = δZh+ hδX , which means that h is a homotopy between βf and gα. It
follows that the set of natural transformations between the two cofiber sequences is in
bijection with the set of triples consisting of morphisms α : X →W and β : Y → Z,
and a homotopy h between βf and gα. We illustrate such a triple in form of a diagram:

X Y

W Z

f

α h β

g

The symbol C(α, β, h) : Cf → Cg denotes the morphism γ : Cf → Cg, corresponding
to this triple (α, β, h).

In the case h = 0, such a diagram corresponds to a commutative square:

X Y

W Z

f

α 0 β

g

=

X Y

W Z

f

α β

g
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In this case, the corresponding morphism between the cofibers is denoted simply by
C(α, β) : Cf → Cg.

In the case the differentials δZ and δX are trivial (in all degrees), the following
implication holds (homotopy commutative square is commutative):

X Y

W Z

f

α h β

g

implies

X Y

W Z

f

α 0 β

g

3.5. Comparison morphism

Let f : X → Y be a morphism of chain complexes. Consider the quotient morphism
q: Y → Y/f(X) and define the comparison morphism Cf → Y/f(X) to be:

Cf = · · · Y2 ⊕X1 Y1 ⊕X0 Y0

Y/f(X) = · · · (Y/f(X))2 (Y/f(X))1 (Y/f(X))0

[
δY f

0 −δX

]

[ q 0 ]

[
δY f

0 −δX

]

[ q 0 ]

[ δY f ]

q

δ δ δ

If f is a monomorphism, then the comparison morphism Cf ։ Y/f(X) is a weak
equivalence.

3.6. Factorisation

The complex C1X is also denoted by CX and called the cone on X. Explicitly,
the cofibration i : X →֒ CX is given by:

X = · · · X3 X2 X1 X0

CX = · · · X3 ⊕X2 X2 ⊕X1 X1 ⊕X0 X0

i

δX δX

[ 10 ]

δX

[ 10 ]

δX

[ 10 ] 1[
δX 1

0 −δX

] [
δX 1

0 −δX

] [
δX 1

0 −δX

]
[ δX 1 ]

Note that HCX = 0.

The complex S−1CX is also denoted by PX and called the path complex on X.
We also use the symbol p : PX → X to denote the fibration given by the desuspension
S−1p : S−1CX → S−1SX = X. Explicitly:

PX = · · · X4 ⊕X3 X3 ⊕X2 X2 ⊕X1 X1

X = · · · X3 X2 X1 X0

p

[
−δX 1

0 δX

]

[ 0 1 ]

[
−δX 1

0 δX

]

[ 0 1 ]

[
−δX 1

0 δX

]

[ 0 1 ]

[−δX 1 ]

δX

δX δX δX δX

Note that HPX = 0.

Since HPX = 0 = HCX, the fibration p : PX ։ X and the cofibration i : X →֒
CX fit into the following factorisations of the morphisms 0→ X → 0:

PX CX

0 X 0

p ∼∼ i
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These morphisms i and p can be used to construct explicit factorisations of arbi-
trary morphisms in Ch, whose existence is guaranteed by axiom MC5: any g : X → Y
fits into a commutative diagram:

X ⊕ PY

X Y

CX ⊕ Y

[ g p ]

g

[ 10 ]
∼

[
i
g

]
[ 0 1 ]

∼

These factorisations are natural, however in general not minimal (see Definition 1.1).
To obtain minimal factorisations we cannot perform natural constructions and we
will be forced to make some choices.

3.7. Graded vector spaces

A (non-negatively) graded K-vector space is by definition a sequence of K-vector
spaces V = {Vn}n∈N. Such a graded vector space is concentrated in degree k if Vn = 0
for all n 6= k. Graded vector spaces concentrated in degree 0 are identified with vector
spaces.

Let V = {Vn}n∈N be a graded K-vector space. The same symbol V is also used
to denote the chain complex {0: Vn+1 → Vn}n∈N with the trivial differentials. In
this case, HV = V and hence any weak equivalence φ : V → V is an isomorphism. In
fact, an arbitrary chain complex X is minimal (see Definition 1.3) if and only if all
its differentials are trivial. More generally, any cofibration α : X →֒ Y for which the
chain complex Y/α(X) has all trivial differentials satisfies the following minimality
condition: any weak equivalence φ : Y → Y for which αφ = α is an isomorphism. To
see this consider a commutative diagram with exact rows:

0 X Y Y/α(X) 0

0 X Y Y/α(X) 0

α

1 φ

α

Using the long sequences of homologies for each row, we can conclude the morphism
Y/α(X)→ Y/α(X) is a weak equivalence and hence an isomorphism as Y/α(X) is
assumed to have all differentials trivial. We can then use the exactness of the rows to
get that φ is also an isomorphism.

To denote the n-fold suspension of K we use the symbol Sn. Explicitly, Sn is the
chain complex concentrated in degree n such that (Sn)n = K. For example, S0 = K.
The complex Sn is called the n-th sphere. The cone CSn is denoted by Dn+1 and
called the (n+ 1)-st disk. Explicitly:

(Dn+1)k =

{
K if k = n or k = n+ 1

0 otherwise
, δk =

{
1 if k = n

0 otherwise
.

3.8. Standard decomposition and minimal representative

Let X be a chain complex. Consider the morphisms p : CBX ։ SBX ← X : δX
(see Section 3.4). Axiom MC4 guarantees existence of a morphism φ : CBX → X
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making the following diagram commutative:

0 X

CBX SBX

∼ δ

p

φ

The restriction of any such φ to i : BX →֒ CBX is the standard inclusion BX →֒
ZX →֒ X. This can be seen by looking at the long exact sequences of homologies
applied to the rows in the following commutative diagram:

0 BX CBX SBX 0

0 ZX X SBX 0

i p

φ 1

δ

The morphism φ leads therefore to a pushout square (in particular φ is a cofibration):

BX CBX

ZX X

i

φ

Since considered coefficients are in a field and all the differentials in BX, ZX and
HX are trivial, there is a morphism s : HX → ZX, whose composition with the
quotient ZX ։ HX is 1HX . For any such s, the morphism

[
i s

]
: BX ⊕HX → ZX

is an isomorphism. It follows that so is the morphism
[
φ s

]
: CBX ⊕HX → X,

where the symbol s also denotes the composition of s : HX → ZX and the inclusion
ZX →֒ X. We call CBX ⊕HX the standard decomposition of the chain complex
X. Since CBX has trivial homology, the morphism s : HX → X is a weak equivalence
and hence HX is the minimal representative (see Definition 1.3) of X.

3.9. Minimal factorisations
Let g : X → Y be a morphism of chain complexes. To construct its minimal fac-

torisation (see Definition 1.1) we perform the following steps:

1. Take the kernel j : W →֒ X of g : X → Y ;

2. Choose an isomorphism W
≃
−→ CBW ⊕HW (see Section 3.8);

3. Consider the composition:

W CBW ⊕HW CBW ⊕ CHW≃

α

[ 1 0
0 i ]

4. Use axiom MC4 to construct a morphism φ : X → CBW ⊕ CHW , which fits
into the following commutative diagram:

W CBW ⊕ CHW

X 0

j

α

∼φ

5. The morphism
[
φ
g

]
: X → (CBW ⊕ CHW )⊕ Y is then a cofibration.
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We are now ready to state:

Proposition 3.1. The following factorisation is minimal:

(CBW ⊕ CHW )⊕ Y

X Y

[ 0 1 ]

∼

g

[
φ
g

]

Proof. Let ψ =
[
ψ11 ψ12

ψ21 ψ22

]
: (CBW ⊕ CHW )⊕ Y → (CBW ⊕ CHW )⊕ Y be a mor-

phism making the following diagram commutative:

X (CBW ⊕ CHW )⊕ Y

(CBW ⊕ CHW )⊕ Y Y

[
φ
g

]

[
φ
g

]
[ 0 1 ]∼

[ 0 1 ]

∼

ψ

Commutativity of the bottom triangle implies ψ21 = 0 and ψ22 = 1. Since W is the
kernel of g, commutativity of the top triangle implies commutativity of:

W CBW ⊕ CHW

CBW ⊕ CHW

α

α

ψ11

The quotient (CBW ⊕ CHW )/α(W ) = SHW has all differentials trivial. The mor-
phism ψ11 : CBW ⊕ CHW → CBW ⊕ CHW is therefore an isomorphism (see Sec-
tion 3.7). It follows that so is ψ =

[
ψ11 ψ12

0 1

]

We just proved that ch satisfies the minimal factorisation axiom. By Theorem 2.4,
it follows that tame

(
[0,∞), ch

)
also satisfies the minimal factorisation axiom, and

thus any tame parametrised chain complex admits a minimal cover. In Section 4, we
provide a characterisation of such minimal covers.

4. Cofibrations in tame([0,∞), ch)

In this section we discuss cofibrations in the model category tame
(
[0,∞), ch

)
as

described in Theorem 2.2. According to Proposition 2.3, an object X in tame
(
[0,∞),

ch
)
is cofibrant if and only if the transition Xs<t : Xs → Xt is a monomorphism

(a cofibration in ch) for every s < t in [0,∞). This implies that if Y is cofibrant, and
f : X → Y is a monomorphism in tame

(
[0,∞), ch

)
, then X is also cofibrant.

For example, the following objects are cofibrant. They are parametrised by a nat-
ural number n and an element in Ω := {(s, e) ∈ [0,∞)× [0,∞] | s 6 e}, where [0,∞]
is the poset of non-negative reals plus ∞.

Definition 4.1. The Kan extensions (see Section 2.1) given by the data described in
the following table are called interval spheres:
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Index n, s < e =∞ n, s = e <∞ n, s < e <∞
Name In [s,∞) In [s, s) In [s, e)
k 0 0 1

Functor [k]→ ch Sn Dn+1 i : Sn →֒ Dn+1

Inclusion [k] ⊂ [0,∞) s s s < e

For example, I2 [5,∞) : [0,∞)→ ch is a functor whose value at t < 5 is 0, and at
5 6 t is S2. Similarly, I2 [5, 5) : [0,∞)→ ch has value 0 if t < 5, and D3 if 5 6 t. The
functor I2 [5, 7) : [0,∞)→ ch has three values: 0 if t < 5, S2 if 5 6 t < 7, and D3 if
7 6 t. The transition morphisms in I2 [5, 7) are either the identities, or the inclusion
0 →֒ S2 or the inclusion i : S2 →֒ D3.

A morphism In [s, e)→ 0 is a weak equivalence if and only if s = e. Thus, interval
spheres of type In [s, s) are the only interval spheres for which the chain complex
In [s, s)

t
has trivial homology for every parameter t in [0,∞).

The main result of this section is the structure theorem (compare with [4,19,23]):

Theorem 4.2.

(1) Any cofibrant object in tame
(
[0,∞), ch

)
is isomorphic to a direct sum

⊕li=1I
ni [si, ei), where l could possibly be 0.

(2) If ⊕li=1I
ni [si, ei) ∼= ⊕

l′

j=1I
n′

j

[
s′j , e

′
j

)
, then l = l′ and there is a permutation σ of

the set {1, . . . , l} such that ni = n′σ(i), si = s′σ(i), and ei = e′σ(i) for any i.

To prove Theorem 4.2, we first need to characterise cofibrations in tame
(
[0,∞), ch

)

and explain how to enumerate morphisms out of In [s, e). We start with cofibrations:

Proposition 4.3. For every morphism g : X → Y in tame
(
[0,∞), ch

)
, the following

statements are equivalent:

1. g is a cofibration;

2. gt : Xt → Y t is a monomorphism for every t in [0,∞), and Y/g(X) is cofibrant;

3. gt : Xt → Y t is a monomorphism for every t in [0,∞) and, for all s < t in
[0,∞), the following is a pullback square:

Xs Xt

Y s Y t

Xs<t

gs gt

Y s<t

Proof. In the proof, we utilise the following fundamental linear algebra statement.
Consider commutative diagrams of vector spaces:

V W0

W1 U

α0

α1 β0

β1

It leads to two vector spaces:

P := lim( W1 U W0
β1 β0

), Q := colim( W1 V W0
α0α1 )

and two linear functions α : V → P and β : Q→ U that make the following diagrams
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commutative, where the inside squares are respectively a pullback and a pushout:

V

P W0

W1 U

α0

α

α1
β0

β1

V W0

W1 Q

U

α0

α1 β0

β1

β

Then α : V → P is surjective if and only if β : Q→ U is injective.

1⇒2 : The first part of 2 follows from Proposition 2.3.1, and the second from the
fact that in a model category cofibrations are preserved by pushouts.

2⇒3 : For all s < t in [0,∞), we have the following commutative diagram, where
the indicated arrows are cofibrations in ch:

Xs Y s Y s/g(X)s

Xt Y t Y t/g(X)t

Xs<t

gs

Y s<t

gt

The pullback lim(Xt Y t Y s
gt Y s<t

) is isomorphic to the kernel of the com-
position Y s ։ Y s/g(X)s →֒ Y t/g(X)t. Since the second map is an inclusion, this
pullback coincides with the kernel of Y s ։ Y s/g(X)s. Consequently, the left square
is a pullback.

3⇒1 : Let 0 = τ0 < · · · < τk be a sequence that discretises bothX and Y . Accord-
ing to Theorem 2.2, we need to show that ĝτa : P τa → Y τa is a cofibration for all a.
This is a consequence of the linear algebra statement given at the beginning of the
proof. Indeed, the square is a pullback, its mediating morphism is the identity and
thus ĝτa is a monomorphism, and so a cofibration in ch.

4.1. Morphisms out of In [s,∞)

A morphism g : In [s,∞)→ X leads to a linear function gsn : I
n [s,∞)

s
n = K → Xs

n.
Let x := gsn(1) in X

s
n. This element satisfies the equation δ(x) = 0, which means that

x belongs to the cycles ZnX
s. Choosing an element in ZnX

s is all what is needed to
describe a morphism out of In [s,∞). For any x in ZnX

s, there is a unique morphism
I(x) : In [s,∞)→ X such that x = I(x)sn(1). The association g 7→ gsn(1) describes a
bijection (in fact a linear isomorphism) between the set of morphisms In [s,∞)→ X
and the set of cycles ZnX

s.

4.2. Morphisms out of In[s, e)

Let s 6 e <∞. A morphism g : In [s, e)→ X leads to two functions gsn : I
n [s, e)

s
n =

K → Xs
n and gen+1 : I

n [s, e)
e
n+1 = K → Xe

n+1. Define two elements x := gsn(1) in X
s
n

and y := gen+1(1) in X
e
n+1. These elements satisfy equations δ(x) = 0 and Xs6e

n (x) =
δ(y). These equations contain all the information needed to describe a morphism out
of In [s, e). If x in Xs

n and y in Xe
n+1 satisfy these equations, then there is a unique

morphism I(x, y) : In [s, e)→ X such that x = I(x, y)sn(1) and y = I(x, y)en+1(1). The
association g 7→

(
gsn(1), g

e
n+1(1)

)
describes therefore a bijection between the set of
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morphisms In [s, e)→ X and the pullback:

lim(ZnX
s Xe

n Xe
n+1

Xs6e
n δ )

In the case s = e, this pullback can be identified with Xs
n+1. Thus, the set of

morphisms In [s, s)→ X is in bijection with Xs
n+1.

For X = In [s, s), the elements 1 in K = In [s, s)
s
n and 1 in K = In [s, s)

e
n+1 sat-

isfy the required equations. The obtained morphism In [s, e)→ In [s, s) is called
the standard inclusion. Since not all of the transition morphisms of the quotient
In [s, s) /In [s, e) are monomorphisms, the standard inclusion is not a cofibration.

4.3. Cofibrations out of In[s, e)
In this paragraph we describe necessary and sufficient conditions for g : In [s, e)→X

to be a cofibration. Since In [s, e) is cofibrant, if there is such a cofibration, then X
has to be cofibrant. Let us then make this assumption. The transition morphisms
in X are therefore assumed to be cofibrations (see Proposition 2.3).

Choose 0 = τ0 < · · · < τk that discretises X and In [s, e), and consider the dia-
grams:

In [s, e)
τa−1 In [s, e)

τa

Xτa−1 Xτa

gτa−1

In[s,e)τa−1<τa

gτa

Xτa−1<τa

By Proposition 4.3, since X is cofibrant, g : In [s, e)→ X is a cofibration if and only if
the diagram above is pullback for all a = 1, . . . , k. These diagrams are pullbacks if in
every homological degree h they are pullbacks of vector spaces. They can fail to be so
only if the transition morphism In [s, e)

τa−1<τa
h is not the identity, which happens in

two cases: (i) τa−1 < s = τa and h = n, or (ii) e <∞, τa−1 < e = τa, and h = n+ 1.
In both of these cases, the diagram above becomes:

0 K

X
τa−1

h Xτa
h

g
τa
h

X
τa−1<τa

h

and hence it is a pullback if and only if gτah (1) is not in the image of X
τa−1<τa
h . We

have just proven:

Proposition 4.4. Let X be an object in tame
(
[0,∞), ch

)
.

1. Let n be a natural number, s be in [0,∞), and x be in ZnX
s. Then the mor-

phism I(x) : In [s,∞)→ X (see Section 4.1) is a cofibration if and only if X is
cofibrant and x is not in the image of Xt<s

n : Xt
n → Xs

n for any t < s.

2. Let n be a natural number, s 6 e be in [0,∞), and x in ZnX
s and y in Xe

n+1

be such that Xs6e
n (x) = δ(y). Then I(x, y) : In [s, e)→ X (see Section 4.2) is a

cofibration if and only if X is cofibrant, x is not in the image of Xt<s
n : Xt

n → Xs
n

for any t < s, and y is not in the image of Xt<e
n+1 : X

t
n+1 → Xe

n+1 for any t < e.

We are now ready for:
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Proof of Theorem 4.2. (2) This is a consequence the fact that In [s, e) is indecom-
posable, for all n and s 6 e (see [2,3]).

(1) Let X in tame
(
[0,∞), ch

)
be cofibrant. Choose a sequence 0 = τ0 < · · · < τk

discretising X. The morphism Xτa−1<τa : Xτa−1 → Xτa is then a cofibration in ch
for every a = 1, . . . , k.

Assume first all the differentials in Xt are trivial for all t. In this case, X is isomor-
phic to

⊕
n>0Xn. Let l

0
n := dimX0

n and lτan := dim coker(X
τa−1<τa
n : X

τa−1

n → Xτa
n )

for a = 1, . . . , k. Then Xn is isomorphic to
⊕k

a=0

⊕lτan
j=1 I

n [τa,∞) and consequently
X is isomorphic to:

⊕

n>0

k⊕

a=0

lτan⊕

j=1

In [τa,∞) .

Assume now there is a non-trivial differential in X and set:

(a) n to be the smallest natural number for which δ : Xt
n+1 → Xt

n is non trivial for
some t. This assumption implies Xt

n = ZnX
t for any t.

(b) e to be the smallest τa for which δ : Xτa
n+1 → Xτa

n is non trivial.

(c) s to be the smallest τa such that τa 6 e and for which the following intersection
contains a non zero element:

im
(
Xτa6e
n : ZnX

τa = Xτa
n →֒ Xe

n

)
∩ im

(
δ : Xe

n+1 → Xe
n

)
6= 0

We claim that these choices imply X is isomorphic to In [s, e)⊕X ′. We can then
apply the same strategy to X ′. If X ′ has a non-trivial differential, we split out of
X ′ another direct summand of the form In

′

[s′, e′) for s′ 6 e′ in [0,∞). Tameness
guarantees that this process eventually terminates and we end up with an object
with all the differentials being trivial, which we can decompose as described above
and the theorem would be proven.

It remains to show our claim that X is isomorphic to In [s, e)⊕X ′. For that, we
make some choices:

1. Choose a non zero vector v in the intersection from step (c) above.

2. Choose x in Xs
n = ZnX

s and y in Xe
n+1 such that: Xs6e

n (x) = v = δ(y).

3. Consider the morphism I(x, y) : In [s, e)→ X (see Section 4.2).

The reason why we made all these choices is to ensure I(x, y) : In [s, e)→ X is a
cofibration (see Proposition 4.4.2).

Let φ : X → In [s, s) be a morphism that fits into the following commutative dia-
gram, where the top horizontal morphism is the standard inclusion (see Section 4.2).
Existence of such a φ is guaranteed by axiom MC4:

In [s, e) In [s, s)

X 0

I(x,y) ∼φ

If t < e, then the differential δ : Xt
n+1 → Xt

n is trivial. Thus, for any s 6 t < e, the

linear function φtn+1 : X
t
n+1 → In [s, e)

t
n+1 has to be trivial. It follows that φ : X →
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In [s, s) factors through the standard inclusion:

In [s, e)

X In [s, s)

i

φ

ψ

The composition In [s, e) X In [s, e)
I(x,y) ψ

is therefore the identity and

consequently X is isomorphic to a direct sum In [s, e)⊕X ′.

5. Betti diagrams of objects

Let X be a cofibrant object in tame
(
[0,∞), ch

)
. According to Theorem 4.2 there

are unique functions {βnX : Ω→ {0, 1, . . .}}n=0,1,..., called Betti diagrams of X,
such that X is isomorphic to:

⊕

n

⊕

(s,e)∈Ω

(In [s, e))
βnX(s,e)

Betti diagrams have finite support: the set supp(βnX) := {(s, e) ∈ Ω | βnX(s, e) 6= 0}
is finite for every n. Thus, to describe an isomorphism type of a cofibrant object X
in tame

(
[0,∞), ch

)
, a sequence of functions {βnX : Ω→ {0, 1, . . .}}n=0,1,... with finite

supports needs to be specified. Such functions are also called persistence diagrams (see
[11]). Betti diagrams are complete invariants of cofibrant objects in tame

(
[0,∞), ch

)

and they play a fundamental role in persistence and TDA.
In this section, we explain various ways of assigning Betti diagrams to arbitrary

objects (not only cofibrant) in tame
(
[0,∞), ch

)
. For such general objects one should

not expect these invariants to be complete. Our strategy is to approximate arbitrary
objects by cofibrant objects and use Theorem 4.2 to extract Betti diagrams from the
obtained approximations.

Minimal representatives (Definition 1.3) and minimal covers (Definition 1.1) are the
most fundamental constructions that convert an arbitrary object in tame

(
[0,∞), ch

)

into a cofibrant one. This leads to two invariants of an isomorphism class of X in
tame

(
[0,∞), ch

)
which are called minimal Betti diagrams and Betti diagrams:

X

{βnX
′ : Ω→ {0, 1, . . .}}n=0,1,... {βncov(X) : Ω→ {0, 1, . . .}}n=0,1,...

minimal Betti diagrams Betti diagrams

where X ′ is a minimal representative of X and cov(X)→ X is a minimal cover of X.
We also use the symbols βmin

n X and βnX to denote respectively βnX
′ and βncov(X).

Moreover, if X and Y are weakly equivalent, then βmin
n X = βmin

n Y .
To understand relationship between these invariants, we first characterise minimal

objects (see Definition 1.3) in tame
(
[0,∞), ch

)
. LetX be cofibrant in tame

(
[0,∞), ch

)
.

Consider its decomposition into a direct sum of interval spheres (Theorem 4.2). If this
decomposition contains a component of the form In [s, s), then by projecting it away,
we obtain a self weak equivalence of X which is not an isomorphism. Thus, if X is
minimal, its decomposition cannot contain such components, which is equivalent to
having βnX(s, s) = 0 for all n and all s. This implication can be reversed:
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Proposition 5.1.

1. An object X in tame
(
[0,∞), ch

)
is minimal if and only if it is cofibrant and

βnX(s, s) = 0 for all natural numbers n and all s in [0,∞).

2. A morphism c : X → Y is a minimal cover if and only if X is cofibrant, c is
a weak equivalence and a fibration, and no direct summand of X of the form
In [s, s), for some n and s, is in the kernel of c (is mapped via c to 0).

Proof. We start with describing how a self weak equivalence of an object X in
tame

(
[0,∞), ch

)
leads to its decomposition as a direct sum. Let f : X → X be a

weak equivalence. Since all objects in tame
(
[0,∞), ch

)
are compact, there is a nat-

ural number l for which f l = f l+k for all k > 0. We can then form the following
commutative diagram where the top horizontal morphism is an isomorphism:

im(f l) im(f l)

X X Xf l f l

Commutativity of this diagram, and the facts that the top horizontal morphism is an
isomorphism and f l is a weak equivalence, have two consequences: X is isomorphic
to a direct sum im(f l)⊕ ker(f l), and the morphisms X ։ im(f l) and ker(f l)→ 0
are weak equivalences.

1. Assume X is cofibrant and βnX(s, s) = 0 for all n and s. Let f : X → X be
a self weak equivalence and l be such that X is isomorphic to im(f l)⊕ ker(f l) and
the morphism ker(f l)→ 0 is a weak equivalence. According to Theorem 4.2, ker(f l)
is a direct sum of interval spheres of the form In [s, s). Since by the assumption X
does not have such components, ker(f l) = 0 and consequently f l and hence f are
isomorphisms. That proves statement 1.

2. Consider a morphism c : X → Y such that X is cofibrant, c is a weak equiva-
lence and a fibration. If the kernel of c contains a direct summand of X of the form
In [s, s), then by projecting it away, we would obtain a weak equivalence f : X → X
such that cf = c and which is not an isomorphism, preventing c to be a minimal
cover.

Assume now that the kernel of c does not contain any direct summand of X of the
form In [s, s). Consider a weak equivalence f : X → X such that cf = c. Choose l for
which X is isomorphic to im(f l)⊕ ker(f l) and the morphism ker(f l)→ 0 is a weak
equivalence. As before, Theorem 4.2 ensures that ker(f l) is a direct sum of interval
spheres of the form In [s, s). Since ker(f l) is in ker(c) and it is a direct summand of
X, the assumption implies ker(f l) is trivial, and as before f is an isomorphism.

Corollary 5.2. Let X be an object in tame
(
[0,∞), ch

)
(not necessarily cofibrant).

1. A cofibrant object X ′ in tame
(
[0,∞), ch

)
is a minimal representative of X if and

only if it is weakly equivalent to X and βnX
′(s, s) = 0 for all natural numbers

n and all s in [0,∞).

2. Let X ′ be the minimal representative of X and cov(X) its minimal cover. Then
βnX

′(s, e) = βncov(X)(s, e) for all s < e.

According to the above corollary, the minimal Betti diagrams and the Betti dia-
grams may differ only on the diagonal ∆ := {(s, s) ∈ Ω} ⊂ Ω. The minimal Betti
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diagrams ignore the diagonal by assigning 0 to all its elements (see Proposition 5.1),
reflecting the fact that minimal representative does not contain any component with
trivial homology. The Betti diagrams on the other hand do not ignore the diago-
nal and retain information about components of the cover cov(X) that have trivial
homology.

For certain objects in tame
(
[0,∞), ch

)
, the minimal Betti diagrams and the Betti

diagrams coincide and provide a complete set of invariants:

Proposition 5.3. Assume X and Y in tame
(
[0,∞), ch

)
are such that all the differ-

entials of Xt and Y t are trivial for all t in [0,∞). Then:

1. X and Y are isomorphic if and only if they are weakly equivalent.

2. X and Y are isomorphic if and only if their minimal Betti diagrams are equal.

3. The minimal cover and the minimal representative of X are isomorphic.

4. The minimal Betti diagrams and Betti diagrams of X coincide.

Proof. Statement 1 is a consequence of the fact that X and Y are isomorphic to their
respective homologies. Statement 2 follows from statement 1. To show statement 3,
choose a minimal representative X ′ of X and a weak equivalence f : X ′ → X. Since
X is isomorphic to its homology, f is a fibration and hence it is also a minimal cover
of X. Finally statement 4 is a consequence of statement 1.

5.1. Tame [0,∞)-parametrised vector spaces

We regard tame [0,∞)-parametrised vector spaces, also known as persistence
modules, as objects in tame

(
[0,∞), ch

)
whose values are concentrated only in degree 0

for all parameters t in [0,∞) (see Section 3.7). Such objects in tame
(
[0,∞), ch

)
satisfy

the assumption of Proposition 5.3 and hence their isomorphism types are uniquely
determined by their Betti diagrams. Furthermore, minimal representatives and min-
imal covers of such objects coincide. It follows that for a tame [0,∞)-parametrised
vector space X, we have βnX(s, s) = 0 for all n and s (see Proposition 5.1). Since
homology in positive degrees of X is trivial, we also get βnX = 0 for all n > 0.
Thus, the isomorphism type of X is uniquely determined by its 0-th Betti diagram
β0X : Ω→ {0, 1, . . .}. In this case β0X coincides with the usual persistence diagram
of X [11].

6. Betti diagrams of morphisms

In this section we explain various ways of assigning Betti diagrams to a morphism
g : X → Y in tame

(
[0,∞), ch

)
.

6.1. Minimal factorisations

If g : X → Y is a cofibration, then the quotient Y/g(X) is cofibrant and we can take
its Betti diagrams βn (Y/g(X)). If g : X → Y is not a cofibration, we can consider its
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minimal factorisation (see Definition 1.1):

A

X Y

β

∼
g

α

and assign to g the Betti diagrams βn (A/α(X)) of the quotient A/α(X). These Betti
diagrams are invariants of the isomorphism type of g, and in the case X = 0 recover
the Betti diagrams of Y discussed in Section 5.

6.2. The cover of the cofiber

Instead of taking the minimal factorisation of g, we can apply the cofiber construc-
tion (see Section 3.4) parameterwise, to obtain an exact sequence in tame

(
[0,∞), ch

)
:

0 Y Cg SX 0i p

We can then assign to g the Betti diagrams βncov(Cg) of the minimal cover cov(Cg)
of the cofiber Cg. The diagrams βncov(Cg) depend on the isomorphism type of g, and
as before, in the case X = 0, recover the Betti diagrams of Y discussed in Section 5.

6.3. The cofiber of the covers

We can extract a cofibrant object out of g : X → Y yet in another way. Use
axiom MC4 to choose a morphism g′ that fits into the following commutative square,
where the vertical morphisms denote the minimal covers:

cov(X) cov(Y )

X Y

cX ∼

g′

cY∼

g

Since cov(X) and cov(Y ) are cofibrant, then so is the cofiber Cg′, and hence we can
take its Betti diagrams βnCg

′. Although in this construction we made a choice of
g′, the obtained Betti diagrams do not depend on it and hence provide invariants
of the isomorphism type of g. To prove this independence, consider the morphism
C(cX , cY ) : Cg

′ → Cg, induced by the commutativity of the square above (see Sec-
tion 3.4). It fits into the following commutative diagram with exact rows, where the
indicated morphisms are weak equivalences, cofibrations, and fibrations:

0 cov(Y ) Cg′ Scov(X) 0

0 Y Cg SX 0

cY ∼

i

C(cX ,cY )∼

p

ScX∼

i p

Proposition 6.1. The following factorisation is minimal:

Cg′

cov(Y ) Cg

C(cX ,cY )

∼

icY

i

Furthermore, if X is cofibrant, then C(cX , cY ) : Cg
′ → Cg is a minimal cover.
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Since the morphism icY : cov(Y )→ Cg does not depend on g′, neither does its
minimal factorisation. Therefore, Proposition 6.1 implies that the isomorphism type
of Cg′ does not depend on the choice of g′ and consequently neither βnCg

′.

Proof of Proposition 6.1. Consider a self equivalence f : Cg′ → Cg′ of the factorisa-
tion. It fits into the following commutative diagram:

cov(Y ) Cg′ Scov(X)

cov(Y ) Cg′ Scov(X)

Y Cg SX

cY∼

i

C(cX ,cY )∼

f

p

ScX

∼

∼
cY

ii

∼
C(cX ,cY )

pp

∼

ScXi i

The induced morphism Scov(X)→ Scov(X) is then a weak equivalence and hence
an isomorphism as ScX : Scov(X)→ SX is the minimal cover. The morphism f is
therefore an isomorphism as well.

Assume X is cofibrant. We are going to use the criteria from Proposition 5.1 to
argue that in this case C(cX , cY ) is a minimal cover. Since cov(X) = X, the following
square is a pullback:

cov(Y ) Cg′

Y Cg

i

cY ∼ C(cX ,cY )∼

i

It follows that the kernel of C(cX , cY ) coincides with the kernel of cY . Consider
a direct summand of Cg′ of the form In [s, s), for some n and s, that belongs to
the kernel of C(cX , cY ). Then this summand belongs also to the kernel of cY . In
particular, it is included in cov(Y ) and hence it is also a direct summand of cov(Y ).
That contradicts the criteria from Proposition 5.1 applied to cY . We can conclude
that such summands do not exist and hence, according to the same criteria, C(cX , cY )
is a minimal cover.

With a morphism g : X → Y in tame
(
[0,∞), ch

)
, we have associated four cofibrant

objects: A/α(X) (see Section 6.1), cov(Cg) (see Section 6.2), Cg′ (see Section 6.3),
and the minimal representative of cov(Cg). These cofibrant objects lead to Betti
diagrams βn (A/α(X)), βncov(Cg), βnCg

′, and βmin
n cov(Cg). Since all these cofibrant

objects are weakly equivalent to each other, all these Betti diagrams agree for all (s, e)
in Ω such that s < e. They may have different values only on the diagonal ∆ ⊂ Ω.

6.4. Commutative ladders
A commutative ladder is by definition an object in tame

(
[0,∞), ch

)
whose val-

ues at all parameters are chain complexes which are non trivial only in degrees zero
and one. For example, I0 [s, s) is a commutative ladder. Similarly, so is the Kan exten-
sion ofD1 → 0 with respect to a sequence s < e of elements in [0,∞) (see Section 2.1).
A tame [0,∞)-parametrised vector space is also an example of a commutative lad-
der. In general, however, in contrast to tame [0,∞)-parametrised vector spaces, the
minimal Betti diagrams of a commutative ladder can fail to be equal to its Betti
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diagrams. For example, the minimal representative of I0 [s, s) is trivial, however its
minimal cover is I0 [s, s). Furthermore, again in contrast to tame vector spaces, Betti
diagrams are not complete invariants of commutative ladders. For example, I0 [s, s)
and the Kan extension of D1 → 0 with respect to a sequence s < e of elements in
[0,∞) have isomorphic minimal covers and hence same Betti diagrams.

If f : X → Y is a morphism of tame [0,∞)-parametrised vector spaces, then its
cofiber Cf is a commutative ladder. Any commutative ladder Z is the cofiber of
its differential δ : Z1 → Z0, where we regard Z1 and Z0 as [0,∞)-parametrised vec-
tor spaces. Thus, we can extract from Z various Betti diagrams assigned to the
morphism δ : Z1 → Z0. For example, we can consider the Betti diagrams of the quo-
tient of the cofibration in the minimal factorisation of the differential δ : Z1 → Z0

(see Section 6.1). We can also apply to δ the procedure described in Section 6.3
to obtain another sequence of Betti diagrams. Thus, a commutative ladder leads
to four sequences of Betti diagrams. These Betti diagrams are not arbitrary. Let
βn : Ω→ {0, 1, . . .} be any of these Betti diagrams extracted from a commutative
ladder. Since for n > 1, there are no non-trivial morphisms from the interval sphere
In [s, s) into any commutative ladder, βn(s, s) = 0 for n > 1 and s in [0,∞). As values
of commutative ladders have no homology in degrees strictly bigger than 1, we then
also get βn = 0, for n > 1.

7. Zigzags

7.1. Discrete zigzags

Throughout this section, k is assumed to be a positive natural number. Elements of
the set {r, l} are called directions, r stands for right and l for left. Let c = (c1, . . . , ck)
be a sequence of directions i.e., elements of {r, l}. Such a sequence determines a
poset structure “→” on {0, 1, . . . , k} where, for a < b in {0, 1, . . . , k}, a← b if ca+1 =
· · · = cb = l, and a→ b if ca+1 = · · · = cb = r. This poset is denoted by [k]c and the
sequence c is called its profile. A profile c consisting of only r’s is called standard
and the induced poset structure on {0, 1, . . . , k} is denoted by [k]. Here are graphical
illustrations of [4]c for 3 different profiles:

0← 1← 2→ 3→ 4, 0→ 1→ 2→ 3→ 4, 0← 1→ 2← 3→ 4.

To define a functor X : [k]c → Ch, the following needs to be specified:

� k + 1 chain complexes Xa for every a in {0, 1, . . . , k},

� k chain morphisms: Xa−1→a : Xa−1 → Xa for every a such that ca = r, and
Xa→a−1 : Xa → Xa−1 for every a such that ca = l.

A discrete zigzag is by definition a functor of the form X : [k]c → Ch for some k
and some profile c.

7.2. Straightening zigzags

Choose a profile c = (c1, . . . , ck). For a in {0, 1, . . . , k}, define its weight wa to be
the size of the set {k | k 6 a and ck = l}. The weight of a is the number of l directions
in c whose indexes are not bigger than a. Thus, w0 = 0, and w1 = 1 if and only if
c1 = l.
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In this paragraph we are going to explain how to convert a zigzag X : [k]c → Ch,
indexed by the poset [k]c, into a functor X : [k]→ Ch indexed by the standard poset
[k]. For a in {0, 1, . . . , k} define:

X
a
=





SwaXa if a < k and ca+1 = r,

SwaCXa+1→a if a < k and ca+1 = l,

SwkXk if a = k.

Thus, for a < k, the value X
a
depends on the direction ca+1. If ca+1 = r, then X

a

is the wa suspension of Xa. If ca+1 = l, then X
a
is the wa suspension of the cofiber

CXa+1→a (see Section 3.4).

Next we are going to define morphisms X
a−1<a

: X
a−1
→ X

a
for every a in {1, . . . ,

k}. These morphisms depend on the directions ca and ca+1 for a < k, and ck for a = k,
and are defined as follows, using the morphisms i and p as described in Section 3.4:

� Assume either a < k, ca = r and ca+1 = r, or a = k and ck = r. Then:

– wa = wa−1,

– X
a−1

= Swa−1Xa−1 = SwaXa−1,
– X

a
= SwaXa.

The morphism X
a−1<a

: X
a−1
→ X

a
is set to be:

X
a−1

X
a

SwaXa−1 SwaXa

X
a−1<a

SwaXa−1→a

� If ca = r and ca+1 = l, then:

– wa = wa−1,

– X
a−1

= Swa−1Xa−1 = SwaXa−1,
– X

a
= SwaCXa+1→a.

The morphism X
a−1<a

: X
a−1
→ X

a
is set to be the composition:

X
a−1

X
a

SwaXa−1 SwaXa SwaCXa+1→a

X
a−1<a

SwaXa−1→a Swa i

� Assume either a < k, ca = l and ca+1 = r, or a = k and ck = l. Then:

– wa = wa−1 + 1,

– X
a−1

= Swa−1CXa→a−1,
– X

a
= SwaXa = Swa−1SXa.

The morphism X
a−1<a

: X
a−1
→ X

a
is set to be:

X
a−1

X
a

Swa−1CXa→a−1 Swa−1SXa SwaXa

X
a−1<a

Swa−1p
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� If ca = l and ca+1 = l, then:

– wa = wa−1 + 1,

– X
a−1

= Swa−1CXa→a−1,
– X

a
= SwaCXa+1→a = Swa−1SCXa+1→a.

The morphism X
a−1<a

: X
a−1
→ X

a
is set to be the composition:

X
a−1

X
a

Swa−1CXa→a−1 Swa−1SXa = SwaXa SwaCXa+1→a

X
a−1<a

Swa−1p Swa i

For example, consider the following discrete zigzags of chain complexes:

X = ( X0 X1 X2 X3 X4
f1 f2 f3 f4

)

Y = ( Y0 Y1 Y2 Y3 Y4
g1 g2 g3 g4

)

Then:

X =
( Cf1 SCf2 S2X2 S2X3 S2X4

SX1

p

p S2f3 S2f4

Si

)

Y =
( Y0 Y1 Cg3 SCg4 S2Y4

Y2 SY3

g1

g2 p

Sp

i Si

)

7.3. Morphisms between straightened zigzags

Consider a natural transformation f : X → Y between two discrete zigzags
X,Y : [k]c → Ch. It is a sequence of morphisms f = {fa : Xa → Y a}06a6k for which
the following squares commute for all a in {1, . . . , k}:

if ca = r if ca = l

Xa−1 Xa

Y a−1 Y a

Xa−1→a

fa−1 fa

Y a−1→a

Xa−1 Xa

Y a−1 Y a

fa−1 fa

Xa→a−1

Y a→a−1

The following morphisms form a natural transformation denoted by f : X → Y :

f
a
: X

a
→ Y

a
=





Swafa if a < m and ca+1 = r,

SwaC(fa) if a < m and ca+1 = l,

Swkfk if a = k.

The association f 7→ f defines an additive functor. This functor is faithful i.e.,
it is injective on the set of morphisms. Furthermore, it commutes with direct sums,
since taking suspensions and cofiber sequences commute with direct sums. In general,
however, this functor fails to be full i.e., surjective on the set of morphisms. To
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understand this failure we enumerate all natural transformations of the form X → Y ,
using the following algorithm. Choose an arbitrary natural transformation g : X → Y .

� Let gk : SwkXk → SwkY k be the k-th component of g. Define ĝk : Xk → Y k to
be S−wkgk (see Section 3.3).

For 1 6 a 6 k − 1,

� Assume ca+1 = r. Let ga : SwaXa → SwaY a be the a-th component of g. Define
ĝa : Xa → Y a to be S−waga. Since g is a natural transformation, the following
square commutes:

Xa Xa+1

Y a Y a+1

Xa→a+1

ĝa ĝa+1

Y a→a+1

� Assume ca+1 = l. Let ga : SwaCXa+1→a → SwaCY a+1→a be the a-th compo-
nent of g. Recall the arguments in Section 3.4. Since g is a natural transforma-
tion, we have the following commutative diagram with exact rows:

0 Xa CXa+1→a SXa+1 0

0 Y a CY a+1→a SY a+1 0

i p

S−waga Sĝa+1

i p

Define ĝa : Xa → Y a to be the left vertical morphism in this diagram. This
diagram leads to a homotopy commutative square with a choice of a homotopy:

Xa Xa+1

Y a Y a+1

ĝa

Xa+1→a

ĝa+1ha+1

Y a+1→a

By applying this algorithm, we obtain a bijection between the set of natural
transformations X → Y and the set of pairs consisting of a sequence of morphisms
{ĝa : Xa → Y a}16a6k and a sequence of homotopies {ha : Xa → Y a−1 | 1 6 a 6

k and ca = l} such that, for all a in {1, . . . , k}:

if ca = r if ca = l

Xa−1 Xa

Y a−1 Y a

Xa−1→a

ĝa−1 ĝa

Y a−1→a

Xa−1 Xa

Y a−1 Y a

ĝa−1 ĝa

Xa→a−1

ha

Y a→a−1

Here is a consequence of this enumeration:

Corollary 7.1. Let X : [k]c → ch be a discrete zigzag of compact chain complexes.
Assume that Xa has trivial differentials for all a in {0, . . . , k}. Then X is indecom-
posable if and only if X is indecomposable.

Proof. Since the functor X 7→ X commutes with the direct sum and is faithful, if X
is decomposable, then so is X. If X is decomposable, then there is an idempotent
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morphism g : X → X which is not an isomorphism. As the differentials of Xa’s are
trivial, the morphisms {ĝa}16a6k form an idempotent natural transformation X → X
(see Section 3.4), which is not an isomorphism. Consequently, X is also decompos-
able.

Definition 7.2. An object in tame
(
[0,∞), ch

)
is called a zigzag if it is isomorphic

to the Kan extension, along some sequence τ0 < · · · < τk in [0,∞), of a functor of the
form X for some discrete zigzag X : [k]c → vectK ⊂ ch whose values are concentrated
in degree 0. Such a zigzag in tame

(
[0,∞), ch

)
is called an incarnation of X.

We think about tame
(
[0,∞), ch

)
as an ambient category containing various incar-

nations of discrete zigzags of the form X : [k]c → vectK ⊂ ch indexed by posets [k]c
for different k’s and different profiles c. Important properties of discrete zigzags are
reflected well by their incarnations. For example, according to Corollary 7.1, a dis-
crete zigzag X : [k]c → vectK ⊂ ch is indecomposable if and only if all (equivalently
any) of its incarnations are indecomposable in tame

(
[0,∞), ch

)
. We can also use the

category tame
(
[0,∞), ch

)
and its morphisms to compare discrete zigzags indexed by

different posets. Furthermore, the model structure on tame
(
[0,∞), ch

)
can be utilised

to extract invariants of discrete zigzags through taking minimal representatives and
minimal covers of their incarnations. However, the minimal cover is not a complete
invariant for zigzags. Consider the following non-isomorphic discrete zigzags:

X : K K2 K2 K,
[ 10 ] 1 [ 1 0 ]

Y : K K2 K2 K.
[ 10 ] 1 [ 0 1 ]

The minimal covers of their incarnations LX and LY along a sequence τ0 < τ1 < τ2 <
τ3 in [0,∞) coincide: cov(LX) ∼= cov(LY ) ∼= I0 [τ0, τ1)

2 ⊕ I1 [τ2, τ3)⊕ I
1 [τ2,∞). As a

consequence, neither the minimal representative is a complete invariant for zigzags.
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