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Abstract
We verify that the Künneth and Mayer–Vietoris formulae

for magnitude homology of graphs, proven by Hepworth and
Willerton, generalise naturally to the metric setting. Similarly,
we extend the notion of diagonality of graphs to metric spaces,
and verify its stability under products, retracts, and filtrations.
As an application, we show that median spaces are diagonal;
in particular any Menger convex median space has vanishing
magnitude homology.

1. Introduction

These notes have two somewhat independent purposes, both related to the notion
of magnitude homology—a categorification of magnitude—in short defined as follows.
Let X be a metric space. Given two points x, y of X, the interval [x, y] ⊆ X is the
set of points z ∈ X satisfying d(x, z) + d(z, y) = d(x, y). The magnitude homology of
X is the homology of its magnitude complex, which, at height k, is spanned freely
by (k + 1)-tuples of consecutively distinct points in X. Its boundary operator is the
alternating sum of the maps ∂i, each defined as sending the tuple 〈x0, . . . , xi, . . . , xk〉
to 〈x0, . . . , x̂i, . . . , xk〉 in case xi ∈ [xi−1, xi+1], and to 0 otherwise.

Defining the length l(x) of a (k + 1)-tuple x := 〈x0, . . . , xk〉 as the sum l(x) :=∑k−1
i=0 d(xi, xi+1), we see that the boundary operator preserves length. It follows that

the magnitude homology groups are graded (in R⩾0) by the length.

1.1. Magnitude homology of median spaces
Our first aim is to analyse the magnitude homology of median metric spaces. Recall

that the (metric) space X is called median if, for any three distinct points x, y, z ∈ X,
the intersection [x, y] ∩ [y, z] ∩ [z, x] is a singleton. Median spaces are relatively com-
mon: examples include trees (more generally R-trees), any product of median spaces
with the l1 metric, and skeleta of CAT(0) cube complexes. For more examples and
information on median spaces, see [5]. We call a (k + 1)-tuple 〈x0, . . . , xk〉 saturated
if each interval [xi, xi+1] contains only xi and xi+1, and, extending the notion of
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diagonality defined in [8], say that X is diagonal if all its magnitude homology groups
are spanned by linear combinations of saturated tuples.

We obtain the following:

Proposition 6.3. Median metric spaces are diagonal.

In Section 3, we verify that median graphs are diagonal. The key tool here is
the characterisation of median graphs as retracts of hypercubes, due to Bandelt [2].
Then, in Section 5, we formally define diagonality and verify that it is stable under
some constructions on metric spaces (e.g. retracts, products, and filtrations). Finally,
Section 6 is devoted to proving diagonality of median spaces, by what amounts to
an approximation of a median space by finite median graphs. The argument uses the
stability of diagonality mentioned above, along with an equivalence between finite
median spaces and finite median graphs, due to Avann [1].

1.2. Künneth and Mayer–Vietoris formulae

Section 4 is dedicated to the second part of these notes: verifying that the Künneth
and Mayer–Vietoris formulae for graph magnitude homology, proven in [8], generalise
to the metric setting.

Recall that the l1 product of two metric spaces X,Y has the Cartesian product
X × Y as underlying set, and its distance map is given by

dX×Y ((x, y), (x
′, y′)) := dX(x, x′) + dY (y, y

′).

The “metrised” variant of the Künneth theorem in [8] has the form:

Proposition 4.3 (Künneth theorem—metric case). If X,Y are metric spaces and
X × Y is their l1 product, then there exists a natural “cross-product” morphism

MH∗(X)⊗MH∗(Y )
□−→ MH∗(X × Y )

[f ]⊗ [g] 7→ [f□g],

which fits into a natural short exact sequence

0 −→ MH∗(X)⊗MH∗(Y )
□−−→ MH∗(X × Y ) −→ Tor(MH∗−1(X),MH∗(Y )) −→ 0.

The proof found in [8] translates rather easily to the metric setting, and is done
in Section 4.1.

The Mayer–Vietoris formula in [8] uses so-called projecting decompositions of
graphs. We will use the following metric analogue of a projecting decomposition.
A gated decomposition of the metric space X is a pair of subspaces Y, Z satisfying
X = Y ∪ Z and such that:

� Y ∩ Z is gated relative to Z: given any z ∈ Z, there is a unique element yz ∈
Y ∩ Z, called a gate, such that for any y ∈ Y ∩ Z, yz is in [z, y].

� Y ∩ Z lies “between” Y and Z: for any z ∈ Z and y ∈ Y , there exists some
w ∈ Y ∩ Z such that w is in [y, z].

The notion of gated subsets in metric spaces is fairly well-studied; see e.g. [7].

Our “metrised” variant of the Mayer–Vietoris theorem of [8] has the form:
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Theorem 4.14 (Mayer–Vietoris—metric case). If X = Y ∪ Z is a gated decomposi-
tion of X and W = Y ∩ Z, then the inclusions

jY : W → Y, jZ : W → Z, iY : Y → X, iZ : Z → X

induce a short exact sequence

0 −→ MH∗(W )
⟨(jY )∗,−(jZ)∗⟩−−−−−−−−−−−→ MH∗(Y )⊕MH∗(Z)

(iY )∗⊕(iZ)∗−−−−−−−−−→ MH∗(X) −→ 0.

Its proof requires a bit more care than the Künneth theorem, since the discreteness
of graphs allows for some simplifying assumptions. Unlike in [8], no naturality prop-
erty for the Mayer–Vietoris formula is given here, though we do expect a naturality
statement similar to the one in [8] to hold in the metric case, assuming the right
setup.

1.3. A remark on betweenness
In a metric space X, we say that a point z is between two given points x and

y if z ∈ [x, y], that is, if d(x, y) = d(x, z) + d(z, y). When one discards the grading,
magnitude homology groups only depend on the “betweenness” relation. Thus, many
arguments can be worked out without appealing to either notion of length or distance,
instead relying only on betweenness. We strove to make this reliance as apparent as
possible, while de-emphasising the length grading. The advantage of this approach
appears, for instance, in the proof of Proposition 6.3.

Acknowledgments

We thank Victor Chepoi for sharing Proposition 6.1 with us, and a referee for their
thorough and insightful report.

2. Background

In this section, we provide necessary definitions and settle on notation.

2.1. Metric spaces
Let (X, d) be a metric space. Finite sequences of points inX are written using angle

brackets: x = 〈x0, . . . , xk〉 and identified with maps [k] → X, where [k] := {0, . . . , k}.
If xi 6= xi+1 for all 0 ⩽ i < k, we call such a sequence a k-path; the set of k-paths in
X is denoted by Pk(X), and the set of all paths by P (X). The length l(x) of a k-path
x = 〈x0, . . . xk〉 is defined as the sum

l(x) :=

k−1∑
i=0

d(xi, xi+1).

Given two points x, y ∈ X, we say that a third point z ∈ X lies between them if

d(x, y) = d(x, z) + d(z, y).

In other words, z turns the triangle inequality into an equality. If furthermore z 6= x
and z 6= y, we say that z lies strictly between x and y. We write [x, y] for the set of
points between x and y and ]x, y[ for those strictly between. We call [x, y] and ]x, y[



124 RÉMI BOTTINELLI and TOM KAISER

intervals for obvious reasons. A k-path x is saturated if each strict interval ]xi, xi+1[
is empty. A metric space is Menger convex if no strict interval between distinct points
is empty.

A map f : X → Y between metric spaces is non-expanding (or 1-Lipschitz ) if for
all x, x′ ∈ X, we have

d(fx, fx′) ⩽ d(x, x′).

We let Met denote the category with objects metric spaces and morphisms given by
1-Lipschitz maps.

A subset A of a metric space X is convex if for all a, b ∈ A, the interval [a, b] in
X is contained in A; in other words, any point between two points of A is also in A.
Note that this definition is stronger than the one found in [8] for graphs.

If X is a set and A is a directed set, a filtration of X is a family (Uα)α∈A of subsets
of X satisfying

⋃
α Uα = X and such that for any α ⩽ β, we have Uα ⊆ Uβ .

If Y is a subspace of X, a retraction of X onto Y is a 1-Lipschitz map f : X → Y
satisfying f |Y = IdY .

Finally, if X and Y are metric spaces, we will always endow the set X × Y with
the l1 metric, that is:

dX×Y ((x, y), (x
′, y′)) := dX(x, x′) + dY (y, y

′).

Note that the l1 product of metric space is not the categorical product inMet. Instead,
under the interpretation of metric spaces as categories enriched over [0,∞] (so-called
Lawvere metric spaces), the l1 product becomes the tensor product in that category
(see [12, Section 1.4]).

2.2. Graphs
Recall that a graph G is defined as a pair (V,E), where V is an arbitrary set and E

is an antireflexive, symmetric binary relation on V (in other words, a set of ordered
pairs of elements of V such that (u, v) ∈ E implies both (v, u) ∈ E and u 6= v). An
element of V is called a vertex, and an element of E an edge. The induced distance
on G, dG : V × V → R⩾0 ∪ {∞}, assigns to a pair (u, v) of vertices the least number
of edges needed to connect u to v, that is, the least k such that there exist vertices
w0, . . . , wk satisfying w0 = u,wk = v, and (wi, wi+1) ∈ E for each i ∈ {0, . . . , k − 1}.
If no such k exists for some pair (u, v), their distance is set to ∞ and the graph is said
to be disconnected. For simplicity’s sake, we will assume all graphs to be connected.
This assumption makes the pair (V, dG) into a metric space; note that dG takes values
in N, thus has discrete range.

In the case of graphs, the condition for 1-Lipschitz maps can be restated in terms
of edges as follows: If G = (V,E) and G′ = (V ′, E′) are graphs, then f : V → V ′ is
1-Lipschitz if and only if, for all u, v ∈ V , (u, v) ∈ E implies (fu, fv) ∈ E′ or fu = fv.

From the data (V, dG), the set E of edges of G can easily be recovered: it is the
set of pairs (u, v) satisfying dG(u, v) = 1. With this fact in mind, we will henceforth
view graphs as special cases of metric spaces (given by pairs (V, dG)) rather than
combinatorial objects (given by pairs (V,E)).

A subset U of vertices of a graph G = (V,E) can be understood to define a metric
space in two ways. On the one hand, one can look at the graph G(U) := (U,E ∩ U2),
and consider the induced distance dG(U); on the other hand, one can simply restrict
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dG to U × U . According to our interpretation of graphs as “special” metric spaces,
we will only use the second definition.

In the case of graphs, it is easily seen that the graph-theoretic Cartesian product
agrees with our definition of the l1 product of metric spaces. Hence, from now on, we
will use the term “Cartesian product” with this definition in mind, and not that of a
categorical direct product.

Since our definitions differ from the ones in [8], some care has to be taken in the
“translation” process. The results stated in [8] tend to assume a more combinatorial
setting, while the generalisations we present here are stated from a metric viewpoint.

2.3. Magnitude homology

Magnitude homology is a R⩾0-graded homology introduced in [8] for graphs, and
in [13] for arbitrary metric spaces, among other structures. It is a categorification of
magnitude, itself an invariant (in the form of a power series) of finite metric spaces
introduced in [12]. More precisely, in the case of a finite graph X, the magnitude

#X of X is recovered from its magnitude homology (MHl
k(X))l⩾0

k∈N via the formula
(borrowed from [8, p. 32]):

#X(q) =
∑
k,l

(−1)k rank(MHl
k(X)) · ql,

that is, as a “weighted” Euler characteristic. We will focus strictly on magnitude
homology, but the interested reader can find an up-to-date bibliography of magnitude
and magnitude homology maintained by T. Leinster in [11].

Let us recall its definition, in the metric case:

Definition 2.1 (Magnitude complex). Let X be a metric space. The magnitude com-
plex of X is the chain complex (MC∗(X), ∂∗) defined by:

MCk(X) := Z[Pk(X)],

(the free abelian group on the set of all k-paths in X) with boundary map

∂k :=

k−1∑
i=1

(−1)i∂k,i : MCk(X) → MCk−1(X),

where ∂k,i : MCk(X) → MCk−1(X) is defined by

∂k,i〈x0, . . . , xi, . . . , xk〉 :=

{
〈x0, . . . , x̂i, . . . , xk〉 if xi is between xi−1 and xi+1;

0 otherwise.

We will write MZk(X) for ker ∂k and MBk(X) for im ∂k+1 respectively, so that the
k-th magnitude homology group of X is

MHk(X) := MZk(X)/MBk(X).

The magnitude complex enjoys a grading on R⩾0 by letting MCl
k(X) be the subgroup

of MCk(X) spanned by the k-paths of length l.

A 1-Lipschitz map f : X → Y induces a morphism of magnitude complexes by
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letting:

MCk(f)〈x0, . . . , xk〉 :=

{
〈fx0, . . . , fxk〉 if l〈fx0, . . . , fxk〉 = l〈x0, . . . , xk〉;
0 otherwise.

Thus, MC∗(•) defines a functor from the category Met of metric spaces and 1-
Lipschitz maps to the category of chain complexes over Z with R⩾0-grading.

3. Median graphs

Definition 3.1 (Median graphs). A graph X is said to be median if, for any three
pairwise distinct points x, y, z ∈ X, the intersection [x, y] ∩ [y, z] ∩ [x, z] consists of a
single point, written m(x, y, z).

Median graphs have been thoroughly studied. The two prototypical examples of
median graphs are trees and hypercubes. Since, in a Cartesian product of graphs, the
interval between two pairs of points is exactly the product of the respective intervals
in each coordinate, it is easily seen that a Cartesian product of median graphs is still
median. Any convex subgraph of a median graph is median as well, thus yielding
many other examples. Finally, it has been shown by Chepoi ([6, Theorem 6.1]) that
median graphs are exactly the 1-skeleta of CAT(0) cube complexes. The cycle graph of
length 3 and the graph obtained by adding a diagonal path of length 2 to a square are
both examples of non median graphs, the former failing at existence, and the latter
at uniqueness of middle points (that is, vertices in the intersection of the intervals
given by three distinct vertices).

In a graphX, all paths have integral length, which implies that the groups MCl
k(X)

vanish when l /∈ N. Furthermore, no k-path has length less than k, so the groups
MCl

k(X) also vanish when l < k. Graphically, this means that, when placed on a
quadrant of the Z2 grid, all magnitude homology groups vanish “above the diagonal”.

Definition 3.2 (Diagonality ([8, Definition 7.1])). A graph X is diagonal if, for all
k 6= l ∈ N, the group MHl

k(X) vanishes.

In other words, X is diagonal if the magnitude homology groups vanish outside
the diagonal.

In this section, and as preparation for Sections 5 and 6, we prove the following:

Proposition 3.3. Median graphs are diagonal.

We will shortly present a beautiful characterisation of median graphs, due to Ban-
delt, which will be used in the proof of Proposition 3.3. Some preliminary definitions
are necessary:

Fix a setX, and let QX be the graph whose vertices are the finite subsets ofX, and
which has an edge between two subsets if and only if either contains exactly one more
element than the other. A graph isomorphic to some QX is called a hypercube ([4]).

If X is a graph, Y ⊆ X a subspace (recall our convention on subspaces of graphs),
and f : X → Y a 1-Lipschitz map satisfying f |Y = IdY and such that d(x, x′) = 1
implies d(fx, fx′) = 1 for all x, x′ ∈ X, then we say that Y is an edge-preserved retract
of X. Note that edge-preserved retracts are in particular retracts, by definition.
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Theorem 3.4 ([2, Theorem 2]). Median graphs are precisely the edge-preserved
retracts of hypercubes.

We need three simple properties of diagonality, whose proofs we will not linger on,
since generalisations will be given in Section 5.

Proposition 3.5 ([8, Proposition 7.3]). Cartesian products of diagonal graphs are
diagonal.

Proof. By applying the Künneth formula and noting that diagonal graphs have
torsion-free homologies. See [8, Proposition 7.3] for the full argument.

Corollary 3.6. Finite hypercubes are diagonal.

Proof. The complete graph on two vertices K2 is diagonal, and a finite hypercube is
a finite Cartesian product of copies of K2.

Proposition 3.7. Retracts of diagonal graphs are diagonal.

Proof. A retraction f : X → Y has left inverse the inclusion ι : Y → X. Functoriality
of MHl

k implies that MHl
k(f) : MHl

k(X) → MHl
k(Y ) is surjective. Hence, if MHl

k(X)
vanishes outside the diagonal, so does MHl

k(Y ) = 0.

Proposition 3.8. Graphs with filtrations by diagonal graphs are diagonal.

Proof. Let (Uα)α be a filtration ofX, so that MZl
k(X)=

⋃
α MZl

k(Uα) and MBl
k(X) =⋃

α MBl
k(Uα). If for all α and k 6= l, MZl

k(Uα) = MBl
k(Uα), then MZl

k(X) = MBl
k(X)

and the homology vanishes outside the diagonal.

We can now proceed with the proof of Proposition 3.3:

Proof of Proposition 3.3. Fix a median graph X and a hypercube Q of which X is a
retract. Q has a filtration by finite hypercubes, which are diagonal (Corollary 3.6);
hence so is Q (Proposition 3.8), and thus X (Proposition 3.7).

4. The Künneth and Mayer–Vietoris formulae

In [8], Hepworth and Willerton describe versions of the Künneth, excision, and
Mayer–Vietoris formulae for magnitude homology of graphs. In [13], Leinster and
Shulman, extending magnitude homology to metric spaces, asked whether those
extend to this new setting. The answer is yes, assuming the right reinterpretations.
More precisely:

Hepworth and Willerton’s statement and proof of the Künneth theorem ([8, The-
orem 5.3]) extend verbatim to l1 products of metric spaces.

Similarly, Hepworth and Willerton’s statement and proof of the excision and
Mayer–Vietoris formulae ([8, Theorem 6.5]) extend to gated decompositions of metric
spaces (Definition 4.12) with minimal changes. Those “minimal changes” are a bit
trickier than simple generalisations. In particular, the “metric excision formula” that
we define is not strictly a generalisation of the graph-theoretic one of [8], since the
definitions we use are not themselves generalisations of the ones in [8].

Since our arguments mainly consist in tweaking the original constructions of Hep-
worth and Willerton, having a copy of [8] at hand will prove useful!



128 RÉMI BOTTINELLI and TOM KAISER

4.1. The Künneth Formula
If X,Y are metric spaces, we endow the Cartesian product X × Y with the l1

metric:

d((x, y), (x′, y′)) := d(x, x′) + d(y, y′).

This implies that the intervals satisfy the identity

[(x, y), (x′, y′)] = [x, y]× [x′, y′],

which explains the l1 metric’s appearance in this context. Recall also that the l1

product reduces to the usual Cartesian product in the case of graphs.

Remark 4.1 (Summary of differences). The arguments in [8, Section 8] go through
verbatim when proving the Künneth formula in the case of metric spaces, since the
main ingredient is the “interval structure”, which generalises directly from graphs
to metric spaces. Our downplaying of length as a grading of magnitude homology
simplifies some expressions by virtue of getting rid of some

⊕
ls and

∨
ls; this is

syntactical. Our arguments do not provide any new insight, but merely confirm that
the generalisation holds.

We now retrace [8, Section 8] closely, with the metric case in mind.

Definition 4.2 (Interleavings, cross product ([8, Definition 5.2])). Fix n, l ∈ N, let
k = n+ l, and write [k] for the set {0, . . . , k}.

A map σ = 〈σh, σv〉 : [n+ l] → [n]× [l] satisfying

� σ(0) = (0, 0) and σ(n+ l) = (n, l);

� if σ(i) = (a, b), then σ(i+ 1) is either (a+ 1, b) or (a, b+ 1),

is called a staircase path. Write ⌞n, l⌝ for the set of (n, l) staircase paths. A staircase
path is just a geodesic from (0, 0) to (n, l) in the obvious grid. The sign sgnσ of σ is
(−1)s, where s is the number of squares “below the staircase”, i.e.

s = |{(a, b) ∈ [n]× [l] : a = σh(i) ⇒ b < σv(i)}|.

If x is an n-path in X, y an l-path in Y , and σ ∈ ⌞n, l⌝ a staircase path, the inter-

leaving of x and y along σ is the k-path x
σ
×y defined by x

σ
×y := (x× y) ◦ σ (where

x× y is identified with the map [n]× [l] → X × Y ).
The cross product is the morphism of chain complexes

□ : MC∗(X)⊗MC∗(Y ) → MC∗(X × Y ),

sending a pure tensor x⊗ y to the alternating sum of all its interleavings:

x⊗ y
□7→

∑
σ∈⌞n,l⌝

sgn(σ)(x
σ
×y).

Verifying that □ really defines a morphism mostly involves the same arguments as
for the cross product map in simplicial homology: we will refer to those arguments as
“generic”. The non-generic part appears due to the possible vanishing of a “partial
boundary” ∂iz, which happens when zi /∈ [zi−1, zi+1]. Thus, to show that □ indeed
commutes with the boundaries, we must understand the betweenness relations in a
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given interleaving z = x
σ
×y in terms of the betweenness relations in the paths x and

y, and of σ.
We visualise a staircase path σ = 〈σh, σv〉 as an actual (irregular) staircase on

the [n]× [l] grid, going from bottom-left (0, 0) to top-right (n, l), with horizontal
coordinate given by x and vertical by y. Any 0 < m < n+ l defines a point σ(m) on
the staircase; exactly one of:

A “corner”: which means that its predecessor and successor differ in both coordi-
nates. There are two distinct types of corners, looking like ⌜ and ⌟ respectively.

In that case, (x
σ
×y)m will necessarily be between its neighbors.

A “flat”: which means that σv(m+ 1) = σv(m) = σv(m− 1) and σh(m) = σh(m−
1) + 1 = σh(m+ 1)− 1. In that case (x

σ
×y)m is between its neighbors if and

only if xσh(m) is between its neighbors, independently of y.

A “wall”: which means that σh(m+ 1)=σh(m) = σh(m− 1) and σv(m) = σv(m−
1) + 1 = σv(m+ 1)− 1. In that case (x

σ
×y)m is between its neighbors if and

only if yσv(m) is between its neighbors, independently of x.

If σ is a staircase path and m is a corner point for σ, then there exists a unique
other staircase path σ′ with “dual” corner and opposite sign. More precisely, σ′ and
σ are equal, except at m, where

σ′(m) = (σh(m− 1) + σv(m)− σv(m− 1), σv(m− 1) + σh(m)− σh(m− 1)).

When applying ∂m, the two interleavings x
σ
×y and x

σ′

×y will thus cancel out and the
betweenness relations in x and y do not matter.

If m is a flat of σ, one can delete the column with coordinate σh(m) and get a new
staircase σ′ in ⌞n− 1, l⌝. The sign of σ′ differs from that of σ by (−1)σv(m), and

∂m(x
σ
×y) = ∂σh(m)x

σ′

×y.

A similar description holds for walls. With these identities, it is a simple matter to
adapt the “generic arguments” to the case of the magnitude complex.

Proposition 4.3 (Künneth theorem ([8, Theorem 4.3])). The cross product map
induces a morphism

MH∗(X)⊗MH∗(Y )
□−→ MH∗(X × Y )

[f ]⊗ [g] 7→ [f□g]

which fits into a natural short exact sequence

0 −→ MH∗(X)⊗MH∗(Y )
□−−→ MH∗(X × Y ) −→ Tor(MH∗−1(X),MH∗(Y )) −→ 0.

To prove Proposition 4.3 (at the end of the subsection), we first set the stage and
verify a few preliminary results.

Definition 4.4 ([8, Definition 8.1]). If X is a metric space, we define the pointed
simplicial set MS(X) with, as k-simplices, the (k + 1)-tuples of points 〈x0, . . . , xk〉 :
[k] → X in X, plus basepoint simplices ptk, along with face and degeneracy maps



130 RÉMI BOTTINELLI and TOM KAISER

defined by

dk,i〈x0, . . . , xi, . . . , xk〉 :=

{
〈x0, . . . , x̂i, . . . , xk〉 if xi ∈ [xi−1, xi+1] ,

ptk−1 otherwise,

and

sk,i〈x0, . . . , xi, . . . , xk〉 := 〈x0, . . . , xi, xi, . . . , xk〉,

and on basepoints:

dk,iptk := ptk−1,

sk,iptk := ptk+1.

In [8, Definition 8.1], for a graph G and l ∈ N, the simplicial set Ml(G) is defined.
In our notation, this set corresponds to the sub-simplicial set of MS(G) obtained by
restricting to paths of length l, so that our MS(G) is equal to their

∨
l Ml(G).

Proposition 4.5 ([8, Proposition 8.2]). Let X,Y be metric spaces. The morphism of
pointed simplicial sets

□ : MS(X) ∧MS(Y ) → MS(X × Y )

[x,y] 7→ 〈x,y〉

is an isomorphism.

Let us clarify the notation: x and y are k-simplices of MS(X) and MS(Y ) respec-
tively, that is, maps [k] → X and [k] → Y . Thus, the pair (x,y) is an element of
MS(X)×MS(Y ), and [x,y] an element of MS(X) ∧MS(Y ). Finally, 〈x,y〉 : [k] →
X × Y is the “product” of the given maps, hence an element of MS(X × Y ).

Proof. Bijectivity and commutation with degeneracy maps is clear. For face maps, one
uses the product identity for intervals in the l1 product, plus the fact that dk,i(x,y) 6=
ptk−1 if and only if both dk,ix 6= ptk−1 and dk,iy 6= ptk−1 hold.

Still following [8], given a pointed simplicial set S, the normalised reduced chain
complex N∗(S) associated to S is defined by

Nk(S) := Z[{k-simplices}]/Z[{degenerate and basepoint simplices}],

with boundary map induced by

∂k =

k∑
i=0

(−1)idk,i.

Since a simplex in MS(X) is degenerate if and only if two consecutive points are
equal, the following holds:

Proposition 4.6 ([8, Lemma 8.3]). Nk(MS(X)) and MCk(X) are isomorphic chain
complexes.
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Proof. MCk(X) is generated by the k-paths in X; that is, the (k + 1)-tuples of con-
secutively distinct points in X. Nk(MS(X)) is generated by the non-degenerate non-
basepoint simplices of MS(X), which are exactly the k-paths. Thus, the groups are

isomorphic. On Nk(MS(X)), the boundary is defined as ∂k =
∑k−1

i=1 (−1)idk,i. Since
dk,i sends a simplex x to a basepoint if and only if xi /∈ [xi−1, xi+1], dk,i sends x to
zero at the level of chain maps, which shows that the boundary maps agree.

From now on, we will identify Nk(MS(X)) with MCk(X).
Remember that given a simplicial set S, there exists, for any k, a natural bijection

s(•) : Sk ↔ Mor(∆[k], S),

where ∆[k] is the canonical k-simplex. The (inverse of this) bijection is obtained
by sending a morphism f : ∆[k] → S to the image through f of the single non-
degenerate k-simplex Id : [k] → [k] in ∆[k]. Under the interpretation of simplicial
sets as presheaves, this bijection is simply the Yoneda lemma.

If σ = 〈σh, σv〉 is a (n, l)-staircase, σ defines a morphism of simplicial complexes

σ∗ : ∆[n+ l] → ∆[n]×∆[l],

by sending a face φ : [m] → [n+ l] of ∆[n+ l] to the pair of faces

(σh ◦ φ : [m] → [n], σv ◦ φ : [m] → [l])

in ∆[n]×∆[l]. Finally, if x and y are simplices in the simplicial sets S and T respec-
tively, they are naturally associated to morphisms s(x) : ∆[n] → S, s(y) : ∆[l] → T ,
so that one has a morphism:

s(x)× s(y) : ∆[n]×∆[l] → S × T.

Given pointed simplicial sets S, T , we now define the reduced Eilenberg–Zilber map

∇N : N∗(S)⊗N∗(T ) → N∗(S ∧ T )

x⊗ y ∈ Nn(S)⊗Nl(T ) 7→
∑

σ∈⌞n,l⌝
[s−1((s(x)× s(y)) ◦ σ∗)],

where [•] : S × T → S ∧ T is the collapsing map.

The following abstract property of ∇N is proven in [8]:

Proposition 4.7 ([8, Proposition 8.4]). ∇N is a quasi-isomorphism.

Let us now concretely describe the map ∇N in the case at hand. Fix generators
x ∈ Nn(MS(X)) and y ∈ Nl(MS(Y )). When x is seen as a simplex of MS(X), we have

x : [n] → X.

Through the identification “simplex↔morphism”, x becomes

s(x) : ∆[n] → MS(X)

(φ : [m] → [n]) ∈ ∆[n]m 7→ (x ◦ φ : [m] → X) ∈ MS(X)m.

Thus, the composite

(s(x)× s(y)) ◦ σ∗ : ∆[n+ l] → MS(X)×MS(Y )
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is defined as

(φ : [m] → [n+ l]) ∈ ∆[n+ l]m 7→ ((s(x)× s(y)) ◦ σ∗)(φ) ∈ MS(X)×MS(Y )

= (x ◦ σh ◦ φ,y ◦ σv ◦ φ),

and passing back from morphisms to simplices (evaluating at Id : [n+ l] → [n+ l]),
the result is simply

(x ◦ σh ◦ Id,y ◦ σv ◦ Id) = (x ◦ σh,y ◦ σv) ∈ MS(X)n ×MS(Y )l.

Proposition 4.8 ([8, Proof of Theorem 5.3]). The cross product

□ : MC∗(X)⊗MC∗(Y ) → MC∗(X × Y )

is a quasi-isomorphism.

Proof. The proof is essentially obtained by forgetting the grading in [8, Proof of
Theorem 5.3]. More precisely, the map □ is a quasi-isomorphism if and only if it
is one at each “level” of the grading, i.e. if, for each l ⩾ 0, it restricts to a quasi-
isomorphism:

□l :
⊕

l1+l2=l

MCl1
∗ (X)⊗MCl2

∗ (Y ) → MCl
∗(X × Y ),

which is the content of [8, Proof of Theorem 5.3].

Proof of Proposition 4.3. Applying the algebraic Künneth formula to MC∗(X) and
MC∗(Y ) yields a short exact sequence

0→MH∗(X)⊗MH∗(Y )→H∗(MC∗(X)⊗MC∗(Y ))→Tor(MH∗−1(X),MH∗(Y ))→ 0.

By Proposition 4.8, the middle term is isomorphic, through H∗(□), to MH∗(X × Y ).
Naturality follows from naturality in the algebraic Künneth formula and that of the
cross product map.

Note that the “length aware” sequence in [8] can easily be recovered by fixing l in
H∗(MC∗(X)⊗MC∗(Y )).

4.2. The excision formula
Definition 4.9 (Gated sets). Given a metric space X, a subset A of X is said to be
gated if for any x ∈ X, there exists some ax ∈ A such that ax is between x and all
a ∈ A. The point ax is called a gate between x and A.

Gated sets enjoy the following properties (see [7]—more about gated sets in median
spaces can be found in [5]).

Proposition 4.10 ([7, pp. 114,112, 115 respectively]). Let X be a metric space and
A a gated subset of X. Then:

� A is convex.

� For any x ∈ X, there exists a unique gate ax ∈ A for x.

� The map x 7→ ax is non-expanding, and is the identity on A.
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From now on, we write π : X → A for the map sending x to its gate ax. Note that
by the above, π is a (1-Lipschitz) retraction from X to A; it follows that MC∗(π) :
MC∗(X) → MC∗(A) is a (well-defined) epimorphism.

Remark 4.11 (Summary of differences). As for the Künneth formula, the proofs of
excision and Mayer–Vietoris in [8] essentially generalise without trouble, yet some
more care is needed, mainly because of slight differences in the definitions.

Apart from definitional differences, the main obstacle to generalising [8] appears
in their [8, Lemma 9.5] and [8, Proof of Theorem 6.6]1 in which, once a length l is
fixed, [8] uses the vanishing of the groups MCl

k(X) for k > l; this does not hold in
general for metric spaces.

Finally, unlike [8], we have not verified naturality of the Mayer–Vietoris sequence
in the metric case.

To conclude, we will (again) follow [8, Section 9] very closely and highlight where
changes are required.

Definition 4.12 (Gated decomposition). Let X be a metric space and Y, Z,W sub-
spaces satisfying X = Y ∪ Z and W = Y ∩ Z. If W is gated with respect to Z, and
for each z ∈ Z and y ∈ Y , the intersection W ∩ [y, z] is non-empty, then we say that
the triple (X;Y, Z) is a gated decomposition of X.

Note that from W being gated in Z and W ∩ [y, z] being non-empty, it follows that
π(z) lies between z and any element of Y .

Following [8], we write MC∗(Y, Z) for the subcomplex of MC∗(X) spanned by
paths entirely contained in either Y or Z. We can now state the excision theorem:

Theorem 4.13 (excision—metric setting). If (X;Y, Z) is a gated decomposition of
X, then the inclusion

MC∗(Y, Z) ↪→ MC∗(X)

is a quasi-isomorphism.

The Mayer–Vietoris theorem follows easily from excision.

Theorem 4.14 (Mayer–Vietoris—metric case). If (X;Y, Z) is a gated decomposition
of X and W = Y ∩ Z, then the inclusions

jY : W → Y, jZ : W → Z, iY : Y → X, iZ : Z → X

induce a short exact sequence

0 → MH∗(W )
⟨(jY )∗,−(jZ)∗⟩−−−−−−−−−−−→ MH∗(Y )⊕MH∗(Z)

(iY )∗⊕(iZ)∗−−−−−−−−−→ MH∗(X) → 0.

Proof. The proof is obtained from the argument in [8, Proof of Theorem 6.6, assuming
Theorem 6.5] by dropping the grading (and noting that since we deal with metric
spaces, we do not have to worry about path-connected components as they do). In
our case Theorem 4.13 takes on the role of their Theorem 6.5.

1Note that [8] contains both a “Proof of Theorem 6.6 assuming Theorem 6.5” (page 50), and a
“Proof of Theorem 6.6” (page 52). The latter is actually the proof of Theorem 6.5.
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4.2.1. Proof of excision

For the remainder of the section, let us fix a gated decomposition (X;Y, Z) and let
W := Y ∩ Z.

We define, for a ∈ Y − Z, b ∈ Z − Y (or vice versa) and k ⩾ 0:

Ak(a, b) := Z[{〈x0, . . . , xk〉 : x0 = a, xk = b, x1, . . . , xk−1 ∈ W}] ⩽ MCk(X).

For b ∈ Z − Y we define

Bk(b) := Z[{〈x0, . . . , xk〉 : xk = b, x0, . . . , xk−1 ∈ Y }] ⩽ MCk(X),

B̃k(b) := Z[{〈x0, . . . , xk〉 : xk = b, x0, . . . , xk−1 ∈ W}] ⩽ MCk(X),

and for i ∈ N

Fk(b; i) := Z[{〈x0, . . . , xk〉 : xk = b, x0, . . . , xi−1 ∈ Y, xi, . . . , xk−1 ∈W}]⩽MCk(X),

and symmetrically for b ∈ Y − Z. Finally for i ∈ N set

Gk(i) := Z[{〈x0, . . . , xk〉 : x0, . . . , xk−i all lie in Y , or all lie in Z}] ⩽ MCk(X).

These all define sub-chain complexes of MC∗(X); the definitions match the ones found
in [8, Section 9], except that our last G∗(i)s correspond to the Fis found in [8, Proof
of Theorem 6.6, p. 52].

It is clear that G∗(0) = MC∗(Y, Z), Gk(l) = MCk(X) for all k ⩽ l, and G∗(l) ⩽
G∗(l + 1) for all l. It follows that MC∗(X) is the direct limit of the system

MC∗(Y, Z) = G∗(0) ⩽ G∗(1) ⩽ · · · ⩽ G∗(l) ⩽ G∗(l + 1) ⩽ · · · .

Thus, to show that the inclusion MC∗(Y, Z) ↪→ MC∗(X) is a quasi-isomorphism,
it is enough to do so for each inclusion G∗(l) ↪→ G∗(l + 1). Indeed, once this is done,
the whole system becomes a chain of isomorphisms after passing to homology, and
each inclusion of G∗(l) to the limit MC∗(X) as well. In particular, this is true for the
inclusion MC∗(Y, Z) ↪→ MC∗(X).

This is essentially the only thing we have to change from the argument of [8].

Let l be fixed from now on, and given a chain complex C∗, write ΣjC∗ for the
shifted chain complex (ΣjC∗)k = Ck−j .

Proposition 4.15 ([8, Lemma 9.2]). The complex A∗(a, b) is acyclic.

Proof. The proof of [8, Lemma 9.2] applies verbatim, once the grading is dropped.

Recall that gated decompositions are required to satisfy the following: for y ∈ Y
and z ∈ Z, W ∩ [y, z] 6= ∅. This condition is necessary for the case k = 1 in the cited
proof: if a ∈ Y − Z and b ∈ Z − Y , it is necessary for a point of W between a and b
to exist, so that π(b) is well-defined.

Define the set

JZ(l) := {x = 〈x0, . . . , xl〉 : x0, . . . xl ∈ Y, xl /∈ Z},

and define JY (l) symmetrically.
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Proposition 4.16 ([8, Lemma 9.5]). For any b ∈ Z − Y , there is an isomorphism

F∗(b, l + 1)/F∗(b, l) ∼=
⊕

x∈JZ(l)

ΣlA∗(xl, b).

In particular, the quotient F∗(b, l)/F∗(b, 0) is acyclic. The same holds for b ∈ Y − Z
with JZ(l) replaced by JY (l).

Proof. Apply the proof of [8, Lemma 9.5], or more precisely the part showing that
each complex Fi/Fi−1 (in their notation) is acyclic.

Proposition 4.17. For any b ∈ Y∆Z, the quotient B∗(b)/B̃∗(b) is acyclic.

Proof. Consider the directed system:

B̃∗(b) = F∗(b, 0) ⩽ F∗(b, 1) ⩽ · · · ⩽ F∗(b, l) ⩽ F∗(b, l + 1) ⩽ · · · .

Since we have inclusions F∗(b, l) ⩽ B∗(b) for all l, and for each k ⩽ l,

Fk(b, l) = Bk(b),

it follows that B∗(b) is the direct limit of the above system. Passing to homology,
each inclusion F∗(b, l) ⩽ F∗(b, l + 1) becomes an isomorphism by Proposition 4.16. It
follows then that the inclusion B̃∗(b) ⩽ B∗(b) also becomes an isomorphism.

For k ⩾ l, define the set

Kk(l) := {x = 〈xk−l, . . . , xk〉 : xk−l ∈ Y∆Z},

and if k < l, let Kk(l) := ∅.

Proposition 4.18 ([8, Proof of Theorem 6.6 p. 52]). There is an isomorphism of
chain complexes

Gk(l + 1)/Gk(l) ∼=
⊕

x∈Kk(l)

(
ΣlB∗(xk−l)/B̃∗(xk−l)

)
k
.

In particular, the inclusion G∗(l) ⩽ G∗(l + 1) is a quasi-isomorphism.

Proof. Apply the part of [8, Proof of Theorem 6.6 p. 52] showing that each quotient
Fi/Fi−1 (in their notation) is acyclic.

We can now prove the excision formula:

Proof of Theorem 4.13. Each inclusion in the directed system

MC∗(Y, Z) = G∗(0) ⩽ · · · ⩽ G∗(l) ⩽ G∗(l + 1) ⩽ · · ·

is a quasi-isomorphism by Proposition 4.18, and MC∗(X) is the direct limit of this
system. Thus, the inclusions induce isomorphisms

MH∗(Y, Z) = H(G∗(0)) ∼= · · · ∼= H(G∗(l)) ∼= H(G∗(l + 1)) ∼= · · ·

and MH∗(X) (along with the morphisms induced by inclusions into MH∗(X)) is
the limit of this diagram. It follows that each inclusion, in particular MC∗(Y, Z) ↪→
MC∗(X) is a quasi-isomorphism.
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5. Diagonality

In the first section, we have seen that median graphs are diagonal (in the sense of
Hepworth and Willerton). Knowing that median graphs are special cases of median
spaces motivates us to try and find a corresponding description for median spaces.
In this section, we introduce the notion of diagonality for metric spaces and verify
some of its properties. As hoped, we will see in the next section that median spaces
are indeed diagonal.

Recall that a path x = 〈x0, . . . , xk〉 is saturated if all strict intervals ]xi, xi+1[
are empty. In what follows, for any chain σ :=

∑
x λxx, we will write σS for the

“saturated” part of σ, that is, σS :=
∑

x saturated λxx.

Definition 5.1 (Diagonality). A space X is said to be diagonal if MHk(X) is gen-
erated by linear combinations of saturated paths, for all k ∈ N.

Let Sk(X) denote the span of saturated paths, as a submodule of MCk(X). Recall
that the support of a chain

∑
x∈Pk(X) λxx is by definition the set {x ∈ P k(X) :

λx 6= 0}.

Proposition 5.2. The supports of elements in Sk(X) and MBk(X) are mutually
disjoint. In particular, Sk(X) ∩MBk(X) = {0}.

Proof. By linearity, it suffices to verify that for any path x, its boundary ∂x =∑
i(−1)i∂ix has no saturated path in its support. This follows by definition of the

boundary operator, since ∂ix is non-zero exactly when xi ∈]xi−1, xi+1[, which implies
that 〈x0, . . . , xi−1, xi+1, . . . xk〉 is not saturated.

Thus, diagonality can be restated in different ways:

Proposition 5.3. The following are equivalent:

1. X is diagonal;

2. MZk(X) = (MZk(X) ∩ Sk(X))⊕MBk(X);

3. Given a cycle σ = σS + σ′ ∈ MZk(X), with σS the part corresponding to satu-
rated paths and σ′ the rest, we must have σ′ ∈ MBk(X);

4. The “inclusion-then-quotient” morphism MZk(X) ∩ Sk(X) → MHk(X) is an
isomorphism.

Proof. We show 1⇒2⇒4⇒1and 1⇔3.

1⇒2 By Proposition 5.2, MZk(X) ∩ Sk(X) and MBk(X) intersect trivially. By diag-
onality, given σ ∈ MZk(X), there exists σs ∈ MZk(X) ∩ Sk(X) such that σ and
σs are equal in homology, i.e. σ − σs ∈ MBk(X). Thus, MZk(X) ∩ Sk(X) +
MBk(X) = MZk(X).

2⇒4 Clear.

4⇒1 Clear.

1⇒3 Fix σ = σS + σ′ ∈ MZk(X) as in 3. By diagonality, there exists σ′
S ∈ MZk(X) ∩

Sk(X) and σ′′ ∈ MBk(X) such that σS + σ′ = σ′
S + σ′′, hence σS − σ′

S = σ′′ −
σ′. Since the support of σS − σ′

S consists of saturated chains and σ′′ has no
saturated chains in its support, necessarily σ′ = σ′′ and σS = σ′

S .

3⇒1 Clear.
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In particular, it follows directly from the last item that:

Corollary 5.4. A diagonal space has torsion-free homology.

The following proposition supports our choice of terminology:

Proposition 5.5. A graph is diagonal in the sense of Hepworth and Willerton if and
only if it is diagonal in the above sense.

Proof. In a graph, a k-path is saturated if and only if it has length k. Thus, having
vanishing homology outside the diagonal and having homology groups generated by
(linear combinations of) saturated paths are equivalent conditions.

Corollary 5.6. A diagonal Menger convex space has vanishing homology (except pos-
sibly at k = 0).

Proof. A Menger convex space has no saturated path.

In the next few propositions, we verify stability of diagonality under some usual
constructions.

Proposition 5.7. If (Uα)α is a filtration of a space X such that each Uα is diagonal,
then so is X.

Proof. Fix σ ∈ MZk(X), and write σ = σS + σ′. Fix α large enough that Uα contains
all points in the support of σ, and, for each non-saturated path x in the support of σ′,
also contains a “witness” to non-saturation of the path (that is, a point p ∈]xi, xi+1[
for some i). Then, σ ∈ MZk(Uα), σS still consists of saturated paths in Uα, and σ′ of
non-saturated paths in Uα. Since Uα is diagonal, we conclude that σ′ ∈ MBk(Uα) ⩽
MBk(X).

Proposition 5.8. An l1 product of diagonal spaces is diagonal.

Proof. By applying the (metric) Künneth formula. Let X,Y be diagonal spaces. For
any fixed k, we have a short exact sequence

0 →
⊕

n+l=k

MHn(X)⊗MHl(Y )
□−→ MHk(X × Y ) → Tor(. . . , . . . ) → 0.

The torsion part being zero (Corollary 5.4), an isomorphism⊕
n+l=k

MHn(X)⊗MHl(Y )
□−→ MHk(X × Y )

remains. Since both MHn(X) and MHl(Y ) are generated by (linear combinations of)
saturated paths, the whole domain of the isomorphism is generated by pure tensors
of such, and MHk(X × Y ) by their images. Noting that if z is an interleaving of
two paths x,y as in the definition of the map □, then z is saturated if and only if
both x,y are, we conclude that MHk(X × Y ) is generated by (linear combinations
of) saturated paths.

Proposition 5.9. If (X;Y, Z) is a gated decomposition and Y, Z are convex and
diagonal, then X is diagonal.
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Proof. By applying a fragment of the (metric) Mayer–Vietoris sequence, we have an
epimorphism

MH∗(Y )⊕MH∗(Z) → MH∗(X),

and the images of saturated paths in either Y or Z are still saturated in X by
convexity.

Definition 5.10 (Betweenness preservation, reflection). If X,Y are two metric
spaces, and f : X → Y is an injective map, we say that it

� preserves betweenness if y ∈ [x, z] implies fy ∈ [fx, fz]; and

� reflects betweenness if fy ∈ [fx, fz] implies y ∈ [x, z].

In case f both preserves and reflects betweenness, we say it is a betweenness embed-
ding. If it is also surjective, it becomes a betweenness isomorphism.

Let us give a few examples of maps that do or do not preserve or reflect between-
ness:

� IfX is a metric space, λ > 0 and λX denotes the metric space obtained by rescal-
ing X by λ, then the identity map X → λX is both preserving and reflecting.

� The composition of preserving (resp. reflecting) maps is still preserving (resp.
reflecting). Thus, one sees that being preserving or reflecting is not related to
being 1-Lipschitz, since, at least for finite metric spaces, one can always compose
a map with a rescaling to be (or not) 1-Lipschitz.

� The projections onto a coordinate R2 → R are preserving but not reflecting.

� The piecewise-linear map on the unit interval [0, 1] → [0, 1] defined by

x 7→

{
2x if x ⩽ 1

2

2(1− x) if x ⩾ 1
2 ,

is neither preserving nor reflecting.

Proposition 5.11. If f : X → Y is a betweenness embedding, then f induces a mor-
phism of chain complexes:

f∗ : MC∗(X) → MC∗(Y )

(x0, . . . , xk) 7→ (fx0, . . . , fxk).

If f is bijective, this turns into an isomorphism.

Note that this induced morphism is not the one given by the magnitude functor,
since a betweenness embedding may fail to preserve the length of paths.

Proof. Injectivity plus the betweenness preserving and reflecting imply that f com-
mutes with boundaries.

Proposition 5.12. If f : X→ Y is a betweenness isomorphism between metric spaces
and Y is diagonal, then so is X.

Proof. Since f preserves and reflects betweenness, images of saturated paths are
saturated, and vice versa. The same can be said of homological cycles and boundaries.

Proposition 5.13. Retracts of diagonal spaces are diagonal.
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Proof. Let f : X → Y be a retraction.
If y is a path in Y , then y is saturated in Y if and only if it is saturated in X.

Indeed, assume first that y is not saturated in X, so that there exists some x ∈ X
strictly between yi and yi+1. Then, since f is non-expanding and fixes yi and yi+1,
it follows that fx ∈ Y is also strictly between yi and yi+1, so that y is not saturated
in Y . This shows that non-saturatedness in X implies non-saturatedness in Y , and
the converse is obvious.

Consider now a cycle σ = σS + σ′ ∈ MZk(Y ). Since Y ⊆ X, σ is still a cycle in X,
and its decomposition into “saturated+non-saturated” inX is still σ = σS + σ′. Thus,
assuming X is diagonal, σ′ ∈ MBk(X), that is, there exists some τ ∈ MCk+1(X) with
σ′ = ∂τ . Applying f∗ : MC∗(X) → MC∗(Y ) to σ′, we get f∗σ

′ = f∗∂τ = ∂f∗τ . Since
σ′ has support in Y , f∗σ

′ = σ′. Thus σ′ = ∂f∗τ ∈ MBk(Y ). This shows that Y is
diagonal.

6. Median spaces are diagonal

We will need the following fact due to Avann:

Proposition 6.1 ([1]). If X is a finite median space, then there exists a finite graph
G(X) and a betweenness isomorphism φ : X → G(X). In particular, G(X) is median.

Another important property of median spaces:

Proposition 6.2. Any median space has a filtration by finite median subspaces.

Proof. Any finite subset of a median space X has a finite so-called median hull, that
is, a smallest median subspace of X containing the set in question (see [3, p. 7]).
Taking all such finite median hulls yields a filtration by finite median subspaces.

It is now easy to conclude with the following:

Proposition 6.3. Median spaces are diagonal.

Proof. Finite median graphs are diagonal, and by applying Propositions 5.12 and 6.1,
so are finite median spaces.

Corollary 6.4. Median Menger convex spaces have vanishing homology (except pos-
sibly at k = 0).

Menger convexity is already known to be strongly related to vanishing in the
magnitude homology:

� In [13], it is shown that MH1(X) = 0 if and only if X is Menger convex, and
MH2(X) = 0 if X is Menger convex and satisfies two more “straightness” con-
ditions (Corollary 4.5 and Theorem 4.21 respectively).

� [9, Corollary 4.9] shows that if MHn(X) = 0 for some n ⩾ 1, then X is Menger
convex. Conversely, and extending the results of [13], [9, Corollary 7.3] shows
that assuming Menger convexity and the same “straightness” conditions as
above, MHn(X) = 0 for all n ⩾ 1 (this result is also obtained in [10]).

Those two straightness conditions are geodeticy and no 4-cuts:

� X is geodetic if for any x, y, z, w ∈ X, it follows from z, w ∈ [x, y] that either
z ∈ [x,w] or z ∈ [w, y].
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� X has no 4-cuts if for any sequence x 6= y 6= z 6= w ∈ X, it follows from y ∈ [x, z]
and z ∈ [y, w] that y, z ∈ [x,w].

Note that median spaces do not necessarily satisfy either geodeticy or having no
4-cuts: the four-cycle graph C4 being a prime example of a graph satisfying neither.
Conversely, Euclidean space is geodetic and has no 4-cuts, but is not median. As such,
Corollary 6.4 yields a new crop of spaces with vanishing homology.
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