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Abstract
We describe a variant construction of the unstable Adams

spectral sequence for a spaceY, associated to any free simplicial
resolution of H∗(Y;R), for R = Fp or Q. We use this construc-
tion to describe the differentials and filtration in the spectral
sequence in terms of appropriate systems of higher cohomology
operations.

1. Introduction

The original Adams spectral sequence of [Ada] calculates the stable homotopy
groups of a space Y at a prime p, starting with its Fp-cohomology. Later, several
unstable versions of this were proposed (see [Cu, Re, MP, BC, BK1]), all shown
in [BK2, X,�6] to agree for reasonable spacesY. There are also variants for computing
π∗ map(X,Y), as well as for more general coefficients, but for simplicity we restrict
attention here to the original version, for coefficients in R = Fp or Q.

The E2-terms of both the stable and unstable spectral sequences forY can be iden-
tified as certain graded Ext groups associated to H∗(Y;R), equipped with an action
of the (stable or unstable) primary R-cohomology operations (cf. [Ada, BK1]). These
can be computed from any resolution V• of H∗(Y;R), in an appropriate category of
ΘR-algebras (for R = Fp: these are modules or unstable algebras, respectively, over
the mod p Steenrod algebra).

We show here how, as in the stable case, the unstable Adams spectral sequence for
Y can be obtained from a realization of any such algebraic resolution V• → H∗(Y;R)
by a cosimplicial space W•, constructed inductively through successive approxima-
tions W•

[n] which we think of as forming an unstable Adams resolution of Y.

1.1. Systems of higher cohomology operations
In [BS2], we showed how this construction of W•

[n] can be used to define certain
“universal higher cohomology operations” associated to each R-good space Y, which
can be used to distinguish it from other spaces Z having H∗(Z;R) ∼= H∗(Y;R) (as
ΘR-algebras). We further proved there that similar higher operations can also be
used to distinguish among homotopy classes of maps f0, f1 : X → Y between R-good
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spaces which induce the same map f∗
0 = f∗

1 : H
∗(Y;R) → H∗(X;R) in cohomology

(see [BS2, �5]).

Our second goal in this paper is to show that analogous higher operations define the
differentials in the unstable Adams spectral sequence for Y, as well as the filtration
index of each element in π∗Y.

The notion of secondary operations in homotopy theory goes back at least to the
1950’s, when Massey products, Toda brackets, and Adem’s secondary cohomology
operations first appeared (in [Mas, T1, T2, Ade]). Since then, there have been
several attempts to give general definitions of higher order operations (see [Sp, Mau,
W, BM, BJT1]), but none have been completely satisfactory.

Rather than trying to give one definition covering all variants, we will describe the
basic properties we expect of a general n-th order homotopy operation 〈〈X〉〉n for
n � 2:

(a) It serves as the final obstruction to rectifying a homotopy-commutative diagram
X : I → hoM – or equivalently, making it ∞-homotopy commutative – where
M is a pointed simplicial model category and I is a suitable finite directed
diagram of length n+ 1 (see [BM] or [BJT3]).

(b) Its value, for an appropriate choice of initial data G(n−1), is a homotopy class
in [X(vinit), Ω

n−1X(vfin)], where vinit is weakly initial in I and vfin is weakly
terminal (cf. [BM, �2.1]). This value is zero (the operation vanishes) if and only
if the diagram can be rectified for this choice of initial data.

(c) It has an associated system of lower order operations (〈〈X|Ik〉〉k)
n−1
k=2 , corre-

sponding to the filtration of I by initial (or final) segments Ik of length k + 1.
The initial data G(k) for 〈〈X〉〉k+1 is determined by a rectification of X|Ik made
fibrant or cofibrant (in an appropriate model category structure on MIk) – thus
assuming in particular that 〈〈X|Ik〉〉k vanishes.

(d) Two n-th order operations (for different indexing categories I and J) are equiv-
alent if the corresponding rectification problems are equivalent – so there is a
bijective correspondence of the initial data for the two, and the resulting value
for one vanishes if and only if it does so for the other.
We say that they are strongly equivalent if the correspondence induces a bijection
of values in [X(vinit), Ω

n−1X(vfin)] (so in particular the two diagrams have the
same initial and final objects in M).

(e) When M is a category of spaces or spectra, we say that 〈〈X〉〉n is an n-th
order R-cohomology operation, and that (〈〈X|Ik〉〉k)

n
k=2 is a system of higher

R-cohomology operations, if Y (v) is an R-GEM for all v ∈ Obj (J) \ {vinit}, for
some strongly equivalent system associated to Y : J → hoM.
Note that the spaces in the chosen diagram X : I → hoM itself need not all be
R-GEMs – only those in some equivalent system. See last paragraph in � 3.2
below (but compare [BBS]).

1.2. Main results

This paper continues the project begun in [BS2], intended to show how higher
cohomology operations serve as a unifying setting for describing finer homotopy invari-
ants of (the R-completion of) topological spaces.
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This principle is applied here to the unstable Adams spectral sequence, but in fact
Theorems B and C below apply equally to the stable Adams spectral sequence (since
the former agrees with the latter in the stable range).

In Section 3 we recall from [BS2] how to associate to any CW resolution V• of the
ΘR-algebra H∗(Y;R) (for any R-good space Y) an unstable Adams resolution: that
is to say, a cosimplicial space W•, obtained as the limit of a tower of fibrations:

· · · −→ W•
[n]

π[n]
−−−→ W•

[n−1]

π[n−1]
−−−−−→ W•

[n−2] −→ · · · −→ W•
[0]. (1)

Each stage W•
[n] in this tower realizes the corresponding skeleton skn V• of the alge-

braic resolution V•; this in turn is obtained from skn−1 V• by attaching a free ΘR-
algebra V n by a suitable map (as in the usual construction of a CW complex). We
can realize V n by an R-GEM Wn.

In Section 5 we then show:

Theorem A. The homotopy spectral sequence for the tower (1) coincides with the
usual unstable Adams spectral sequence for Y.

See Theorem 5.6.
In Section 6, we associate to any such unstable Adams resolution W• of Y a

sequence of higher cohomology operations 〈〈−〉〉r : πk+nW
n → πk+n+r−1W

n+r (see
Definition 6.3), and show:

Theorem B. Each value 〈〈γ〉〉r ∈ πk+n+r−1W
n+r = En+r,k+n+r−1

1 of the r-th order
operation 〈〈−〉〉r represents the result of applying the differential dr to the element of

En,k+n
r represented by γ ∈ πk+nW

n = En,k+n
1 .

See Theorem 6.4.
Finally, in Section 7 we produce another sequence of higher cohomology operations

〈〈−〉〉′r : πkY → πk+nW
n, and prove

Theorem C. For any 0 �= γ ∈ πkY, the operation 〈〈γ〉〉′n−1 vanishes while 〈〈γ〉〉′n �= 0
if and only if γ is represented in the unstable Adams spectral sequence in filtration n
by the value of 〈〈γ〉〉′n ∈ πkΩ

nWn.

See Theorem 7.5.
A simple example of the secondary cohomology operation associated to an element

in Adams filtration 1 is given in � 7.6.

Notation 1.1. The category of finite ordered sets and order-preserving maps will
be denoted by Δ (cf. [May, �2]), with objects [n] = [0 < 1 < · · ·n] (n ∈ N), so a
cosimplicial object A• in a category C is a functor Δ → C, and a simplicial object
A• in C is a functor Δop → C. Write cC = CΔ for the category of cosimplicial objects
in C, and sC = CΔop

for that of simplicial objects. There is a natural embedding
c(−)• : C → cC (the constant cosimplicial object), and similarly c(−)• : C → sC.

If Δ+ denotes the subcategory of injective maps in Δ, a functor Δ+ → C will be
called a restricted cosimplicial object.

A chain complex in a pointed category C is a sequence of maps ∂n : An → An−1

with ∂n ◦ ∂n+1 = 0 for each n � 1. The category of such will be denoted by ChC . The
category of cochain complexes in C, defined dually, is denoted by ChC .
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The category of simplicial sets will be denoted by S = sSet, and that of pointed
simplicial sets (here called simply “spaces”) by S∗ = sSet∗. Write mapC(X,Y) for the
standard function complex in a simplicial model category C (see [GJ, I, �1.5] or [GS,
�4.2]).

The half-smash of X and Y, where (Y, y) ∈ S∗ is pointed, but X ∈ S is not, is
denoted by X�Y := (X×Y)/(X× {y}) ∈ S∗. In particular, the (unreduced) cone
on X is CX := X� [0, 1], where the interval [0, 1] has base point 1, while the reduced
cone on Y is C̄Y := Y ∧ [0, 1].
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2. Background

We first recall some background material on cohomology algebras, their resolutions,
and the realizations of these resolutions.

Definition 2.1. For any ring R and limit cardinal λ, let ΘR = Θλ
R denote (a skeleton

of) the full subcategory of hoS∗ spanned by finite products of objects of the form
{K(V, n) : n ∈ N>0}, where V is an R-module generated by a set of cardinality < λ.
This is a (multi-sorted) theory, in the sense of Lawvere (see [L] and [E]). A product-
preserving functor Γ: ΘR → Set∗ will be called a ΘR-algebra (cf. [Bor, �5.6]). Since
each B ∈ ΘR is an R-module object, all ΘR-algebras take values in R-modules, and
their category will be denoted by ΘR-Alg.

In particular, a ΘR-algebra Γ is realizable if it is represented by a space Y ∈
S∗, with Γ{K(R,n)} := [Y, K(R,n)]. By abuse of notation, we denote such a Γ by
H∗(Y;R). Thus H∗(Y;R) is just the R-cohomology algebra of Y, equipped with the
action of the primary R-cohomology operations.

A ΘR-algebra of the form H∗(B;R) for B ∈ Θλ
R is called free. Note that this

definition depends on our choice of cardinal λ (cf. [BS2, �1.25]).

Example 2.2. If λ = ℵ0 and R = Fp, ΘR consists of finite R-GEMs, and a ΘR-algebra
is an unstable algebra over the mod p Steenrod algebra, as in [Sc, �1.4]. When R = Q,
a ΘR-algebra is just a graded-commutative Q-algebra.

2.1. Algebraic resolutions

As in [Q, II, �4], there is a model category structure on the category sΘR-Alg
of simplicial ΘR-algebras, so there is a notion of a free simplicial resolution V• of a
ΘR-algebra Γ.

We shall be interested in a particular kind, known as a CW-resolution (cf. [Bl,
�3.10]), defined as follows
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Definition 2.3. Recall that for any simplicial object V• over a complete pointed
category M, the n-th Moore chains object (n � 0) is

CnV• :=

n⋂
i=1

Ker(di)

with differential ∂n := d0 satisfying ∂n ◦ ∂n+1 = 0. The n-th Moore cycles object is
ZnV• := Ker(∂n).

If M is cocomplete, the n-th latching object LnV• is defined to be colimθ : [k]→[n] Vk

(where the colimit is taken over the maps in Δop from [k] to [n] (see � 1.1), with
k < n). This is equipped with the obvious canonical map δ : Vn → LnV• (see [GJ,
VII, �1]).

Definition 2.4. We say that V• ∈ sM is a CW object if it is equipped with a CW
basis (V n)

∞
n=0 in M such that Vn = V n � LnV•, and di|V n

= 0 for 1 � i � n. In this

case ∂
Vn

0 := d0|V n
: V n → Vn−1 is called the attaching map for V n. By the simplicial

identities ∂
Vn

0 factors as ∂
Vn

0 : V n → Zn−1V• ⊂ Vn−1.

In this case we have an explicit description

LnV• :=
∐

0�k�n

∐
0�i1<···<in−k−1�n−1

V k

for its n-th latching object, in which the iterated degeneracy map sin−k−1
· · · si2si1 ,

restricted to the basis V k, is the inclusion into the copy of V k indexed by
(i1, . . . , in−k−1).

In particular, if in M = ΘR-Alg we set Z−1V• := Γ ∈ M and require that V n be

free and that ∂
Vn

0 : V n →→ Zn−1V• be surjective for each n � 0, we call the resulting
augmented free simplicial ΘR-algebra V• → Γ a CW resolution (compare [GS, �4]).

Definition 2.5. Dually, for a cosimplicial object V • over a cocomplete pointed cat-
egory M and n � 0, the n-th Moore cochains object is

CnV • := Cof

(
n−1∐
i=1

V n−1 ⊥i d
i

−−−−→ V n−1

)
,

with differential δn−1 : Cn−1V • → CnV • induced by d0n−1, and structure map
vn : V n → CnV •. We denote the cofiber of δn−1 by ZnV •, with structure map
wn : CnV • → ZnV •.

If M is complete, the n-th matching object for V • is

MnV • := lim
φ : [n]→[k]

V k,

where φ ranges over the surjective maps [n] → [k] in Δ, with the obvious natural
map ζn : V n → Mn−1V • (through which all codegeneracies factor). If M is a model
category, we say V • is (Reedy) fibrant if each map ζn is a fibration (see [BK2, X, �4]).

2.2. Cosimplicial resolutions

LetW• be a weak R-resolution ofY (see [Bou, �6.1]) – that is, a cosimplicial space
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with each Wn an R-GEM, equipped with a coaugmentation ε : Y → W• which is an
R-equivalence (cf. [Bou, �3.2]). We assume for simplicity thatW• is Reedy fibrant(see

[H, �15.3]), so TotW• � Ŷ, the R-completion of Y, by [Bou, Theorem 6.5]. Such a
resolution may be constructed functorially using a suitable monad, as in [BK2, I, �2]
(see also [BS1, �2–3])

3. Realizing CW resolutions

Our main technical tool in this paper is the construction of appropriate cosimplicial
resolutions of an (R-good) spaceY, realizing a given algebraic resolution ofH∗(Y;R).
These are the unstable analogue of the Adams resolution of a space or spectrum (see,
e.g., [Ra, �2.2]).

3.1. Cosimplicial CW resolutions

In [BS2, �2] we showed that, given a space Y with Γ := H∗(Y;R), any CW reso-
lution V• ∈ sΘR-Alg of Γ with CW basis (V n)

∞
n=0 (� 2.4) can be realized by a coaug-

mented cosimplicial space Y → W•. This W• is the limit of a tower of Reedy fibrant
and cofibrant Y-coaugmented cosimplicial spaces:

· · · −→ W•
[n]

π[n]
−−−→ W•

[n−1]

π[n−1]
−−−−−→ W•

[n−2] −→ · · · −→ W•
[0], (2)

in cS∗ = SΔ
∗ , with each π[n] a Reedy fibration.

The passage from W•
[n−1] to W•

[n] is as follows:

(a) Choose an R-GEM Wn realizing the free ΘR-algebra V n (this is possible
because of our choice of λ in � 2.1).

(b) The n-th attaching map ∂0 : V n → Cn−1V
• defines a unique map

φ : V n ⊗ Sn−1 → C∗ skn−1 V•

of chain complexes in ΘR-Alg, where V ⊗ Sn−1 is the chain complex with V in
dimension n− 1, and 0 elsewhere.
Evidently, one can realize V ⊗ Sn−1 by a cochain complex in S∗; we choose a
realization D∗ which is a Reedy fibrant cochain complex in S∗ in the sense of
[BS2, �2.4(i)], by setting

Dk := PΩn−k−2Wn (3)

for each k � 0, where PΩ−1Wn := Wn and PΩkWn := ∗ for k < −1. The
differential is ι ◦ p, where p : PX → X is the appropriate path fibration and
ι : ΩX → PX is the inclusion.

(c) Note that the Moore cochains define a functor C∗ : S
Δ+
∗ → ChS∗ into the cate-

gory of cochain complexes of spaces (� 1.1), with right adjoint E , so if we can
realize φ by a cochain map ′F : C∗W•

[n−1] → D∗ (see Proposition 3.2 below),

it induces F̃ : UW•
[n−1] → ED∗ (where U : SΔ

∗ → S
Δ+
∗ is the forgetful functor –

see � 1.1)
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Taking the fiber of F̃ in S
Δ+
∗ yields a restricted cosimplicial space W̃•

[n] with

W̃r
[n] = Wr

[n−1] × PΩn−r−1Wn. (4)

(d) We add the missing codegeneracies to form a full cosimplicial space Ŵ•
[n], as

follows: set MrŴ•
[n] := MrW•

[n−1] × M̂r
[n], where

M̂r
[n] :=

∏
0�k�r

∏
0�i1<···<ik�r

PΩn+k−r−1Wn (5)

for each r � 0. We then set

Ŵr
[n] := W̃r

[n] × M̂r−1
[n] = Wr

[n−1] × M̂r−1
[n] × PΩn−r−1Wn

= Wr
[n−1] ×

∏
0�k�r

∏
0�i1<···<ik�r−1

PΩn+k−rWn,
(6)

and the codegeneracy map st : Ŵr+1
[n] → Ŵr

[n] is defined into the factor Q :=

PΩn+k−r−1Wn of Ŵr
[n] indexed by the k-tuple I = (i1, . . . , ik) by projecting

Ŵr+1
[n] onto the copy of Q indexed by the unique (k + 1)-tuple J = (j1, . . . , jk+1)

satisfying the cosimplicial identity sI ◦ st = sJ .

This defines a functor F : S
Δ+
∗ → SΔ

∗ (“add codegeneracies”), with F(W̃•
[n]) :=

Ŵ•
[n], right adjoint to U : SΔ

∗ → S
Δ+
∗ . By adjunction we therefore have a map

F[n−1] : W
•
[n−1] −→ FED∗ =: D•

[n]

determined by ′F : C∗W•
[n−1] → D∗ and the codegeneracies.

Note that (assuming the objects Wn are all fibrant) the cosimplicial space

Ŵ•
[n] we have constructed is Reedy fibrant, and from (6) we see that the dimen-

sionwise projection defines a Reedy fibration r[n] : Ŵ
•
[n] → W•

[n−1]. We write

i[n] : ΣD•
[n] ↪→ Ŵ•

[n] for the inclusion of the fiber ΣD•
[n] := FEΣ̃D∗ of r[n].

Here Σ̃D∗ is the obvious Reedy fibrant cochain complex in S∗ realizing V ⊗
Sn. Note that the unique non-zero coface map into the non-codegenerate part
PΩn−k−1Wn of ΣDk

[n] is d
1, not d0.

(e) Finally, we factor ∗ → Ŵ•
[n] as a cofibration followed by trivial (Reedy) fibra-

tion q[n] : W
•
[n] Ŵ•

[n]
� , so π[n] := r[n] ◦ q[n] is the required Reedy fibration

of (2).

Remark 3.1. In step (b), we construct the map ′F : C∗W•
[n−1] → D∗ by a downward

induction on the dimension k � n− 1, starting with

′Fn−1 : Cn−1W•
[n−1] → Dn−1 = Wn

which exists by [BS2, Lemma 2.19].
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At the k-th stage in the induction we have ′F k+1 and ′F k in the following diagram:

Ck+1W•
[n−1]

′Fk+1

PΩn−k−3Wn = Dk+1

Ωn−k−2Wn

CkW•
[n−1]

δk

′Fk

PΩn−k−2Wn = Dk

δkD

Ωn−k−1Wn

0

Ck−1W•
[n−1]

ak−1

δk−1

′Fk−1
PΩn−k−1Wn = Dk−1

δk−1
D

(7)

We see that ′F k induces a map ak−1 as indicated, which must be nullhomotopic in
order for ′F k−1 to exist. In fact, we have:

Proposition 3.2. Let R = Fp or Q and Γ = H∗(Y;R), and let V• → Γ be a CW
resolution. Assume we have an (n− 1)-stage coaugmented realization Y → W•

[n−1]

of V• as above, with D∗ a Reedy fibrant cochain complex, as well as a cochain map
′F : C∗W•

[n−1] → D∗ as in (7), defined in degrees � k. Then one can modify the choice

of ′F k so that ak−1 defined as above is nullhomotopic.

Proof. This follows from the proof of [BS2, Theorem A.11].

Corollary 3.3. For Γ = H∗(Y;R), any CW resolution V• → Γ as above is realizable
by a coaugmented cosimplicial space Y → W• obtained as a limit of a tower (2) as
above.

3.2. Higher cohomology operations

We think of ak−1 as the value of a (n− k)-th order cohomology operation; [BS2,
Theorem A.11(b)] then shows that, given Y, this higher order operation vanishes, so
F exists.

However, given another R-good space Z with H∗(Z;R) ∼= H∗(Y;R), we can try to

construct a coaugmentation ε : Z → W• inducing a weak equivalence to TotW• � Ŷ:
this is possible if and only if Z and Y are R-equivalent. This will be carried out by
inductively attempting to produce successive lifts ε[k] : Z → W•

[k], starting with the

obvious ε[0] : Z → W•
[0] = c(W0)•.

Given ε[n−1], consider the composite ξ of

Z
ε[n−1]

−−−−−→ W0
[n−1]

′F 0

−−−→ PΩn−2Wn p
−−→ Ωn−2Wn ι

−−→ PΩn−3Wn, (8)

which represents the component of the iterated coface map d1 ◦ d0 ◦ ε[n−1] from Z

into PΩn−3Wn. Since d1 ◦ d0 ◦ ε[n−1] = d2 ◦ d1 ◦ ε[n−1] and d2 = 0 into the factor

PΩn−3Wn, we see that ξ is zero. Since ι is monic, this means that p ◦ ′F 0 ◦ ε[n−1] is

already zero, so ′F 0 ◦ ε[n−1] factors through the fiber Ωn−1Wn of the path fibration p.
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We denote the resulting map by a−1 : Z → Ωn−1Wn. This is the obstruction to lifting
ε[n−1] to ε[n] (see [BS2, Lemma 4.5]).

Since all but the first map in (8) are R-GEMs, from the discussion in [BS2, �4]
we see that [a−1] can indeed be interpreted as the value of an appropriate n-th order
cohomology operation.

Note that in (7) the various spaces CjW•
[n−1] are not R-GEMs. Nevertheless, that

realization problem which we solve by the vanishing of the classes ak−1, for the chain
map φ : V n ⊗ Sn−1 → C∗ skn−1 V• of � 3.1(b), is equivalent to that of realizing the
n-skeletal augmented simplicial object skn V• → Γ in sΘR-Alg, which can be thought
of as an n-skeletal augmented cosimplicial object in c hoS∗, for which indeed all but
one object are R-GEMs.

Remark 3.4. Note that because we are mapping into R-GEMs, from the universal
property of the R-completion we see that the value of [a−1] depends only on the
R-type of Z (that is, up to zigzags of maps inducing isomorphisms in H∗(−;R)).
In particular, since the spaces in (2) are all coaugmented out of Y, all these higher

operations indeed vanish for Y – and thus also for its R-completion Ŷ � TotW•.
Thus Ŷ too is coaugmented into (2), and thus into W•.

This is a somewhat unusual situation, since TotW• is a homotopy limit, and
we would not generally expect a map Δ• → W• to lift through the natural map
lim → holim to an actual cone for W• – that is, to a map ∗ → W•.

4. The homotopy spectral sequence of a cosimplicial space

For any fibrant pointed cosimplicial space W•, Bousfield and Kan construct a
spectral sequence as follows:

4.1. The Tot tower

In the version of [BK2, X, �6], this is just the homotopy spectral sequence of the
tower of fibrations:

· · · → Totn+1 W
• qn+1

−−−−→ Totn W
• qn

−−−→ Totn−1 W
• → · · · → Tot−1 W

• = ∗, (9)

with (homotopy) limit TotW•.

Recall that TotW• := mapcS(Δ
•, W•) (the simplicial enrichment of cS), where

Δ• is the cosimplicial space with Δk (the standard k-simplex) in dimension k, and
similarly Totn W

• := mapcS(skn Δ
•, W•). One should think of a map Z → TotW•

as an∞-homotopy commutative diagram mapping Z into the Δ-indexed diagramW•.

We shall use Δ[k] as an alternative notation for the standard k-simplex in S, when
we think of it as representing k-simplices in simplicial sets. In particular, a k-simplex
in Totn W

• is a sequence of maps fm : skn Δ
m ×Δ[k] → Wm (m = 0, 1, . . . ) such

that

f j ◦ (sknΔ(φ)× Id) = W(φ) ◦ fm : sknΔ
m ×Δ[k] → Wj (10)

for every morphism φ : [m] → [j] in Δ. Therefore, for each k � 1 we have fn−k =
sI
W

◦ fn ◦ dI
Δ
, where dI

Δ
= dik

Δ
◦ · · · di1

Δ
is an iterated coface map of Δ, and sI

W
is the

corresponding iterated codegeneracy map of W• (since sI ◦ dI = Id). Moreover, since
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skn Δ
N = colimi�n Δ

i for N > n, the map fN is determined by the (compatible)
maps f i for i � n. Thus (Totn W

•)k ⊆ Hom(Δn ×Δ[k], Wn) and in fact

Totn W
• ⊆ mapS(Δ

n, Wn), (11)

where the subspace is the limit given by (10).

Note that because skn Δ
n+1 = ∂Δn+1 and each of the coface maps di : Wn →

Wn+1 has a retraction, the compatibility conditions mean that also

Totn W
• ⊆ mapS(∂Δ

n+1, Wn+1). (12)

As in [BK2, X, 6.3], the map qn of (9) fits into a fibration sequence

ΩnNnW• Totn W
• Totn−1 W

•,ιn qn

(13)

where

NnW• := Wn ∩Ker(s0) ∩ · · · ∩Ker(sn−1)

(and thus ΩnNnW• = NnΩnW•).

Furthermore, by (11) and (12), the sequence (13) is just the restriction of the
fibration sequence:

mapS∗(Δ
n/∂Δn, Wn) mapS(Δ

n,Wn) mapS(∂Δ
n,Wn)

p∗n ι∗n

induced by the cofibration sequence

∂Δn Δn Δn/∂Δn.
ιn pn

Remark 4.1. Since W• is pointed, mapS(Δ
n, Wn) has a chosen basepoint, and

an element in πk Totn W
• is represented by a suitable pointed map f : Sk →

mapS(Δ
n, Wn), or by its (pointed) adjoint f̂ : Δn � Sk → Wn (cf. � 1.1). Note

that the maps into Wj (0 � j < n) are encoded by maps into the appropriate code-
generacies in Wn.

Thus a class α ∈ πkΩ
nNnW• ⊆ πk Totn W

• is represented by a : ∂Δn+1 ×Δ[k] →
Wn+1 which vanishes on ∂Δn+1 × ∂Δ[k]. Such an α represents an element γ ∈
πk TotW

• if and only if jn#(α) lifts to all levels of (9), where jn# : πkΩ
nNnW• →

πk Totn W
• is induced by the inclusion. The successive obstructions to lifting jn(α)

represent the differentials in the spectral sequence.

4.2. The spectral sequence

The E1-exact couple of the homotopy spectral sequence for the Tot tower (9) may

be presented as in Figure 4.1, with En,n+k
1 := πkΩ

nNnW• and d1-differential given
by

dn,n+k
1 = δn ◦ jn =

n−1∑
t=0

(−1)tdt# : πk+nN
nW• −→ πk+nN

n+1W• (14)

by [BK2, X, 6.3] again.
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πk+1 Totn W
•

qn

δn

πkΩ
n+1Nn+1W• jn+1

πk Totn+1 W
•

qn+1

δn+1

πk−1Ω
n+2Nn+2W•

πk+1 Totn−1 W
• δn−1

πkΩ
nNnW• jn

πk Totn W
• δn

πk−1Ω
n+1Nn+1W•

Figure 4.1: Exact couple for Tot tower

5. The unstable Adams spectral sequence

From now on we restrict attention to the case R = Fp (although most results
are valid also for R = Q). When W• is an Fp-resolution of a p-good space Y, the
homotopy spectral sequence of Section 4 is the unstable Adams spectral sequence of
[BK2], converging to π∗Ŷ (where Ŷ := R∞Y is the p-completion, equipped with the

natural H∗(−;R)-equivalence η : Y → Ŷ). In this case we can say a little more about
the structure of the spectral sequence:

5.1. Using the CW structure

From now on, we assume that W• has been constructed as in � 3.1 to realize a
given CW resolution V• of Γ = H∗(Y;R). From (4) and (6), and the fact that q[n]
is an acyclic Reedy fibration, we see that the maps π[n+1] : W

•
[n+1] → W•

[n] in (2)
induce weak equivalences in Totk for all 0 � k � n. Since W•

[n] is n-coskeletal, we
have a tower of fibrations:

· · ·Totn+1 W
•
[n+1]

(π[n+1])∗
−−−−−−→ Totn W

•
[n]

(π[n])∗
−−−−→ · · · → Tot1 W

•
[1]

(π[1])∗
−−−−→ Tot0 W

•
[0],
(15)

obtained by combining (9) and (2).

In order to better understand the tower (15), we recall a (somewhat simplified)
version of a construction introduced in [BS2, �5.10]:

Definition 5.1. For each n � 1 and 1 � k � n+ 1, the n-th folding polytope Pn
k is

obtained from a union of k disjoint n-simplices Δn
(n−k+1), . . . ,Δ

n
(n) by identifying the

j-th facets of Δn
(n−j) and Δn

(n−j−1) for each 0 � j � n. See Figure 6.2 below for an
example.

Remark 5.2. By induction on 1 � k � n we readily see that Pn
k is PL-equivalent to

an n-ball, so its boundary ∂Pn
k is PL-equivalent to an (n− 1)-sphere.

Lemma 5.3. For W•, D•
[n], and ΣD•

[n] as in � 3.1, TotD•
[n] � Ωn−1Wn and

TotΣD•
[n] � ΩnWn.

Proof. Since D•
[n] is (n− 1)-coskeletal, TotD•

[n] = Totn−1 D
•
[n]. Moreover, by � 4.1,
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and � 3.1(d), for any Z ∈ S∗, a pointed map g : Z → Totn−1 D
•
[n] is completely deter-

mined by a sequence of maps gj : Δj � Z → PΩn−j−2Wn (0 � j � n− 1), making

Δj � Z
gj

PΩn−j−2Wn

Δj−1 � Z

δ0 ··· δj

gj−1

PΩn−j−1Wn

ι◦p=d0 ··· 0=di (i�1) (16)

commute for each 0 < j � n− 1 (where the coface maps δi on the left are induced by
those of Δ•). See Remark 4.1 and (3).

Note that the cone functor in S∗ is left adjoint to P , so if we include each PΩiWn

into P i+1Wn, and identify CΔj with Δj+1, we see that for each 0 � j � n− 1 the
adjoint of gj is a map g̃j : Δn−1 � Z → Wn. We arrange the adjunction between
gj and g̃j in such a way that the coface maps δ0, . . . , δn−j−3 of Δn−1 correspond
to the loop directions of PΩn−j−2Wn (counted outwards from Wn), and δn−j−2

corresponds to the path direction. Finally, as long as j > 0, the remaining j + 1
coface maps into Δn−1 are the original coface maps of Δj , re-indexed by n− j − 1.

The fact that (16) commutes implies that these adjoints satisfy the relations

g̃j ◦ δi =

⎧⎪⎨⎪⎩
ι̃pgj for i = n− j − 2 and j < n− 1

ι̃pgj−1 for i = n− j − 1 and j > 0

0 otherwise.

(17)

By Definition 5.1, the maps g̃j thus induce a single map g̃ : Pn−1
n � Z → Wn

Moreover, (17) also implies that g̃ |∂Pn−1
n �Z

= 0, so g̃ factors uniquely through a map

(Pn−1
n /∂Pn−1

n ) ∧ Z → Wn. By Remark 5.2, Pn−1
n /∂Pn−1

n is a PL (n− 1)-sphere, so
setting Z = Si we see that TotD•

[n−1] is weakly equivalent to Ωn−1Wn.
Similarly, ΣD•

[n] is n-coskeletal, so TotΣD•
[n] = Totn ΣD•

[n], and a map of simpli-

cial sets g : Z → Totn ΣD•
[n] is determined (via the codegeneracies) by maps gj : Δj �

Z → PΩn−j−1Wn making the following diagram commute:

Δj � Z
gj

PΩn−j−1Wn

Δj−1 � Z

δ0 ··· δj

gj−1

PΩn−jWn.

ι◦p=d1 ··· 0=di (i	=1)

See � 3.1(d).
Taking adjoints g̃j : Δn � Z → Wn (0 � j � n) as above, (17) is replaced by:

g̃j ◦ δi =

⎧⎪⎨⎪⎩
ι̃pgj for i = n− j − 1 and j < n

ι̃pgj−1 for i = n− j + 1 and j > 0

0 otherwise,

(18)

and as before we deduce that

Totn ΣD•
[n] = TotΣD•

[n] � ΩnWn. (19)
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Remark 5.4. We see from (18) that the folding polytopes used to show that (19) holds
are different from those defined in � 5.1, since we need to identify the j-th facet of
Δn

(n−j+1) with the (j − 1)-facet of Δn
(n−j) for each 0 < j � k. We denote this variant

by P̂n
k , which we called a modified folding polytope. See Figure 7.3 below for an

example.

Proposition 5.5. For W• as above, the sequence of maps of � 3.1(d) induce a quasi-
fibration sequence

Totn ΣD•
[n]

Tot i[n]
−−−−→ Totn Ŵ

•
[n]

Tot r[n]
−−−−−→ Totn−1 W

•
[n−1]

TotF[n−1]
−−−−−−→ Totn−1 D

•
[n]. (20)

Proof. As noted in � 3.1, ΣD•
[n]

i[n]
−−→ Ŵ•

[n]

r[n]
−−→ W•

[n−1] is a Reedy fibration sequence

of Reedy fibrant cosimplicial sets, and W•
[n−1] is (n− 1)-coskeletal, so applying Tot

yields exactness at the left three terms of (20).

For the right three terms, note that for any pointed space Z a map g : Z →
Totn−1 W

•
[n−1] is described by gk : Δk � Z → Wk

[n−1] for 0 � k � n− 1, as in the

proof of Lemma 5.3. Moreover, the reduced cone on the half-smash: C̄(X�Y) (where
Y ∈ S∗ is pointed, but X ∈ S is not) is isomorphic to CX ∧Y (the smash product
with the unreduced cone on X – cf. � 1.1).

So a nullhomotopy H : F[n−1] ◦ g ∼ 0 is determined by a sequence of maps

Hk : Δk � Z → PΩn−k−1Wn for 1 � k � n, and the following diagram must com-
mute for each k, as in (16):

CΔk ∧ Z
Hk

Δk � Z

δ0

gk

Wk
[n−1]

Fk

PΩn−k−2Wn

CΔk−1 ∧ Z

Cd0

=δ1
··· Cdk

=δk+1

Hk−1

Δk−1 � Z

δ0

d0 ··· dk

gk−1

Wk−1
[n−1]

Fk−1

PΩn−k−1Wn

ιn−k−1◦p =d0

(j>0)

=dj0

(21)

Here we think of Δk as the (unreduced) cone CΔk−1, with δ0 : Δk−1 → Δk the
inclusion of the base, and δj the cone on dj−1 : Δk−2 → Δk−1 for 1 � j � k. We
write F k = Fk

[n−1] : W
k
[n−1] → PΩn−k−2Wn for the composite

Wk
[n−1] CkW•

[n−1] PΩn−k−2Wn.vk ′Fk

(22)

See � 2.5 and � 3.1(c).

The maps Hk must satisfy:

Hk ◦ δ0 = F k ◦ gk, Hk ◦ δ1 = ιn−k−1 ◦ p ◦H
k−1, and Hk ◦ δj = 0 for j � 2, (23)
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where ιr : Ω
rWn ↪→ PΩrWn is the inclusion and p is the path fibration. Moreover,

H1 ◦ δ1 = 0, (24)

since H is a nullhomotopy.

On the other hand, a lift of g to h : Z → Totn Ŵ
•
[n], is given by a sequence of maps

hk : Δk � Z → PΩn−k−2Wn for 0 � k � n, with

hk ◦ δ0 = F k ◦ gk, hk ◦ δ1 = ιn−k−1 ◦ p ◦ h
k−1, and hk ◦ δj = 0 for j � 2.

Thus, given H, we may set hk := Hk for 1 � k � n. By (24), we then have ιn−1 ◦

p ◦ h0 = 0 so h0 must factor uniquely as Z
ϕ
−→ ΩnWn ιn−→ PΩnWn (since ιn−1 is

monic).
From the description of g : Z → TotΣD•

[n] in the proof of Lemma 5.3, we see that

for any 0 � m � n, any class in [Z, TotΣD•
[n]] may be represented by a collection of

maps (g̃k : Δ
n � Z → Wn)nk=0 with g̃k = 0 for k �= m and g̃m|∂Δn

�Z= 0. For m = 0,
this shows that the choices for the lift h, given H, are uniquely determined by the
image under (i[n])∗ of [g] ∈ [Z, Totn ΣD•

[n]]. This completes the proof by showing the

exactness at Totn−1 Ŵ
•
[n−1] in applying [Z,−] to (20).

Theorem 5.6. For W• constructed as in � 3.1, the spectral sequence associated to
the tower of fibrations (15) agrees from the E2-term on with the unstable Adams
spectral sequence of [BK1, �4].

Proof. Because each of the cosimplicial spaces W•, W•
[n], and Ŵ•

[n] is Reedy fibrant,
and the maps π[n], q[n], and r[n] of � 3.1 are Reedy fibrations, we have trivial fibrations

NnW• NnW•
[n] NnŴ•

[n] Wn� � � (25)

for each n � 0, since from (6) we see that NnŴ•
[n] =

∏
r�n PΩr−n−1Wr.

Moreover, by [BK2, X, 6.3(ii)] we have

π∗W
n ∼= π∗N

nW• ∼= Nnπ∗W
• ∼= Cnπ∗W

•

using the dual of [BJT2, Lemma 2.11] for the graded cosimplicial abelian group
π∗W

•.
Finally, from the fact that H∗(W•;R) ∼= V• (a free ΘR-algebra resolution of Γ =

H∗(Y;R)), and that, as in [BK2, X, �7], the d1-differential of (14) reduces to d0#,
coming from the CW attaching map of V• (� 2.4), we conclude from [BK2, X,
�6.4] that we have a natural isomorphism between our E2-term and π∗π∗W

•, which
is isomorphic in turn to that of the unstable Adams spectral sequence by [BK1,
�10.2].

6. Differentials in the unstable Adams spectral sequence

In order to describe the differentials in the homotopy spectral sequence for the
tower (15), we associate to every (n, k) slot in the spectral sequence a sequence of
r-th order cohomology operations 〈〈−〉〉r : πk+nW

n → πk+n+r−1W
n+r for r � 1, as

described in � 1.1.
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6.1. Differentials and higher cohomology operations

These operations are constructed inductively by a sequence of choices, starting with
(but independent of) a representative of γ ∈ πk+nW

n, called the data for 〈〈γ〉〉r. In
particular, for each r � 1, 〈〈γ〉〉r+1 is defined only if 〈〈γ〉〉r vanishes, and the data for
the former includes a choice of a nullhomotopy H[n+r] for the latter value.

The choice of H[n+r] defines a certain ∞-homotopy commutative diagram (in the

form of a map Ĝ[n+r] : Δ
• � Sk → Ŵ•

[n+r]), which we then make cofibrant (as a map

G[n+r] : Δ
• � Sk → W•

[n+r]), yielding an appropriate value for 〈〈γ〉〉r+1.

6.2. The inductive construction

We want to associate to every (n, k) slot in the spectral sequence forW• a sequence
of r-th order cohomology operations 〈〈−〉〉r : πk+nW

n → πk+n+r−1W
n+r for r � 1,

as described in � 1.1.

We start by representing γ ∈ En,k+n
1 = πk+nW

n = πkΩ
nWn by a map h : Sk →

ΩnNnW•, using (25). Postcomposing h with the inclusion ιn : ΩnNnW• ↪→Totn W
•
[n]

from (13) and the identification Totn W
•
[n]

∼= TotW•
[n] (cf. � 3.1), we obtain h′ : Sk →

TotW•
[n] and so by adjunction

G[n] : Δ
• � Sk −→ W•

[n].

By (13), we may assume that Gi
[n] : Δ

i � Sk → Wi
[n] is zero for i < n.

At the r-th stage, let N := n+ r − 1, and assume by induction that we have lifted
γ (that is, G[n]) along (2) to G[N ] : Δ

• � Sk → W•
[N ], again with Gj

[N ] : Δ
j � Sk →

Wj

[N ] equal to zero for j < n. By Proposition 5.5, G[N ] can be lifted to Ĝ[N+1] (and

thus to G[N+1]), up to homotopy, if and only if F[N ] ◦G[N ] ∼ 0. We wish to identify
the obstruction to the existence of a nullhomotopy

H[N ] : CΔ• ∧ Sk −→ D•
[N+1]

as an r-th order cohomology operation.

Note that H[N ] is completely determined by its projection on the non-codegenerate

factors of D•
[N+1], namely, Hj

[N ] : CΔj ∧ Sk → PΩN−j−1WN+1 (cf. (3) and (21)):

CΔj ∧ Sk

H
j

[N]

Δj � Sk

δ0

G
j

[N]

Wj

[N ]

F
j

[N]

PΩN−j−1WN+1

CΔj−1 ∧ Sk

Cd0=δ1 ··· δj+1=Cdj

H
j−1
[N]

Δj−1 � Sk

δ0
d0 ··· dj

G
j−1
[N]

Wj−1
[N ]

F
j−1
[N]

d0 ··· dj

PΩN−jWN+1

ιn−j−1◦p =d0 =di

(i�1)

0

with F[N ] given by (22).
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As in the proof of Lemma 5.3 (see also [BS2, �5]), by adjointing each of the path
or loop directions of PΩN−j−1WN+1 to a cone direction on Δj , we can replace Hj

[N ]

by H̃j

[N ] : Δ
N+1 � Sk → WN+1 for n � j � N (since Gj

[N ] = 0 for j < n, we may

assume the same for Hj

[N ], and thus H̃j

[N ]).

We retain the conventions of the proof of Proposition 5.5: thus the first facet of
ΔN+1 is the base of the cone CΔj , the facets 1, . . . , N − j − 1 of ΔN correspond
to the loop directions of PΩN−j−1WN+1 (counted outwards from WN+1), with the
(N − j)-th facet corresponding to the path direction. As long as j > 0, the next j + 1
faces of ΔN+1 are the original faces of Δj , re-indexed by N − j.

The fact that H[N ] is a map of cosimplicial spaces then translates into the following
conditions:

H̃j

[N ] ◦ δ
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F̃ jGj for i = 0

ι̃pHj for i = N − j and j < N

˜ιpHj−1 for i = N − j + 1 and j > 0

0 otherwise,

(26)

for each n � j � N .
Thus we see that H[N ] defines a map H̃[N ] : P

N+1
r � Sk → WN+1 (cf. � 5.1), since

the maps H̃j

[N ] on ΔN+1
(j) ∧ Sk agree on the identified facets.

Note that from (26) we see that the map H̃[N ], when restricted to ∂PN+1
r � Sk,

depends only on the given map F[N ] and the chosen lift G[N ], so we may denote it
by

Φ′
(F,G) : ∂P

N+1
r � Sk −→ WN+1.

Moreover, Φ′
(F,G) is zero on {v} × Sk for each of the cone vertices v of ΔN+1

(j) in PN+1
r

(because our maps were defined on the smash product with the cone). Thus Φ′
(F,G)

induces a map

Φ(F,G) : ∂P
N+1
r ∧ Sk −→ WN+1.

Its domain is a topological (N + k)-sphere.

Example 6.1. The boundaries of the three constituent tetrahedra of P3
3 , split open,

are illustrated in Figure 6.2, which also shows how each facet is mapped under
H̃j

[3] : Δ
3
(j) → W3, and which facets are identified in P3

3 (dotted arrows). Here ∗

on a facet means that the facet maps to the base point.

Lemma 6.2. Given maps F[N ] and G[N ] as above, Φ(F,G) : ∂P
N+1
r ∧ Sk → WN+1 is

nullhomotopic if and only if Ψ′
(F,G) : ∂P

N+1
r � Sk → WN+1 extends to H̃[N ] : P

N+1
r �

Sk → WN+1, implying the existence of H[N ] : F[N ] ◦G[N ] ∼ 0 – and therefore of a
lift of G[N ] to G[N+1].

Proof. As noted in � 5.2, the cone C∂PN+1
r is homeomorphic to PN+1

r , and the
quotient map q : ∂PN+1

r � Sk →→ ∂PN+1
r ∧ Sk extends naturally to q′ : PN+1

r � Sk →
→ C∂PN+1

r ∧ Sk. Thus a nullhomotopy for Φ(F,G) defines an extension of Φ′
(F,G)

to Ĥ[N ] : P
N+1
r × Sk → WN+1. Restricting H̃[N ] to each of the (N + 1)-simplices
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3 3
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1

0
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3 3

0 1

2

3 3

3

1

0

2

∗ ∗

F̃ 0G0

ι̃pH1

∗

ι̃pH1

F̃ 1G1

ι̃pH2

∗ ∗

F 2G2

ι̃pH2

∂Δ3
(1) ∂Δ3

(2) ∂Δ3
(3)

Figure 6.2: The three tetrahedra of P3
3 mapped to W3

ΔN+1
(j) of PN+1

r defines a collection of maps H̃j

[N ] (j = 1, . . . , N + 1) satisfying (26)

(with ιpHj defined by restricting H̃[N ] to the appropriate facets gluing the (N + 1)-

simplices together). As in the proof of Proposition 5.5, the nullhomotopy H[N ] defines

a lift of G[N ] to Ĝ[N+1] : Δ
• � Sk → Ŵ•

[N+1].

If we assume by induction that Gi
[N ] : Δ

i � Sk → Wi
[N ] is zero for i < n, we may

assume the same for the maps Hi
[N ], and thus for Ĝi

[N+1]. We then use the left lifting
property in the Reedy model category of cosimplicial spaces to obtain the required
lift:

skn−1 Δ
• � Sk 0

inc

W•
[N+1]

q[N+1]�

Δ• � Sk

Ĝ[N+1]

G[N+1]

Ŵ•
[N+1],

again with Gi
[N+1] = 0 for i < n.

Definition 6.3. Assume given an (R-good) space Y, a CW resolution V• ∈ sΘR-Alg
of H∗(Y;R), and a realization W• of V• constructed by suitable choices of maps
F[n] : W

•
[n] → D•

[n+1] for each n � 0, as in � 3.1. For each pair (k, n) we then have a
sequence of higher cohomology operations

〈〈−〉〉r : πk+nW
n → πN+kW

N+1 = πk+n+r−1W
n+r

for r � 1 and N = n+ r − 1, which serve as obstructions to lifting γ ∈ πkΩ
nWn to

G[n+r+1] : Δ
• � Sk → W•

[n+r+1]. The data for 〈〈−〉〉r consists of compatible choices

of lifts G[i] : Δ
• � Sk → W•

[i] for n � i � N as above, and the value of 〈〈γ〉〉r asso-

ciated to this data is the class of [Φ(F,G)] ∈ πN+kW
N+1 constructed in � 6.2. The

indeterminacy of 〈〈γ〉〉r is the subset of πN+kW
N+1 consisting of all possible values,
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for all (compatible) choices of the data G[i] (with the maps (F[n] : W
•
[n] → D•

[n+1])
∞
n=0

fixed). We say that the operation vanishes if there is a choice of the data G[i] with
value zero.

From the description above we deduce:

Theorem 6.4. Each value 〈〈γ〉〉r ∈ πk+n+r−1W
n+r = En+r,k+n+r−1

1 of the r-th
order operation 〈〈−〉〉r represents the result of applying the differential dr to the ele-

ment of En,k+n
r represented by γ ∈ πk+nW

n = En,k+n
1 . The indeterminacy for 〈〈−〉〉r

is the same as that for the differential (as a map E1 → E1).

Remark 6.5. More generally, we can think of the maps F[n+r] : W
•
[n+r] → D•

[n+r+1]

of � 3.1(d) as providing a template for a system of higher operations

〈〈−〉〉r : [Z, Ω
nWn] −→ [Z, Ωn+r−1Wn+r]

for r = 2, 3, . . . (here we had Z = Sk). By a “template” we mean that we can fix the
maps F[i] once and for all, while the choices of the liftings G[n+r] may need to be
changed if a particular value of 〈〈γ〉〉r is non-zero.

From Theorem 6.4, and the fact that the unstable Adams spectral sequence is
unique up to isomorphism, it follows that any choice of this template yields equivalent
operations, in the sense that vanishing for one choice implies their vanishing for any
other choice of the maps F[i] – for the right choice of data G[i].

7. Filtration in the unstable Adams spectral sequence

We now consider the question of determining the filtration index of a non-zero
element in the unstable Adams spectral sequence. Here we assume that the coaug-
mented cosimplicial space Y → W• is constructed as in � 3 for an R-good space Y,
with R-completion Ŷ � TotW•, so we require that

πk TotW
• = lim

n
πk TotW

•
[n].

If we write p[n] : TotW• → Totn W
•
[n] for the appropriate structure map in (15),

the filtration index for 0 �= γ ∈ πk TotW
• is the least n for which (p[n])∗γ �= 0. Thus

(π[n] ◦ p[n])∗γ = (p[n−1])∗γ = 0, so (p[n])∗γ lifts to some element α ∈ πkΩ
nWn =

En,n−k
1 , by Proposition 5.5. This α represents γ in the spectral sequence.
In general, γ is represented by a map of cosimplicial spaces Γ: Δ• � Sk → W•,

as in � 4.1. However, because Ŷ is R-good, the R-completion Ŷ � TotW• is coaug-
mented to W• by Remark 3.4. Therefore (replacing Y by Ŷ, if necessary), we may
assume for simplicity that γ is represented by a map g : Sk → Y. The map Γ thus
factors in cosimplicial dimension j as the composite Γj of

Δj � Sk Sk Y Wj ,
q g Dj

(27)

where Dj is the unique iterated coface map starting from the coaugmentation, say:

Dj := dj ◦ · · · d1 ◦ ε. (28)

For W• = Ŵ•
[n], we denote the projection of Dj onto the factor PΩn−j−1Wn by

D
j
= D

j

[n].
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7.1. The inductive process
We start with the map Γ0 given by ε[0] ◦ g : S

k → W0
[0]. If this is non-zero, g has

filtration index 0 (which means it is “visible to R-cohomology”, since ε[0] encodes all
cohomology classes of Y). Otherwise, we have a nullhomotopic map of cosimplicial
spaces Γ[0] : Δ

• � Sk → W•
[0] (of the simple kind given by (27), and we can choose a

nullhomotopy G[0] for it.
In the induction step, until we reach the filtration index, assume we have

Γ[n−1] : Δ
• � Sk → W•

[n−1] as in (27), with a nullhomotopy G[n−1] : CΔ• ∧ Sk →

W•
[n−1]. The 0-th coface maps δ0 : Δj ↪→ Δj+1 = CΔj fit together to define a map

of cosimplicial spaces inc : Δ• ↪→ CΔ•, with G[n−1] ◦ inc = Γ[n−1].

From (5) we see that to liftG[n−1] to Ŵ
•
[n], for each 0 < j � n we must choose maps

Hj = Hj

[n] : CΔj ∧ Sk → PΩn−j−1Wn making the following diagram commute:

CΔj ∧ Sk
Gj

Hj

Δj � Sk

δ0=inc

q
Sk g

Y
Dj

D
j

Wj

[n−1] × PΩn−j−1Wn

CΔj−1 ∧ Sk

δ1=
Cd0

··· δj+1

=Cdj

Gj−1

Hj−1

Δj−1 � Sk

δ0=inc

d0 ··· dj

q
Sk g

Y
Dj−1

D
j−1

Wj−1
[n−1]

d0 ··· dj

d0=F j−1

× PΩn−jWn

d1=ιp

(29)

where q : Δj � Sk → Sk is the projection. Note that we have chosen a different index-
ing for the coface maps under the identification of CΔj with CΔj+1.

The maps Hj must satisfy:

Hj ◦ Cd0 = F j−1 ◦Gj−1, Hj ◦ Cd1 = ι ◦ p ◦Hj−1,

Hj |Δj
�Sk= D

j
◦ g ◦ q, and Hk ◦ Cdi = 0 for i � 2,

(30)

for 0 < j � n, as in (23).

Using the conventions of � 6.2, we let H̃j = H̃j

[n] : Δ
n+1 → Wn denote the appro-

priate adjoint of Hj = Hj

[n], and deduce from (30) that for each 0 � j � n:

H̃j ◦ δi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˜
D

j
gq for i = 0

ι̃pHj for i = n− j and j � n− 1

˜F j−1Gj−1 for i = n− j + 1 and j > 0

˜ιpHj−1 for i = n− j + 2 and j > 0

0 otherwise,

(31)
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as in (26).
For j = 0 we may let H0 : CSk → PΩn−1Wn be the tautological nullhomotopy of

F−1εg : Sk → PΩn−1Wn (so that its adjoint H̃0 : Δn+1 → Wn, depicted on the left

in Figure 7.3, has 2-facet ι̃pH0 = F̃−1εg).

As before, we use (31) to glue the maps H̃j and define a map H̃ : P̂n+1
n+2 � Sk → Wn

(see Remark 5.4). Its restriction to ∂P̂n+1
n+2 � Sk again depends only on F = F[n] and

the chosen nullhomotopy G = G[n−1], so we may denote it by Ψ′
(F,G) : ∂P̂

n+1
n+2 � Sk →

Wn. Moreover, Ψ′
(F,G) is zero on {v} × Sk for any cone vertex v of P̂n+1

n , so it induces

a map Ψ(F,G) : ∂P̂
n+1
n+2 ∧ Sk → Wn from a PL (n+ k)-sphere.

Remark 7.1. If j � 2, the projection of dj onto PΩn−j−1Wn is zero, so D
j

[n] = 0

by (28), and thus H̃j

[n] ◦ δ
n+1 = 0 by (31). On the other hand, H̃1

[n] ◦ δ
n+1 =

˜F 0 ◦ ε ◦ g ◦ q, and H̃0
[n] ◦ δ

n+1 = F̃−1 ◦ g. Note that it is consistent with the descrip-

tion in � 3.1 to think of g : Sk → Y as G−1, so more suggestively we may write this

last as ˜F−1 ◦G−1.

Example 7.2. The boundaries of the three constituent tetrahedra of P̂3
3 are given in

Figure 7.3, including their identifications, showing how the facets are mapped to W2

under H̃j

[2].

3 3

3

1

2

0

2

2 2

1 3

0

1 1

1

0

2

3

˜F−1G−1 ∗

∗

ι̃pH0

F̃ 0εgq

ι̃pH0

F̃ 0G0

ιpH1

∗ D
2
gq

= ∗

F 1G1

ιpH1

∂Δ3
(0) ∂Δ3

(1) ∂Δ3
(2)

Figure 7.3: The three tetrahedra of P̂3
3 , mapping to W3

Note that all 2-simplices of the boundary ∂P̂3
3 map to W3 by zero or by a map

of the form F̃ jGj (−1 � j � 1), except for one mapping by F̃ 0εgq. However, the fact
that we precompose this map with the projection q : Δ1 � Sk → Sk indicates that
this 2-simplex in ∂P̂3

3 is degenerate (that is, it may be collapsed to its top edge, the

0-face of F̃ 0G0).

As in Lemma 6.2 we deduce:
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Lemma 7.3. Given maps F[n] and a nullhomotopy G[n−1] as above, Ψ(F,G) : ∂P
n+1
n+1 ∧

Sk → Wn is nullhomotopic if and only if Ψ′
(F,G) : ∂P

N+1
r � Sk → WN+1 extends

to Ĥ[N ] : P
N+1
r � Sk → WN+1, implying existence of a nullhomotopy H[N ] – and

therefore of a lift of G[N ] to G[N+1].

Definition 7.4. By analogy with � 6.3, given a space Y, a CW resolution V• ∈
sΘR-Alg of H∗(Y;R), and maps F[n] : W

•
[n] → D•

[n+1] (n � 0), yielding a realization
W• of V• as in � 3.1, we have a new sequence of higher cohomology operations
〈〈−〉〉′r : πkY → πk+nW

n for each pair (k, n), which serve as obstructions to repre-
senting γ ∈ πkY in higher Adams filtration by lifting nullhomotopies G[i] (0 � i < n)
– the data for 〈〈−〉〉′r – to a nullhomotopy G[n].

The value of 〈〈γ〉〉′r associated to this data is the class of [Ψ(F,G)] ∈ πn+kW
n

constructed in � 7.1. The indeterminacy of 〈〈γ〉〉′r is the subset of πn+kW
n consisting

of all possible values, for all (compatible) choices of the data G[i] (with the maps
(F[n] : W

•
[n] → D•

[n+1])
∞
n=0 again fixed).

Remark 6.5 as to the independence of the operations 〈〈−〉〉′r from the “template”
maps F[n] : W

•
[n] → D•

[n+1] applies here too, mutatis mutandis, because of the follow-
ing

Theorem 7.5. For any 0 �= γ ∈ πkY, the operation 〈〈γ〉〉′n−1 vanishes while 〈〈γ〉〉′n �=
0 if and only if γ is represented in the unstable Adams spectral sequence in filtration
n by the value of 〈〈γ〉〉′n in πkΩ

nWn = En,n−k
1 .

Proof. By Lemma 7.3 〈〈γ〉〉′n−1 vanishes (for some choice of nullhomotopy G[n−1])
if and only if we have a lift of G[n−1] to a nullhomotopy G[n], so γ has Adams

filtration � n. Assume 〈〈γ〉〉′n is represented by Ψ(F,G) : ∂P̂
n+1
n ∧ Sk → Wn, induced

by H̃ : P̂n+1
n � Sk → Wn as in � 7.1.

For each 0 � j � n denote F j−1 ◦Gj−1 by φj : Δj � Sk → PΩn−j−1Wn. For j =
0 we let CΔ−1 ∧ Sk := Sk and W−1

[n−1] := Y (compare � 3.1(b)), with G−1 : CΔ−1 ∧

Sk → W−1
[n−1] equal to g as in � 7.1.

Using the conventions of � 7.1 for j � 1, we write δ0 for the inclusion of the
base Δj � Sk ↪→ CΔj ∧ Sk, and δi+1 for Cdi : CΔj−1 ∧ Sk :→ CΔj ∧ Sk (0 � i �
j). From (29) and (30) we see that for each j � 1 and 0 � i � j, we have

φj+1 ◦ δi+1 := F j ◦Gj ◦ Cdi = F j ◦ di ◦Gj−1 = d0 ◦ di ◦Gj−1 = di+1 ◦ d0 ◦Gj−1

(32)
into PΩn−j−2Wn, which is d1 ◦ F j−1 ◦Gj−1 = d1 ◦ φj when i = 0. When i � 1, the
projection of di+1 onto PΩn−j−2Wn vanishes (cf. � 3.1), so by (32) both φj+1 ◦ δi+1

and di+1 ◦ φj are zero there.

Similarly, by (28) we have

φj+1 ◦ δ0 = F j ◦Gj |Δj
�Sk= F j ◦Dj ◦ g = d0dj · · · ε ◦ g = dj+1dj · · · ε ◦ g = 0

into PΩn−j−2Wn, and also d0|PΩn−j−1Wn is zero.

Finally, for j = 0 we write δ1 for the inclusion of the base Sk into CSk = Δ1 ∧ Sk,
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and δ0 for the map collapsing Sk to the cone point, so we have:

φ1 ◦ δi := F 0 ◦G0 ◦ δi =

{
ιp ◦ F−1 ◦G−1 = d1φ0 if i = 1

0 = d0φ0 if i = 0

into PΩn−2Wn.
Thus for each j � 0 we have:

di ◦ φj = φj+1 ◦ δi for all 0 � i � j + 1

(into PΩn−j−2Wn).
Therefore, by the proof of Lemma 5.3, the maps φj : Δj � Sk → PΩn−j−1Wn

uniquely determine a pointed map φ : Sk → TotΣD•
[n]. The inclusion i[n] : ΣD•

[n] ↪→

Ŵ•
[n] allows us to think of φ as a map (i[n])∗φ = ϕ : Sk → Totn Ŵ

•
[n], which maps by

zero to the factor Wj

[n−1] of Ŵ
j

[n] in (6).

Let tj : Δj × I →→ CΔj ∼= Δj+1 be the map collapsing the top of the prism, Δj ×
{1}, to a point, and let σ0 : Δj+1 →→ Δj be the 0-the codegeneracy map of Δ•.

We then define a pointed homotopy K : I � Sk −→ Totn Ŵ
•
[n] by setting

Kj : (Δj × I)� Sk → Ŵj

[n] equal to:

(Δj × I)� Sk
(Gj◦tj)
(Xj)
(F j−1◦Gj−1◦σ0◦tj)

Wj

[n−1] × M̂r−1
[n] × PΩn−j−1Wn

for each 1 � j � n, where Xj is determined by the codegeneracies on Gj and F j−1 ◦
Gj−1 ◦ σ0 ◦ tj . When j = 0 we have Γ0

[n] = ϕ0 into PΩn−1Wn, with the third map
the identity homotopy.

The restriction K ◦ ι0 to the 0-end of I (the base of each prism Δj × I) is the given

map Γ[n] : CΔ• � Sk → Ŵ•
[n], since Kj ◦ ι0 = Dj ◦ g ◦ q : Δj � Sk → Ŵj

[n] by (29).

On the other hand, K ◦ ι1 is zero into each factor Wj

[n−1], since Gj is a nullho-

motopy, while the component into PΩn−j−1Wn is F j−1 ◦Gj−1 = φj . Thus K ◦ ι1 is

ϕ : Sk → Totn Ŵ
•
[n], showing that [φ] ∈ πk TotΣD•

[n] (the value of 〈〈γ〉〉′n−1) indeed

represents Γ[n] (the lift of γ to the n-th level in (15).

7.2. The one-dimensional case
From the description in � 3.1 we have

Y

ε[1]

= Y

ε[0] F−1

W0
[1]

d0
0 d1

0

= W0

d0
0=d1

0=Id
d
0
0

× PW1

d1
0=p

d0
0=d1

0=Id

W1
[1]

s0

= W0

=

× W1 × PW1.

=

where p is the path fibration, so F−1 is a nullhomotopy for a−1 := d
0

0 ◦ ε[0], in the
notation of (7).
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If γ ∈ πiŶ has filtration index � 1, it can be represented by a map g : Si → Y
with ε[0] ◦ g ∼ ∗. Choosing a nullhomotopy G : Si → PW0 (with p ◦G = ε[0] ◦ g), we
obtain a solid commutating diagram

PW0
Pd

0
0

p

PW1

p

Si

G

g

ϑ
ΩW1 W0

d
0
0

W1

Y
F−1

ε[0]

PW1
p

(33)

where the outer right pentagon is Cartesian, thus defining ϑ into the pullback, which
is a (non-standard model for) ΩW1. In fact, [ϑ] is (one value of) the Toda bracket

〈d
0

0, ε[0], g〉 ⊆ πi+1W
1, and it is non-zero if and only if g has filtration 1, since ΩW1 =

ΩN1W•
[1], and j1[ϑ] is the lift of g to Tot1 W

• � Tot1 W
•
[1] (cf. � 5.1) in Figure 4.1.

Combining this with Theorem 7.5, we see that γ has filtration index 1 if and only
if there is a secondary cohomology operation which acts on it non-trivially (that is,
cannot be made to vanish for any choice of nullhomotopies).

More generally, γ has filtration index n if and only if there is an (n+ 1)-th order
cohomology operation which acts on it non-trivially (where n is necessarily the highest
order for which this is possible).

Example 7.6. Consider the cofibration sequence Sn 2
−→ Sn inc

−−→ Sn ∪2 e
n+1 ∇

−→ Sn+1

for the mod 2 Moore space, fitting into the homotopy commutative diagram

Sn 2
Sn inc

ιn

Sn ∪2 e
n+1 ∇

p

Sn+1 q
K(Z, n+ 1)

ρ2

K(F2, n)
Sq1

K(F2, n+ 1)

(34)

where p and q are the appropriate Postnikov fibrations and ρ2 is the reduction mod
2 map.

Therefore, we can realize a free simplicial resolution of the ΘR-algebra H∗(Sn;F2)
by Y = Sn → W• in cosimplicial dimensions � 1:

Sn ιn−−→ K(F2, n)
Sq1

−−−−→ K(F2, n+ 1)

For simplicity we have omitted all factorsK(F2, i) for i > n+ 1. Assuming that n � 3,
this means that we are in the stable range, so we can also omit the codegeneracies,
the contractible path space factors, and thus the coface maps other than d0, which
were shown in (33).

Since the map γ = 2 in πnS
n is invisible in H∗(−;F2), it has Adams filtration � 1.
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However, the diagram

Sn γ=2

ι

Sn inc

0

Sn ∪2 e
n+1 ∇

Sn+1

CSn

Id
e
n+1

shows that one value of the Toda bracket 〈∇, inc, γ〉 is the pinch map ΣSn ∼=

CSn/Sn
∼=
−→ Sn+1, which has degree 1. Post-composing with ρ2 ◦ q of (34) we obtain

the value ιn+1 ∈ πn+1K(F2, n+ 1) for the associated secondary cohomology operation
〈Sq1, ιn, γ〉 (see [T2, Ch. 1]), with indeterminacy

{0} = 2 · πn+1K(F2, n+ 1) + Sq1∗ πnK(F2, n).

This shows that in fact γ has filtration index 1, as expected. Note that as often
happens, we do not calculate with higher order operations from scratch, using any
available information to deduce the value. Nevertheless, it is sometimes possible to
produce infinite families of non-trivial higher operations: for an example, see [BBS,
�8], where for each n � 1, the Hopf map gn : S

2n+1 → CPn is described as the value
of an explicit n-th order operation involving only Whitehead products.
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