A REMARK ON THE DOUBLE COMPLEX OF A COVERING FOR SINGULAR COHOMOLOGY

ROBERTO FRIGERIO and ANDREA MAFFEI

(*communicated by Donald M. Davis*)

Abstract

Given an open covering of a paracompact topological space *X*, there are two natural ways to construct a map from the cohomology of the nerve of the covering to the cohomology of *X*. One of them is based on a partition of unity, and is more topological in nature, while the other one relies on the double complex associated to an open covering, and has a more algebraic flavour. In this paper we prove that these two maps coincide.

1. Introduction

Let X be a paracompact space, and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X. We denote by $N(\mathcal{U})$ the *nerve* of \mathcal{U} , i.e. the simplicial set having *I* as set of vertices, in which a finite subset $\{i_0, \ldots, i_k\} \subseteq I$ spans a simplex if and only if $U_{i_0} \cap \ldots \cap U_{i_k} \neq I$ \emptyset . As usual, we endow the geometric realization $|N(\mathcal{U})|$ of $N(\mathcal{U})$ with the weak topology associated to the natural CW structure of $|N(U)|$.

Any partition of unity $\Phi = {\varphi_i : X \to \mathbb{R}}_{i \in I}$ subordinate to *U* induces a map

$$
f_{\Phi}: X \to |N(\mathcal{U})|
$$
, $f_{\Phi}(x) = \sum_{i \in I} \varphi_i(x) \cdot i$.

Moreover, the homotopy class of f_{Φ} does not depend on the chosen partition of unity Φ . Indeed, if Ψ is another partition of unity, then we have a well-defined homotopy $tf_{\Psi} + (1-t)f_{\Phi}$ between f_{Ψ} and f_{Φ} . Therefore, if *R* is any ring with unity, the map f_{Φ} induces a map

$$
f^* = f^*_{\Phi}: H^*(|N(\mathcal{U})|, R) \to H^*(X, R)
$$
,

which does not depend on the choice of Φ . Throughout this paper, we fix a ring with unity *R*, and for any topological space *Y* we denote by $C^*(Y) = C^*(Y, R)$ (resp. $H^*(Y) = H^*(Y, R)$) the singular cochain complex (resp. the singular cohomology algebra) of *Y* with coefficients in *R*.

There is another natural way to define a map from the (simplicial) cohomology of $N(U)$ to the singular cohomology of X, using a double complex associated to the covering *U*. The idea of this construction goes back at least to the paper of Weil on the de Rham Theorem [**[Wei52](#page-9-0)**], where the author dealt with differential forms in

Received March 7, 2020, revised July 2, 2020; published on April 7, 2021.

²⁰¹⁰ Mathematics Subject Classification: 55N10, 55N05, 55T99.

Key words and phrases: nerve of a covering, double complex associated to an open covering.

Article available at http://dx.doi.org/10.4310/HHA.2021.v23.n2.a4

Copyright © 2021, Roberto Frigerio and Andrea Maffei. Permission to copy for private use granted.

Section 2, and with singular chains in Section 3. Let $C^{*,*}(\mathcal{U})$ be the double complex associated to the covering U , i.e. for every $(p, q) \in \mathbb{N}^2$ let

$$
C^{p,q}(\mathcal{U}) = \prod_{\underline{i} \in I_p} C^q(U_{\underline{i}}) ,
$$

where I_p denotes the set of ordered $(p + 1)$ -tuples $(i_0, \ldots, i_p) \in I^{p+1}$ such that $U_i :=$ $U_{i_0} \cap \ldots \cap U_{i_p} \neq \emptyset$ (in particular, $I_0 = \{i \in I \mid U_i \neq \emptyset\}$). We refer the reader to Section [2](#page-2-0) for the precise definition of this double complex.

To the double complex $C^{*,*}(\mathcal{U})$ there is associated the *total complex* T^* , and we have maps

$$
\alpha_X\colon H^*(X)\to H^*(T^*)\ ,\qquad \beta\colon H^*(N(\mathcal U))\to H^*(T^*)
$$

from the singular cohomology of X to the cohomology of T^* and from the simplicial cohomology of $N(U)$ to the cohomology of T^* . Moreover, the map α turns out to be an isomorphism (see Section [2](#page-2-0)).

Let now $\nu: H^*(|N(\mathcal{U})|) \to H^*(N(\mathcal{U}))$ be the canonical isomorphism between the simplicial cohomology of $N(\mathcal{U})$ and the singular cohomology of its geometric realiza-tion (see Section [3\)](#page-4-0). By setting $\eta = \alpha_X^{-1} \circ \beta \circ \nu$ we have thus defined a map

$$
\eta\colon H^*(|N(\mathcal{U})|)\to H^*(X)\ .
$$

The main result of this paper shows that the maps f^* and η coincide:

Theorem 1.1. *The maps*

$$
f^*: H^*(|N(\mathcal{U})|) \to H^*(X), \quad \eta: H^*(|N(\mathcal{U})|) \to H^*(X)
$$

coincide.

We were motivated to study whether the maps f^* and η should coincide by the fact that our result may be exploited to provide an interpretation of a result by Ivanov on the bounded cohomology of topological spaces. In his pioneering paper [**[Gro82](#page-8-0)**], Gromov introduced the notion of *bounded* singular cochains. For any topological space *X*, bounded cochains (with real coefficients) provide a subcomplex $C_b^*(X)$ of $C^*(X)$. The cohomology of the complex $C_b^*(X)$ is denoted by $H_b^*(X)$, and defines the *bounded cohomology* of *X*. The inclusion of bounded cochains into ordinary cochains induces the *comparison map* c^* : $H_b^*(X) \to H^*(X)$.

A subset *U* of *X* is *amenable* if, for every $x_0 \in U$, the image of the map $\pi_1(U, x_0) \to$ $\pi_1(X, x_0)$ induced by the inclusion is amenable, and a covering of *X* is amenable if each of its elements is amenable. Gromov's Vanishing Theorem [**[Gro82](#page-8-0)**] asserts that, if *X* admits an open amenable covering U of multiplicity n , then the comparison map $c^m: H_b^m(X) \to H^m(X)$ is null for every $m \geqslant n$ (if *X* is a closed *n*-dimensional manifold, then the vanishing of the comparison map in degree *n* has strong implications on the vanishing of several interesting invariants of X , such as the simplicial volume, the minimal volume, the volume entropy).

Gromov's Vanishing Theorem was generalized and made more precise by Ivanov in **[Iva87](#page-9-1)**, [Iva](#page-9-2), where it is shown that, if U is a nice covering of X, then there exists a map θ^* : $H_b^*(X) \to H_b^*(N(\mathcal{U})$ which makes the following diagram commute

(we refer the reader to [**[Iva](#page-9-2)**] for the definition of nice covering; for example, any open covering of a hereditary paracompact space is nice).

Our result implies that, in the diagram above, the map *η* can be replaced by the map *f* ˚. This provides a clear topological interpretation of the well-known concept that amenable spaces are somewhat invisible to bounded cohomology: in fact, the map $f: X \to |N(\mathcal{U})|$ shrinks each element of $\mathcal U$ into a contractible subset of $|N(\mathcal{U})|$, thus trivializing its topology, while the commutativity of the diagram implies that the information carried by $|N(\mathcal{U})|$ still suffices to completely determine singular cohomology classes admitting a bounded representative. For recent alternative proofs of the fact that the comparison map c^* factors through f^* (which, however, do not deal with the question whether $f^* = \eta$ in general) we refer the reader to [**[FM](#page-8-1)**, Chapter 6] and [**[LS](#page-9-3)**].

2. The double complex associated to an open covering

Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of the topological space *X*. We now thoroughly describe the horizontal and the vertical differentials of the double complex $C^{*,*}(\mathcal{U})$ defined in the introduction, also fixing the notation we will need later.

If $\varphi \in C^{p,q}(\mathcal{U})$ and $i \in I_p$, then we denote by φ_i the projection of φ on $C^q(U_i)$. For every $(p, q) \in \mathbb{N}^2$ we denote by

$$
\delta_v^{p,q}: C^{p,q}(\mathcal{U}) \to C^{p,q+1}(\mathcal{U})
$$

the "vertical" differential which restricts to the usual differential $C^q(U_i) \to C^{q+1}(U_i)$ for every $\underline{i} \in I_p$, and by

$$
\delta_h^{p,q}: C^{p,q}(\mathcal{U}) \to C^{p+1,q}(\mathcal{U})
$$

the "horizontal" differential such that, for every $\underline{i} = (i_0, \ldots, i_{p+1}) \in I_{p+1}$ and every $\varphi \in C^{p,q}(\mathcal{U}),$

$$
(\delta_h^{p,q}(\varphi))_{\underline{i}} = \sum_{k=0}^{p+1} (-1)^k (\varphi_{(i_0,\ldots,\hat{i}_k,\ldots,i_{p+1})})|_{U_{\underline{i}}}.
$$
 (1)

We augment the double complex $C^{*,*}(\mathcal{U})$ as follows. We define $C_q^{\mathcal{U}}$ as the subcomplex of the singular chain complex $C_q(X)$ generated (over *R*) by those singular simplices $s: \Delta^q \to X$ such that $s(\Delta^q)$ is contained in U_i for some $i \in I$. We then set $C^{-1,q}(\mathcal{U}) = C_{\mathcal{U}}^q = \text{Hom}(C_q^{\mathcal{U}}, R)$. The usual boundary maps of the complex $C^{\mathcal{U}}_*$ induce dual coboundary maps, which endow $C^*_{\mathcal{U}}$ with the structure of a complex. The inclusion of the complex $C_*^{\mathcal{U}}$ in the full complex of singular chains induces a map of complexes $\tilde{\gamma}: C^*(X) \to C^*_{\mathcal{U}}$. It is known that the map γ induced in cohomology is
an isomorphism (see e.g. [Hat02, Proposition 2.21]) and we will identify the singular an isomorphism (see e.g. $[\text{Hat}02, \text{Proposition 2.21}]$) and we will identify the singular cohomology of *X* with the cohomology of the complex C_{l}^{q} $\frac{u}{u}$ via γ . The augmentation maps $\delta^{-1,q}: C^{-1,q}(\mathcal{U}) \to C^{0,q}(\mathcal{U})$ are defined by setting, for every $i \in I_0$,

$$
(\delta^{-1,q}(\varphi))_i = \varphi|_{U_i}
$$

.

In order to define the augmentation of the vertical complexes, we consider the Cech complex given by $C^{p,-1}(\mathcal{U}) = \check{C}^p(\mathcal{U}) = \prod_{\underline{i} \in I_p} R$, with boundary maps defined as in formula [\(1](#page-2-1)). We then define the augmentation maps $\delta^{p,-1}$: $C^{p,-1}(\mathcal{U}) \to C^{p,0}(\mathcal{U})$ by setting

$$
(\delta^{p,-1}(\varphi))_{\underline{i}}(s) = \varphi_{\underline{i}} \in R
$$

for every $\varphi \in C^{p,-1}(\mathcal{U})$, every $\underline{i} = (i_0, \ldots, i_p) \in I_p$ and every singular simplex $s: \Delta^0 \to$ $U_{i_0} \cap \ldots \cap U_{i_p}$.

Remark 2.1. The complex $\check{C}^*(\mathcal{U})$ computes the Cech cohomology of the covering *U* with coefficients in the *constant* presheaf *R*. Such cohomology, which is usually denoted by $H(\mathcal{U})$, is tautologically isomorphic to the simplicial cohomology of the nerve $N(\mathcal{U})$. It is costumary to rather study the Cech cohomology of \mathcal{U} with coefficients in the *locally constant* sheaf *R*. However this cohomology does not always coincide with the cohomology of $N(\mathcal{U})$. They coincide, for example, under the assumption that every U_i , $i \in I_p$, $p \in \mathbb{N}$, is path connected.

It is well known that, for every $q \in \mathbb{N}$, the row

$$
0 \longrightarrow C^{-1,q}(\mathcal{U}) \xrightarrow{\delta_h^{-1,q}} C^{0,q}(\mathcal{U}) \xrightarrow{\delta_h^{0,q}} \cdots \xrightarrow{\delta_h^{p-1,q}} C^{p,q}(\mathcal{U}) \xrightarrow{\delta_h^{p,q}} \cdots
$$
 (2)

of the augmented double complex introduced above is exact. A proof of the analogous statement for singular chains can be found, for example, in [**[BT82](#page-8-2)**, Proposition 15.2], and the statement for cochains follows immediately.

As a consequence, the cohomology groups of the complex $C^{-1,*}$ are isomorphic to the cohomology of the *total complex T* ˚ associated to the double complex. Recall that T^* is defined by setting

$$
T^n = \bigoplus_{\substack{(p,q)\in \mathbb{N}^2\\p+q=n}} C^{p,q}(\mathcal{U})
$$

with differential $\delta^n: T^n \to T^{n+1}$ given by $\delta^n = \bigoplus_{p+q=n} (\delta_h^{p,q} + (-1)^p \delta_v^{p,q})$. The augmentation maps induce morphisms of complexes $\tilde{\alpha}^* : C^*_{\mathcal{U}} \to T^*$ and $\beta^* : \tilde{C}^* \to T^*$ and β we denote by α , β the maps induced by α^* , β^* on cohomology. Since the rows ([2\)](#page-3-0) are exact, α is an isomorphism in every degree and the map $\alpha \circ \gamma$: $H^*(X) \to H^*(T^*)$ is the isomorphism α_X defined in the introduction. We define $\zeta = \alpha^{-1} \circ \beta$ and $\eta =$ $α_X^{-1} ∘ β ∘ ν.$

The notation introduced so far is summarized in the following diagram:

When we want to stress the dependence of these constructions on the covering *U* we write $\alpha_{\mathcal{U}}, \beta_{\mathcal{U}},$ etc.

3. The case of a simplicial complex

In this section we analyze the double complex associated to the open star covering of the geometric realization $X = |S|$ of a simplicial complex *S*. Let *I* be the vertex set of *S*. We consider the open covering $\mathcal{U}^* = \{U_i^*\}_{i \in I}$ of $|S|$ given by the open stars of the vertices, i.e., for every $i \in I$ we set $U_i = \{x \in |S| : x_i > 0\}$, where x_i denotes the barycentric coordinate of the point *x* relative to the vertex *i*. Observe that the simplical complexes $N(U^*)$ and *S* on the set of vertices *I* are equal and we will identify them. Hence, in this case $\eta_{\mathcal{U}*}: H^*(|S|) \to H^*(|S|)$. Notice also that in this case all intersections U_i^* are contractible, hence, also the columns of the augmented double complex are exact. As a consequence, *β* and *ζ* are isomorphisms. The next proposition shows that the map η is the identity in this case.

Proposition 3.1. *If* S *is a simplicial complex and* U^* *is the covering described above then* $\eta = Id$.

To prove this proposition we will perform a computation by describing a lift of *ζ* at the level of cochains. To simplify the computations we will use *alternating* cochains, whose definition is recalled below.

Construction of $\tilde{\zeta}$

We start by describing a lift

$$
\widetilde{\zeta} : \check{C}(\mathcal{U}) \to C^{-1,p}(\mathcal{U}) = C_{\mathcal{U}}^p
$$

of the map *ζ* at the level of cochains. We first construct chain homotopies

$$
K^{p,q}: C^{p,q}(\mathcal{U}) \to C^{p-1,q}(\mathcal{U}), \quad p \geqslant 0, \quad q \geqslant 0.
$$

For each singular simplex s with image contained in some open subset U_i we fix an index *i*(*s*) such that Im $s \subseteq U_{i(s)}$. For all $\varphi \in C^{p,q}(\mathcal{U})$ and for all singular simplices *s* with image contained in U_i for some $i \in I_{p-1}$, $p \ge 0$, we define

$$
(K^{p,q}(\varphi)_{{\underline{i}}})(s) = \varphi_{i(s),{\underline{i}}}(s)
$$

(when $p = 0$ there is no index <u>*i*</u> and we just take $s \in C_q^{\mathcal{U}}$). It is easy to check that $\delta_h^{p-1,q} K^{p,q} + K^{p+1,q} \delta_h^{p,q} = \text{Id}$ for every $p \geqslant 0, q \geqslant 0$. Hence, if we define

$$
\widetilde{\zeta} = (-1)^{\frac{p(p+1)}{2}} K^{0,p} \circ \delta_v^{0,p-1} \circ K^{1,p-1} \circ \cdots \circ K^{p-1,1} \circ \delta_v^{p-1,0} \circ K^{p,0} \circ \delta_v^{p,-1}
$$

then for every cocycle $\varphi \in \check{C}^p(\mathcal{U})$ we have $\zeta([\varphi]) = [\widetilde{\zeta}(\varphi)]$ in $H^p(C^*_{\mathcal{U}})$ $\stackrel{*}{u}$.

Singular and algebraic simplices

Let us now recall the construction of the isomorphism *ν* between the simplicial cohomology $H^*(S)$ of *S* and the singular cohomology $H^*(|S|)$ of its geometric realization. Let $C_*(S)$ be the chain complex of simplicial chains on *S*, i.e. let C_p be the free *R*-module with basis

$$
\{(i_0, \ldots, i_p) \in I^{p+1} | \{i_0, \ldots, i_p\} \text{ is a simplex of } S \},
$$

and let $C^*(S)$ be the dual chain complex of $C_*(S)$. Elements of the basis just described are usually called *algebraic* simplices.

For any algebraic simplex $\sigma = (i_0, \ldots, i_p)$ of *S*, one defines the singular simplex $\langle \sigma \rangle$: $\Delta^p \rightarrow |S|$ by setting

$$
\langle \sigma \rangle (t_0,\ldots,t_p) = t_0 i_0 + \cdots + t_p i_p.
$$

The map $\sigma \mapsto \langle \sigma \rangle$ extends to a chain map $C_*(S) \to C_*(|S|)$, whose dual map $\widetilde{\nu}$: $C^*(|S|) \to C^*(S)$ induces the isomorphism ν : $H^*(|S|) \to H^*(S)$ (see e.g. [**[Hat02](#page-9-4)**]
Theorem 2.27). We write ν_S $\widetilde{\nu}_S$ when we want to stress the dependence on the sim-Theorem 2.27). We write ν_S , ν_S when we want to stress the dependence on the simplicial complex.

Alternating cochains

To compute $\zeta \circ \nu$ it is convenient to use *alternating* cochains. Let \mathfrak{S}_{p+1} be the permutation group of $\{0, \ldots, p\}$. We say that a simplicial cochain $\varphi \in C^p(S)$ is alternating if $\varphi(i_{\tau(0)},\ldots,i_{\tau(p)})=\varepsilon(\tau)\varphi(i_0,\ldots,i_p)$ for every $\tau\in\mathfrak{S}_{p+1}$, and $\varphi(i_0,\ldots,i_p)=0$ whenever $i_j = i_{j'}$ for some $j \neq j'$. Alternating cochains form a subcomplex of the complex of cochains which is homotopy equivalent to the full complex (see e.g. [**[ES52](#page-8-3)**, Chapter VI, Section 6, Theorems 6.9 and 6.10]).

Alternating cochains may be defined also in the context of singular homology as follows. For every $\tau \in \mathfrak{S}_{p+1}$ denote by $\rho_{\tau} : \Delta^p \to \Delta^p$ the affine automorphism of Δ^p defined by $\rho_{\tau}(t_0, \ldots, t_p) = (t_{\tau(0)}, \ldots, t_{\tau(p)})$. If *X* is a topological space, we say that a singular cochain $\varphi \in C^p(X)$ is *alternating* if $\varphi(s \circ \rho_\tau) = \varepsilon(\tau) \varphi(s)$ for every $\tau \in \mathfrak{S}_{p+1}$ and every singular simplex *s*: $\Delta^p \to X$, and $\varphi(s) = 0$ for every singular simplex *s* such that $s = s \circ \rho_{\tau}$ for an odd permutation $\tau \in \mathfrak{S}_{p+1}$. Alternating singular cochains form a subcomplex of the complex of singular cochains which is homotopy equivalent to the full complex (see e.g. [**[Bar95](#page-8-4)**]). Moreover, the map $\tilde{\nu}$ introduced above sends alternating singular cochains to alternating simplicial cochains, and both the homotopy maps $K^{p,q}$ and the vertical differential send alternating cochains to alternating ones.

We want to compute $\tilde{\zeta}(\varphi)$ on singular simplices of the form $\langle \sigma \rangle$, as σ varies among the algebraic simplices of *S*. However, simplices of *S* are not contained in any U_i^* . We will then make use of the barycentric subdivision S' of S , together with a suitable simplicial approximation of the identity $S' \to S$. Let *I'* be the set of vertices of *S'*. This set is in bijective correspondence with the set of simplices of *S*: for $i' \in I'$ we denote by $\Delta_{i'}$ the simplex of *S* of which i' is the barycenter; in the opposite direction, if Δ is a simplex of *S* we denote by i'_{Δ} its barycenter. The *p*-simplices of *S*['] are then the subsets $\{i'_0, \ldots, i'_p\}$ where $\Delta_{i'_0} \subset \cdots \subset \Delta_{i'_p}$.

If for every simplex Δ of *S* we denote by $b_{\Delta} \in |S|$ the geometric barycenter of Δ then the map *b*: $|S'| \to |S|$ defined by $b(\sum_{\Delta} t_{\Delta} i'_{\Delta}) = \sum_{\Delta} t_{\Delta} b_{\Delta}$ is a homeomorphism, and we will identify the geometric realizations of S' and S via this map. We construct a second map from $|S'|$ to $|S|$ as follows. We fix an auxiliary total ordering on *I*, and we define a simplicial map $g: S' \to S$ by setting

$$
g(i') = \max \Delta_{i'}
$$

for every vertex *i*' of *S*'. The geometric realization $|g|: |S| = |S'| \rightarrow |S|$ of *g* is homotopic to *b* via the homotopy $tb + (1-t)|q|, t \in [0,1].$

We may define the map *i* used to construct the homotopies $K^{p,q}$ in such a way that, for every algebraic simplex $\sigma' = (i'_0, \ldots, i'_p)$ of $C_*(S')$,

$$
i(\langle \sigma' \rangle) = \min\{g(i'_0), \ldots, g(i'_p)\}.
$$

For simplicity, we will denote $i(\langle \sigma' \rangle)$ by $i(\sigma')$. With this choice, the singular simplex $\langle \sigma' \rangle$ is supported in $U^*_{i(\sigma')}$ as required in the definition of the map *i*.

Let $\alpha = (\alpha_i) \in C^{h,k}(\mathcal{U}^*)$ and let $\sigma' = (i'_0, \ldots, i'_{k+1}) \in C_{k+1}(U^*_{\underline{i}}), \underline{i} \in I_h$, be an algebraic $(k + 1)$ -simplex of *S'*. If $\partial_h \sigma' = (i'_0, \ldots, \hat{i}'_h, \ldots, i'_{k+1})$ denotes the algebraic *h*-th face of σ' , then

$$
\left(\delta_v^{h-1,k} K^{h,k}(\alpha)\right) \left(\langle \sigma' \rangle\right) = \sum_{h=0}^{k+1} (-1)^h \left(K^{h,k}(\alpha) \right)_i \left(\langle \partial_h \sigma' \rangle\right) = \sum_{h=0}^{k+1} (-1)^h \alpha_{i(\partial_h \sigma'),i} \left(\langle \partial_h \sigma' \rangle\right). \tag{3}
$$

Lemma 3.2. *Let* φ *be an alternating cocycle in* $C^p(N(\mathcal{U}^*)) = \check{C}^p(\mathcal{U}^*)$, and let $\sigma' \in C^p(\mathcal{U}^*)$. $C_p(S')$ be an algebraic simplex. Then

$$
(\widetilde{\zeta}(\varphi))(\langle \sigma' \rangle) = \varphi(g_*(\sigma')) ,
$$

where $g_* : C_p(S') \to C_p(S)$ *is the map induced by* $g: S' \to S$ *.*

Proof. Let $\sigma' = (i'_0, \ldots, i'_p)$ and set $\Delta_{\ell} = \Delta_{i'_{\ell}}$ for $\ell = 0, \ldots, p$ and $i_{\ell} = g(i'_{\ell})$. Recall that simplices of S' correspond to comparable subsets of a simplex of S . Moreover, since φ is alternating, both $g^*(\varphi)$ and $\tilde{\zeta}(\varphi)$ are alternating, thus in order to check that the equality of the statement holds we may assume that

$$
\Delta_0 \subsetneq \Delta_1 \cdots \subsetneq \Delta_p .
$$

By definition we have $i_{\ell} = \max \Delta_{\ell}$, hence in particular $i_0 \leq i_1 \leq \cdots \leq i_p$. Since φ is alternating, this implies at once that

$$
\varphi(g_*(\sigma')) = \begin{cases} \varphi_{i_0, i_1, \dots, i_p} & \text{if } i_0 < \dots < i_p, \\ 0 & \text{otherwise.} \end{cases}
$$
 (4)

Let us now compute $(\zeta(\varphi))(\langle \sigma' \rangle)$. For every algebraic simplex $\tau'_k \in C_k(S')$, we write $\tau'_{k-1} < \tau'_{k}$ if τ'_{k-1} is an algebraic face of τ'_{k} , i.e. if there exists $h = 0, \ldots, k$ such that $\tau'_{k-1} = \partial_k \tau'_{k}$. By iterating [\(3](#page-6-0)) we get

$$
\left(\tilde{\zeta}(\varphi)\right)\left(\langle\sigma'\rangle\right) = (-1)^{\frac{p(p+1)}{2}} \sum_{\sigma'_0 < \cdots < \sigma'_p = \sigma'} \pm \varphi_{i(\sigma'_0), i(\sigma'_1), \dots, i(\sigma'_p)}\,. \tag{5}
$$

Let now $\sigma'_0 < \cdots < \sigma'_p$ be a fixed descending sequence of faces of σ' . Since the map *i* is given by taking a minimum we have $i(\sigma'_0) \geq i(\sigma'_1) \geq \cdots \geq i(\sigma'_p)$ and all these elements belong to the set $\{i_0, \ldots, i_p\}$. Hence if $\varphi_{i(\sigma'_0), i(\sigma'_1), \ldots, i(\sigma'_p)} \neq 0$ we have $i_0 < \cdots < i_p$ and $i(\sigma'_{\ell}) = i_{p-\ell}$ for every ℓ . In particular $(\zeta(\varphi))(\langle \sigma' \rangle)$ agrees with $\varphi(g_*(\sigma'))$ in the second case of formula [\(4](#page-6-1)).

Assume now $i_0 < \cdots < i_p$. As just observed, if $\varphi_{i(\sigma'_0), i(\sigma'_1), \dots, i(\sigma'_p)} \neq 0$ then $i(\sigma'_\ell) =$ $i_{p-\ell}$ for every ℓ , and this readily implies that the unique non-trivial addend in the right-hand sum in ([5\)](#page-6-2) corresponds to the sequence

$$
\overline{\sigma}'_0 = (i'_p), \quad \overline{\sigma}'_1 = (i'_{p-1}, i'_p), \quad \dots \quad , \overline{\sigma}'_p = (i'_0, \dots, i'_{p-1}, i'_p) .
$$

In particular, for every $j = 0, \ldots, p - 1$ we have $\overline{\sigma}'_j = (-1)^0 \partial_0 \overline{\sigma}'_{j+1}$. Hence

$$
(\tilde{\zeta}(\varphi))(\langle \sigma' \rangle) = (-1)^{\frac{p(p+1)}{2}} \varphi_{i(\overline{\sigma}'_0), i(\overline{\sigma}'_1), \dots, i(\overline{\sigma}'_p)} = (-1)^{\frac{p(p+1)}{2}} \varphi_{i_p, i_{p-1}, \dots, i_0} = \varphi_{i_0, i_1, \dots, i_p}
$$

itting also the first case in formula (4).

settling also the first case in formula ([4\)](#page-6-1).

Before proving the proposition we notice that the map $C_*(S) \to C_*(|S|)$ constructed above does not factor through $C_{*}^{\mathcal{U}^*}$ because no positive-dimensional simplex of *S* is contained in U_i^* for any $i \in I$. However the analogous map from $C_*(S')$ to $C_*(|S|)$ does. Hence the map $\tilde{\nu}_{S'} : C^*(|S'|) \to C^*(S')$ factors as $\tilde{\nu}_{S'} = \tilde{\mu} \circ \tilde{\gamma}$, where $\tilde{\kappa} : C^*(|S'|) \to C^*$ is the map defined in Section 2, and $\tilde{\mu} : C^* \to C^*(S')$. We denote $\tilde{\gamma}: C^*(|S'|) \to C^*_{\mathcal{U}*}$ is the map defined in Section [2,](#page-2-0) and $\tilde{\mu}: C^*_{\mathcal{U}*} \to C^*(S')$. We denote by $\mu: H^*(C^*_{\mathcal{U}^*}) \to H^*(S)$ the map induced by $\widetilde{\mu}$ on cohomology.

Proof of Proposition [3.1](#page-4-1). Being $\nu_{S'}$: $H^*(|S|) = H^*(|S'|) \rightarrow H^*(S')$ injective and $|g|$ homotopic to the identity, in order to prove the proposition it is sufficient to show that $\nu_{S'} \circ \eta = \nu_{S'} \circ |g|^*$. Now recall that $\eta = \gamma^{-1} \circ \zeta \circ \nu_S$, hence $\nu_{S'} \circ \eta = \mu \circ \zeta \circ \nu_S$. Hence it is enough to prove that $\mu(\zeta(\nu_S(c))) = \nu_{S'}(|g|^*(c))$ for all $c \in H^p(|S|)$ or, equivalently, that

$$
\widetilde{\mu}(\widetilde{\zeta}(\widetilde{\nu}_S(\psi)))(\sigma')=\widetilde{\nu}_{S'}(|g|^*(\psi))(\sigma'),
$$

where $\psi \in C^p(|S|)$ is a cocycle and σ' is any algebraic simplex of *S'*. Moreover, as observed above we can choose ψ to be alternating. However, if we set $\phi = \tilde{\nu}_S(\psi)$, then

$$
\mu(\widetilde{\zeta}(\widetilde{\nu}_S(\psi)))(\sigma') = \mu(\widetilde{\zeta}(\phi))(\sigma') = (\widetilde{\zeta}(\varphi))(\langle \sigma' \rangle) ,
$$

$$
\widetilde{\nu}_{S'}(|g|^*(\psi))(\sigma') = (|g|^*(\psi))(\langle \sigma' \rangle) = \psi(|g|_*(\langle \sigma' \rangle)) = \varphi(g_*(\sigma')) ,
$$

hence the conclusion follows from Lemma [3.2.](#page-6-3)

4. Proof of Theorem [1.1](#page-1-0)

We can now prove Theorem [1.1](#page-1-0) stated in the introduction. We first notice that the construction of η is compatible with continuous maps in the following sense.

Lemma 4.1. *Let* $h: Y \to Z$ *be a continuous map, and let* $\mathcal{V} = \{V_i\}_{i \in I}, \mathcal{W} = \{W_i\}_{i \in I}$ *be open coverings of* Y, Z *, respectively, such that* $h(V_i) \subseteq W_i$ *for every* $i \in I$ *. The identity of the set I extends to a simplicial map* $N(h): N(V) \to N(W)$, and in par*ticular it induces a continuous map* $\hat{h}: |N(V)| \to |N(W)|$. Then the following diagram *commutes:*

$$
H^*(|N(\mathcal{W})|) \xrightarrow{\hat{h}^*} H^*(|N(\mathcal{V})|)
$$

\n
$$
\eta_{\mathcal{W}} \downarrow \qquad \qquad \downarrow \eta_{\mathcal{W}}
$$

\n
$$
H^*(Z) \xrightarrow{\hat{h}^*} H^*(Y) .
$$

 \Box

Proof. By considering the restriction of h to the open subset V_i the map h induces a morphism $\{h^{p,q}\}$ between the double complex associated to *W* and the double complex associated to *V* and between their augmentations. Hence we have $\zeta_{\mathcal{V}} \circ N(h)^* = h^* \circ$ $\zeta_W: H^*(N(W)) \to H^*(C^*_V)$. We also have $\widetilde{\gamma}_V \circ h^* = h^{-1,*} \circ \widetilde{\gamma}_W$ and by the definition of the map *y* we have $h \circ h^* = N(h)^* \circ \mu_W$. By the definition of *n*, these three of the map *ν* we have $\nu_V \circ h^* = N(h)^* \circ \nu_W$. By the definition of *η*, these three commutations imply the commutativity claimed in the lemma.

We can now conclude the proof of our main theorem. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of the space *X*, let $N(U)$ be the nerve of *U*, and let $\mathcal{U}^* = \{U_i^*\}_{i \in I}$ be the open covering of $|N(\mathcal{U})|$ given by the open stars of the vertices of $N(\mathcal{U})$. Let $f_{\Phi}: X \to$ $|N(\mathcal{U})|$ be the map associated to a partition of unity subordinate to \mathcal{U} as described in the introduction. We would like to apply the previous lemma to the coverings U of *X* and *U*^{*} of $|N(\mathcal{U})|$ and to the map $h = f_{\Phi}$, but the containment $f_{\Phi}(U_i) \subseteq U_i^*$ does not hold in general. Therefore, we consider the covering $\widetilde{\mathcal{U}} = {\{\widetilde{U}_i\}}_{i \in I}$ of X defined by $\widetilde{U}_i = f_{\Phi}^{-1}(U_i^*)$ for every $i \in I$.

We can now apply Lemma [4.1](#page-7-0) to the map $h = f_{\Phi}$ and to the coverings $V = U$ and $W = U^*$. Since $\tilde{U}_i \subseteq U_i$ for every $i \in I$, Lemma [4.1](#page-7-0) also applies to the case when $h = i_X$ is the identity map of X, and to the coverings $V = \tilde{U}$ and $W = U$. Hence we obtain the following commutative diagrams:

$$
H^*(|N(\mathcal{U}^*)|) \xrightarrow{f^*_{\Phi}} H^*(|N(\widetilde{\mathcal{U}})|) \qquad H^*(|N(\mathcal{U})|) \xrightarrow{\hat{i}^*_{X}} H^*(|N(\widetilde{\mathcal{U}})|)
$$

\n
$$
\eta_{\mathcal{U}^*} \downarrow \qquad \qquad \downarrow \eta_{\widetilde{\mathcal{U}}}
$$

\n
$$
H^*(|N(\mathcal{U})|) \xrightarrow{f^*_{\Phi}} H^*(X) \qquad H^*(X) \xrightarrow{H^*(X)} H^*(X).
$$

As already noticed in the previous section the simplicial complexes $N(\mathcal{U})$ and $N(\mathcal{U}^*)$ with set of vertices I are equal and, by construction, so are the simplicial maps $N(i_X)$ and $N(f_\Phi)$ from $N(\mathcal{U})$ to $N(\mathcal{U}^*) = N(\mathcal{U})$. In particular $\hat{f}_\Phi^* = \hat{i}_X^*$. Finally by Proposition [3.1](#page-4-1) η_{U^*} is the identity. Hence

$$
f_{\Phi}^* = f_{\Phi}^* \circ \eta_{\mathcal{U}^*} = \eta_{\widetilde{\mathcal{U}}} \circ \hat{f}_{\Phi}^* = \eta_{\widetilde{\mathcal{U}}} \circ \hat{i}_X^* = \eta_{\mathcal{U}} ,
$$

which proves the theorem.

References

- **[Bar95]** M. Barr, *Oriented singular homology*, Theory Appl. Categ. **1** (1995), 1–9.
- **[BT82]** R. Bott and L. W. Tu, *Differential forms in algebraic topology*, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, 1982.
- **[ES52]** S. Eilenberg and N. Steenrod, *Foundations of algebraic topology*, Princeton University Press, Princeton, New Jersey, 1952.
- **[FM]** R. Frigerio and M. Moraschini, *Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume*, arXiv:1808. 07307, to appear in Mem. Amer. Math. Soc.
- **[Gro82]** M. Gromov, *Volume and bounded cohomology*, Inst. Hautes Etudes Sci. ´ Publ. Math. **56** (1982), 5–99.
- **[Hat02]** A. Hatcher, *Algebraic topology*, Cambridge University Pres, Cambridge, 2002.
- **[Iva]** N. V. Ivanov, *Notes on the bounded cohomology theory*, arXiv:1708.05150.
- **[Iva87]** , *Foundation of the theory of bounded cohomology*, J. Soviet. Math. **37** (1987), 1090–1114.
- **[LS]** C. Löh and R. Sauer, *Bounded cohomology of amenable covers via classifying spaces*, Enseign. Math. **66** (2020), 151–172.
- **[Wei52]** A. Weil, *Sur les théorèmes de de Rham*, Comment. Math. Helv. **26** (1952), 119–145.

Roberto Frigerio roberto.frigerio@unipi.it

Dipartimento di Matematica, Universit`a di Pisa, Largo B. Pontecorvo 5, Pisa, 56127, Italy

Andrea Maffei andrea.maffei@unipi.it

Dipartimento di Matematica, Universit`a di Pisa, Largo B. Pontecorvo 5, Pisa, 56127, Italy