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Abstract
We construct an O(n)-equivariant isomorphism of topolog-

ical operads Fn
∼= WFn where Fn is the Fulton–MacPherson

operad and W is the Boardman–Vogt construction. For n = 2
the isomorphism is explicit.

1. Introduction

The Fulton–MacPherson operad Fn is a geometric En-operad that was introduced
by Getzler and Jones. It is an operad in the category of O(n)-spaces, that is O(n)-
equivariantly weakly equivalent to the operad of little n-discs. The weak equivalence
is constructed in [7] by a zig-zag of O(n)-equivariant maps, although the equivariance
is not explicitly mentioned there. In some sense the Fulton–MacPherson operad is the
smallest topological En-operad. It is a crucial object in the Goodwillie–Weiss calculus
studying spaces of embeddings. The Boardman–Vogt W -construction [3], introduced
in the seventies, is a functor providing a standard resolution of topological operads.
Our main result is that WFn and Fn are isomorphic as operads in O(n)-spaces. We
announced the non-equivariant version in [7]. An explicit isomorphism for n = 1 is
described in [1]. The isomorphism for n = 2 can be constructed explicitly using the
machinery of [8], as we explain later. An important application of the main theorem
is the construction of an operadic cellular decomposition of the Fulton–MacPherson
operad F2 described in [8]. The key insight of the proof is that Fn(k) is a manifold
with corners, and WFn(k) can be identified to a standard fattening of Fn(k), that is
homeomorphic to it. For example each connected component of F1(4) is a Stasheff
pentagon. The corresponding component of WF1(4) is the union of the pentagon with
a rectangle for each edge, and with a square for each vertex.

2. Operads and trees

We can define a topological operad P as a functor from the category of finite
sets and bijections to the category of topological spaces, together with composition
maps of the form ◦i : PI × PJ → PI−{i}

⨿
J satisfying appropriate conditions. We
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write P (k) = P{1,...,k}. We say that P is an operad in G-spaces if the functor P takes
values in G-spaces, and the ◦i operations are G-equivariant maps. Each ◦i operation
is represented by a tree with a single internal edge, such that the leaves sources of
the non-root vertex are in bijective correspondence with J , and the remaining leaves
are in bijective correspondence with I − {i}. Consider a finite rooted tree T , such
that any vertex has at least two incoming edges, and exactly one outgoing edge.
Suppose that the edges with no source, the leaves, are labelled by 1, . . . , k, and there
is a unique edge with no target, the root. All other edges are called internal, and
have both source and target. We say that T is a nested trees on k leaves. We call
the number of incoming edges of a vertex v its valence, and denote it by |v|. By
iterating ◦i-operations, any nested tree T on k leaves defines an operad composition
for a topological operad P of the form ◦T :

∏
v P (|v|) → P (k), where the product

runs over all vertices v of T .

3. The Fulton–MacPherson operad

The space Fn(k) is a compactification of the quotient of the ordered configuration
space Confk(Rn) of k points in Rn modulo translations and positive dilations. It is
defined [6] as the closure of the image of the map

ι : Confk(Rn) → (Sn−1)(
n
2) × [0,+∞](

n
3),

ι(x1, . . . , xk) = ( ((xi − xj)/||xi − xj ||)i<j , (||xi − xj ||/||xi − xk||)i<j<k ).

The symmetric group Σk acts freely on Fn(k), compatibly with the action permuting
labels of configurations in Rn. Since the map ι is O(n)-equivariant there is an induced
O(n)-action on Fn(k), that commutes with the action of the symmetric group. The
operad structure on the collection Fn was defined by Getzler and Jones [4]. We
consider the reduced version of this operad, in the sense that Fn(0) = ∅. We recall
that Fn(k) is a smooth manifold with faces, i.e., a manifold with corners such that
any codimension l stratum is the transverse intersections of l strata of codimension
1. The strata correspond to ways of clustering points together recursively, and are
parametrized by trees. The strata of codimension l of Fn(k) are indexed by nested
trees on k leaves and l internal edges. The following property is well known and
crucial.

Fact 3.1. A stratum (respectively its closure) indexed by a nested tree T is canonically

diffeomorphic to the product
∏

v

◦
Fn (|v|) (resp. to

∏
v Fn(|v|)) over all vertices v of T .

The diffeomorphisms of Fact 3.1 follows from the fact that

◦T :
∏
v

Fn(|v|) → Fn(k)

is an embedding, and its image is the closure of the stratum of Fn(k) indexed by T .
See Section 6 of [8].



THE FULTON–MACPHERSON OPERAD AND THE W -CONSTRUCTION 3

4. The W -construction

The W -construction by Boardman and Vogt is a functor sending a reduced topo-
logical operad P (i.e., such that P (0) = ∅ and P (1) = {1P }) to another reduced topo-
logical operad WP defined as follows. The space WP (I) is a quotient of the disjoint
union ⨿

T

(
∏
v

[0, 1]E(T ) × P (v)),

where T varies among all nested I-trees (those having I as set of leaves), v varies
among the vertices of T , and E(T ) is the set of edges of the tree T , that is in bijective
correspondence with the non-root vertices of T , by associating each vertex to the
unique outgoing edge. We visualize an element ((xv)v∈T , (le)e∈E(T ))T as a labelling
of the tree T , so that each vertex v is labelled by xv, and each edge e has a length le
between 0 and 1.

The equivalence relation defining the quotient WP (I) is the following: if le = 0
for some edge e, then we collapse such edge to a single vertex labelled by the ◦i-
composition of the labels of the source and the target of e. We also add formally the
unit of WP in arity one.

There is an operad structure on WP , defined as follows. For a ∈ WP (I), b ∈
WP (J) and i ∈ I the operad composition a ◦i b ∈ WP (I − {i}

⨿
J) is the labelled

tree resulting by grafting together the leaf i of the labelled tree a with the root of
the labelled tree b, and assigning to the new internal edge the length 1. There is an
operad map p : WP → P that forgets the lengths of the edges and composes together
all labels of the vertices of a labelled tree according to the underlying abstract tree.
The projection pI : WP (I) → P (I) is a ΣI -equivariant homotopy equivalence for each
finite set I. If P is an operad in the category of G-spaces, then WP is also an operad
in the category of G-spaces, by the diagonal G-action on the labels of the vertices,
and the trivial action on the lengths of the edges. The projection p : WP → P is an
operad morphism of G-spaces, that is levelwise a G-equivariant homotopy equiva-
lence. In particular in our case Fn is an O(n)-operad, and so we have a levelwise
O(n)-equivariant weak equivalence of operads WFn → Fn. Our main result replaces
this equivalence by an isomorphism.

Theorem 4.1. There is an O(n)-equivariant isomorphism of topological operads

β : Fn
∼= WFn.

The geometric idea of the proof is that WFn(k) is a fattening of the manifold with
corners Fn(k), since WFn(k) decomposes as union

WFn(k) =
∪
T

[0, 1]l(T ) × Fn(T ),

where l(T ) is the number of internal edges of T , and also the codimension of the
corresponding closed stratum Fn(T ). This shows that

WFn(k) ∼= Fn(k) ∪ ([0, 1]× ∂Fn(k)),

but the right hand side is Σk-equivariantly homeomorphic to Fn(k) by the equivari-
ant collar neighbourhood theorem for topological manifolds with boundary, that we
consider next.



4 PAOLO SALVATORE

5. Equivariant collaring

We introduce the notion of locally linear action [5].

Definition 5.1. A Lie group G acts locally linearly on a topological manifold M
with boundary ∂M if

� For each x ∈ M − ∂M there is a representation Vx of the isotropy subgroup Gx,
and a G-invariant neighbourhood of x that is G-equivariantly homeomorphic to
G×Gx

Vx;

� for each x ∈ ∂M there is a Gx-representation Vx and a G-invariant neighbour-
hood of x that is G-equivariantly homeomorphic to G×Gx Vx × [0, 1).

If M is a smooth manifold and G acts smoothly on M then the action is locally
linear by choosing, via the exponential map, Vx

∼= Tx(M)/Tx(G · x) if x is in the
interior of M and Vx

∼= Tx(∂M)/Tx(G · x) if x is in the boundary of M , so that the
homeomorphisms of Definition 5.1 are actually diffeomorphisms.

Lemma 5.2. The action of G = O(n)× Σk on Fn(k) is locally linear.

Proof. If x is in the interior of Fn(k), that is a smooth manifold, local linearity at x is
immediate. If x is in the topological boundary of Fn(k), then it belongs to a stratum
T of codimension l > 0, and x = ◦T ((xv)v∈T ), with xv in the interior of Fn(|v|) for
each vertex v. Lambrechts and Volic construct an explicit chart in 5.9.2 of [6] for a
neighbourhood of x of the form Φx : [0, 1)

l × U ′ → Fn(k) where U ′ =
∏

v U
′
v, and U ′

v

is a small open disc centered at xv in the interior of Fn(|v|). Here we are picking
representatives of configurations modulo translations and positive dilations that have
barycenter in the origin, and norm 1, and consider the euclidean distance between
them. The charts are compatible with the G-action since Φgx(gu) = gΦx(u) for g ∈ G
and u ∈ [0, 1)l × U ′. Then, setting U := Im(Φx), we have that G · U is a G-invariant
open neighbourhood of x G-homeomorphic to [0, 1)l ×G · U ′. The local linearity of
the product of configuration spaces, that is smooth, gives a Gx-representation V ′

x

such that G · U ′ ∼= G×Gx
V ′
x. We choose then Vx = V ′

x × Rl−1, and a homeomorphism
[0, 1)l ∼= Rl−1 × [0, 1) to deduce that G · U ∼= G×Gx Vx × [0, 1).

Lemma 5.3 (Equivariant collaring theorem (Bredon) [5]). Let M be a compact topo-
logical manifold on which a compact Lie group G acts locally linearly. Then there is
a G-equivariant collar of the boundary of M , i.e., a G-equivariant embedding

c : [0, 2]× ∂M → M

such that c(2, x) = x.

As a consequence of the previous two lemmas we have:

Proposition 5.4. There is an O(n)× Σk-equivariant collar

ck : [0, 2]× ∂Fn(k) → Fn(k)

of the boundary of Fn(k).
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6. Proof of the main theorem

Let us write ck = c. From now on we suppress the index n from the notation and
write F = Fn.

We build inductively on the arity k the homeomorphism βk : F (k) ∼= WF (k).
In arity k = 2, β2 : F (2) = WF (2) is the canonical identification. We recall that

F (2) is Σ2-equivariantly homeomorphic to Sn−1 with the antipodal action.
At the next stage F (3) is a manifold with boundary equipped with a free action of

Σ3. The boundary ∂F (3) is the union of three copies of F (2)× F (2), corresponding
to the 3 nested trees on 3 leaves with an internal edge. The space WF (3) is obtained
as WF (3) = F (3) ∪{0}×∂F (3) ([0, 1]× ∂F (3)).

Definition 6.1. The map β3 : F (3) → WF (3) is given by

� β3(y) = y ∈ F (3) ⊂ WF (3) if y /∈ Im(c).

� β3(c(t, x)) = c(2t, x) ∈ F (3) ⊂ WF (3) for t ∈ [0, 1] and x ∈ ∂F (3).

� β3(c(t, x)) = (t− 1, x1, x2)T ∈ [0, 1]× ∂F (3) ⊂ WF (3) for t ∈ [1, 2] and x =
x1 ◦T x2 ∈ ∂F (3).

In the last expression (t− 1, x1, x2)T indicates the labelled tree T with internal
edge of length t− 1, running from a valence 2 vertex labelled x2 to a valence 2 vertex
labelled x1. It is easy to see that β3 is a O(n)× Σ3-equivariant homeomorphism. It
also respects the operad composition, since for x1, x2 ∈ F (2), the composition in WF
of β2(x1) = x1 and β2(x2) = x2 along a nested tree T on 3 leaves with two vertices
and an internal edge is the labelled tree with vertices labelled x1, x2 and the internal
edge of length 1. But this is

β3(x1 ◦T x2) = β(c(2, x1 ◦T x2)) = (1, x1, x2)T .

We construct inductively βk for k > 3. We first extend the collar embedding ck−1

to an embedding

c′k−1 : [0, 3]× ∂F (k − 1) → WF (k − 1)

defined by

c′k−1(t, x) :=

{
βk−1(ck−1(t− 1, x)) for 2 ⩽ t ⩽ 3,

ck−1(t, x) for 0 ⩽ t ⩽ 2.

The extension is well defined because for t = 2 the expressions coincide.
Now let us define βk : F (k) → WF (k).

� If y /∈
◦

Im(ck) then βk(y) = y.

� If y = c(t, w) with 0 ⩽ t ⩽ 1 then βk(c(t, w)) = c(2t, w) ∈ F (k) ⊂ WF (k).

� If y = c(t, w) with 1 ⩽ t ⩽ 2 and w = x ◦T x̄, then βk(c(t, w)) is described by
a labelled tree in WF (k) that is obtained by grafting two labelled trees along
T , a “lower” tree related to x and an “upper” tree related to x̄, with the new
internal edge of length t− 1.

There are three subcases for each tree, and so 3 · 3 = 9 possible cases in total. We
consider the lower tree:

(1) If x /∈
◦

Im(c) then the lower tree is a single vertex with label x.
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(2) If x = c(s, z), with 0 ⩽ s ⩽ 1 then the lower tree is a single vertex with label
c(st, z).

(3) If x = c(s, z) with 1 ⩽ s ⩽ 2 then the lower tree is c′(s+ t− 1, z).

A similar description holds for the upper tree (with the replacement x 7→ x̄, s 7→
s̄, z 7→ z̄). We suppressed from the notation the index of c that is the arity of x (resp.
of x̄).

The induction process continues defining c′k−1 and βk for all k > 3.

Proposition 6.2. the map βk is well defined, O(n)× Σk-equivariant, and continu-
ous.

Proof. The function βk is defined as a piecewise continuous function on some closed
sets and so we need to check that the definitions are compatible for t = 0, t = 1, s =
0, s = 1, s̄ = 0, s̄ = 1. Now the equality c(0, w) = c(2 · 0, w) settles the case t = 0. For
t = 1 observe that c(2 · 1, w) = w = x ◦T x̄ is equivalent to the labelled tree obtained
by grafting x and x̄ together, with a new internal edge of length t− 1 = 0. Notice
that x and x̄ do not change since in (2) c(st, z) = c(s, z) and in (3) c′(s+ t− 1) =
c′(s) = c(s). Let us consider the lower tree. For s = 0 the element x = c(0, z) is sent
to c(0 · t, z) = x in both (1) and (2). For s = 1 the element x = c(1, z) is sent to
c′(1 + t− 1, z) = c(t, z) in both (2) and (3). A similar compatibility holds for the
upper tree. We also have to check that Definition 6.1 does not depend on the operadic
decomposition of w. But by iterated applications of the definition it turns out that
if w is the operadic composition of elements xi along a tree T , then for 1 ⩽ t ⩽ 2
βk(c(t, w)) is the labelled tree obtained by grafting with edges of length t− 1 the trees
associated to xi by (1), (2), (3), (with x, s, z replaced by appropriate xi, si, zi), and so
the result does not depend on the order of the composition operations producing w.

The equivariance follows from the construction.

Proposition 6.3. The map βk respects the operad composition.

Proof. For two arbitrary elements x, x̄ of the operad F we have that

βk(x ◦T x̄) = βk(c(2, x ◦T x̄))

is the labelled tree connecting a lower tree and an upper tree by an internal edge of
length t− 1 = 2− 1 = 1. The upper tree is x if x /∈ Im(c); it is c(2s, z) if x = c(s, z)
and 0 ⩽ s ⩽ 1; and it is

c′(s+ 2− 1, z) = c′(s+ 1, z) = β(c(s, z)) = β(x)

if x = c(s, z) and 1 ⩽ s ⩽ 2. In all cases the upper tree is β(x). Similarly the lower
tree is β(x′), therefore

βk(x ◦T x̄) = β(x) ◦T β(x̄),

where the latter composition takes place in WF .

Proposition 6.4. The map βk is a homeomorphism.

Proof. We prove this by induction. It is clear that β restricts to a homeomorphism
from (F (k)− Im(ck)) ∪ ck([0, 1]× ∂F (k)) to F (k) ⊂ WF (k) and we need only to
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verify that it restricts to a bijection from ck([1, 2]× ∂F (k)) to WF (k)− F (k). We
know that the proposition is true for k = 3. If it is true for k then

c′k : [0, 3]× ∂F (k) → WF (k)

is an embedding. We prove simultaneously by induction that

c′({1 + t} × ∂F (k)) ⊂ WF (k)

contains exactly the labelled trees inWF (k)− F (k) with maximum edge length equal
to t− 1, for 1 ⩽ t ⩽ 2. Namely by definition c′(1 + t, w) = βk(c(t, w)), when w = x ◦T
x̄, is given by a labelled tree with an edge of length t− 1, and an upper tree is
either a vertex, or a tree of type c′(s+ t− 1, z) that by inductive hypothesis has a
maximum edge length ⩽ s+ t− 3 ⩽ t− 1, and a lower tree that behaves similarly.
Now given a labelled tree in x ∈ WF (k) we can decompose it by cutting it along
all edges of maximum length t− 1, obtaining some subtrees Ti, and then write it as
x = c′(1 + t, w), where w is the composition of appropriate indecomposable elements
xi ∈ F (ki)− ∂F (ki) such that the operations (1), (2), (3) on xi produce the trees Ti.
This decomposition exists and is unique by inductive hypothesis.

Propositions 6.2, 6.3 and 6.4 together prove Theorem 4.1.

7. The case n = 2

In Theorem 6.12 of [8], using the complex structure, we construct a Σk-equivariant
homeomorphism Ξ : F2(k) ∼= N̄k(C) (the homeomorphism is equivariant for the choice
of parameters a1 = · · · = ak = 1/k in the theorem). The space N̄k(C) is defined in
terms of nested trees with k leaves and the cacti complexes Cm, m ⩾ 2, introduced in
Section 4 of [8]. Namely

N̄k =
⨿
T

(
∏
v

C|v| × [0, 1]E(T ))/ ∼,

where T runs among the nested trees on k leaves and v among the vertices of T .
We might regard the parameters in [0, 1] as edge lengths, and the cactus elements as
labels of the vertices. The equivalence relation composes cacti when the edge length is
1, and removes that edge. The boundary of F2(k) is sent by the homeomorphism Ξ to
the subspace of N̄k(C) of labelled trees with at least one edge length is 0. Clearly this
definition looks like a W -construction on the cacti complexes, modulo the change of
parameters t ↔ 1− t. However this is not precise because the cacti complexes do not
form a strict operad [2]. Using this description it is straightforward to find an explicit
O(2)× Σk-equivariant collar c : [0, 2]× ∂F2(k) → F2(k) such that c(2, x) = x, just by
rescaling edge lengths. It is sufficient to convert any edge length s in x into an edge
length 1

2 (s+ 1) + t
4 (s− 1) in c(t, x).

8. Concluding remarks

8.1. Semi-algebraic case
It is known that Fn(k) is a semi-algebraic manifold [6], and it has a semi-algebraic

action of O(n)× Σk. Together with Michael Ching we proved a version of Propo-
sition 5.4 with ck semi-algebraic. This implies that Theorem 4.1 holds in the semi-
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algebraic category, yielding an operad isomorphism Fn
∼= WFn that is levelwise a

O(n)× Σk isomorphism Fn(k) ∼= WFn(k) of semi-algebraic manifolds.

8.2. Smooth structure
In this paper we consider only homeomorphisms Fn(k) ∼= WFn(k). However the

construction of WFn(k) as a fattening of the manifold with corners Fn(k) has a
smooth structure such that WFn(k) is also O(n)× Σk-equivariantly diffeomorphic to
Fn(k). There is a preferred isotopy class of such diffeomorphisms, that we call the
collar class. We conjecture that there exists a O(n)-equivariant operad isomorphism
Fn

∼= WFn realized levelwise by diffeomorphisms in the collar class.
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