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FLATNESS AND SHIPLEY’S ALGEBRAICIZATION THEOREM

JORDAN WILLIAMSON

(communicated by Brooke Shipley)

Abstract
We provide an enhancement of Shipley’s algebraicization the-

orem which behaves better in the context of commutative alge-
bras. This involves defining flat model structures as in Shipley
and Pavlov-Scholbach, and showing that the functors still pro-
vide Quillen equivalences in this refined context. The use of flat
model structures allows one to identify the algebraic counter-
parts of change of groups functors, as demonstrated in forth-
coming work of the author.

1. Introduction

Many concepts and constructions in algebra can be understood in a homotopy
invariant sense, and the derived category of a ring is the universal category in which
to study these. In turn, these homotopy invariant algebraic notions can be trans-
lated into stable homotopy theory [13] and this translation to spectral algebra has
led to a powerful new point of view on many areas such as modular representation
theory [12, 14]. Robinson [31] showed that the category of spectra contains ‘extraor-
dinary’ derived categories generalizing the derived category of a ring. Shipley [37]
gave a more precise and general version of Robinson’s result in terms of a zig-zag
of Quillen equivalences. This paper is a contribution to the understanding of the
relationship between spectral and homological algebra.

Passing between the worlds of spectral algebra and homological algebra is a valu-
able technique. It allows the reduction of topological questions to algebraic questions,
and conversely, allows the importation of algebraic methods to the realm of spectra.
Associated to any ring R there is an Eilenberg-MacLane spectrum HR, and the
homological algebra of R is equivalent to the spectral algebra of HR. This relation
is particularly striking in the case that R = Q, as the rational sphere spectrum is
equivalent to HQ.

Let R be a commutative ring. It was shown by Shipley [37] that there is a zig-zag of
Quillen equivalences between HR-module spectra and chain complexes of R-modules.
Moreover, this is a zig-zag of symmetric monoidal Quillen equivalences, so that it gives
a zig-zag of Quillen equivalences between HR-algebra spectra and differential graded
R-algebras. Shipley’s algebraicization theorem shows that spectral algebra is a vast
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generalization of homological algebra. Moreover, it provides a bridge between the
worlds of topology and algebra. This bridge has been widely used in the construction
of algebraic models for rational equivariant cohomology theories by Barnes, Greenlees,
Ke֒dziorek and Shipley, see [1, 2, 5, 15, 16, 17, 23, 29, 34].

By Shipley’s algebraicization theorem, an HR-algebra X corresponds to a differ-
ential graded R-algebra ΘX and there is a Quillen equivalence ModX ≃Q ModΘX .
However, if X is in addition a commutative HR-algebra, it does not correspond to
a commutative differential graded R-algebra, but rather to a differential graded E∞-
R-algebra, see [30].

When R = Q, more is true. A commutative HQ-algebra X does correspond to a
commutative differential graded Q-algebra by [37, 1.2]. More precisely, there is zig-
zag of natural weak equivalences ΘX ≃ Θ′X where Θ′X is a commutative DGA.
However, despite the fact that the categories of modules have symmetric monoidal
structures, the Quillen equivalence ModX ≃Q ModΘ′X is not a symmetric monoidal
Quillen equivalence. This is because the upgrading of a Quillen equivalence to the
categories of modules involves cofibrant replacement of monoids [33, 3.12(1)] which
will destroy commutativity and hence the symmetric monoidal structure.

The stable model structure on spectra does not behave well with respect to com-
mutative algebras, in the sense that for a commutative ring spectrum S, cofibrant
commutative S-algebras are not cofibrant as S-modules in general. Shipley [35] con-
structed the flat model structure (also called the S-model structure) on symmetric
spectra, which does satisfy the property that cofibrant commutative algebras are
cofibrant as modules. Pavlov-Scholbach [28] extended this to the case of symmetric
spectra in general model categories. This extra compatibility between commutative
algebras and modules provides several useful tools that would otherwise not be valid.
For a concrete example of where this compatibility can be useful, see the next section
of the introduction.

In light of these considerations, the goal of this paper is threefold. Firstly, we show
that the zig-zag of Quillen equivalences in Shipley’s algebraicization theorem still
holds in flat model structures which satisfy the extra compatibility between commu-
tative algebras and modules discussed above. See Section 5 for a precise statement of
the zig-zag of symmetric monoidal Quillen equivalences in this first theorem.

Theorem 1.1. There is a zig-zag of symmetric monoidal Quillen equivalences

ModflatHQ ≃Q ChQ

where the intermediate categories have the flat model structure.

In fact, we show that the flat model structures on the intermediate categories are
the same as the stable model structures used by Shipley [37], see Corollary 4.13.

Secondly, we use this theorem to give a new proof of the following theorem, which
appears in the body of the paper as Theorem 6.6. In particular, our approach does
not pass through the category of E∞-algebras as in the proof given by Richter-
Shipley [30].

Theorem 1.2. There is a zig-zag of Quillen equivalences between the category of
commutative HQ-algebras and the category of commutative rational DGAs.
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Finally, we prove the following theorem which appears as Theorem 7.2 in the main
body of the paper.

Theorem 1.3. For a commutative HQ-algebra X there is a zig-zag of weak sym-
metric monoidal Quillen equivalences ModX ≃Q ModΘX where ΘX is a commuta-
tive DGA.

Motivation and related work
The author’s main motivation comes from the study of algebraic models for rational

equivariant cohomology theories. A key step in the construction of algebraic models is
the passage from modules over a commutative HQ-algebra to modules over a commu-
tative DGA via Shipley’s algebraicization theorem. Therefore, a deep understanding
of Shipley’s algebraicization theorem provides key insights into the understanding of
algebraic models for rational equivariant cohomology theories.

Working in the flat model structure provides valuable techniques which are not
valid in the stable model structure. In forthcoming work [42], the author consid-
ers the correspondence of the change of groups functors in rational equivariant sta-
ble homotopy theory with functors between the algebraic models. In particular, this
includes studying how the extension-restriction-coextension of scalars adjoint triple
along a map of commutative HQ-algebras θ : S → R behaves with respect to the
Quillen equivalences in Shipley’s algebraicization theorem.

The restriction of scalars functor along a map of commutative monoids θ : S → R
in a symmetric monoidal model category is always right Quillen in the model structure
right lifted from the underlying category, but it is not left Quillen in general. If the
monoidal unit of the underlying category is cofibrant, then restriction of scalars is left
Quillen if and only if R is cofibrant as an S-module. Since a key step in the proof of
algebraic models is a formality argument based on the fact that polynomial rings are
formal as commutative DGAs, one needs to be able to replace R in such a way that it
is still a commutative S-algebra, and is cofibrant as an S-module. This replacement
is possible in the flat model structure, but not in the stable model structure on
spectra. Therefore, Theorem 1.1 provides the necessary setup in which to attack the
correspondence of functors along the bridge which Shipley’s algebraicization theorem
provides between topology and algebra.

The use of the flat model structure allows the extension of the result to commuta-
tive algebra objects, so that we prove a Quillen equivalence between the category of
commutative HQ-algebras and the category of commutative rational DGAs. Richter-
Shipley [30] prove that the category of commutative HR-algebras is Quillen equiva-
lent to the category of differential graded E∞-R-algebras for any commutative ring
R. Since E∞-algebras in chain complexes of Q-modules can be rectified to strictly
commutative objects, see for example [25, §7.1.4], as a corollary [30, 8.4] of Richter
and Shipley’s result one obtains that the category of commutative HQ-algebras is
Quillen equivalent to the category of commutative rational DGAs. We give a con-
crete zig-zag of Quillen equivalences which lands naturally in commutative DGAs,
bypassing the need for the rectification step. We expect that this direct approach will
enable a better understanding of algebraic models for naive-commutative rational
G-spectra as studied by Barnes-Greenlees-Ke֒dziorek [3, 4]. White-Yau [41] give an
alternative approach to this zig-zag of Quillen equivalences by using the stable model
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structure and their theory of lifting Quillen equivalences to categories of coloured
operads. The generality of their theory leads to more stringent hypotheses than our
approach, see for example [41, 3.27]. Our approach exploits the fact that in the flat
model structure, cofibrant commutative algebras forget to cofibrant modules.

Finally, we give a concrete zig-zag of symmetric monoidal Quillen equivalences
between the category of modules over a commutative HQ-algebra and the category
of modules over a commutative DGA. The result is assumed without proof in the
literature, see for example [6, 3.4.4]. Due to the importance of this result in the con-
struction of algebraic models, we believe it is valuable to make the proof explicit.
Shipley proved that there is a Quillen equivalence [37, 2.15] between modules over an
HR-algebra X and modules over a DGA ΘX for any ring R. In the case that R = Q,
Shipley furthermore proves that ΘX is naturally weakly equivalent to a commutative
DGA Θ′X [37, 1.2]. A dual of a result of Schwede-Shipley [33, 3.12(2)] allows one to
conclude, moreover, that there is a commutative DGA ΘX and a zig-zag of symmetric
monoidal Quillen equivalences ModX ≃Q ModΘX . The fact that this is a symmet-
ric monoidal Quillen equivalence has been a vital ingredient in the construction of
symmetric monoidal algebraic models, see [6, 3.4.4] and [29, 9.6].

Outline of the paper

We recall the key background on model categories in Section 2, and on symmetric
spectra in general model categories in Section 3. In Section 4, we recall results from
Pavlov-Scholbach [28] which enable the construction of flat model structures on sym-
metric spectra in general model categories, and apply these results to our cases of
interest. Section 5 is dedicated to the proof of Theorem 1.1. In Section 6 we extend
our results to show that the category of commutative HQ-algebras is Quillen equiva-
lent to the category of commutative rational DGAs. Finally, in Section 7 we consider
the extension to modules over commutative HQ-algebras.

Conventions

We write the left adjoint above the right adjoint in an adjoint pair displayed
horizontally, and on the left in an adjoint pair displayed vertically.
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2. Model categorical preliminaries

In this section we recall the necessary background on model categories which we
require for the paper.
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2.1. Bousfield localization
Firstly we recall the definitions and key properties of left Bousfield localizations

from [18].

Definition 2.1. Let C be a model category and let S be a collection of maps in C.

� An object W in C is S-local if it is fibrant in C and for every s : A → B in S,
the natural map map(B,W ) → map(A,W ) is a weak equivalence of homotopy
function complexes.

� A map f : X → Y in C is an S-local equivalence if for every S-local object W ,
the natural map map(Y,W ) → map(X,W ) is a weak equivalence of homotopy
function complexes.

The left Bousfield localization of C at S (if it exists), denoted LSC, is the model
structure on C in which the weak equivalences are the S-local equivalences and the
cofibrations are the same as in C. The fibrant objects are the S-local objects. We call
the fibrations the S-local fibrations.

The left Bousfield localization of C at S exists if S is a set of maps and C is left
proper and cellular [18, 4.1.1], or if S is a set of maps and C is left proper and
combinatorial [7, 4.7]. Any weak equivalence in C is an S-local equivalence, so it
follows that the identity functors give a Quillen adjunction C ⇄ LSC.

Proposition 2.2 ([18, 3.3.16], [22, 7.21]). Let C be a model category and S a set of
maps in C.

1. If f is an S-local equivalence between S-local objects, then f is a weak equivalence
in C.

2. If f is a fibration between S-local objects, then f is an S-local fibration.

We now recall a result of Dugger [11, A.2], which when used in conjunction with
Proposition 2.2 simplifies the process of proving a Quillen adjunction between left
Bousfield localizations.

Proposition 2.3. Let F : C ⇄ D :G be an adjunction, where C and D are model
categories. Then G is right Quillen if and only if G preserves fibrations between fibrant
objects and all acyclic fibrations.

2.2. Algebras and modules
We next recall the theory of (commutative) monoids, (commutative) algebras and

modules in symmetric monoidal model categories due to Schwede-Shipley [32] and
White [40].

Recall that a model category is said to be symmetric monoidal if it has a closed
symmetric monoidal structure and satisfies the following two conditions:

1. pushout-product axiom: if f : A → B and g : X → Y are cofibrations, then the
pushout-product map

f�g : A⊗ Y
⋃

A⊗X

B ⊗X → B ⊗ Y

is a cofibration, which is acyclic if either f or g is acyclic;
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2. unit axiom: for c1 → 1 a cofibrant replacement of the unit, the natural map
c1⊗X → 1⊗X ∼= X is a weak equivalence for all cofibrant X.

Definition 2.4. Suppose that F : C ⇄ D :U is a Quillen adjunction between sym-
metric monoidal model categories. We say that (F,U) is a weak symmetric monoidal
Quillen adjunction if the right adjoint U is lax symmetric monoidal (which gives the
left adjoint F an oplax symmetric monoidal structure) and the following conditions
hold:

1. for cofibrant A and B in C, the oplax monoidal structure map ϕ : F (A⊗B) →
FA⊗ FB is a weak equivalence in D;

2. for a cofibrant replacement c1C of the unit in C, the map F (c1C) → 1D is a
weak equivalence in D.

If the oplax monoidal structure maps are isomorphisms, then we say that (F,U) is a
strong symmetric monoidal Quillen adjunction. We say that (F,U) is a weak (resp.
strong) symmetric monoidal Quillen equivalence if (F,U) is a weak (resp. strong)
symmetric monoidal Quillen adjunction which is also a Quillen equivalence. Note
that if F is strong monoidal and the unit of C is cofibrant, then the Quillen pair
(F,U) is a strong symmetric monoidal Quillen pair.

In this paper, we will be particularly interested in the interaction of model struc-
tures and Quillen functors with categories of modules and (commutative) algebras.
Let (C,⊗,1) be a symmetric monoidal model category. For a monoid S in C, we
denote the category of (left) S-modules by ModS(C). If the underlying category is
clear, we will instead write ModS .

The categories of modules and algebras often inherit a model structure from the
underlying category in the following way. Let F : C ⇄ D :U be an adjunction in which
C is a model category and D is a bicomplete category. Kan’s lifting theorem [18,
11.3.2] provides conditions under which D inherits a model structure in which a map
f in D is a weak equivalence (resp. fibration) if and only if Uf is a weak equivalence
(resp. fibration) in C. We call such a model structure right lifted.

Under mild hypotheses, the categories of modules and (commutative) algebras
obtain right lifted model structures. We refer the reader to [32, 2.4] for the precise
smallness condition in the following theorem, and instead note that it is satisfied if C
is locally presentable. Similarly, we refer the reader to [32, 3.3] and [40, 3.1] for the
definitions of the monoid axiom and commutative monoid axiom respectively.

Theorem 2.5 ([32, 4.1], [40, 3.2]). Let C be a cofibrantly generated, symmetric
monoidal model category (with some smallness condition) and let S be a commutative
monoid in C.

1. If C satisfies the monoid axiom then the categories of S-modules and S-algebras
have right lifted model structures in which a map is a weak equivalence (resp.
fibration) if and only if it is a weak equivalence (resp. fibration) in C.

2. If C satisfies the commutative monoid axiom and the monoid axiom, then the
category of commutative S-algebras has a right lifted model structure in which a
map is a weak equivalence (resp. fibration) if and only if it is a weak equivalence
(resp. fibration) in C.
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We say that a symmetric monoidal model category C satisfies Quillen invariance
of modules if for any weak equivalence θ : S → R of monoids in C, the extension-
restriction of scalars adjunction

ModS ModR
R⊗S−

θ∗

is a Quillen equivalence, see [32, 4.3]. Throughout we write θ∗ = R⊗S − for the left
adjoint of the restriction of scalars functor θ∗.

2.3. Cofibrations of modules and (commutative) algebras

In general there is not an explicit description of the cofibrations in a right lifted
model structure, but in many situations they have desirable properties.

Theorem 2.6 ([32, 4.1]). Let C be a symmetric monoidal model category and let S be
a commutative monoid in C. Every cofibration of S-algebras whose source is cofibrant
as an S-module is also a cofibration of S-modules. In particular, if the unit of C is
cofibrant, then every cofibrant S-algebra is a cofibrant S-module.

The case of commutative algebras is more subtle. White [40, 3.5, 3.6] has given an
answer to this question in general, but it requires stronger assumptions that just the
existence of the model structure on commutative algebras. We recall some relevant
examples.

Example 2.7. If S a commutative DGA over a field of characteristic zero and R is
a cofibrant commutative S-algebra, then R is cofibrant (i.e., dg-projective) as an S-
module, see for instance [40, §5.1]. Note that it fails in non-zero characteristic since
Maschke’s theorem does not apply.

Example 2.8. In categories of spectra the situation is more complicated. It is well
known by Lewis’ obstruction [24] that the stable model structure on (symmetric)
spectra cannot be right lifted to a model structure on commutative algebra spectra
as the sphere spectrum is cofibrant. Instead, one must consider the positive stable
model structure in which the sphere spectrum is not cofibrant. This model structure
can be right lifted to give a model structure on commutative algebras, however, a
cofibrant commutative algebra in the positive stable model structure on spectra need
not be cofibrant as a module. Nonetheless there is a model structure on spectra called
the flat model structure, for which this property is true, see Corollary 4.11.

3. Symmetric spectra in general model categories

In this section we recall the definition of the category of symmetric spectra in
general model categories and its properties and stable model structure as in [20]; see
also [30, §2].

Let (C,⊗,1) be a bicomplete, closed symmetric monoidal category and K ∈ C. Let
Σ be the category whose objects are the finite sets n = {1, . . . , n} for n > 0 where
0 = ∅, and whose morphisms are the bijections of n. The category of symmetric
sequences in C is the functor category CΣ. The category CΣ inherits a closed symmetric
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monoidal structure from C via the Day convolution, with tensor product given by

(A⊙B)(n) =
∐

p+q=n

Σn ×Σp×Σq
A(p)⊗B(q).

The category of symmetric spectra SpΣ(C,K) is the category of modules over
Sym(K) in CΣ, where Sym(K) = (1,K,K⊗2, . . .) is the free commutative monoid on
K. Therefore, SpΣ(C,K) inherits a closed symmetric monoidal structure with tensor
product defined by the coequalizer

X ∧ Y = coeq (X ⊙ Sym(K)⊙ Y ⇒ X ⊙ Y )

of the actions of Sym(K) on X and Y . More explicitly, an object X of SpΣ(C,K) is
a collection of Σn-objects X(n) ∈ C with Σn-equivariant maps

K ⊗X(n) → X(n+ 1)

for all n > 0, such that the composite

K⊗m ⊗X(n) → X(n+m)

is Σm × Σn-equivariant for all m,n > 0. Note that taking C = sSet∗ and K = S1

recovers the usual notion of symmetric spectra as defined and studied by Hovey-
Shipley-Smith [21].

We now sketch the construction of the stable model structure on SpΣ(C,K) due to
Hovey [20]. If C is a left proper and cellular model category, one can equip SpΣ(C,K)
with a level model structure in which the weak equivalences and fibrations are lev-
elwise weak equivalences and levelwise fibrations in C respectively [20, 8.2]. One
can then left Bousfield localize this level model structure to obtain the stable model
structure [20, 8.7]. We call the weak equivalences in this model structure the stable
equivalences and the fibrations the stable fibrations.

There is also a positive stable model structure, which allows the construction
of right lifted model structures on commutative algebras, see for instance [26, §14].
However, these model structures do not have the property that cofibrant commutative
algebras are cofibrant modules. In order to rectify this, we turn to the flat model
structure in the next section.

Notation 3.1. We set notation for the categories of symmetric spectra of interest.

� We write SpΣ = SpΣ(sSet∗, S
1) for the category of symmetric spectra in simpli-

cial sets.

� We write SpΣ(sQ-mod) for the category SpΣ(sQ-mod, Q̃S1) where sQ-mod is

the category of simplicial Q-modules and Q̃ : sSet∗ → sQ-mod is the functor
which takes the levelwise free Q-module on the non-basepoint simplices.

� We write SpΣ(Ch+Q ) for the category SpΣ(Ch+Q ,Q[1]) where Ch+Q is the category
of non-negatively graded chain complexes of Q-modules and Q[1] is the chain
complex which contains a single copy of Q concentrated in degree 1.

4. Flat model structures

In this section we show that the categories used in Shipley’s algebraicization
theorem support a flat model structure. Recall from Example 2.8 that a cofibrant
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commutative algebra need not be a cofibrant module in the stable model structure
on spectra. To rectify this, Shipley [35] constructs a flat (and a positive flat) model
structure on symmetric spectra in simplicial sets in which this property holds. Pavlov-
Scholbach [28] extended these flat model structures to symmetric spectra in general
model categories. The flat model structure has the same weak equivalences as the
stable model structure on spectra (i.e., the stable equivalences), but has more cofi-
brations. In particular, the identity functor from the stable model structure to the
flat model structure is a left Quillen equivalence.

4.1. Equivariant model structures
The stable model structure on symmetric spectra disregards the actions of the sym-

metric groups on each level. Instead, the flat model structure proceeds by remember-
ing this equivariance and building it into the model structure. There are two extreme
cases: the naive case is where no equivariance is recorded and the genuine case is when
all equivariance is recorded. The flat model structure on SpΣ(C,K) (when it exists)
is built from the blended model structure on G-objects in C which is intermediate
between the naive and genuine structures. Note that some authors refer to this model
structure as the mixed model structure, but we do not since it is not mixed in the
sense of Cole mixing [10].

From now on, we assume that C is a pretty small model category [27, 2.1]. We
note that this condition is satisfied for simplicial sets, simplicial Q-modules and non-
negatively graded chain complexes of Q-modules.

We now recall the conditions needed for the genuine and blended model structures
to exist, see for instance [38]. Let G be a finite group. We write GC for the category
of G-objects in C; that is, the functor category [BG,C] where BG is the one-object
category whose morphisms are elements of G.

Definition 4.1. We say that C satisfies the weak cellularity conditions for G if the
following are true for all subgroups H,K 6 G:

1. (−)H preserves directed colimits of diagrams in GC where each underlying arrow
in C is a cofibration,

2. (−)H preserves pushouts of diagrams where one leg is of the form G/K ⊗ f for
f a cofibration in C,

3. (G/K ⊗−)H takes generating cofibrations to cofibrations and generating acyclic
cofibrations to acyclic cofibrations.

We say that it satisfies the strong cellularity conditions for G if (1) and (2) from
above hold, and for any H,K 6 G and any X ∈ C,

(G/H ⊗X)K ∼= (G/H)K ⊗X.

Definition 4.2. We say that a map f : X → Y in GC is:

� a naive weak equivalence if the underlying morphism is a weak equivalence in C;

� a naive fibration if the underlying morphism is a fibration in C;

� a naive cofibration if it has the left lifting property with respect to the naive
acyclic fibrations;

� a genuine weak equivalence if for every subgroup H of G, the map fH : XH →
Y H is a weak equivalence in C;
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� a genuine fibration if for every subgroup H of G, the map fH : XH → Y H is a
fibration in C;

� a genuine cofibration if it has the left lifting property with respect to all genuine
acyclic fibrations;

� a blended fibration if it has the right lifting property with respect to maps which
are both naive weak equivalences and genuine cofibrations.

The cellularity conditions control when the genuine model structure on GC exists.

Proposition 4.3. If the weak cellularity conditions hold for C then the genuine weak
equivalences, genuine cofibrations and genuine fibrations give a cofibrantly generated,
model structure on GC called the genuine model structure. Furthermore, if C is proper,
then so is the genuine model structure on GC, and if C is a monoidal model category
with cofibrant unit, then so is the genuine model structure on GC.

Proof. The claim that the genuine model structure exists and is cofibrantly generated
is due to Stephan [38, 2.6]. The generating cofibrations and generating acyclic cofibra-
tions are given by ∪H6G{G/H ⊗ i | i ∈ I} and ∪H6G{G/H ⊗ j | j ∈ J} respectively,
where I and J are the sets of generating cofibrations and acyclic cofibrations for C

respectively.
We now prove that the genuine model structure is left proper. It suffices to prove

that in a diagram of pushouts of the form

G/H ⊗A C X

G/H ⊗B D Y
p

∼

p

where A → B is a generating cofibration for C, the map D → Y is a genuine weak
equivalence. This is because as C is pretty small, weak equivalences are closed under
transfinite composition [27, 2.2], and therefore the class of maps for which pushing
out along them preserves weak equivalences is closed under retracts, pushouts and
transfinite compositions. By the second cellularity condition, after taking K fixed
points, the left hand square and the outer rectangle are still pushouts. It follows that
the right hand square is also still a pushout.

By the third cellularity condition, the left most vertical map is still a cofibration
after taking K fixed points. Since cofibrations are stable under pushout, the map
CK → DK is a cofibration, and since C is left proper, we have that DK → Y K is a
weak equivalence for all K. Hence the genuine model structure is left proper. The
fact that the model structure is right proper follows immediately from the fact that
fixed points determine fibrations and weak equivalences.

We now prove that the genuine model structure is monoidal. Firstly we must show
that the pushout-product of two genuine cofibrations is a genuine cofibration. We use
the description of the generating cofibrations ∪H6G{G/H ⊗ i | i ∈ I} for the genuine
model structure where I is the set of generating cofibrations for C. Take generating
cofibrations

G/H ⊗ i : G/H ⊗A → G/H ⊗B and G/K ⊗ i′ : G/K ⊗X → G/K ⊗ Y

for the genuine model structure. Since G/H ⊗− and G/K ⊗− are left adjoints,
the pushout product map (G/H ⊗ i)�(G/K ⊗ i′) can be identified with the map
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(G/H ⊗G/K)⊗ (i�i′), which in turn can be identified with
∐

x∈[H\G/K]

G/(H ∩ xKx−1)⊗ (i�i′)

by the double coset formula. Since C is monoidal, i�i′ is a cofibration in C and hence
the pushout product map (G/H ⊗ i)�(G/K ⊗ i′) is a genuine cofibration as required.
It follows by a similar argument that the pushout product of a genuine cofibration
with a genuine acyclic cofibration is a genuine acyclic cofibration.

For the unit axiom, note that the monoidal unit in GC is the unit of C equipped
with the trivial G-action. The functor which equips an object with the trivial G-action
is left adjoint to the G-fixed points functor, and hence is left Quillen. It then follows
that since the unit of C is cofibrant, the unit in GC is genuine cofibrant.

We can then localize the genuine model structure to give the blended model struc-
ture.

Theorem 4.4. Let C be a simplicial, proper model category which satisfies the weak
cellularity conditions. Then the naive weak equivalences, genuine cofibrations and
blended fibrations give a proper, cofibrantly generated model structure on GC which
we call the blended model structure.

Proof. We apply Bousfield-Friedlander localization [9, 9.3] to the genuine model

structure on GC, with QX = map(EG, f̂X) where f̂ is a genuine fibrant replacement
functor and map denotes the simplicial cotensor. We must verify that the conditions
(A1), (A2) and (A3) from [9, 9.3] are satisfied. Note that a map f : X → Y in GC is a
naive weak equivalence if and only if Qf : QX → QY is a genuine weak equivalence.
To see this, if f : X → Y is a naive weak equivalence, then map(G, f) is a genuine
weak equivalence. Therefore, map(Z, f) is a genuine weak equivalence if Z is built
from free cells. Conversely, since EG → ∗ is a naive weak equivalence, if map(EG, f) is
a genuine weak equivalence then f is a naive weak equivalence. The conditions (A1)
and (A2) follow from this observation. Since Q preserves fibrations and pullbacks,
condition (A3) follows from the right properness of the genuine model structure on
GC.

Note that [9, 9.3] also gives an explicit description of the blended fibrations as
those maps X → Y which are genuine fibrations and have the property that

X map(EG, f̂X)

Y map(EG, f̂Y )

(1)

is a homotopy pullback square. The genuine fibrant replacement ensures that this is
equivalent to the square being a homotopy pullback after taking H-fixed points for
all H 6 G.

Proposition 4.5. The blended model structure exists on GC for C = sSet∗, sQ-mod
and Ch+Q .
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Proof. The categories of based simplicial sets and simplicial Q-modules satisfy the
strong cellularity conditions by [38, 2.14]. The category of non-negatively graded
rational chain complexes satisfies the weak cellularity conditions by [38, 2.19]. There-
fore the result follows from Theorem 4.4.

Finally, we note that in these cases, the blended model structure can be identified
with the injective model structure in which the weak equivalences and cofibrations
are both underlying.

Proposition 4.6.

(i) A map f in G-sSet∗ is an underlying cofibration if and only if it is a genuine
cofibration.

(ii) For C = sQ-mod and Ch+Q , a map f in GC is an underlying cofibration if and
only if it is a naive cofibration if and only if it is a genuine cofibration.

Proof. Part (i) is well known; see for example [35, 1.2] or [38, 2.16].
For part (ii), let C = Ch+Q or sQ-mod and note that we can give the same style of

proof since they are both Q-additive. From the description of the generating cofibra-
tions of the genuine model structure given in the proof of Proposition 4.3, it is clear
that any genuine cofibration is an underlying cofibration. Since any naive cofibration
is also a genuine cofibration it follows that any naive cofibration is an underlying
cofibration.

We now turn to proving the forward implication. Since any naive cofibration is a
genuine cofibration, it suffices to show that if f is an underlying cofibration then it
is a naive cofibration. Let f : X → Y be an underlying cofibration in GC. In order to
prove that f is a naive cofibration we must show that it has the left lifting property
with respect to the naive acyclic fibrations. Consider a commutative square

X A

Y B

α

f h

β

in GC, in which h is a naive acyclic fibration. Since f is an underlying cofibration,
there is a lift θ : Y → A making the diagram commute, but this need not be an
equivariant map. Define ϕ : Y → A by

ϕ(y) =
1

|G|

∑

g∈G

gθ(g−1y).

This is an equivariant map, so it remains to check that it is indeed a lift.
Since f and α are equivariant maps,

ϕ(f(x)) =
1

|G|

∑

g∈G

gθ(f(g−1x)) =
1

|G|

∑

g∈G

gα(g−1x) = α(x).

In a similar way, one can show that hϕ = β. Therefore ϕ is a lift, and the map f is
a naive cofibration and hence also a genuine cofibration.

Corollary 4.7. For C = sQ-mod and Ch+Q , the blended model structure, injective
model structure and the naive model structure on GC are the same.
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Proof. The weak equivalences in all three model structures are the naive weak equiv-
alences. The cofibrations in each coincide by Proposition 4.6.

We emphasize that in the case of C = sSet∗, the blended model structure is the
same as the injective model structure on GC, but is not the same as the naive model
structure.

Corollary 4.8. For C = sSet∗, sQ-mod and Ch+Q , the blended model structure on GC

is monoidal.

Proof. Note that in each case, C is monoidal and has cofibrant unit. Since the blended
model structure is the same as the injective model structure by Proposition 4.6, it is
immediate that the pushout-product axiom holds. The unit axiom holds by the same
argument as in Proposition 4.3.

4.2. The flat model structure
We can equip SpΣ, SpΣ(sQ-mod) and SpΣ(Ch+Q ) with the level flat model struc-

ture, in which the weak equivalences (resp. fibrations) are the levelwise naive weak
equivalences (resp. levelwise blended fibrations) [28, 3.1.3]. The cofibrations in the
level flat model structure are the flat cofibrations ; that is, the maps which have the
left lifting property with respect to maps which are both levelwise naive weak equiv-
alences and levelwise blended fibrations. In a similar manner, SpΣ, SpΣ(sQ-mod)
and SpΣ(Ch+Q ) can be given the positive level flat model structure in which the weak
equivalences (resp. fibrations) are the maps which are naive weak equivalences (resp.
blended fibrations) for each level n > 0.

A left Bousfield localization of the level flat model structure yields the flat model
structure. The weak equivalences in the flat model structure are the stable equiv-
alences, and the cofibrations are the flat cofibrations. We call the fibrations in the
flat model structure the flat fibrations. Similarly, a left Bousfield localization of the
positive level flat model structure gives the positive flat model structure in which the
weak equivalences are also the stable equivalences.

Theorem 4.9. The flat and positive flat model structures on SpΣ, SpΣ(sQ-mod) and
SpΣ(Ch+Q ) (and on modules over monoids in these categories) exist. Furthermore, they
satisfy Quillen invariance of modules, and are stable, left proper, symmetric monoidal
and combinatorial model structures.

Proof. Since the genuine cofibrations are the same as the underlying cofibrations
by Proposition 4.6, the blended model structure coincides with the injective model
structure. The injective model structure is strongly admissible by [28, 2.3.7] and
therefore the flat model structure exists by [28, 3.2.1]. Quillen invariance holds by [28,
3.3.9], monoidality follows as it is defined to be a monoidal left Bousfield localization,
stability by [28, 3.4.1] and left properness and combinatoriality follows from [28,
3.4.2].

We now record some key properties of the flat model structure which we will use
throughout this paper.

Proposition 4.10.

(i) A map is an acyclic flat fibration if and only if it is a levelwise acyclic flat
fibration.
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(ii) A map between flat fibrant objects is a flat fibration if and only if it is a levelwise
flat fibration.

(iii) The identity functor is a left Quillen equivalence from the stable model structure
to the flat model structure.

Proof. Part (i) follows from the fact that left Bousfield localization does not change
the acyclic fibrations and part (ii) follows from Proposition 2.2. For part (iii), since the
stable model structure and the flat model structure have the same weak equivalences,
it suffices to show that any stable cofibration is a flat cofibration. A map is a stable
cofibration if and only if it has the left lifting property with respect to maps which
are levelwise naive acyclic fibrations, and a map is a flat cofibration if and only if it
has the left lifting property with respect to maps which are both levelwise naive weak
equivalences and blended fibrations. Any blended fibration is a naive fibration, and
therefore a stable cofibration is also a flat cofibration.

Corollary 4.11. Let S be a commutative monoid in SpΣ, SpΣ(sQ-mod) or SpΣ(Ch+Q).
The positive flat model structure can be right lifted to give a model structure on
commutative S-algebras. Moreover, a positively flat cofibrant commutative S-algebra
is also flat cofibrant as an S-module.

Proof. Since the blended model structure coincides with the injective model struc-
ture in these cases by Proposition 4.6, and the injective model structure is strongly
admissible [28, 2.3.7], this is a consequence of [28, 4.1, 4.4].

The flat model structure is a left Bousfield localization of the level flat model
structure where weak equivalences and fibrations are determined levelwise in the
blended model structure. We can give a characterization of the fibrant objects in the
flat model structure.

Proposition 4.12 ([28, 3.2.1]). An object X of SpΣ(C,K) is flat fibrant if and only
if X is level flat fibrant and Xn → Hom(K,Xn+1) is a naive weak equivalence where
Hom(K,−) is the right adjoint to K ⊗−.

The following corollary shows that stable model structures on SpΣ(sQ-mod) and
SpΣ(Ch+Q ) satisfy extra compatibility between commutative algebras and modules,

unlike the stable model structure on SpΣ.

Corollary 4.13. The flat (resp. positive flat) model structure on SpΣ(sQ-mod) and
SpΣ(Ch+Q ) is the same as the stable (resp. positive stable) model structure.

Proof. The weak equivalences in both the flat and stable model structure are the
stable equivalences. Therefore it suffices to show that they have the same acyclic
fibrations. A map is an acyclic fibration in the stable model structure if and only if
it is a levelwise naive acyclic fibration. By Corollary 4.7, this is the case if and only
if it is a levelwise acyclic fibration in the blended model structure, i.e., an acyclic flat
fibration.

In light of the previous corollary, we could call the model structure which we use
on SpΣ(sQ-mod) and SpΣ(Ch+Q ) either flat or stable. However, we will often refer
to it as the flat model structure to remind the reader of the extra compatibility
between commutative algebras and modules given by Corollary 4.11, which we will
use throughout the paper.
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5. Shipley’s algebraicization theorem in the flat setting

In this section we show that the chain of Quillen equivalences given by Shipley [37]
for the stable model structure are still Quillen equivalences in the flat model structure,
for the rational case. The identity functor from the stable model structure to the
flat model structure is a left Quillen equivalence by Proposition 4.10. Therefore by
the 2-out-of-3 property of Quillen equivalences, it is sufficient to check that we get
Quillen adjunctions in the flat model structure. In fact, since the stable and flat
model structure are the same on SpΣ(sQ-mod) and SpΣ(Ch+Q ) by Corollary 4.13,
this reduces to just checking that the first adjunction is a Quillen adjunction. The
following diagram summarises all of the adjunctions between HQ-modules and chain
complexes of Q-modules.

ModflatHQ SpΣ(sQ-mod)flat SpΣ(Ch+Q )flat ChQ

ModstableHQ SpΣ(sQ-mod)stable SpΣ(Ch+Q )stable ChQ

Z

1≃Q 1

ϕ∗NU

= 1=

L D

1=

R

Z

1

≃Q

U

1

ϕ∗N

≃Q

1

L D

≃Q

1

R

(2)

The functors will be defined throughout the rest of the section.
The model structure on simplicial Q-modules is right lifted from simplicial sets

along the forgetful functor sQ-mod → sSet∗. Applying this functor levelwise gives a
forgetful functor Ũ : SpΣ(sQ-mod)→SpΣ. Note that ŨSym(Q̃S1)=(Q, Q̃S1, Q̃S2, . . .)

which is HQ [21, 1.2.5]. Therefore the forgetful functor Ũ can be viewed as a functor
U : SpΣ(sQ-mod) → ModHQ.

Firstly, we show that the forgetful functor Ũ is right Quillen when SpΣ is equipped
with the flat model structure. Even though the flat model structure and the stable
model structure on SpΣ(sQ-mod) are the same by Corollary 4.13, in order to prove
the following it is actually convenient to work with the description of the acyclic
fibrations in the flat model structure.

Lemma 5.1. The forgetful functor

Ũ : SpΣ(sQ-mod)flat → SpΣflat

preserves fibrations, and preserves and detects weak equivalences.

Proof. The forgetful functor preserves and detects weak equivalences by [37, Proof of
4.1]. We now show that it preserves the fibrations. By Proposition 2.3 it is sufficient

to show that Ũ preserves the acyclic flat fibrations and the flat fibrations between
flat fibrant objects.

A map is an acyclic flat fibration if and only if it is a levelwise acyclic flat fibration,
so it suffices to show that the forgetful functor sQ-mod → sSet∗ preserves naive weak
equivalences and blended fibrations. Since the model structure on sQ-mod is right
lifted from sSet∗, the forgetful functor preserves naive weak equivalences and genuine
fibrations. It remains to check the homotopy pullback condition (1), which is an
immediate consequence of the fact that the forgetful functor preserves homotopy
pullbacks.
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A flat fibration between flat fibrant objects is a levelwise flat fibration and hence Ũ
sends it to a levelwise flat fibration by the previous paragraph. Therefore, it remains
to show that Ũ preserves flat fibrant objects. Let X be a flat fibrant object in
SpΣ(sQ-mod)flat. ByProposition 4.12,X is level flat fibrant andXn→Hom(Q̃S1,Xn+1)

is a naive weak equivalence. It follows that ŨX is level flat fibrant, and since Ũ pre-
serves naive weak equivalences, we also have that ŨXn → ŨHom(Q̃S1, Xn+1) is a

naive weak equivalence. By the Q̃ ⊣ U adjunction, it follows that

ŨXn → Hom(S1, ŨXn+1)

is a naive weak equivalence, and hence by Proposition 4.12, ŨX is flat fibrant. There-
fore, Ũ preserves flat fibrant objects.

Corollary 5.2. The forgetful functor

U : SpΣ(sQ-mod)flat → ModflatHQ

preserves fibrations, and preserves and detects weak equivalences.

Recall from [37, 4.3] that the forgetful functor U : SpΣ(sQ-mod) → ModHQ has a
left adjoint Z defined by

Z(X) = HQ⊗
Q̃HQ

Q̃X

where HQ is viewed as a Q̃HQ-module via the ring map β : Q̃HQ → HQ given by
the monad structure on Q̃.

Proposition 5.3. The adjunction

ModflatHQ SpΣ(sQ-mod)flat
Z

U

is a strong symmetric monoidal Quillen equivalence with the respect to the flat model
structures.

Proof. The forgetful functor U preserves weak equivalences and fibrations in the
flat model structure by Corollary 5.2. Therefore, Z ⊣ U is a Quillen adjunction and
hence by the 2-out-of-3 property of Quillen equivalences, is a Quillen equivalence; see
Diagram (2). It is a strong symmetric monoidal Quillen equivalence as Z is strong
symmetric monoidal and the unit HQ is a cofibrant HQ-module.

Applying the normalization functor N : sQ-mod → Ch+Q levelwise yields a functor

N : SpΣ(sQ-mod) → ModN
(
(Ch+Q )

Σ
)

where N = N(Sym(Q̃S1)). There is a ring map ϕ : Sym(Q[1]) → N induced levelwise
by the lax symmetric monoidal structure on N , and therefore composing N and
ϕ∗ gives a functor ϕ∗N : SpΣ(sQ-mod) → SpΣ(Ch+Q ). This functor has a left adjoint
denoted L by [33, §3.3]. It is important to note that the left adjoint is not just the
composite of the left adjoints of N and ϕ∗. Shipley [37, 4.4] shows that

SpΣ(sQ-mod) SpΣ(Ch+Q )
ϕ∗N

L

is a weak symmetric monoidal Quillen equivalence.
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The final step is the passage from symmetric spectra in non-negatively graded
chain complexes to unbounded chain complexes. The inclusion Ch+Q → ChQ of non-
negatively graded chain complexes into unbounded complexes has a right adjoint C0

called the connective cover. This is defined by (C0X)n = Xn for n > 1 and (C0X)0 =
cycles(X0). Using the connective cover, one defines a functor R : ChQ → SpΣ(Ch+Q )
by (RY )n = C0(Y ⊗Q[n]). Recall from [37] that this functor has a left adjoint D.
Moreover, D is strong symmetric monoidal as proved by Strickland [39]. Note that
this fact has been subject to some confusion, see [36]. Shipley [37, 4.7] shows that

SpΣ(Ch+Q ) ChQ
D

R

is a strong symmetric monoidal Quillen equivalence where ChQ is equipped with the
projective model structure.

Combining the results of this section gives a proof of Theorem 1.1.

6. Extension to commutative algebras

Let F : C ⇄ D :G be a weak symmetric monoidal Quillen pair. As G is lax symmet-
ric monoidal, it preserves commutative monoids and therefore gives rise to a functor
G : CMon(D) → CMon(C). If the Quillen pair is a strong symmetric monoidal Quillen
pair, then F also lifts to a functor on commutative monoids. However, when F is only
oplax symmetric monoidal, it will not necessarily preserve commutative monoids.

We always equip the category of commutative monoids with the model struc-
ture right lifted along the forgetful functor, see Theorem 2.5. The forgetful functor
U : CMon(C) → C has a left adjoint given by

PC(X) =
∨

n>0

X∧n/Σn.

The adjoint lifting theorem [8, 4.5.6] implies that the lift of G to the categories of

commutative monoids has a left adjoint F̃ defined by the coequalizer diagram

PDFPCX PDFX F̃X.

One of the maps is obtained from the counit of the PC ⊣ U adjunction, and the other
map is adjunct to the natural map

FPCX ∼=
∨

n>0

F (X∧n)/Σn →
∨

n>0

(FX)∧n/Σn
∼= PDFX

obtained from the oplax structure on F . Since G preserves commutative monoids,
there is a natural isomorphism UG ∼= GU and by adjunction there is a natural iso-
morphism

PDF ∼= F̃PC.

Before we can state a theorem about lifting weak symmetric monoidal Quillen
equivalences to Quillen equivalences on commutative monoids, we need to impose a
hypothesis.
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Hypothesis 6.1. Let F : C ⇄ D :G be a weak symmetric monoidal Quillen equiva-
lence. For any cofibrant object X of C, the natural map

F (X∧n)/Σn → (FX)∧n/Σn

is a weak equivalence in D.

Lemma 6.2. Let F : C ⇄ D :G be a weak symmetric monoidal Quillen equivalence.
This satisfies Hypothesis 6.1 if either of the following conditions hold:

(i) F : C ⇄ D :G is a strong symmetric monoidal Quillen equivalence;

(ii) underlying cofibrant objects in ΣnD are naive cofibrant.

Proof. The first part follows immediately from the definition. For the second part,
let X be cofibrant in C. By definition of a weak symmetric monoidal Quillen pair, the
natural map F (X∧n) → (FX)∧n is a weak equivalence between cofibrant objects in
the injective model structure on ΣnD. By hypothesis, this is, moreover, a naive weak
equivalence between naive cofibrant objects. From the description of the generating
(acyclic) cofibrations given in Proposition 4.3 one can see that the orbits functor
(−)/Σn : ΣnD → D is left Quillen when ΣnD is equipped with the genuine model
structure. Since the identity is a left Quillen functor from the naive model structure on
ΣnD to the genuine model structure, it follows that (−)/Σn : ΣnD → D is left Quillen
when ΣnD is equipped with the naive model structure. By Ken Brown’s lemma, it
then follows that F (X∧n)/Σn → (FX)∧n/Σn is a weak equivalence in D.

We now state when weak symmetric monoidal Quillen equivalences lift to Quillen
equivalences between the categories of commutative monoids. This result is closely
related to work of Schwede-Shipley, White and White-Yau. Schwede-Shipley [33,
3.12(3)] consider the related question on associative monoids without the commuta-
tivity assumption, White [40, 4.19] provides hypotheses under which strong monoidal
Quillen equivalences lift to the categories of commutative monoids and White-Yau
[41, 5.8] provide hypotheses under which weak monoidal Quillen equivalences lift. The
most general of the statements is that of White-Yau where the result follows from a
more general result about liftingQuillen equivalences to categories of coloured operads.

For orientation in the following statement and proof, the reader might like to
consider C being the positive flat model structure on spectra and C̃ being the flat
model structure on spectra. The hypotheses are designed in such a way that this
example fits into the framework. We note that we write left adjoint functors on the
left in an adjoint pair displayed vertically.

Theorem 6.3. Let F : C ⇄ D :G be a weak symmetric monoidal Quillen equivalence
between cofibrantly generated model categories which satisfy the commutative monoid
axiom and the monoid axiom. Suppose that the underlying categories of C and D

support other model structures denoted C̃ and D̃ respectively, with the same weak
equivalences, such that

C D

C̃ D̃

1

F

1
G

F

1 1

G



FLATNESS AND SHIPLEY’S ALGEBRAICIZATION THEOREM 209

are all Quillen adjunctions. Suppose that cofibrant commutative monoids in C (resp.

D) are cofibrant in C̃ (resp. D̃), the generating cofibrations I of C have cofibrant source
(and hence target), the monoidal unit 1C of C is cofibrant and that Hypothesis 6.1 is
satisfied. Then there is a Quillen equivalence

F̃ : CMon(C) ⇄ CMon(D) :G.

Proof. Since the model structures are right lifted, G preserves fibrations and acyclic
fibrations and therefore is right Quillen as a functor CMon(D) → CMon(C). Let A
be a cofibrant commutative monoid in C and B be a fibrant commutative monoid
in D. We must show that the map A → GB is a weak equivalence in C if and only if
F̃A → B is a weak equivalence in D.

The adjunction unit of F̃ ⊣ G gives rise to a map UA → UGF̃A ∼= GUF̃A and
hence by adjunction there is a natural map FA → F̃A where we neglect to write the
forgetful functors. The composite FA → F̃A → B is adjunct to the map A → GB
in C.

Let X ∈ D. Write fX for a fibrant replacement of X in D and f̃X for a fibrant
replacement of X in D̃. Consider the square

X f̃X

fX ∗

in which the left vertical arrow is an acyclic cofibration in D, and the right vertical
is a fibration in D̃ and hence in D. By lifting properties, we obtain a map fX → f̃X
which is a weak equivalence.

We must show that the map A → GB is a weak equivalence in C if and only if
F̃A → B is a weak equivalence in D, where A is cofibrant in CMon(C) and B is fibrant

in CMon(D). By the previous paragraph, we have a weak equivalence B → f̃B where

f̃B is fibrant in D̃ and hence in D. By Ken Brown’s lemma, GB → Gf̃B is a weak
equivalence, and therefore A → GB is a weak equivalence if and only if A → Gf̃B is
a weak equivalence.

Note that since C and C̃ have the same weak equivalences, the identity functor
C → C̃ is a left Quillen equivalence, and similarly for D. Therefore, by the 2-out-
of-3 property of Quillen equivalences, F : C̃ ⇄ D̃ :G is a Quillen equivalence. Since
A is cofibrant in CMon(C) and hence in C̃, and f̃B is fibrant in D̃, A → Gf̃B is a

weak equivalence if and only if FA → f̃B is a weak equivalence. Since B → f̃B is a
weak equivalence, FA → f̃B is a weak equivalence if and only if FA → B is a weak
equivalence. Since the composite FA → F̃A → B is adjunct to the map A → GB in
C, it follows that it is enough to show that λA : FA → F̃A is a weak equivalence.

As C is cofibrantly generated, A is a retract of a PC(I)-cell complex where I
is the set of generating cofibrations for C, i.e., ∅ → A is a retract of a transfinite
composition of pushouts of maps in PC(I). We proceed by transfinite induction on
the transfinite composition which defines a cofibrant object. The base case is the
claim that F (1C) → F̃ (1C) is a weak equivalence. The left adjoint F̃ takes the initial
object 1C of CMon(C) to the initial object 1D of CMon(D). Since 1C is cofibrant,
F (1C) → 1D is a weak equivalence by the unit axiom of the weak monoidal Quillen
adjunction F ⊣ G. Therefore the base case holds.
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Write PnX = X∧n/Σn, so that PX = ∨n>0P
nX. By Hypothesis 6.1, if X is a

cofibrant object of C, F (Pn
C
X) = F (X∧n)/Σn → (FX)∧n/Σn = Pn

D
(FX) is a weak

equivalence. Since X is cofibrant in C, Pn
C
X is cofibrant in C̃ and therefore F (Pn

C
X) is

cofibrant in D̃. In a similar way, one sees that Pn
D
(FX) is cofibrant in D̃. Therefore

F (X∧n)/Σn → (FX)∧n/Σn is a weak equivalence between cofibrant objects in D̃ and
Ken Brown’s lemma shows that taking coproducts preserves this weak equivalence.
Therefore,

FPCX = F
∨

n>0

X∧n/Σn
∼=

∨

n>0

F (X∧n)/Σn
∼
−→

∨

n>0

(FX)∧n/Σn = PDFX

is a weak equivalence. Hence using the isomorphism PDFX ∼= F̃PCX, ifX is cofibrant
in C, one sees that both FPCX → F̃PCX and FPn

C
X → F̃Pn

C
X are weak equivalences.

We now prove that if

PCX Y

PCX
′ P

f

is a pushout square in CMon(C), and FY → F̃ Y is a weak equivalence where Y is

cofibrant, then FP → F̃P is a weak equivalence. Since I consists of cofibrations with
cofibrant source, we may assume that X and X ′ are cofibrant in C. By [40, B.2],
f : Y → P has a filtration

Y = P0 → P1 → · · ·

where Pn−1 → Pn is defined by the pushout

Y ∧Qn(f)/Σn Pn−1

Y ∧ Pn
C
X ′ Pn

in C. For our purposes, it is not important precisely what Qn(f) is, apart from the
fact that it is a colimit of a punctured n-dimensional cube whose vertices are given
by tensor products of X, X ′ and Y . It follows from the commutative monoid axiom
that Qn(f)/Σn is cofibrant in C, see [40, Proof of 4.17] for details.

Since F sends pushouts in C to pushouts in D,

F (Y ∧Qn(f)/Σn) FPn−1

F (Y ∧ Pn
C
X ′) FPn

is a pushout in D. Since F̃ preserves pushouts of commutative monoids,

PDFX F̃Y

PDFX ′ F̃P

F̃ f

is a pushout in CMon(D) using the isomorphism PDF ∼= F̃PC. Applying [40, B.2]
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again, we obtain a filtration F̃ Y =R0 →R1 →· · · of F̃ f : F̃ Y → F̃P whereRn−1 →Rn

is defined by the pushout

F̃ Y ∧Qn(F̃ f)/Σn Rn−1

F̃ Y ∧ Pn
D
FX ′ Rn

in D. This filtration is compatible with the filtration of Y → P and therefore λY

sends FPn to Rn. By applying F to the pushout square shown Diagram 1 in [40,
Proof of A.1] and using that F ⊣ G is a weak monoidal Quillen pair, one argues by

induction that there is a natural weak equivalence FQn(f)
∼
−→ Qn(F̃ f). Similarly,

since taking orbits commutes with taking pushouts, there is a natural weak equiv-
alence FQn(f)/Σn

∼
−→ Qn(F̃ f)/Σn by an inductive argument on Diagram 6 in [40,

Proof of A.3].
We now show by induction that λPn

: FPn → Rn is a weak equivalence. The base
case holds since λP0

= λY which was a weak equivalence by assumption. Suppose that
λPn−1

is a weak equivalence. Consider the diagram

F (Y ∧Qn(f)/Σn) F̃ Y ∧Qn(F̃ f)/Σn

FPn−1 Rn−1

F (Y ∧ Pn
C
X ′) F̃ Y ∧ Pn

D
FX ′

FPn Rn

in which the leftmost face and the rightmost face are pushouts in D. The horizontal
map FPn−1 → Rn−1 is a weak equivalence by the inductive hypothesis.

The horizontal map F (Y ∧Qn(f)/Σn) → F̃ Y ∧Qn(F̃ f)/Σn factors as the com-
posite

F (Y ∧Qn(f)/Σn) → FY ∧ FQn(f)/Σn → F̃ Y ∧ FQn(f)/Σn → F̃ Y ∧Qn(F̃ f)/Σn

where the first map is a weak equivalence since F ⊣ G is a weak monoidal Quillen
pair. The map FY → F̃ Y is a weak equivalence between cofibrant objects in D̃, and
the map FQn(f)/Σn

∼
−→ Qn(F̃ f)/Σn is a weak equivalence between cofibrant objects

in D. Since cofibrant objects in D are also cofibrant in D̃, both of these maps are weak
equivalences between cofibrant objects in D̃. By Ken Brown’s lemma, tensoring with
cofibrant objects preserves weak equivalences between cofibrant objects, and hence
the second and third map are weak equivalences.

The horizontal map F (Y ∧ Pn
C
X ′) → F̃ Y ∧ Pn

D
FX ′ is a weak equivalence since it

factors as the composite

F (Y ∧ Pn
CX

′) → FY ∧ FPn
CX

′ → F̃ Y ∧ F̃Pn
CX

′ ∼= F̃ Y ∧ Pn
DFX ′.

Therefore, the map FPn → Rn is a weak equivalence by [19, 5.2.6]. Each filtration
map is a cofibration between cofibrant objects and hence by Ken Brown’s lemma
and [19, 5.1.5], the map FP → F̃P is a weak equivalence.

It remains to show that the property is preserved under the transfinite compositions
used to build relative cell complexes which again follows from [19, 5.1.5]. Therefore
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for any cofibrant commutative monoid object A of C, we have that the map FA → F̃A
is a weak equivalence which concludes the proof.

Remark 6.4. The hypothesis that C and D satisfy the commutative monoid axiom
and the monoid axiom ensures that the categories of commutative monoids inherit a
right lifted model structure [40, 3.2].

Remark 6.5. In some cases such as rational chain complexes, cofibrant commutative
algebras are cofibrant as modules, see Example 2.7. In such examples, one can take
C = C̃ in the previous theorem.

Theorem 6.6. There is a zig-zag of Quillen equivalences between the category of
commutative HQ-algebras and the category of commutative rational DGAs.

Proof. Consider the adjunctions

ModpfHQ SpΣ(sQ-mod)pf SpΣ(Ch+Q )pf ChQ
Z

ϕ∗NU

L D

R

where pf denotes the positive flat model structure. Recall from Corollary 4.13 that
on SpΣ(sQ-mod) and SpΣ(Ch+Q ) the positive stable and positive flat model structures
are the same.

Firstly, we must justify that these are Quillen adjunctions. The adjunction D ⊣ R
is Quillen since it can be viewed as the composite of Quillen adjunctions

SpΣ(Ch+Q )pf SpΣ(Ch+Q ) ChQ
1

1

D

R

where the second adjunction was proved to be Quillen in [37, 4.7].
For the adjunction Z ⊣ U , by Proposition 2.3 it is sufficient to check that the right

adjoint U preserves acyclic positive flat fibrations and positive flat fibrations between
positive flat fibrants. Recall that a map is an acyclic positive flat fibration if and
only if it is a levelwise acyclic blended fibration for levels n > 0, and that a map is
a positive flat fibration between positive flat fibrants if and only if it is a levelwise
blended fibration for levels n > 0 between positively flat fibrant objects. By [28,
3.2.1], an object X of SpΣ(C,K) is positively flat fibrant if and only if X is levelwise
blended fibrant for levels n > 0 and Xn → Hom(K,Xn+1) is a naive weak equivalence
for all n > 0 where Hom(K,−) is the right adjoint to K ⊗−. One notes that all
the conditions that must be checked, except for the last condition, are all levelwise.
Therefore, applying the arguments given in Lemma 5.1 and to levels n > 0 verifies the
necessary levelwise conditions. The remaining condition that Xn → Hom(K,Xn+1)
is a naive weak equivalence is unchanged between the flat model structure and the
positive flat model structure. This condition was also verified in Lemma 5.1. For the
L ⊣ ϕ∗N adjunction one can argue similarly, using [37, 4.4].

We now apply Theorem 6.3. For each of the categories of symmetric spectra, we
take C to be the version equipped with the positive flat model structure, and C̃ to be
equipped with the flat model structure. For the category of chain complexes, we take
C = C̃. In each case, cofibrant commutative algebras forget to flat cofibrant modules
by Corollary 4.11. Hypothesis 6.1 holds for the first and last adjunctions since they
are strong symmetric monoidal Quillen equivalences and therefore they give Quillen
equivalences on the commutative monoids by Theorem 6.3.
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For the L ⊣ ϕ∗N adjunction, we argue that condition (ii) in Lemma 6.2 holds.
We show that for a finite group G, if f : X → Y is an underlying cofibration in
G-SpΣ(sQ-mod)pf then f is a naive cofibration in G-SpΣ(sQ-mod)pf . A G-object X

in SpΣ(sQ-mod) consists of G× Σn-objects X(n) in sQ-mod with G× Σn-equivariant
structure maps. Similarly, a map ϕ : X → Y between objects in G-SpΣ(sQ-mod) con-
sists of a collection of G× Σn-equivariant maps ϕ(n) : X(n) → Y (n) making the evi-
dent diagrams commute.

Write U for the forgetful functor G-SpΣ(sQ-mod) → SpΣ(sQ-mod). Suppose that
f : X → Y is an underlying cofibration in G-SpΣ(sQ-mod)pf , i.e., Uf : UX → UY is
a positive flat cofibration, and suppose that p : A → B is a naive acyclic fibration in
G-SpΣ(sQ-mod)pf , i.e., Up is an acyclic positive flat fibration. Therefore Uf has the
left lifting property with respect to Up. It remains to argue that the lift θ : UY →
UA can be made into an equivariant map ϕ : Y → A. The lift θ : UY → UA is a
collection θ(n) : Y (n) → A(n) of Σn-equivariant maps. Since the maps are determined
levelwise, one can apply the averaging method as in the proof of Proposition 4.6 to
construct G× Σn-equivariant maps ϕ(n) : Y (n) → A(n) and it follows that ϕ is a
map in G-SpΣ(sQ-mod) which is also a lift. Therefore, f is a naive cofibration in
G-SpΣ(sQ-mod). Hence by Theorem 6.3, the middle Quillen equivalence also lifts to
the commutative monoids.

7. A symmetric monoidal equivalence for modules

In this section, we give a symmetric monoidal Quillen equivalence between the
categories of modules over a commutative HQ-algebra and a commutative DGA. We
note that this result has been assumed without proof in the literature; for more details
see the introduction. We firstly explain why this result is not an immediate corollary
of the zig-zag of Quillen equivalences ModHQ ≃Q ChQ.

Let F : C ⇄ D :G be a strong symmetric monoidal Quillen equivalence and suppose
that the unit objects of C andD are cofibrant. If S is a cofibrant monoid in C, Schwede-
Shipley [33, 3.12] show that F : ModS(C) ⇄ ModFS(D) :G is a Quillen equivalence.
Now suppose that S is a commutative monoid in C, which is not cofibrant as a monoid.
Since S is commutative, the category ModS(C) of modules is symmetric monoidal,
with tensor product defined by the coequalizer of the two maps

M ⊗S N = coeq(M ⊗ S ⊗N M ⊗N)

defined by the action of S on M and N .
However, a cofibrant replacement q : cS

∼
−→ S as a monoid will no longer be com-

mutative, and hence the zig-zag of Quillen equivalences

ModS(C) ModcS(C) ModFcS(D)
q∗

−⊗cSS F

G

cannot be symmetric monoidal. We explain how to rectify this.
Before we can prove the desired symmetric monoidal Quillen equivalence, we

require an abstract lemma about lifting symmetric monoidal Quillen equivalences to
the categories of modules. We note that this first statement is a counterpart to [33,
3.12(2)]. The proof is effectively the same.
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Lemma 7.1. Let

C D
F

G

be a strong symmetric monoidal Quillen equivalence and let S be a commutative
monoid in C. Suppose that C and D satisfy the monoid axiom. If F preserves all
weak equivalences and Quillen invariance holds in C and D, then

ModS ModFS

F

G

is a strong symmetric monoidal Quillen equivalence.

Proof. Let q : cS → S be a cofibrant replacement of S as a monoid in C. As F pre-
serves all weak equivalences Fq : FcS → FS is a weak equivalence. Consider the
diagram of left Quillen functors

ModS ModcS

ModFS ModFcS

F

S⊗cS−

F

FS⊗FcS−

which is commutative since F is strong monoidal. By [33, 3.12(1)] the right hand
vertical is a Quillen equivalence, and by Quillen invariance the horizontals are Quillen
equivalences. Hence by 2-out-of-3 the left vertical is a Quillen equivalence as required.
As a functor between the module categories, F is strong symmetric monoidal since
the tensor product in the module category ModS is defined by a coequalizer which F
preserves. Therefore

ModS ModFS

F

G

is a strong symmetric monoidal Quillen equivalence.

We recall from Shipley [37, 1.2] the zig-zag of natural weak equivalences between

Zc and α∗Q̃ where α is the ring map HQ → Q̃HQ induced by the unit of the monad
structure on Q̃. Let β : Q̃HQ → HQ be the ring map induced by the multiplication
map of the monad structure.

We have Zc = β∗Q̃c ∼= α∗β∗β∗Q̃c since βα = 1. There is then a natural map
α∗Q̃c → α∗β∗β∗Q̃c arising from the unit of the β∗ ⊣ β∗ adjunction. This is a weak
equivalence since Q̃ preserves cofibrant objects, the β∗ ⊣ β∗ adjunction is a Quillen
equivalence and α∗ preserves all weak equivalences. Finally, there is a natural map
α∗Q̃c → α∗Q̃ which is a weak equivalence as α∗ and Q̃ preserve all weak equivalences.
We can now apply the previous lemma to obtain the desired statement.

Theorem 7.2. Let A be a commutative HQ-algebra. There are zig-zags of weak sym-
metric monoidal Quillen equivalences

ModstableA ≃Q ModΘA and ModflatA ≃Q ModΘA

where ΘA = Dϕ∗Nα∗Q̃A is a commutative DGA.
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Proof. The proof for each part of the theorem follows the same method. Namely, we
apply [33, 3.12(2)] together with Lemma 7.1 to the underlying Quillen equivalences
given by Shipley [37] in the stable case, and given by Theorem 1.1 in the flat case.
Since the weak equivalences in both the stable model structure and the flat model
structures are the same, the following proof applies in both cases.

The first step is the adjunction

ModA(ModHQ) Mod
Q̃A

(
Mod

Q̃HQ

)
.

Q̃

U

Since Q̃ preserves all weak equivalences, this is a strong symmetric monoidal Quillen
equivalence by Lemma 7.1.

Recall that there is a ring map α : HQ → Q̃HQ. Since α∗ is lax symmetric monoidal
it gives rise to a functor

Mod
Q̃A

(
Mod

Q̃HQ

)
α∗

−−→ Modα∗Q̃A(Sp
Σ(sQ-mod)).

It follows from [33, §3.3] that the left adjoint to α∗ at the level of modules, is given by

αQ̃A
∗ (M) = Q̃A⊗α∗α∗Q̃A α∗M . We claim that αQ̃A

∗ is strong monoidal. As α∗ preserves
colimits and is strong monoidal, we have

α∗(M ⊗α∗Q̃A N) = α∗coeq(M ⊗ α∗Q̃A⊗N ⇒ M ⊗N)

∼= coeq(α∗M ⊗ α∗α
∗Q̃A⊗ α∗N ⇒ α∗M ⊗ α∗N)

= α∗M ⊗α∗α∗Q̃A α∗N.

From this, one sees that

αQ̃A
∗ (M ⊗α∗Q̃A N) ∼= αQ̃A

∗ (M)⊗
Q̃A αQ̃A

∗ (N)

and hence αQ̃A
∗ is strong symmetric monoidal. Since α∗ preserves all weak equiva-

lences, it follows from [33, 3.12(2)] that

Mod
Q̃A

(
Mod

Q̃HQ

)
Modα∗Q̃A(Sp

Σ(sQ-mod))
α∗

αQ̃A
∗

is a strong symmetric monoidal Quillen equivalence.

The next step is the passage along the Dold-Kan type equivalence. Recall that
applying the normalization functor levelwise gives a lax monoidal functor

SpΣ(sQ-mod) → ModN
(
(Ch+Q )

Σ
)

where N = N(Sym(Q̃S1)), and that there is a ring map ϕ : Sym(Q[1]) → N . The
composite ϕ∗N : SpΣ(sQ-mod) → SpΣ(Ch+Q ) is lax monoidal.

Let S be a commutative monoid in SpΣ(sQ-mod). We now show that the induced
functor

ϕ∗N : ModS(Sp
Σ(sQ-mod)) → Modϕ∗NS(Sp

Σ(Ch+Q ))

on the categories of modules is lax symmetric monoidal. Recall that colimits in cat-
egories of modules are calculated in the underlying category of symmetric spectra
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where they are computed levelwise. Therefore, N preserves colimits as it is an equiv-
alence of categories sQ-mod → Ch+Q . The restriction of scalars ϕ∗ also preserves col-
imits since it is left adjoint to the coextension of scalars functor. Therefore we have
the following map

ϕ∗NA⊗ϕ∗NS ϕ∗NB = coeq(ϕ∗NA⊗ ϕ∗NS ⊗ ϕ∗NB ⇒ ϕ∗NA⊗ ϕ∗NB)

→ coeq(ϕ∗N(A⊗ S ⊗B) ⇒ ϕ∗N(A⊗B))
∼= ϕ∗N(coeq(A⊗ S ⊗B ⇒ A⊗B))

= ϕ∗N(A⊗S B)

giving ϕ∗N a lax symmetric monoidal structure as a functor between the categories of
modules. We now must show that LS ⊣ ϕ∗N is a weak monoidal Quillen pair, where
LS denotes the left adjoint of ϕ∗N . We use the criteria [33, 3.17]. Since the monoidal
unit ϕ∗NS is cofibrant in Modϕ∗NS the first condition is that LSϕ∗NS → S is a
weak equivalence. Since ϕ∗N preserves all weak equivalences [37, 4.4] and ϕ∗NS is
cofibrant, this map is the derived counit of the Quillen equivalence LS ⊣ ϕ∗N and as
such is a weak equivalence. The second condition holds since ϕ∗NS is a generator for
the homotopy category of Modϕ∗NS .

By taking S = α∗Q̃A in the previous discussion, the adjunction

Modα∗Q̃A(Sp
Σ(sQ-mod)) Modϕ∗Nα∗Q̃A(Sp

Σ(Ch+Q ))
ϕ∗N

Lα∗Q̃A

is a weak symmetric monoidal Quillen adjunction. Since ϕ∗N preserves all weak
equivalences [37, 4.4], it follows from [33, 3.12(2)] that this is, moreover, a weak
symmetric monoidal Quillen equivalence.

The final step in the zig-zag is the adjunction

Modϕ∗Nα∗Q̃A(Sp
Σ(Ch+Q )) ModΘA(ChQ)

D

R

which is a strong symmetric monoidal Quillen equivalence by Lemma 7.1, since D
preserves all weak equivalences rationally [37, 4.8].
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näıve-commutative ring SO(2)-spectra and equivariant elliptic cohomology. To
appear in Math. Z. https://doi.org/10.1007/s00209-020-02554-0.

[4] D. Barnes, J.P.C. Greenlees, and M. Ke֒dziorek. An algebraic model for rational
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