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TRUNCATED DERIVED FUNCTORS AND
SPECTRAL SEQUENCES

HANS-JOACHIM BAUES†, DAVID BLANC and BORIS CHORNY

(communicated by Daniel Isaksen)

Abstract
The E2-term of the Adams spectral sequence may be iden-

tified with certain derived functors, and this also holds for a
number of other spectral sequences. Our goal is to show how
the higher terms of such spectral sequences are determined by
truncations of relative derived functors, defined in terms of cer-
tain simplicial functors called mapping algebras.

1. Introduction

The various types of Adams spectral sequences, which play a central role in alge-
braic topology (cf. [A, BCM, BC, BK1, BK2, N, R]), have a number of features
in common:

(i) They are obtained from a space Y by constructing a (cosimplicial) resolution
Y → W• with respect to a spectrum A = {Ai}∞i=−∞, with its associated coho-
mology theory A∗.

(ii) The spectral sequence in question is the homotopy spectral sequence for TW•,
for a suitable homotopy functor T.

(iii) The E2-term of the spectral sequence can be identified as the derived functors
of an algebraic functor T associated to T, applied to A∗Y.

The goal of this paper is to provide a description similar to (iii) for the En+2-term of
the spectral sequence (for n � 0), as relative derived functors applied to the truncation
PnMAY of a certain structure, called a mapping algebra, associated to Y (which
reduces to A∗Y when n = 0).

Just as for the E2-term, this has two advantages:

(a) The truncated mapping algebra PnMAY has less information than Y itself,
but still enough to determine the En+2-term.

(b) Relative derived functors may be calculated using any resolution of PnMAY.

The first author carried out this program for the E3-term of the stable Adams
spectral sequence in [Bau, BJ2], showing that extended calculations may be made
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using such a construction. See [BB3, CF] for other general descriptions of the higher
terms in the stable Adams spectral sequence, although those are not given in the form
of truncated derived functors as defined here, and thus do not have the calculational
flexibility in terms of varying resolutions (as shown in [Bau] for n = 1).

1.1. Mapping algebras and truncations
By (iii) above, the E2-term of the Adams spectral sequence depends only on the

sets [Y, Ai]i∈Z and operations on them induced by homotopy classes of maps between
(products of) the spaces Ai. This suggests that for the higher terms, we should look at
the function spaces map∗(Y, Ai), with additional structure induced by maps between
the representing spaces. This structure is encoded by the notion of a mapping algebra:
that is, a simplicial functor X : ΘA → S∗ from the sub-simplicial category ΘA of Top0
whose objects are products of copies of the various spaces Ai, to the category S∗ of
pointed simplicial sets. For example, the realizable mapping algebra X := MAY has
the value map(Y,A) at each A ∈ ΘA.

Mapping algebras admit truncations, defined by applying the Postnikov section
functor Pn to each mapping space. In particular, the 0-truncation contains the same
information as the sets [Y, Ai]i∈Z of homotopy classes of maps, together with the
operations on them induced by homotopy classes of maps between the spaces Ai: this
is precisely what was needed to determine the E2-term as suitable derived functors
in (iii) above.

This leads to the idea that higher truncations of the mapping algebras may suffice
to determine higher terms in the spectral sequence – depending, of course, on the
homotopy functor T in question.

We may therefore summarize our program as follows:

(1) We need to show how a continuous functor T : Top∗ → Top∗ factors through the
category MapA of mapping algebras as T ◦MA, for a suitable homotopy functor
T : MapA → Top∗.

(2) We want W• := MAW• to be a resolution of MAY in the resolution model
category of simplicial mapping algebras, in order to guarantee that both the
(functorial) cosimplicial resolutionW• ofY, and the resulting cosimplicial space
TW•, are homotopy functors of MAY. This will let us identify TW• as a
certain relative left derived functor (LrelT)MAY = TW• of T applied to the
mapping algebra MAY (see �5.1).

(3) Finally, we must show that in the cases of interest to us, the Er-term of the
homotopy spectral sequence forTW• = (LT)MAY depends only on the n-trun-
cation P r+2W•, for each r � 2. Functors T with this property are called level.

Remark 1.1. There are also a number of less familiar spectral sequences obtained
dually by constructing a simplicial resolution X• → Y with respect to B = {Si}∞i=1,
applying a homotopy functorT: C →C, and then using the homotopy spectral sequence
for the simplicial space TX• (see [Sto, Bl1, DKSS]). Here too, one can identify the
E2-term with the derived functors of an algebraic functor of π∗Y (the algebraic
object corepresented by B). We include these in the paper mainly in order to show
that the formalism we describe here is not limited to the Adams spectral sequence,
even though this is our most important example. Moreover, in a number of ways the
simplicial-covariant version is cleaner than the cosimplicial-contravariant one.
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However, since Eckmann–Hilton duality is not formal, we are forced to work care-
fully through the details in the two versions separately: for this reason, each section
is divided into two parts, starting with the covariant case.

For reasons of space, we deal here only with the unstable spectral sequences. For
the stable analogue, we must choose a simplicial model category of spectra (cf. [BF,
EKMM, HSS, L]) and work there throughout; one can still take Postnikov n-
sections of the mapping spaces map∗(B, X•).

1.2. Outline
In Section 2 we define enriched sketches and the associated mapping algebras

(with their dual versions). It turns out that we have competing versions of mapping
algebras: the category sMapSt,Rre , which allows us to factor T as T ◦MA in �1.1(1),

is not right proper, so we need a variant SΘA

∗ in which W• := MAW• is indeed a

cofibrant replacement for MAY in the resolution model category SΘA×Δop

∗ .
In Section 3 we describe a category sMapSt of B-mapping algebras (when B is the

sphere spectrum – cf. Remark 1.1), with a realization functor N : sMapSt → Top∗
(see Theorem 3.10 and Corollary 3.11).

In Section 4 we construct the analogous category sMapSt,Rre of dual mapping alge-
bras, for A the Eilenberg–Mac Lane spectrum for a commutative ring R, and show:

Theorem A. There is a realization functor N : (sMapSt,Rre )op → S∗, equipped with a
natural weak equivalence MA ◦N → Id.

See Theorem 4.7 and Corollary 4.8 below.
Thus any homotopy functor T : Top∗ → Top∗ which preserves R-equivalences,

when restricted to R-good spaces, induces a functor T := T ◦N : (sMapSt,Rre )op →
Top∗ equipped with a natural weak equivalence T ◦MSt,R → T.

In Section 5 we define the general notion of a relative derived functor (�5.1),
and show how it applies to the functor T : (sMapSt,Rre )op → Top∗ associated to the
homotopy functor T : Top∗ → Top∗. The dual notion is treated in Section 6.

In order to do so, we have to relate the two types of mapping algebras described
in Section 2 – those that are used for resolutions, and those for which T is defined
– by means of Theorem 6.4, which implies:

Theorem B. If Y is R-good, any simplicial resolution V• of MSt,RY in the res-

olution model category SΘA×Δop

∗ is Reedy weakly equivalent (i.e., in each simplicial
dimension) to a simplicial object W• in (sMapSt,Rre )Δ

op

.

The dual version, for the sphere spectrum, is Theorem 5.8.
Finally, in Section 7 we deal with the truncated versions of our higher derived

functors, and explain what data is needed to determine the Er-term of the homo-
topy spectral sequence of a (co)simplicial space by formalizing the notion of a level
functor (Definition 7.2), with the dual version described in Section 8. We then show

Theorem C. For R = Fp or Q, Z ∈ S∗, and R-good Y, the unstable Adams spectral
sequence for map∗(Z,Y) is determined by a simplicial mapping algebra resolution
W• of MSt,RY, and for each r � 2 the Er-term is determined by the corresponding
(r − 2)-truncated mapping algebras.

See Theorem 8.2.
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This implies that the mapping space functor map∗(Z,−) is a level homotopy func-
tor on R-good spaces. We also prove a number of similar results for functors related
to the sphere spectrum (see Propositions 7.8, 7.9, and 7.10).

1.3. Notation
The category of finite ordered sets and order-preserving maps will be denoted by Δ

(cf. [Ma2, �2]), so a simplicial object G• in C is a functor Δop → C, and the category
of such will be denoted by CΔop

. Similarly, a cosimplicial object G• in a category
C is a functor Δ → C, and the category of such will be denoted by CΔ. There is a
natural embedding c(−)• : C → CΔop

(the constant simplicial object), and similarly
c(−)• : C → CΔ.

Write Δ+ for the subcategory of Δ with the same objects but only monic maps.
A functor G : Δop

+ → C (respectively, G : Δ+ → C) is called a restricted (co)simplicial

object in C. The inclusion i : Δ+ ↪→ Δ induces a forgetful functor i∗ : CΔop → CΔop
+ ,

which has a left adjoint L : CΔop
+ → CΔop

(for suitable C).
The category of topological spaces will be denoted by Top, that of pointed spaces

by Top∗, and that of pointed connected spaces by Top0. The category of simplicial

sets will be denoted by S = SetΔ
op

, that of pointed simplicial sets by S∗ = SetΔ
op

∗ ,

that of simplicial groups by G = GpΔ
op

. Write map∗(X,Y) for the standard function
complex in S∗, Top0, or G (see [GJ, I, �1.5]). Note that both Top0 and S∗ are enriched
over (S∗,∧), but if we forget the basepoints, the same mapping spaces mapS∗(X,Y )
or mapTop0

(X,Y ) also define an enrichment over (S,×), which is the one we shall

use (see [H, 9.1.14]).
We denote the category of pointed Kan complexes by SKan, that of reduced simpli-

cial sets (with a single vertex) by Sred, and the full subcategory of n-types in S∗ – i.e.,
spaces X with πi(X,x) = 0 for i > n and all x ∈ X0 – by S[n], with Pn : S∗ → S[n]

the n-th Postnikov section functor.
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2. Enriched sketches and mapping algebras

The main technical tool in our approach is the notion of a mapping algebra, first
introduced in [BB2, �8]. We shall need a number of variants of this notion.

Definition 2.1. Let C be a pointed simplicial model category, B a set of fibrant and
cofibrant homotopy cogroup objects in C, F a category of finite simplicial sets, and E
a set of cocones in C. The associated enriched sketch, or multi-sorted theory (cf. [Bor,
�5.6]) ΘB = Θ(B,F,E) is the smallest full sub-simplicial category of C containing B

and closed under the operations −⊗K for K ∈ F and taking colimits of the cocones
in E . In this setting:
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(1) A B-presheaf is a pointed simplicial functor X : Θop
B → S∗. The category of all

B-presheaves is denoted by SΘop
B∗ , and the value of X at B ∈ ΘB will be written

X{B}.
A map f : X → Y of B-presheaves is called a weak equivalence if f{B} : X{B} →
Y{B} is a weak equivalence for each B ∈ ΘB. Two B-presheaves are said to be
weakly equivalent if they are connected by a finite zigzag of weak equivalences.

(2) A weak B-mapping algebra is a B-presheaf X for which the natural maps

X{B⊗K} → X{B}K and X{colimi∈I Bi} → lim
i∈I

X{Bi} (2.2)

are isomorphisms for all B ∈ ΘB, K ∈ F , and diagrams I in E . The full sub-
category of strict B-mapping algebras will be denoted by sMapB.

(3) A weak B-mapping algebra is a B-presheaf X which is weakly equivalent to
a strict B-mapping algebra. Thus in particular, the maps of (2.2) are weak
equivalences. The full subcategory of weak B-mapping algebras will be denoted
by wMapB.

Remark 2.3. In principle, we would like to identify a weak B-mapping algebra more
conceptually as a B-presheaf for which not only the maps of (2.2) are weak equiva-
lences, but also appropriate higher coherences hold. However, as we shall not, in fact,
need to work explicitly with weak B-mapping algebras, we can make do here with
the above ad hoc definition.

Example 2.4. The main example of an enriched sketch we shall consider in this
paper is the case where C = Top0, B = {Sn}∞n=1 and F consists of the inclusions
i0, i1 : Δ[0] ↪→ Δ[1]. The cocone collection E contains all coproducts of cardinality
< λ for some fixed limit cardinal λ (e.g., ℵ0), and the pushout squares

B

PO

� � ��

�
����

B⊗Δ[1]

� inc0
����

B

PO

� � ��

����

CB

inc1
����

∗ � � �� CB ∗ � � �� ΣA

(2.5)

for B ∈ ΘB. (These will be our models for the cone CX and suspension ΣX of any
X ∈ C).

Thus a strict B-mapping algebra X will take the two squares of (2.5) to pullback
squares:

PX{B}
PB

� � ��

�
����

X{B}Δ[1]

�ev0

����

ΩX{B}
PB

� � ιB ��

����

PX{B}
ev1

����
∗ � � �� X{B} ∗ � � �� X{B}

(2.6)

One might also consider localized versions, where B = {Sn
R}∞n=1 for some subring

R ⊆ Q (cf. [Bi]). In particular, when R = Q we may replace C = Top0 by a suitable
algebraic model of rational homotopy types, such as the category of differential graded
Lie algebras.

More generally, one could take any space M ∈ Top0, and let B = {ΣnM}∞n=1.
However, while the formal part of our program can be made to work in this case
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(see [BBD]), the application to the homotopy spectral sequence of a simplicial space
is not available for M which is not essentially a sphere (see [CDI] and [Bl2, �4.6]).

Definition 2.7. For any enriched sketch ΘB as above, the most important example
of a B-presheaf X is a realizable one, associated to an object Y ∈ C, where X{B} :=
mapC(B,Y) for any B ∈ ΘB. Evidently, this will be a strict B-mapping algebra,
which we denote by MBY (of course, it actually takes all colimits in ΘB to the
corresponding limits). When Y ∈ ObjΘB, we say that MBY is free.

The strong Yoneda Lemma for enriched categories (see [K, 2.4]) implies:

Lemma 2.8. If Y is a B-presheaf and MBB is a free strict B-mapping algebra (for
B ∈ ΘB), there is a natural isomorphism

Φ: map
SΘ

op
B∗
(MBB, Y)

∼=−→ Y{B},

with Φ(f)= f(IdB) ∈ Y{B}0 for any f ∈ Hom
SΘ

op
B∗
(MBB, Y)= map

SΘ
op
B∗
(MBB, Y)0.

Remark 2.9. It is sometimes convenient think of a B-presheaf X as a category X with
object set O := Obj(ΘB) ∪ {�}, enriched in pointed simplicial sets as follows:

mapX (A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mapΘB
(A,B) if A,B ∈ Obj(ΘB),

X{A} if A ∈ Obj(ΘB) and B = �,

c({∗, Id�})• if A = B = �,
c({∗})• otherwise.

(2.10)

Thus a realizable B-presheaf X = MBY corresponds to a sub-simplicial category X
of C with object set Obj(ΘB) ∪ {Y} (compare [BB2, �8.1]).

Definition 2.11. An enriched sketch ΘB in a model category C has an algebraic
version, which is the (ordinary) sketch ΘB := π0ΘB – that is, ΘB has the same
objects as ΘB, and HomΘB

(B,B′) := π0 mapΘB
(B,B′). An algebra (or model) for

ΘB is a functor Λ: Θop
B → Set which takes the coproduct of any discrete cocone in E

to a product in Set (see [Bor, �5.6]).
These are called ΠB-algebras, and the category of such is denoted by ΠB-Alg: for

B = {Sn}∞n=1, these are simply the Π-algebras of [DK2]. Note that if X is a (weak
or strict) B-mapping algebra, then π0X is a ΠB-algebra; the same need not hold
for an arbitrary B-presheaf. We say that a ΠB-algebra Λ is realizable if it is of the
form π0MBY for some Y ∈ C. A coproduct of ΠB-algebras of the form π0MBB for
B ∈ ObjΘB is called free.

There are dual versions of all three notions discussed in Section 2, defined as
follows:

Definition 2.12. Let C be a pointed simplicial model category, A a set of fibrant and
cofibrant homotopy group objects in C, F a category of finite simplicial sets, and L a
set of cones in C. The associated dual enriched sketch ΘA = Θ(A,K,L) is the smallest
full sub-simplicial category of C containing A and closed under the operations (−)K

for K ∈ F and taking limits of the cones in L. In this setting:
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(1) An A-dual presheaf is a pointed simplicial functor X : ΘA → S∗. The category

of A-dual presheaves is denoted by SΘA

∗ , and the value of X at A ∈ ΘA will
again be written X{A}.

(2) A dual strict A-mapping algebra is a A-dual presheaf X for which the natural
maps

X{AK} → X{A}K and X{lim
i∈I

Ai} → lim
i∈I

X{Ai} (2.13)

are isomorphisms for all A,Ai ∈ ΘA, K ∈ F , and diagrams I in L. The sub-
category of dual strict A-mapping algebras will be denoted by sMapA.

(3) A dual weak A-mapping algebra is a A-dual presheaf X which is weakly equiv-
alent to a dual strict A-mapping algebra, so in particular, the maps of (2.13)
are weak equivalences (see Remark 2.3 above). The subcategory of dual weak
A-mapping algebras will be denoted by wMapA.

Example 2.14. The main example of an enriched dual sketch we consider here is the
Ω-spectrum case, where C = S∗ and A = {An}∞n=−∞ are the spaces of an Ω-spectrum
A (in the sense of [BF]). The category F then consists of the inclusions i0, i1 : Δ[0] ↪→
Δ[1], and the cone collection L contains all products of cardinality < λ for some fixed
limit cardinal λ and the pullback squares

PA
PB

� � ��

�
����

AΔ[1]

�ev0

����

ΩA
PB

� � ιA ��

����

PA
ev1

����
∗ � � �� A ∗ � � �� A

(2.15)

for any A ∈ ΘA. Thus a dual strict A-mapping algebra X will take the two pullback
squares of (2.15) to those of (2.6).

More generally, one might take any set of Ω-spectra – in particular, the set of all
A-module spectra of bounded cardinality, for a fixed ring spectrum A.

Definition 2.16. For any dual enriched sketch ΘA, the realizable dual strict A-
mapping algebra X associated to Y ∈ C has X{A} := mapC(Y,A) for each A ∈ ΘB.
We will denote it by MAY. When Y ∈ ObjΘA, we again say that MAY is free.

The analogue of Lemma 2.8 also holds:

Lemma 2.17 (cf. [BS2, Lemma 1.12]). If Y is an A-dual presheaf and MAA is a
free dual strict A-mapping algebra (for A ∈ ΘA), there is a natural isomorphism

Φ: mapSΘA
∗

(MAA,Y)
∼=−→ Y{A},

with Φ(f) = f(IdA) ∈ Y{A}0 for any f ∈ HomSΘA
∗

(MAA,Y).

Definition 2.18. As in Definition 2.11, given a dual enriched sketch ΘA, the corre-
sponding “algebraic” sketch ΘA := π0Θ

A, whose models are now functors Λ: ΘA →
Set preserving all products among the cones listed in E . These will be called ΠA-
algebras, and their category will be denoted by ΠA-Alg. Again, if X is a (weak or
strict) mapping algebra, then π0X is a ΠA-algebra. A ΠA-algebrais realizable if it is
isomorphic to π0M

AY for some Y ∈ C, and it is free if it is of the form π0M
AA for

A ∈ ObjΘA.
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Example 2.19. When A = {K(Fp, i)}∞i=1 and λ = ℵ0, Θ
A is the simplicial category of

finite type Fp-GEMs, and a ΠA-algebrais simply an unstable algebra over the mod p
Steenrod algebra (cf. [Sc]).

2.1. Model categories of mapping algebras

Like all categories of simplicial functors with small indexing category, the (dual)

presheaf categories SΘop
B∗ and SΘA

∗ have proper simplicial model category structures
(see [H, 13.1.14]), in which the fibrations and weak equivalences are defined objectwise
(see [DK1, �1]). Thus a map f : X → Y of B-presheaves is a weak equivalence if for
every B ∈ B, f∗ : X{B} → Y{B} is a weak equivalence in C (as in Definition 2.1).

By a suitable left Bousfield localization of SΘop
B∗ and SΘA

∗ we can obtain model
categories for weak B-mapping algebras and dual weak A-mapping algebras (i.e.,
model structures on the (dual) presheaf category in which the latter are the fibrant
objects). However, since we cannot guarantee that these localized model structures
are right proper (cf. [H, 3.4.4]), they will not be used in this paper.

Remark 2.20. Note that since we assumed the objects of ΘB are cofibrant, when Y
is fibrant the realizable B-presheaf MBY will be fibrant (that is, MBY{B} is a Kan
complex for each B ∈ ΘB). Similarly, for A-dual presheaves, MAY is fibrant if Y is
cofibrant in C.

2.2. Model categories of simplicial Π-algebras

Because both ΠB-algebras (Definition 2.11) and ΠA-algebras (Definition 2.18) are
universal algebras in the sense of [Mc, VI, �8] having an underlying graded group

structure, there is a model category structure on both the category ΠB-Alg
Δop

of sim-
plicial ΠB-algebras and the category ΠA-AlgΔ

op

of simplicial ΠA-algebras. In both
cases a map f : U• → V• of simplicial Π-algebras is a weak equivalence (respectively,
fibration) if and only if the map f∗ : U•{B} → W•{B} is a weak equivalence (respec-
tively, fibration) of simplicial groups for each B ∈ ObjΘ. The cofibrant objects are
retracts of free simplicial objects.

2.3. Truncating mapping algebras

Fix n � 0. Given a B-presheaf X : Θop
B → S∗, we may post-compose X with the n-

th Postnikov section functor Pn : S∗ → S[n] to obtain a new B-presheaf PnX, which
we now think of as a continuous functor on PnΘB – that is, the sketch enriched in
S[n] obtained from ΘB by applying Pn to each mapping space.

This is simplest to describe when X is fibrant (cf. Remark 2.20), since then we can
use the (n+ 1)-coskeleton functor cskn+1 : S∗ → S∗ (which strictly preserves prod-
ucts) as our model for Pn. Note that the mapping spaces of ΘB are always fibrant,
since we assumed that all its objects are both fibrant and cofibrant. In the general
case, we must first apply a fibrant replacement functor to X in the model category

SΘop
B∗ of �2.1.

The category of n-truncated B-presheaves will be denoted by SΘop
B

[n] ⊂ SΘop
B∗ , with

the truncation functor γ[n] : S
Θop

B∗ → SΘop
B

[n] .
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If X is a (strict or weak) B-mapping algebra, this usually will not be true of PnX,
since in general

Pn map(ΣB,Y) � PnΩmap(B,Y) 
� Pn−1Ωmap(B,Y) � ΩPn map(B,Y).
(2.21)

Thus we must modify Definition 2.1 as follows, assuming for simplicity that the
category F consists as above of the inclusions i0, i1 : Δ[0] ↪→ Δ[1], and the cocone
collection E contains all coproducts of cardinality < λ for some fixed limit cardinal
λ, and the pushout squares (2.5):

(1) An n-truncated strict B-mapping algebra is an n-truncated B-presheaf X for
which the natural maps of (2.2) are isomorphisms for all B ∈ ΘB, K ∈ F , and
diagrams I in E , except for the right hand square in (2.6), where we have instead:

X{ΣB} −→ Pn−1X{ΣB} ∼=−−→ Pn−1ΩX{B} ∼=←−− ΩX{B}, (2.22)

where the first and last maps are the standard fibrations, the middle map is the
natural map of (2.2), and ΩX{B} is an (n− 1)-type by assumption, with the
last map an isomorphism.
The full subcategory of n-truncated strict B-mapping algebras will be denoted
by sMapnB.

(2) An n-truncated weak B-mapping algebra is an n-truncated B-presheaf X weakly
equivalent to an n-truncated strict B-mapping algebra. This implies that the
maps of (2.2), and the two right maps in (2.22), are weak equivalences (see
Remark 2.3). The full subcategory of n-truncated weak B-mapping algebras
will be denoted by wMapnB.

In particular, for any Y ∈ C we have the associated realizable n-truncated strict B-
mapping algebra PnMBY, which is free if Y ∈ ΘB, and the analogue of Lemma 2.8
still holds. We define the n-truncated versions of A-dual presheaves and (strict or
weak) dual A-mapping algebras dually.

3. Factoring functors through mapping algebras

The first step in our program is to show that suitable homotopy functors T : C → D
factor up to weak equivalence through an appropriate category of mapping algebras:

in other words, find an enriched sketch ΘB and a functor T : SΘop
B∗ → D, equipped

with a natural weak equivalence T ◦MB → T. In fact, T need not be defined on all

of SΘop
B∗ ; it suffices if it is defined on the subcategory sMapB of strict B-mapping

algebras where MB takes values.

Dually, we could try to find a dual enriched sketchΘA and a functor T′ : sMapA→D
with a natural weak equivalence T → T′ ◦MA.

The simplest way to define such a functor T is in the case where every strict B-
mapping algebra X is (functorially) realizable. Essentially, the only case where this
is known to be true is when C = Top0 and B = {Sn}∞n=1. We briefly summarize the
construction of [BB2, �9] (based on that of [Sto, �2]):
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3.1. The Stover construction
Recall that for a pointed Kan complex K ∈ S∗, the path space PK is given by

(PK)n := {x ∈ Kn+1 : d1 · · · dn+1x = ∗}, with re-indexed face and degeneracy maps,
and the universal fibration p : PK → K is induced by d0 (cf. [Mo]). Thus when K
is a simplicial group, the map on 0-simplices p0 : (PK)0 → K0 suffices to compute

π0K. We therefore choose the category G = GpΔ
op

of simplicial groups as our model C
for the homotopy theory of pointed connected spaces, and set B := {Sn}∞n=1 (where
Sn := FSn−1, as a free simplicial group, is a strict cogroup object modelling the
n-sphere in G). For any limit cardinal λ, the resulting enriched sketch ΘB = Θλ

B

then has a strict mapping algebra functor MB : G → sMapB with each MBY{B} a
simplicial group (though the structure maps are just maps of pointed simplicial sets,
in general).

Definition 3.1. Let Γ := 1N be the category consisting of a countable collection of
arrows, indexed by the objects of B, and SetΓ∗ the category of Γ-indexed diagrams
Φ := (φn : En → Fn)n∈N in pointed sets, called arrow sets. We have a forgetful functor
ρ : sMapB → SetΓ∗ , with (ρX)n = (p0 : (PX{Sn})0 → (X{Sn})0). In fact, ρX is defined
for any presheaf X : Θop

B → S∗, but we are only interested in the composite RB :=

ρMB : G → SetΓ∗ . This has a left adjoint LB : SetΓ∗ → G, which assigns to an arrow set
Φ = (φn : En → Fn)n∈N the coproduct

LBΦ :=
∐
n∈N

∐
f∈Fn

Q(f), (3.2)

where we define Q(f) for f ∈ Fn as follows:

(a) If ∗ 
= f ∈ Im φn, then Q(f) is defined by the pushout square

∐
e∈φ−1

n (f) Sn(e)
∐

i(e)
��

∇ �� Sn(f)

��∐
e∈φ−1

n (f) CSn(e)
�� Q(f)

(3.3)

in G (where i : Sn → CSn is the inclusion into the cone, and ∇ is the fold map).

(b) If f 
∈ Im φn, we set Q(f) := Sn.

(c) If f = ∗, we set

Q(f) :=
∐

∗	=e∈φ−1
n (∗)

ΣSn(e).

Compare [BS2, �2] and [Sto, �2], where the comonad VB = LBRB : G → G (or rather,
its analogue for Top0) was used to construct functorial resolutions of pointed con-
nected spaces by wedges of spheres.

Note that each Q(f), and thus LBΦ, is a strict cogroup object in G (fibrant and
cofibrant) of the homotopy type of a wedge of spheres. If λ is any limit cardinal, we
define a λ-Stover space to be any pushout of the form (3.3), with φ−1

n (f) replaced by
any set T of cardinality < λ. Let ΘSt = Θλ

St denote a skeleton of the sub-simplicial
category of G whose objects are coproducts of λ-Stover spaces over indexing sets of
cardinality < λ. This is an enriched sketch, with F as in Example 2.4, and E consisting
of the coproducts of cardinality < λ inΘSt, together with the pushout squares of (2.5)
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and (3.3). The category of the corresponding strict mapping algebras, called strict
Stover mapping algebras, will be denoted by sMapSt, with MSt : G → sMapSt the strict
Stover mapping algebra functor.

3.2. The algebra structure
Since each sphere Sn ∈ G is, in particular, a Stover space, ΘB = Θλ

B is a full
simplicial subcategory of ΘSt = Θλ

St, with ι : ΘB ↪→ ΘSt the inclusion, inducing the

restriction ι∗ : sMapSt → sMapB. Write ρ̂ : sMapSt → SetΓ∗ for the composite ρ ◦ ι∗.
We claim that for every strict Stover mapping algebra X, the arrow set ρX has a

natural TB-algebra structure map h : TBρX→ ρX for the monad TB =RBLB : SetΓ∗ →
SetΓ∗ (see [Bor, �4.1]). If we set K := LB ◦ ρ̂ : sMapSt → G and VB := MSt ◦ K, we may
display the various functors defined in the following commuting diagram:

sMapSt

ι∗ ����
���

���
��

VB=MStK

��

ρ̂

��
K

��G

MSt

������������������������������� MB ��

RB

		

sMapB
ρ



���
���

���
�

SetΓ∗

LB

��������������������������������

TB=RBLB

��

(3.4)

In this setting we have a stronger statement (cf. [BB2, 9.19]):

Lemma 3.5. Every strict Stover mapping algebra X has a natural map ξX : VBX → X
making the following diagram

VBVBX
ξVBX ��

VBξX

��

VBX

ξX

��
VBX

ξX

�� X

(3.6)

commute in sMapSt, where ξVBX = MStεKX for ε : KMSt → Id the counit of the
comonad LBRB.

The structure map h : TBρ̂X → ρ̂X is then given by ρ̂(ξX), since TB ◦ ρ̂ = ρ̂ ◦ VB

(see (3.4)).

Proof. Let Di denote either Sni or CSni in G.
(a) Recall that KX is defined for any strict Stover mapping algebra X by the

colimit (3.3), which we may write as colimi Di
fi
, where fi ∈ X{Di}0. Since

KX ∈ ΘSt, the strict Stover mapping algebra VBX is free, so to define the alge-
bra structure map ξX : VBX → X we need only specify ξX(IdKX) ∈ X{KX}0. But
X takes the colimit of (3.3) to a limit, so ξX(IdKX) is determined by the elements
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fi ∈ X{Di}0. We therefore write ξX(IdKX) =
⊕

i fi, where ⊕ indicates that we
are using the duality (2.2) between the colimits and the limits.

(b) Similarly, for any Y ∈G we haveKMStY =colimjDj
gj . The counit εY : KMStY →

Y is again determined by the indexing maps as εY = colimj gj , with the induced
map MStεY : VMStY → MStY sending IdKMStY in MStKMStY {KMStY }0 to
[colimj gj ] in MStY {KMStY }0.
Thus when X = MStY , the map ξX sends IdKMStY to εY = colimj gj in
X{KMStY }0 = map(KMStY, Y )0. This means that ξMStY = MStεY ; in partic-
ular, the top horizontal map in (3.6) is ξVBX.

(c) To evaluate the top right composite ϕ := ξX ◦MStεKX : VBVBX → X, note that
VBVBX is free on KVBX, so we need only specify ϕ(IdKVBX) in X{KVBX}.
Since ξX is a map of strict Stover mapping algebras, it sends [colimj gj ] ∈
VBX{KVBX}0 (for Y := KX in (b) above) to

[⊥jgj ]
∗(ξX(IdKX)) = �j g

∗
j (
⊕
i

fi) in X{KVBX}0. (3.7)

(d) Since VBVBX is free, the map VBξX : VBVBX → VBX is determined by where it
sends IdKVBX in VBX{KVBX}0 = map(KVBX, KX)0, namely, to KξX : KVBX→
KX. Since KVBX = colimj Dj

gj where the colimit is over all maps gj : Dj → KX,
we see from the description of ξX above (and the construction of K) that KξX
sends Dj

gj to the copy of Dj in the colimit defining KX indexed by

ξX(gj) = ξX(g
∗
j (IdKX)) = g∗j (ξX(IdKX)) = g∗j (

⊕
i

fi) (3.8)

in X{Dj}0, where ξX(IdKX) =
⊕

i fi by (a).
Thus the element ξX(VBξX(IdKVBX)) in X{KVBX}0 is determined by the fact
that X takes the colimit colimj Dj

gj defining KVBX to a limit, namely:

ξX(VBξX(IdKVBX)) = ξX(KξX) = ξX(⊥jgj) = �jξX(gj) = �jg
∗
j (
⊕
i

fi). (3.9)

We see from (3.7) and (3.9) that the two composites agree on IdKVBX, so they are
equal.

3.3. The resolution model category of simplicial presheaves

For any setB ⊂ C as in Definition 2.1, consider the category (SΘop
B∗ )Δ

op

= SΘop
B
×Δop

∗
of simplicial B-presheaves – that is, simplicial objects in the category of B-presheaves.

As noted in �2.1, the B-presheaf category SΘop
B∗ has a proper simplicial model category

structure. Moreover, the objects of B are homotopy cogroup objects in C, as are their
colimits under E as in Example 2.4. Therefore, as in [J, �2], there is a resolution

model category structure on SΘop
B
×Δop

∗ , for which the projectives of SΘop
B∗ are the

free strict B-mapping algebras. A map f : V• → W• of simplicial B-presheaves is a
weak equivalence in this model category if and only if it is an E2-equivalence –
that is, if for each B ∈ ΘB and t, s,� 0, the map f∗ : πh

t π
v
sV•{B} → πh

t π
v
sW•{B} is

an isomorphism (the terminology comes from the E2-term of the homotopy spectral
sequence of a simplicial space – cf. [DKS1]).
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Note that if a simplicial presheafW• is cofibrant, eachWn is weakly equivalent to a
coproduct of free strict B-mapping algebras, so in particular, it is a weak B-mapping
algebra. Moreover, in order for W• to be a resolution of a weak B-mapping algebra X,
in particular, π0W• must be a resolution of π0X in the model category of simplicial
ΠB-algebras (see �2.2), so that the augmented simplicial group π0W•{B} → π0X{B}
is weakly contractible for any B ∈ ΘB.

We observe also that SΘop
B
×Δop

∗ has a Reedy model category structure, with weak
equivalences and fibrations defined at each simplicial space V•{B} for every B ∈ ΘB

(see [H, �15.3]).
Since Pn is a nullification, S[n] is still right proper (see [Bou3, Theorem 9.9]), so

we have an analogous resolution model category structure on the category SΘop
B

[n] of

n-truncated simplicial B-presheaves (�2.3).
We deduce the following enhancement of [BB2, Proposition 9.23]:

Theorem 3.10. There is a realization functor N : sMapSt → G, equipped with natural
weak equivalences θ : N ◦MSt → IdG and ζ : MSt ◦N → IdsMapSt

.

Proof. Given a strict Stover mapping algebra X ∈ sMapSt, iterating the comonad U :=
LBRB : G → G on Y := KX = LBρ̂X yields an augmented simplicial space Z• → Y
with Zn := Un+1Y and di : Zn →Zn−1 given by as usual by U iεUn−iY (cf. [W, �8.6.4]).

Since by (3.4) U = LBRB = KMSt and VB = MStK, we have a simplicial strict
Stover mapping algebra W• = MStZ•, which augments to X via ξX : MStY = VBX →
X, by Lemma 3.5. Applying K to W• → X recovers Z• → Y , but now with an extra
degeneracy in each simplicial dimension coming from the unit η : Id → TB = RBLB

of the corresponding monad, as well as an extra face map, obtained by iterating U
on KξX : KVBX = Z1 → KX = Z0. By commutativity of (3.6), we see that Z• → Y
is, in fact, the décalage of a simplicial space X• (see [I]). Moreover, applying MSt to
X• yields an augmented (free) simplicial strict Stover mapping algebra MStX• → X
which is a resolution of X in the sense of �3.3.

This shows that the Quillen–Bousfield–Friedlander spectral sequence for X• (see
[Q1] and [BF, Theorem B.5]) collapses, so that NX := ‖X•‖ realizes X up to weak
equivalence. Noting that X• is obtained by applying K to ζ0 : MStX• → X, and that
MStX• is constructed by iterating VB on X (together with ξX), we have described a
functorial procedure for realizing any strict Stover mapping algebra X. The natural
weak equivalence ζ is induced by the augmentation ζ0, while θ comes from the counit
of the Stover comonad.

Corollary 3.11. Any homotopy functor T : G → D to a model category D induces
a functor T := T ◦N : sMapSt → D equipped with a natural weak equivalence ϑ =
Tθ : T ◦MSt → T.

4. Realizing dual mapping algebras

To dualize the results of Section 3, we want a setting where every dual strict A-
mapping algebra X is functorially realizable. Again we have only one case where this
is known to be true, when C = Sred (or similar model categories for pointed connected
spaces) and A consists of certain simplicial R-modules for some commutative ring R.
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Definition 4.1. In general, we must include in the corresponding enriched sketch
ΘA all R-module GEMs up to a certain cardinality. In particular, when C = Sred

we let ΘR = ΘR
λ := sMR

λ , be the full subsimplicial category of C consisting of all
simplicial R-modules of cardinality < λ, for some limit cardinal λ (determined as
in [BS2, �3.B]). The corresponding dual mapping algebras will be called dual strict
R-mapping algebras (or R-mapping algebras, for short), and the category of such will
be denoted by sMapR, with MR : Cop → sMapR the realizable R-mapping algebras.

4.1. The dual Stover construction
As in �3.1, we have a forgetful functor ρ : sMapR → (SetΓ∗ )

op, with (ρX)n =
(p0 : (PX{K(R, n)})0 → (X{K(R, n)})0). The composite LR := ρMR : C → (SetΓ∗ )

op

has a right adjointRR : (SetΓ∗ )
op → C, withRRΦ :=

∏
n∈N

∏
f∈Fn

Q(f) for any arrow
set Φ = (φn : En → Fn)n∈N.

When R is a field, we define Q(f) for f ∈ Fn by the pullback square

Q(f) ��

��

∏
φ−1
n (f)

PK(R, n)

∏
pK(R,n)

��
K(R, n)

diag ��
∏

φ−1
n (f)

K(R, n)

(4.2)

if ∗ 
= f ∈ Im φn, while Q(f) := K(R, n) if f 
∈ Im φn. If φ = ∗, we set Q(f) :=∏
φ−1
n (∗)\{∗} ΩK(R, n) (compare (3.3)).
Again, for any limit cardinal Λ we define a λ-R-Stover space to be any pullback of

the form (4.2), with φ−1
n (f) replaced by any set T of cardinality < λ. When R is not

a field, we need to use the more complicated modified Stover construction of [BS2,
�3.A] instead of the above.

We denote by ΘSt,R
λ the corresponding dual enriched sketch, with F as in Exam-

ple 2.14, and L consisting of products of cardinality < λ in ΘSt,R
λ , together with the

pullback squares of (2.15) and (4.2). The category of the corresponding dual strict
mapping algebras, called dual strict Stover mapping algebras, will be denoted by
sMapSt,R, with MSt,R : C → sMapSt,R the dual strict Stover mapping algebra functor.

Since each K(R, n) is, in particular, an R-Stover space, ΘR
λ is a full simplicial

subcategory of ΘSt,R
λ , with ι : ΘR

λ ↪→ ΘSt,R
λ the inclusion, inducing the restriction

ι∗ : sMapSt,R → sMapR as in �3.2. Writing VR := MSt,R ◦ RR ◦ ρ ◦ ι∗ : sMapSt,R →
sMapSt,R, we obtain the following categorical dual of Lemma 3.5 (compare [BS2,
Proposition 2.19]):

Lemma 4.3. Every dual strict Stover mapping algebra X has a natural map
ζX : VRX → X making the following diagram commute in sMapSt,R:

VRVRX
ζVRX ��

VRζX
��

VRX
ζX

��
VRX

ζX

�� X

(4.4)
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Definition 4.5. For any commutative ring R, we denote by SR the full subcategory
of R-good spaces in S∗ (cf. [BK1, I, �5.1]), and by sMapSt,Rre the full subcategory of
sMapSt,R consisting of those dual strict Stover mapping algebras which are weakly
equivalent to MSt,RY for some Y ∈ SR. These will be called weakly R-good dual strict
Stover mapping algebras.

Remark 4.6. By [H, �15.3], SΘA×Δop

∗ and SΘA×Δop

[n] have Reedy model category struc-

tures, with weak equivalences and cofibrations defined at each simplicial spaceW•{B}
for each B ∈ ΘA.

As in �3.3, there is also a resolution model category structure on the category

(SΘA

∗ )Δ
op

= SΘA×Δop

∗ of simplicial dual A-presheaves. Again, if a simplicial presheaf
W• is cofibrant, each Wn is weakly equivalent to a coproduct of free dual strict A-
mapping algebras, so it is a dual weak A-mapping algebra, andW• → X is a resolution
of dual weak A-mapping algebras only if π0W• → π0X is a resolution of ΠA-algebras.

Since S[n] is still proper, we also have a resolution model category structure on the

category SΘA×Δop

[n] of n-truncated simplicial dual A-presheaves (�2.3).

The Eckmann–Hilton dual of Theorem 3.10 has the following more involved form:

Theorem 4.7. Let R be any commutative ring, C = S∗, and X a dual strict R-
mapping algebra (for ΘR = sMR

λ as in Definition 4.1), which we assume to be a
dual strict Stover mapping algebra.

(a) There is a functor associating to X a cosimplicial object W• ∈ SΔ
∗ with each

Wn in sMR
λ , equipped with a natural augmentation of R-mapping algebras

ε : MRW• → X, such that π0M
RW• → π0X{M} is a simplicial resolution of

ΠA-algebras.

(b) If X ∈ sMapSt,Rre is weakly equivalent to MSt,RY (for some R-good space Y),
then TotW• is homotopy equivalent to the R-completion of Y (so in particular,
TotW• realizes X up to weak equivalence).

(c) When R is a field, we can start with any dual strict A-mapping algebra X̂ (for
A = {K(R, n)}∞n=1 in Example 2.14). If it extends to a dual strict Stover map-
ping algebra X as defined in �4.1, and then (a) and (b) hold.

(d) When R=Fp or Q, and X is simply connected (that is, letting A= {K(R, n)}∞n=2

in Example 2.14), any R-mapping algebra (for a suitable limit cardinal λ) is
weakly equivalent to MSt,RY for some simply connected Y, unique up to R-
equivalence.

Proof. This follows from various results in [BS2]:

(a) This is [BS2, Proposition 3.9].

(b) This is [BS2, Theorem 3.26].

(c) This combines [BS2, Proposition 2.23] and [BS2, Theorem 2.30], using the
fact that a weak equivalence of dual strict Stover mapping algebras f : X → Y
induces weak equivalence (in the model category of [Bou2, �3]) between the
corresponding cosimplicial spaces (see [Bou2, �7.7]).

(d) This is [BS2, Theorem 4.23] (when λ = ℵ0) or [BS2, Theorem 4.28] (otherwise).
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Corollary 4.8. If R is any commutative ring, then there is a realization functor
N : (sMapSt,Rre )op → S∗ with a natural weak equivalence ε : Id → N ◦MSt,R. Thus any
functor T : SR → D (see Definition 4.5) to a model category D which preserves R-
equivalences induces a functor T := T ◦N : (sMapSt,Rre )op → D equipped with a natural
weak equivalence ϑ = Tε : T → T ◦MSt,R.

Proof. We set N := TotW•, where X �→ W• is the functor of Theorem 4.7. Once
we know that X is weakly R-good (see Definition 4.5), the natural augmentation
ε : MSt,RN → X is a weak equivalence by Theorem 4.7(b) or (c).

Example 4.9. For any Z ∈ S∗ with T : SR → S∗ the functor map∗(Z,−), the induced
functor T := T ◦N : sMapSt,Rre → S∗ has the property that if Z := MSt,RZ and X is
the realizable dual strict Stover mapping algebra MSt,RY for some R-good space Y,
then T(X) is weakly equivalent to Z{Y}.

Thus the n-truncation PnT (cf. �2.3) when evaluated at X = MSt,RY, is deter-
mined by PnZ. Moreover, from the alternative description in Remark 2.9 we see that
if Y ∈ ΘSt,R

λ , then T(X) corresponds to the n-truncated simplicial category PnX ,
so that, in fact, PnT, when evaluated at free dual strict Stover mapping algebras,
factors through the n-truncation.

5. Relative left derived functors of mapping algebras

Let T : C → D be a homotopy functor between model categories of spaces. We
want to study the homotopy spectral sequence for the (co)simplicial object obtained
by applying T to a (co)simplicial resolution of a space Y ∈ C, using a relative version
of the total derived functor of the associated functor of mapping algebras T.

Definition 5.1. If T : D → E is a functor between model categories which preserves
weak equivalences of cofibrant objects, recall that Quillen constructs the total left
derived functor LT : hoD → ho E on an object x ∈ D by applying T to any cofibrant
replacement of x (see [Q2, I, �4]). In order for this to work, T need only be defined on
the full subcategory Dcof of all cofibrant objects in D. In the spirit of the Eilenberg–
Moore “relative homological algebra” (see [EM]), one could require only that T be
defined on some full subcategory P of special cofibrant objects in Dcof (e.g., free,
rather than projective, resolutions) – as long as every object of D is weakly equivalent
to an object of P (and T still takes weakly equivalent objects of P to weakly equivalent
objects in D). Moreover, if we are only given a full subcategory DP of D, closed under
weak equivalences, and every object of DP is weakly equivalent to one in P, we still
have LT : hoDP → ho E . Finally, E need not be a model category – all we need is
the localization γ : E → ho E , with γ ◦ T taking weak equivalences to isomorphisms.

However, we shall be interested in a situation where we have two model category
structures on D – or perhaps only a subcategory W′ of the given weak equiv-
alences W. This commonly occurs when our model category (D,W,Dcof ,Dfib) is
obtained by localizing another.

In this case, we shall assume that P and DP satisfy the stronger requirement that
for each x ∈ Dcof ∩ DP there is a map f : y → x in W′ with y ∈ P . If T : P → E is
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then a functor which preserves W-weak equivalences, the relative left derived functor
of T (with respect to P and W′) is the functor LrelT : hoD → ho E defined on z ∈ DP
by applying T to y, where g : x → z is a cofibrant replacement (with respect to W)
and f : y → x in W′ is as above.

Dually, if we have full subcategories F of Dfib (the fibrant objects) and DF of
D, both closed under weak equivalences, and W′ ⊆ W, with the corresponding dual
properties with respect to a homotopy functor T : F → E , the relative right derived
functor RrelT : hoDF → ho E is defined analogously.

Remark 5.2. In the applications we have in mind, D will be a resolution model
category of simplicial mapping algebras, so the weak equivalences W in D are E2-
equivalences. However, we also have a Reedy model structure on D, and the special
weak equivalences W′ will be the E1-equivalences. The ability to apply the functor T
to a resolution which is W′-equivalent to any cofibrant replacement (that is, simplicial
resolution) y of an object z ∈ DF provides the flexibility we want in using particular
resolutions – e.g., minimal – to calculate (LrelT )z, and eventually, the appropriate
terms of the spectral sequence.

5.1. CW resolutions
For C = G and ΘB as in Example 2.4, let W• be a resolution of Y ∈ G in the

resolution model category structure on GΔop

. Given a homotopy functor T : G → D
for D a “category of spaces” such as Top0, S∗, or G, we wish to study the homotopy
spectral sequence for the simplicial space TW• ∈ DΔop

By applying the functor MSt : C → sMapSt of �4.1 to W•, we obtain a simplicial
strict Stover mapping algebra W• := MStW• which is a cofibrant replacement for

X := MStY in the resolution model category structure on SΘop
B
×Δop

∗ associated to
the free dual strict Stover mapping algebras {MStS

i}∞i=1. By Corollary 3.11, there is
functor T = TN : sMapSt → D, with a natural Reedy (that is, levelwise) weak equiv-
alence of simplicial spaces ϑ : TW• → TW•.

We want to calculate the total left derived functor of T evaluated at X by applying
T to any resolution V• → X. However, such an V• is just a simplicial B-presheaf, and
the functor T is only defined for strict Stover mapping algebras. As explained in �5.1,
our solution to this difficulty is to show that any suchV• is, in fact, E1-equivalent to a
simplicial strict B-mapping algebra W•. For this purpose we require some additional
notions from [BJT2, �1]:

If E is any pointed complete category, the n-th Moore chains object of G• ∈ EΔop

is CnG• := ∩n
i=1 Ker {di : Gn → Gn−1}. The differential is ∂n := d0|CnG• : CnG• →

Cn−1G• and the cycles objects is ZnG• := Ker (∂n), with vn : ZnG• → CnG• the

inclusion. These are defined for any restricted simplicial object G• ∈ EΔop
+ (see �1.3).

The n-th latching object for G• is the colimit

LnG• := colim
θop : [k]→[n]

Gk, (5.3)

where θ ranges over the surjective maps [n] → [k] in Δ for k < n.
A simplicial object G• ∈ EΔop

is called a CW object if it is equipped with a CW
basis (Gn)

∞
n=0 in E such that Gn = Gn � LnG•, and di|Gn

= 0 for 1 � i � n. The n-th

attaching map for G• is defined to be ∂G
n := d0|Gn

: Gn → Cn−1G• (which actually
lands in Zn−1G•).
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When E is a suitable category of universal algebras, such as ΠB-Alg (cf. Defini-
tion 2.11), a simplicial object V• ∈ EΔop

with an augmentation to Λ ∈ C is called a
CW resolution if V• → Λ is acyclic, with a CW basis (V n)

∞
n=0 having each V n free.

Moreover, in this case ∂V
n surjects onto Zn−1V• (where Z−1V• := Λ).

For B = {Si}∞i=1, by [BJT2, Lemma 1.38] every free simplicial ΠB-algebra (Def-
inition 2.11) has a free CW basis. Moreover, by [BJT2, Theorem 2.29], every CW
resolution V• of a realizable ΠB-algebra Λ = π∗Y = π0MBY can be realized by an
augmented simplicial space W• → Y. Therefore, every free simplicial ΠB-algebra
resolution V• → π∗Y can be realized (non-canonically) by a simplicial resolution of
strict B-mapping algebras W• → MBY, with π0W• ∼= V•. In order to apply the ideas
of �5.1, we must show that any simplicial B-presheaf resolution V• of X = MBY is
Reedy weakly equivalent to a strict Stover mapping algebra resolution W•. To do so,
we recall the following constructions from [BJT2]:

5.2. Sequential realizations

Assume given an enriched sketch ΘB = Θ(B,F,E) in a pointed simplicial model
category C, as in Definition 2.1, and a CW-resolution V• of a realizable ΠB-algebra
Λ = πB

∗ Y, with CW basis {V n}∞n=0. We define a sequential realization of V• (for Y)
to be a sequence W of maps

W
[0]
•

ι[0]−−−→ W
[1]
•

ι[1]−−−→ W
[2]
• −→ · · · −→ W

[n]
•

ι[n]

−−−→ W
[n+1]
• −→ · · · (5.4)

between Reedy fibrant and cofibrant objects in CΔop

, such that for each n � 0:

(i) Wn ∈ ΘB realizes the given CW basis ΠA-algebraV n.

(ii) There is an n-skeletal restricted simplicial object W̃
[n]
• with

W̃
[n]
k = W

[n−1]
k � CΣn−k−1Wn for 0 � k � n, (5.5)

where by convention CΣ0Wn := CWn, CΣ−1Wn := Wn, and W
[−1]
• = ∗.

(iii) The face map d0|CΣn−k−1Wn
is the map Fk in the commuting diagram

Σn−k−1Wn
� � ik ��

ak

��

CΣn−k−1Wn
qk �� ��

Fk

��

Σn−kWn

ak−1

��
Zk−1W

[n−1]
•

� � vk−1 �� Ck−1W
[n−1]
•

∂k−1 �� �� Zk−2W
[n−1]
•

(5.6)

in which the top row is a strict cofibration sequence and the bottom row a strict
fibration sequence in C. Thus Fk is a nullhomotopy for vk−1 ◦ ak, which in turn
defines ak−1, using (5.6). The first face map d1|CΣn−k−1Wn

is the composite

CΣn−k−1Wn
qk−→ Σn−kWn

ik−1

−−−→ CΣn−kWn, and di|CΣn−k−1Wn
= 0 for i > 1.

We start with Fn : Wn → Cn−1W
[n−1]
• a realization of the n-th attaching map

∂V
n : V n → Cn−1V• for the given CW resolution, and an−1 := ∂n−1 ◦ Fn : Wn →

Zn−2W
[n−1]
• (with vn−2 ◦ an−1 indeed nullhomotopic).
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(iv) Let Ŵ
[n]
• be the pushout of the obvious maps

W
[n−1]
• ← Li∗W[n−1]

• → LW̃[n]
• , (5.7)

where L : CΔop
+ → CΔop

is the left adjoint of i∗ : CΔop → CΔop
+ , as in �1.3. We

then let W
[n]
• be a Reedy fibrant and cofibrant replacement for Ŵ

[n]
• .

(v) There is an augmentation ε[n] : W
[n]
• → Y realizing V• → Λ through simplicial

dimension n – that is, the n-truncation of the augmented simplicial ΠA-algebra

πA
∗ W

[n]
• → πA

∗ Y is isomorphic to the n-truncation of V• → Λ.

(vi) The maps ι[n] restrict to a trivial cofibration ι
[n]
k : W

[n−1]
k

�−→ W
[n]
k for each

0 � k < n.

It follows that W• := colimn W
[n]
•

ε−→ Y is a simplicial resolution in the resolution
model category CΔop

. See [BJT2, �2] for further details.

Theorem 5.8. For an enriched sketch ΘB as in Definition 2.1, Y ∈ C fibrant, and

X := MBY, let η : V• → c(X)• be a trivial fibration with V• cofibrant in SΘop
B
×Δop

∗ .
Then for any sequential realization W of the ΠB-algebra resolution π0V• → πB

∗ Y
as in �5.2, there is a Reedy weak equivalence of simplicial weak B-mapping algebras
f : MBW• → V•.

Proof. By �3.3, the simplicial ΠB-algebra V• := πoV• is a free resolution of the ΠB-
algebra Λ := π0X, so it has a CW basis {V n}∞n=0 by [BJT2, Lemma 1.38], with
V n = π0MBWn for some Wn ∈ ObjΘB. We may assume ΘB contains all simplicial
groups of the homotopy type of a (possibly trivial) wedge of objects of B of cardinality

< λ. This will ensure that all objects W
[n]
k , W̃

[n]
k , Ŵ

[n]
k , and so on, in �5.2 are in ΘB.

We construct f by a double induction: in the outer induction, we construct maps of

simplicial weak B-mapping algebras f[n] : MBW
[n]
• → V•. Assuming we have defined

f[n−1], we need to extend it to a map of n-truncated restricted simplicial objects

f̃[n] : MBW̃
[n]
• → V•, which we do by an inner downward induction on 0 � k � n.

Using Lemma 2.8, we see from (5.5) that f̃
[n]
k is determined by an element f̄

(k)
n ∈

Vk{CΣn−k−1Wn}0 with dif̄
(k)
n = 0 for i � 2.

Step A. To start the outer induction, note that since W
[0]
0 = W0, by Lemma 2.8

the augmentation ε[0] : MBW
[0]
• → X is determined by an element e ∈ X{W0}0 =

Hom(W0,Y). Since η : V•→ c(X)• is a Reedy fibration (see [J, �2]), (η0)∗ : V0{W0}→
X{W0} is a fibration and, in particular, a surjection in S∗. Moreover, π0V0

∼= πB
∗ W0

is a free ΠB-algebra, by our assumption onV•, so we have an element f̄
(0)
0 ∈ V0{W0}0

representing Id ∈ π0V0{W0} with (η0)∗f̄
(0)
0 = e by [BJT1, Lemma 15.9], as required.

Step B. Given f[n−1] : MBW
[n−1]
• → V•, consider the augmented simplicial space

X• := V•{Wn} → X{Wn}: we think of this as a bisimplicial set with vertical direc-
tion internal to each Vk{Wn} ∈ S∗, and horizontal direction corresponding to the
original simplicial direction ofV•. The (split) inclusion jn : V n ↪→ Vn for the CW basis
ΠB-algebra V n = π0MBWn corresponds by the ΠB-algebra analogue of Lemma 2.8
(the ordinary Yoneda embedding) to an element j̃n ∈ Vn{Wn} – that is, a homo-

topy class [f̄
(n)
n ] ∈ π0Xn = π0Vn{Wn}. Since Y is fibrant in C, X = MBY is fibrant
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in SΘA

∗ , so c(X)• is Reedy fibrant. But V• → c(X)• is a Reedy fibration, so V•
is Reedy fibrant, and therefore X• is, too. Thus by [Sto, Lemma 2.7] the inclu-
sion of the (horizontal) Moore object CnX• := Ch

nX• ↪→ Xn induces an isomorphism
π0CnX• → Cnπ0X• = CnV•{Wn} (see also [BJT2, Lemma 1.30]).

The functor MB of Definition 2.7 takes any pointed limit in C to the corresponding

limit of B-presheaves, so Cn−1MBW
[n−1]
• = MBCn−1W

[n−1]
• , and thus the attach-

ing map d0 = ∂W
n : Wn → Cn−1W

[n−1]
• corresponds under Lemma 2.8 to an element

γ ∈ Cn−1MBW
[n−1]
• {Wn}. Moreover, the given map of B-presheaves f[n−1] induces

Cn−1f
[n−1] : Cn−1MBW

[n−1]
• → Cn−1V•, which takes γ to an element ψn := f[n−1](γ)

∈ (Ch
n−1X•)0.

Since X• is Reedy fibrant, the matching structure map δn : Xn → MnX• is a
fibration (cf. [H, �16.3]), and we have an inclusion ι : Cn−1X• ↪→ MnX•, given by x �→
(x, x, 0, . . . , 0). Because W• realizes the CW resolution V• → Λ of ΠA-algebras and

jn : V n ↪→ Vn factors through CnV•, we have (δn)∗[f̄
(n)
n ] = [ι ◦ ψn]. We may therefore

change f̄
(n)
n within its homotopy class so that δn(f̄

(n)
n ) = ι ◦ ψ on the nose.

Lemma 2.8, together with (5.5) (and our assumption thatW
[n−1]
k andCΣn−k−1Wn

are in ΘB), implies that MBW̃
[n]
n is the coproduct of MBW

[n−1]
n and MBWn. There-

fore, this choice of f̄
(n)
n defines a map of B-presheaves f[n] : MBW̃

[n]
n → Vn (extending

f[n−1]). Since Fn−1|Wn
= dh0 (γ) (in the notation of �5.2(iii)), we have dh0 f̄

(n)
n = dh1 f̄

(n)
n .

Step C. In the k-th stage of the inner (downward) induction, with k < n, we assume
that for each for k < j � n we have chosen a map of weak B-mapping algebras

f̄
(n)
j : MBCΣn−j−1Wn → Vj , represented by an element ψj ∈ Vj{CΣn−j−1Wn}0
with dhi ψj = 0 for 2 � i � j. If ιn−j−1 : Σ

n−j−1Wn ↪→ CΣn−j−1Wn is the inclusion,
then ϕj := ι∗n−j−1ψj lies in Ch

j−1V•{Σn−j−1Wn}0, and by induction it represents

MBCΣn−j−1Wn
(Fj)∗−−−−−→ Ch

j−1MBW
[n−1]
•

Cj−1f
[n−1]

−−−−−−−−→ Ch
j−1V• (5.9)

(in the notation of (5.6)). If qn−j−2 : CΣn−j−2Wn → Σn−j−1Wn is the quotient map,
this implies that q∗n−j−2ϕj represents

MBΣ
n−j−1Wn

(aj)∗−−−−→ Zh
j−1MBW

[n−1]
•

Zj−1f
[n−1]

−−−−−−−−→ Zh
j−1V• (5.10)

(again using the notation of (5.6)), so q∗n−j−2ϕj is in Zh
j−1V•{CΣn−j−2Wn}0.

Similarly, dh0ϕj actually lies in Zh
j−2V•{CΣn−j−2Wn}0, and represents

MBΣ
n−jWn

(aj−1)∗−−−−−−→ Zh
j−2MBW

[n−1]
•

Zj−2f
[n−1]

−−−−−−−−→ Zh
j−2V•. (5.11)

The nullhomotopy Fk for vk−1 ◦ ak (cf. (5.6)) is represented by
ϕk ∈ Ch

k−1V•{Σn−k−1Wn}0, and as in Step B we use the embedding of

Ch
k−1V•{Σn−k−1Wn} inMkV•{Σn−k−1Wn} and the facts that δk : Vk{Σn−k−1Wn}

→ MkV•{Σn−k−1Wn} is a fibration, and that ϕk lifts up to homotopy to
Vj{CΣn−k−1Wn} (since CΣn−k−1Wn is contractible) to obtain an element ψk in
Vj{CΣn−k−1Wn}0 (with dhi ψk = 0 for 2 � i), such that ϕk := dh0ψk.
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Step D. The three conditions (5.9)–(5.10)–(5.11) on ϕj := dh0ψj (0 � j � n) are
all that is needed in order for the elements ψj to fit together to define a map of

restricted simplicial B-presheaves f̃[n−1] : MBW̃
[n]
• → i∗V• extending i∗f[n−1] (in the

notation of �1.3), and so, using (5.7), an induced map of simplicial B-presheaves

f̂[n−1] : MBŴ
[n]
• → V•, which is a levelwise weak equivalence through dimension n.

Recall from [BJT2, 2.C] that W
[n]
• is constructed by the following factorizations

in the Reedy model category structure on SΘop
B
×Δop

∗ (see �3.3):

W
[n−1]
• ��
� �

ι[n−1]

��

Ŵ
[n]
•� �
�
��



��
���

���
���

��

W
[n]
• �h

�� �� ′W[n]
• �� �� ∗

(5.12)

where ↪→ indicates a cofibration and −→→ a fibration, with the top horizontal map a
levelwise weak equivalence in simplicial dimensions � n− 1, so the same is true of
the left vertical map.

ApplyingV•{−} to (5.12) yields a diagram of bisimplicial spaces, and taking diago-
nals, a similar diagram in SΔop

∗ . Since by our initial assumption all objects of (5.12), in
each simplicial dimension, are in ΘB, by Lemma 2.8 we obtain an analogous diagram
of mapping spaces of B-presheaves into V•. The sequence of elements in the simplicial

set diagV•{W[n−1]
• }0 in the upper left corner corresponding to f[n−1] : MBW

[n−1]
• →

V• map by construction to the sequence in diagV•{Ŵ[n]
• }0 corresponding to f̂[n−1],

mapping forward to a sequence β corresponding to ′f[n] : MB
′W[n]

• → V•. Since the
map h in (5.12) is a trivial fibration, and these are preserved by evaluation of V•
and diagonals, we see that the induced map of simplicial sets h∗ : diagV•{W[n]

• }0 →
diagV•{ ′W[n]

• }0 is a trivial fibration. We can therefore lift β to a sequence represent-

ing the required map f[n] : MBW
[n]
• → V•, completing the outer induction step.

Remark 5.13. The same result holds if we replace B-presheaves by r-truncated B-
presheaves, since (as noted in �2.3), Lemma 2.8 still holds, and W• := P rMBW• is
free in each simplicial dimension.

Summary 5.14. Assume given a homotopy functor T : G → M, inducing T := T ◦
N : sMapSt → M as in Corollary 3.11. Let D := SΘop

St×Δop

∗ and E := MΔop

, with the
resolution model category structure on D determined by B for G as in �3.3, with

respect to the structure of �2.1 for SΘop
St∗ (with Es-weak equivalences on E).

In the notation of �5.1, let C denote the category of simplicial strict B-mapping
algebras in D associated to sequential realizations as in �5.2, let W′ be the Reedy
weak equivalences in D, and let DC be the full subcategory ho sMapSt of objects in

ho(SΘop
St×Δop

∗ ) weakly equivalent to a constant simplicial object on sMapSt. The rela-
tive left derived functor LrelT : ho sMapSt → ho E is then defined on a Stover mapping
algebra X (more formally, on c(X)•) by

(a) Choosing a simplicial resolution η : V• → X in SΘop
B
×Δop

∗ ;

(b) Choosing a CW basis {V n}∞n=0 for the ΠB-algebra-resolution V• := π0V• →
π0X, a sequential realizationW of V• forY := NX, with an E1-weak equivalence
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MStW• → V•;

(c) Defining (LrelT)X to be the simplicial object TMStW• in hoDΔop

(uniquely
determined up to E1-weak equivalence).

6. Relative derived functors of dual mapping algebras

For a given commutative ring R, let ΘR = sMR
λ be the full subsimplicial category

of C = SR consisting of all simplicial R-modules of cardinality < λ, as in Defini-
tion 4.1, and X = MRY for some Y ∈ C (the cardinal λ we choose may depend on
Y). Essentially, we may dualize the results of Section 5 to this situation. Note that
because Y �→ H∗(Y;R) is contravariant the category ΠA-Alg resembles ΠB-Alg in
being a category of graded universal algebras, so the resolutions we need for the ΠA-
algebraΛ = H∗(Y;R) will be simplicial, rather than cosimplicial, and we can use the
notion of a CW resolution V• → Λ as in �5.1. However, only when R is a field do we
know that any free simplicial resolution in ΠA-AlgΔ

op

has a CW basis (V n)
∞
n=0 of free

ΠA-algebras (see [Bl3, Proposition 3.12]). For the cosimplicial resolutions of spaces,
we need to dualize �5.1 as follows:

Definition 6.1. If C is cocomplete, the n-th Moore cochain object of a cosimplicial

objectG• ∈CΔ is CnG• :=Coker (
∐n−1

i=1 Gn ⊥i d
i

−−−→Gn), with differential δn−1: Cn−1G•

→ CnG• induced by d0n−1, and structure map vn : Gn → CnG•. We denote the cofiber
of δn−1 by ZnG•, with structure map wn : CnG• −→→ ZnG•, and note that δn−1 fac-

tors as d
0

n−1 ◦ wn−1.

6.1. Dual sequential realizations
Let R be a commutative ring and λ a limit cardinal, with ΘA := π0Θ

R for ΘR =
sMR

λ . Assume given an R-good space Y ∈ S∗ and a CW resolution V• of the ΠA-
algebraΛ = πA

∗ Y, with CW basis {V n}∞n=0, such that for each n � 0, V n
∼= πA

∗ W
n

for some Wn ∈ ΘR.
We define a (dual) sequential realization of V• for Y to be a sequence W of maps

· · ·W•
[n+1]

p[n+1]−−−−−→ W•
[n]

p[n]−−−→ W•
[n−1] −→ · · · −→ W•

[1]

p[1]−−−→ W•
[0] (6.2)

between Reedy fibrant and cofibrant objects in SΔ
∗ , such that for each n � 0:

(i) There is an n-skeletal restricted cosimplicial object W̃•
[n] with W̃k

[n] = Wk
[n−1] ×

PΩn−k−1Wn for 0 � k � n, where as before by convention Ω0Wn = PΩ−1Wn

= Wn.

(ii) The coface map d0 : Ck → W̃k+1
[n] into the factor PΩn−k−2Wn is the map F k

in the commuting diagram

Zk−1W•
[n−1]

d
0
k−1 ��

ak−1

��

CkW•
[n−1]

wk
�� ��

Fk

��

ZkW•
[n−1]

ak

��
Ωn−k−1Wn �

� jn−k−1

�� PΩn−k−2Wn pn−k−2

�� �� Ωn−k−2Wn

(6.3)

(in the notation of Definition 6.1). The first coface map d1 into PΩn−k−2Wn is
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the composite of the projection onto PΩn−k−1Wn with jn−k−1 ◦ pn−k−1, and
di into the factor PΩn−k−2Wn is zero for i > 1.
We start with a realization of the n-th attaching map ∂V

n : V n → Cn−1V• for
the given CW resolution as our choice for Fn−1 : Cn−1W•

[n−1] → Wn.

(iii) Let Ŵ
[n]
• be the pullback of W•

[n−1] ← Fi∗W•
[n−1] → FW̃

[n]
• , where F : CΔ →

CΔ is the right adjoint of the forgetful functor i∗ : CΔ → CΔ+ (see �1.3), with

W•
[n] a Reedy fibrant and cofibrant replacement for Ŵ

[n]
• .

Again, W• := limn W
•
[n] is a cosimplicial resolution of Y in the resolution model

category CΔ, and in fact, the sequential realization W can be constructed starting
from any R-mapping algebra X. See [BS1, �2 & Appendix A] for further details.

The proof of Theorem 5.8 can be dualized to yield:

Theorem 6.4. Given a commutative ring R with ΘA = sMR
λ and an R-good space

Y, let η : V• → X = MRY be a simplicial resolution in SΘR×Δop

∗ with a CW basis
{V n}∞n=0 for the ΠA-algebra-resolution V• := π0V• → Λ = πA

∗ Y. Then for any se-
quential realization W of V• for Y, there is a Reedy weak equivalence of simplicial
dual weak A-mapping algebras f : W• := MAW• → V•.

The dual of Remark 5.13, for the n-truncated case, also holds.

Summary 6.5. Given a functor T : sMapSt,Rre → D as in Corollary 4.8, the relative
right derived functor RrelT : ho sMapSt,Rre → ho(DΔ) applied to X := MSt,RY for R-
good Y ∈ S∗, is obtained by

(a) Choosing a simplicial resolution η : V• → X in the model category SΘA×Δop

∗ ;

(b) Assuming the ΠA-algebra-resolution V• := π0V• → πA
∗ Y has a CW basis

{V n}∞n=0 (e.g., if R is a field), choosing a sequential realization W of V•;

(c) Defining (RrelT)X to be the cosimplicial object TMSt,RW• in DΔ.

Example 6.6. For Z ∈ S∗ and T := map∗(Z,−) as in Example 4.9, if Z = MSt,RZ and
X = MSt,RY for some R-good space Y, and V• = MSt,RW• for some cosimplicial
resolution Y → W•, then (RrelT)X := TV• is the cosimplicial space Z{W•} (up to
E2-equivalence).

7. Truncating derived functors of mapping algebras

So far we have shown only that the usual total derived functor LT of a contin-
uous functor T : C → D can be interpreted (under suitable assumptions) as derived
functors of the corresponding mapping algebras. Although there are many technical-
ities involved, the result is hardly surprising, since, under these assumptions, map-
ping algebras carry the same homotopy information as objects in C (Theorems 3.10
and 4.7).

The point is that mapping algebras are the right framework for truncating the
homotopy information (using Postnikov sections), while still retaining enough to com-
pute the required term in the homotopy spectral sequences for TW• or TW•.

Not every homotopy functor T (and the corresponding T) will behave as we want
with respect to such truncation. We therefore require the following:
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Definition 7.1. For any 2 � r � ∞, let Er denote the category of r-truncated homo-
logical spectral sequences {Ek

∗∗}rk=1, equipped with a differential dr: Er
t,i→Er

t−r−1,i+r,
which need not satisfy dr ◦ dr = 0. A map in Er is called a weak equivalence if it
induces an isomorphism in E2

∗∗ (and thus also for r � k > 2). This defines the corre-
sponding localized category ho Er. We have truncation functors P r : En → Er for each
r � n � ∞. Note that the homotopy spectral sequence of a simplicial space defines
a homotopy functor S∞ : GΔop → E∞ (with respect to E2-equivalences in the source
and target), and write Sr := P r ◦ S∞.

Definition 7.2. Any homotopy functor T : G → G, and the corresponding T : sMapSt
→ G, induce a functor Sr ◦ LrelT : ho sMapSt → ho Er (see Summary 5.14) for each
r � 2. We say that T (and T) are level if for every r � 2, this functor Sr ◦ LrelT
factors through a functor LrelTr−2 : ho sMapr−2

St → ho Er.

Here ho sMapnSt is the subcategory of ho(SΘop
St×Δop

[n] ) weakly equivalent to c(X)•, for

X in the subcategory sMapnSt of n-truncated Stover mapping algebras (cf. �2.3).

In order to identify which homotopy functors are level, we shall need the following
notion introduced in [BB1, �1] (see also [BDG]):

Definition 7.3. Let C be Top0, S∗, or G: for any n � 0, an n-stem in C is a tower:

Q :=
(
· · · −→ Qk+1

qk+1−−−−→ Qk
qk−−→ Qk−1 · · ·Q1

)
(7.4)

in C(N,�), in which πi(Qk) = 0 for i < k or i > n+ k, and πiqk is an isomorphism
for k � i < n+ k. Here (N,�) is the usual linearly ordered category of the natural
numbers. The object Qk ∈ C is called the k-th n-window of Q.

We denote by Stem[n] the full subcategory of n-stems in the functor category
C(N,�), with the model category structure on the latter as in [H, 11.6]. The Postnikov
n-stem functor P[n] : C → Stem[n] is given by P[n]X := {Pn+k+1X〈k〉}∞k=1.

To avoid the need to distinguish the cases C = Top0 or G, we everywhere use the
Top-indexing for spheres, homotopy groups, Postnikov systems, and connected covers
(as in �3.1).

By [BB1, Theorem 4.13 & Corollary 4.16] we have:

Theorem 7.5. For each r � 2 there is a functor Ŝr : Stem[r − 1]Δ
op → Er which

associates to any simplicial (r − 1)-stem Q• an r-truncated spectral sequence. More-

over, Ŝr ◦ P[r − 1] : CΔop → Er is naturally equivalent to Sr, so when Q•=P[r − 1]X•
this is the truncation of the usual homotopy spectral sequence for X•. In this case we
have dr ◦ dr = 0, so in fact, the spectral sequence is determined through Er+1

∗∗ (though
without dr+1).

Corollary 7.6. A functor T : sMapSt →G associated to a homotopy functor T : G→G
is level if for each r � 1, the relative derived functor Sr ◦ LrelT : ho sMapSt → Er fac-

tors as Ŝr ◦ LrelTr−1 for some functor LrelTr−1 : ho sMapr−1
St → ho(Stem[r − 1]Δ

op

).

In order for Corollary 7.6 to be of any use, we must identify level homotopy functors
T for which the homotopy spectral sequence of TX• is of interest. We first note:
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Lemma 7.7. For B as in Example 2.4, any n-truncated weak B-mapping algebra
X ∈ sMapnSt is functorially realizable by an n-stem Q = {Qk}∞k=1. Moreover, if X =
PnMBY for some Y ∈ G, then Q is naturally weakly equivalent to the Postnikov
n-stem P[n]Y.

Proof. This result appears in [BB2, �10.5] for Stover mapping algebras, but in fact,
we need only observe that for n � 1, the action of PnΘB on X includes inter alia an
An-structure on Xk := X{Sk}, so allowing PnXk to be delooped to produce the win-
dow Qk by [Sta, Corollary 11.12]. The weak equivalences (2.22), together with [Ma1,
Theorem 12.7], yield the structure maps for the n-stem Q.

The simplest example is from [Bl1], where it is used to construct a spectral
sequence for computing H∗Y from the Π-algebra π∗Y:

Proposition 7.8. The abelianization functor Ab: G → G is level.

Proof. Let Q= {Qk}∞k=1 denote the Postnikov n-stem of a space X, and R= {Rk}∞k=1

that of AbX. Note that for each k � 0, the covering map ρ : X〈k〉 → X induces a map
ρ∗ : Ab(X〈k〉) → AbX, which factors through (AbX)〈k〉 by cellularity (uniquely, if
we choose a (k + 1)-reduced model for connected covers – which is an inclusion of a
sub-simplicial group, in G). Furthermore, by the Hurewicz Theorem, for each m � 0
the structure map pm : X → PmX induces an isomorphism HiX → HiP

mX for i �
m, and an epimorphism Hm+1X → Hm+1P

mX, so the natural map Pm(AbX) →
Pm Ab(PmX) is a weak equivalence. Thus we have a natural weak equivalence
Pn+k+1(AbQk) � Rk for each k � 0.

Thus a given a simplicial resolution V• → PnX = PnMBY of n-truncated B-

presheaves in the model category SΘop
B

[n] , by Lemma 7.7, we obtain a simplicial n-stem

Q•, which yields in turn the required simplicial n-stem R• := P[n](AbQ•).
Here are two additional examples from [Sto]. The first is used to construct a

spectral sequence for computing π∗ΣY from π∗Y:

Proposition 7.9. The suspension functor Σ: G → G is level.

Proof. For each n � 1, any n-truncated weak B-mapping algebra has a correspond-
ing n-stem Q by Lemma 7.7, and the Π-algebra Λ := π0X determines the Π-algebra
structure on π∗Qk for each k � 0. If X � PnMBX for some space X, then Λ is iso-
morphic to π∗X and Qk � Pn+k+1X〈k〉. To understand LT, we need only consider
the case when Λ is a free Π-algebra.

Now let R = {Rk}∞k=1, denote the Postnikov n-stem of ΣX. As in the proof
of Proposition 7.8, the covering map ρ : X〈k〉 → X induces a map ρ∗ : Σ(X〈k〉) →
(ΣX)〈k + 1〉. Taking Postnikov sections yields natural maps pk : P

n+k+2(ΣQk) →
Rk+1. In particular, p0 : P

n+2(ΣQ0) → R1 = Pn+1(ΣX) is a weak equivalence by the
Hurewicz Theorem, with P 1R1 � X1 (a wedge of 1-spheres, and thus aspherical).

However, for k > 1 there is no functorial description of Rk in terms of Q. Thus
if T := Σ ◦N : sMapSt → G is induced by Σ: G → G as in Corollary 3.11, in order to
define LTn : ho sMapnSt → Stem[n] we must proceed as follows:

By Lemma 7.7 a simplicial resolution V• → PnX = PnMBY of n-truncated weak
B-mapping algebras yields a simplicial n-stem Q•. Since the simplicial Π-algebra
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V• := πoV• is a free resolution of Λ := π0X, it has a (non-canonical) CW basis
{V n}∞n=0 for it, which in turn has a sequential realization W (see �5.2). By Re-
mark 5.13, there is a Reedy weak equivalence of simplicial n-truncated weak B-
mapping algebras f : PnW• → V•, where W• is realizable as MBW•. We can realize
PnW• by the simplicial n-stem Q̂• � P [n]W•, and let ΣQ̂• denote the simplicial

n-stem obtained by applying Σ to each window of Q̂• (and taking appropriate Post-

nikov sections). If R̂• denotes the simplicial Postnikov n-stem P[n]ΣW•, we have a

map of simplicial n-stems p̂ : ΣQ̂• → R̂•, as explained above.

Similarly, the simplicial n-truncated B-presheaf V• yields a simplicial n-stem
Q•, and f : PnW• → V• induces a levelwise weak equivalence of simplicial n-stems
f̂ : ΣQ̂• → ΣQ• (in the Reedy model structure). We may assume that each win-
dow of all the simplicial n-stems described here are cofibrant in G, so they are
Reedy cofibrant. Thus if we let R• denote the homotopy pushout of f̂ and p̂ (in
the Reedy model category of simplicial B-presheaves), we have a Reedy weak equiva-

lence R̂• → R• (cf. [H, Proposition 13.1.2]), as well as a structure map of simplicial
n-stems p : Q• → R•.

We define (LTn)PnX to be the simplicial n-stem R• To see that LTn is well-
defined, replace V• by some other simplicial resolution U• → PnX of n-truncated
B-presheaves, with Z a sequential realization of π0U• for Y. Let R• and S• denote
the simplicial n-stems associated as above to V• and U• respectively. We then have a
weak equivalence of simplicial spaces g : W• → Z• in the resolution model category
structure with respect to ΘB (since both are cofibrant replacements for c(Y)•), and
this will induce a weak equivalence V• → U• in the resolution model structure of �3.3,
and thus the same holds for the simplicial n-stems R• and S• (cf. [Sto, Theorem
1.9]).

The next example is used to construct a van Kampen spectral sequence to compute
π∗(Y ∨ Z) from π∗Y and π∗Z:

Proposition 7.10. The wedge bifunctor ∨ : G × G → G is level.

Proof. The proof is entirely analogous to that of Proposition 7.9: given two Stover
mapping algebras X and Y, realizable by Y and Z, respectively, their n-truncations
are realizable by n-stems Q and S, weakly equivalent to the Postnikov n-stem P[n]Y
and P[n]Z, respectively. Once again we cannot reconstruct the Postnikov n-stem
for Y ∨ Z directly from the window-wise wedge of Q and S (except for the bot-
tom window), but must have recourse to sequential realizations of the full simplicial
resolutions.

Remark 7.11. Stover set up spectral sequences for arbitrary homotopy colimits in
Top0 (see [Sto, Theorem 1.2]), and one can obtain similar results for the left derived
functors appearing as the E2-terms of these spectral sequences.

8. Truncating derived functors of dual mapping algebras

We may dualize Definitions 7.1 and 7.2 of Section 7 as follows:
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Definition 8.1. For any 2 � r � ∞ we let Er denote the category of r-truncated
cohomological spectral sequences {E∗∗k }rk=1 (again, the last differential need not sat-
isfy dr ◦ dr = 0). A weak equivalence in Er is a map inducing an isomorphism in E∗∗2 .
Again we have truncation functors P r : En → Er. The homotopy spectral sequence
of a cosimplicial space defines a homotopy functor S∞ : SΔ

∗ → E∞, and we write
Sr := P r ◦ S∞.

If T : SR → D is a homotopy functor preserving R-equivalences, we say that T,
and the corresponding T : sMapSt,Rre → D of Corollary 4.8, are level if for any r � 2
and weakly R-good dual strict Stover mapping algebra X = MSt,RY (see Defini-
tion 4.5), SrR

relTX factors up to isomorphism through the (r − 2)-truncated simpli-
cial dual strict Stover mapping algebra P r−2MSt,R(RrelTX), up to weak equivalence

in SΘA×Δop

[n] (see Remark 4.6).

Although the analogue of Theorem 7.5 was also shown in [BB1] to hold for the
homotopy spectral sequence of a cosimplicial space, this does not appear to be helpful
in showing that functors of R-mapping algebras are level – mainly because there is
no simple connection between maps into Eilenberg–Mac Lane spaces and maps out
of spheres. Thus a more direct approach is needed here.

Our main result in this connection, which may be of independent interest, is the
following reinterpretation of the results of [BBS]:

Theorem 8.2. For any Z ∈ S∗ and R = Fp or Q, the unstable R-Adams spectral
sequence for T := map∗(Z,−) applied to Y ∈ SR (see [BK1, �7.2]) is determined by
the simplicial R-mapping algebra (MRRrelT)MSt,RY, and T is level.

Proof. Let Y → W• be a cosimplicial resolution, which we may assume without
loss of generality to be associated to a dual sequential realization W as in �6.1, by
Theorem 6.4.

We know that the homotopy spectral sequence for the cosimplicial space X• :=
map(Z, W•) is determined in principle by the simplicial dual strict A-mapping alge-
bra W• := MSt,RW•. Following the description in [BBS] (and compare [Bou1]) we
now explain how this can be made explicit:

By [BBS, Proposition 4.18] the unstable Adams spectral sequence for Y as above
agrees from the E2-term on with that associated to the fibration sequences

ΩnWn → Totn Ŵ
•
[n] → Totn−1 W

•
[n−1], (8.3)

in the notation of �6.1, so the same is true of the homotopy spectral sequence for
X• := map(Z, W•), if we apply map∗(Z,−) before taking Tot.

An element γ ∈ En,k+n
1 is thus represented by a map ΣkZ → Totn ΣD•[n], where

ΣD•[n] is the fiber of the Reedy fibration Ŵ•
[n] → W•

[n−1] and Totn ΣD•[n] � ΩnWn

(see [BBS, Proposition 4.12]). This is represented in turn by a map of cosimplicial
spacesG• : Δ• � ΣkZ → W•

[n] (see �6.1(iii)) – that is, a sequence of mapsGj
[n] : Δ

j �

ΣkZ → Wj
[n] (where we may assume Gj

[n] = 0 for j < n by [BBS, (3.6)]).

By [BBS, Theorem 5.9], for each r � 2 and N := n+ r − 1, the differential
dr : E

n,k+n
r → EN+1,k+N

r is defined on 〈γ〉 by the value φ : ΣkZ → ΩNWN+1 of a
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certain r-th order R-cohomology operation. This operation is defined when the asso-
ciated sequence of lower order operations vanish, so that there exists a chosen lift of
G• to G[N ] : Δ

• � ΣkZ → W•
[N ].

The map φ is obtained by patching together the composite of the maps Gi
[N ] with

the given maps F j
[N+1] : W

j
[N ] → PΩN−j−1WN+1 of (6.3), yielding a map from the

boundary of a certain (N + 1)-dimensional polyhedron PN+1
r , described in [BBS,

�4.3] to map∗(Σ
kZ, WN+1). This is adjoint to a map φ̃ : ΣkZ → ΩNWN+1, and

by [BBS, Theorem 5.10], the class

[φ̃] ∈ [ΣkZ, ΩNWN+1] ∼= [Σk−1Z, ΩN+1WN+1] ∼= EN+1,k+N
1

(using the usual Σ-Ω adjunction on the left) represents dr〈γ〉 ∈ EN+1,k+N
r . In particu-

lar, by [BBS, Lemma 5.7], [φ̃] vanishes if and only if G[N ] lifts to a map G[N+1] : Δ
• �

ΣkZ → W•
[N+1].

Because we assumed that each WN is in ΘR (see �6.1), the information used
in defining this higher operation is encoded by W• := MRW• and Z := MRZ Fur-
thermore, since Gj

[N ] = 0 for j < n, and W•
[N ] is (n+ r − 1)-skeletal by �6.1(i), from

the description above we see that we only need P r−1Z{ΩkWN} in order to calcu-
late dr, and thus E∗∗r+1. Finally, by Example 4.9, P r−1Z is completely determined by
the (r − 1)-truncated R-mapping algebra P r−1W•, and this in turn depends only on
P r−1MSt,RY, up to E2-equivalence.

Corollary 8.4. For any Z ∈ S∗ and R = Fp or Q, the mapping space functor
map∗(Z,−) is a level homotopy functor SR → S∗.
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Math. 283, Springer, Berlin-New York, 1972.

[J] J.F. Jardine, “Bousfield’s E2 Model Theory for Simplicial Objects”, in
P.G. Goerss & S.B. Priddy, eds., Homotopy Theory: Relations with Alge-
braic Geometry, Group Cohomology, and Algebraic K-Theory, AMS,
Providence, RI, 2004, pp. 305–319.

[K] G.M. Kelly, Basic concepts of enriched category theory, Cambridge U.
Press, Cambridge, UK, 1982.

[L] M.G. Lydakis, “Smash products and Γ-spaces”, Math. Proc. Cambridge
Philos. Soc. 126 (1999), pp. 311–328.

[Mc] S. Mac Lane, Categories for the Working Mathematician, Springer-
Verlag, Berlin-New York, 1971.



TRUNCATED DERIVED FUNCTORS 189

[Ma1] J.P. May, The Geometry of Iterated Loop Spaces, Springer Lecture Notes
in Math. 271, Berlin-New York, 1972.

[Ma2] J.P. May, Simplicial Objects in Algebraic Topology, U. Chicago Press,
Chicago-London, 1967.

[Mo] J.C. Moore, “Semi-simplicial complexes and Postnikov systems”, in J.
Adem et al., eds., Symposium internacional de topoloǵıa algebraica,
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