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Abstract
The aim of this article is to define and study a notion of

unstable algebra over an operad that generalises the classical
notion of unstable algebra over the Steenrod algebra. For this
study we focus on the case of characteristic 2. We define ⋆-
unstable P-algebras, where P is an operad and ⋆ is a commuta-
tive binary operation in P. We then build a functor that takes
an unstable module M to the free ⋆-unstable P-algebra gener-
ated by M . Under some hypotheses on ⋆ and on M , we iden-
tify this unstable algebra as a free P-algebra. Finally, we give
some examples of this result, and we show how to use our main
theorem to obtain a new construction of the unstable modules
studied by Carlsson, Brown–Gitler, and Campbell–Selick, that
takes into account their internal product.

1. Introduction

In this paper we study unstable modules over the mod 2 Steenrod algebra, taking
as a starting point algebraic operations that appear naturally on certain unstable
modules of interest.

The mod 2 Steenrod algebra A is the graded associative (non-commutative) unital
F2-algebra generated by the degree i elements Sqi for i > 0, and satisfying rela-
tions called the Adem relations. An unstable A-module is an A-module satisfying the
instability relation Sqix = 0 for all i > |x|. An unstable algebra is a commutative,
associative, graded algebra (A, ·) endowed with a structure of unstable A-module
and satisfying two relations, one called the Cartan formula, and the other called the
instability relation: Sq0x = x · x, where Sq0x = Sq|x|x.

We use the formalism of (symmetric) algebraic operads to define and study alge-
braic operations on unstable modules. Following the classical definitions, we define a
notion of unstable algebra over an operad P endowed with a commutative operation
⋆. Given such an operad P and a commutative operation ⋆ ∈ P(2)S2 , a P-algebra M
in unstable modules is said to be a ⋆-unstable P-algebra if, for all x ∈M , we have
Sq0x = ⋆(x, x). We construct a functor K⋆

P that takes an unstable module M to the
free ⋆-unstable P-algebra generated by M .

In a ⋆-unstable P-algebra, the operation ⋆ satisfies an interchange law with respect
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to every operation of P: for µ ∈ P(n), x1, . . . , xn ∈M , one has (see Proposition 5.6):

⋆(µ(x1, . . . , xn), µ(x1, . . . , xn)) = Sq0µ(x1, . . . , xn) = µ(⋆(x1, x1), . . . , ⋆(xn, xn)).

An operation ⋆ ∈ P satisfying such a compatibility relation is called P-central.

Our main result is the following theorem:

Theorem 1.1 (Theorem 6.11). Let P be an operad, ⋆ ∈ P(2)S2 be a P-central opera-
tion, and M be a connected reduced unstable module. There exists a graded P-algebra
isomorphism between the free ⋆-unstable P-algebra K⋆

P(M) generated by M , and the
free P-algebra generated by ΣΩM .

The classical case of unstable algebras corresponds to the case of the · -unstable
Com-algebras, where Com is the operad of (unital) commutative associative algebras,
and · ∈ Com(2) is the operadic generator. In this setting, the preceding result is
known, notably for free unstable modules M (see for example [1]). Moreover, when
M is freely generated by one element, the result of this theorem corresponds to the
calculation due to Serre of the mod 2 cohomology of the Eilenberg–MacLane spaces
of Z/2Z [15].

The motivating examples for studying unstable algebras come from topology.
Indeed, the mod 2 cohomology of a topological space is an unstable algebra. Other
unstable modules are classically described with an internal product, such as Brown–
Gitler modules, Carlsson modules, and Campbell–Selick modules. These unstable
modules appear notably when studying the injective objects in the category of un-
stable modules. In [5], Davis shows that the Carlsson module of weight 1, with the
multiplication studied by Carlsson, which is commutative but not associative and
satisfies an interchange law, is, in fact, isomorphic to the free ‘depth-invariant’ alge-
bra generated by an element of degree 1. His definition of a ‘depth-invariant’ algebra
corresponds to the definition of level algebras of Chataur and Livernet [4].

A direct application of Theorem 6.11 gives the following result:

Proposition 1.2 (Proposition 9.9). The Carlsson module K(1) with its internal
product is isomorphic to the free unstable level algebra generated by F (1).

This assertion gives more precision to the result of Davis, which did not take into
account the action of the Steenrod algebra.

So far, our result has not been generalised to the case of odd characteristic p. The
definition of P-central operations can be derived to operations of any arity p, and it
is expected that the results extend to odd characteristic when considering unstable
modules concentrated in even degree.

Notation 1.3.

� The base field is F := F2 for the whole article.

� Fvect is the category of F-vector spaces.

� A is the mod 2 Steenrod algebra. Amod is the category of left A-modules.

� U is the category of unstable modules over the Steenrod algebra.
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2. Algebras over an operad in U

In this section, we recall the symmetric monoidal structure on the category of un-
stable modules over the Steenrod algebra, as well as the notion of symmetric operads.
We focus on operads that come from operads in Fvect, concentrated in degree 0. We
explain why algebras in the category of unstable modules over such an operad P are
graded P-algebras satisfying a generalised Cartan formula.

Notation 2.1. The mod 2 Steenrod algebra A is the associative, non-commutative,
graded F2-algebra generated by the degree i element Sqi for all i > 0, satisfying the
Adem relations:

SqiSqj −

⌊i/2⌋
∑

k=0

(
j − k − 1

i− 2k

)

Sqi+j−kSqk = 0,

for all i, j > 0 such that i < 2j, where ⌊−⌋ is the floor function, and where we denote
by Sq0 the unit of A. We refer to [14] for notation and classical results about the
Steenrod algebra. Recall that the category U is the full subcategory of A-modules sat-
isfying the condition: Sqjx = 0 for all j > |x|. The ‘top’ square x 7→ Sq|x|x is denoted
by Sq0.

The category of A-modules is endowed with a symmetric monoidal tensor product:
if M,N are two A-modules, one can endow the graded tensor product M ⊗N of the
graded F-vector spaces M and N with the A-module structure given by:

Sqi(x⊗ y) :=
∑

k+l=i

Sqkx⊗ Sqly,

for all x ∈M , y ∈ N , i ∈ N. This monoidal structure actually comes from a Hopf
algebra structure on A with cocommutative coproduct (see [14, 13]).

If M and N are unstable modules, then M ⊗N is still unstable.

Recollections about operads

We assume that the reader has a basic knowledge of operad theory in the algebraic
setting. Our reference on the subject is the book [11] of Loday and Vallette. Let us
recall the basic definition, in order to fix our notation:

Definition 2.2.

� A symmetric sequence M is a sequence of vector spaces (M(n))n∈N such that,
for all n ∈ N,Sn acts onM(n) on the right. The integer n is often called “arity”.

� Symmetric sequences form a category Smod. This category is endowed with a
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tensor product such that:

(M⊗N ) (n) =
⊕

i+j=n

IndSn

Si×Sj
M(i)⊗N (j),

where IndSn

Si×Sj
denotes the induced representation from the Young subgroup

Si ×Sj of the group Sn.

� The category of symmetric sequences is endowed with another monoidal product
◦ given by:

(M◦N ) (n) =
⊕

k>0

M(k)⊗Sk
(N⊗k(n)),

with unit F concentrated in arity 1. For ν ∈ M(n), and ξ1, . . . , ξn ∈ N , we
denote by (ν; ξ1, . . . , ξn) the element [ν ⊗ ξ1 ⊗ · · · ⊗ ξn]Sn

∈ M ◦N .

� Operads are unital monoids in the monoidal category of symmetric sequences
(Smod, ◦). For an operad P, we denote by γP : P ◦ P → P its composition mor-
phism, and 1P ∈ P(1) its unit element. For ν ∈ P(n), ξ1, . . . , ξn ∈ P, we denote
by ν(ξ1, . . . , ξn) the element γP(ν; ξ1, . . . , ξn) ∈ P. The partial compositions in
an operad P are defined by

µ ◦i ν = µ(1P , . . . , 1P , ν
︸︷︷︸

i-th input

, 1P , . . . , 1P),

for all i ∈ {1, . . . ,m}, where m is the arity of µ.

� For any operad P, Palg is the category of P-algebras. We denote by S(P ,−) the
Schur functor Fvect → Fvect associated to P, and the ‘free P-algebra’ functor
Fvect → Palg, depending on the context. We recall that in Fvect, this functor is
a monad and is defined by:

S(P , V ) =
⊕

n>0

P(n)⊗Sn
V ⊗n.

It can also be defined as S(P , V ) = P ◦ V where V is considered as a symmetric
sequence concentrated in arity 0.

� For an operad P, a P-algebra is an algebra over the monad S(P ,−). In other
terms, it is a couple (V, θ) where V is a vector space and θ : S(P , V ) → V is
compatible with the composition and unit of P. For (V, θ) a P-algebra, µ ∈ P(n)
and v1, . . . , vn ∈ V , we denote by µ(v1, . . . , vn) the element θ(µ; v1, . . . , vn) ∈ V .

� Com (resp. uCom) is the operad of commutative, associative algebras (resp. of
commutative, associative, unital algebras).

Definition 2.3 (see [4]). A level algebra is a vector space V endowed with a com-
mutative bilinear operation ⋆ satisfying, for all a, b, c, d ∈ V ,

(a ⋆ b) ⋆ (c ⋆ d) = (a ⋆ c) ⋆ (b ⋆ d).

The operad of level algebras is denoted by Lev. It is generated by an element
⋆ ∈ Lev(2)S2 satisfying the relation:

⋆(⋆, ⋆) = ⋆(⋆, ⋆)(2 3),

where (2 3) ∈ S4 is the transposition of 2 and 3.
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Operads acting on unstable modules
The category of F-vector spaces is identified with the subcategory of unstable

modules concentrated in degree 0. This identification is compatible with the tensor
products. For any operad P in Fvect, we deduce a notion of P-algebra in A, and in
U , regarding P as an operad concentrated in degree 0.

Notation 2.4. We denote by PU
alg the category of P-algebras in unstable modules.

A morphism between P-algebras in U is a P-algebra morphism that is compatible
with the action of A.

Proposition 2.5. A P-algebra in U is a graded P-algebra M endowed with an action
of the Steenrod algebra that satisfies the (generalised) Cartan formula, that is, for all
µ ∈ P(n), (xi)16i6n ∈M×n,

Sqiµ(x1, . . . , xn) =
∑

i1+···+in=i

µ(Sqi1x1, . . . , Sq
inxn).

The forgetful functor PU
alg → U admits, as a left adjoint functor, the functor

S(P ,−) : U → PU
alg,

where, if M is an unstable A-module, S(P ,M) is an unstable A-module for the action
induced by M and the Cartan formula.

Proof. Since the elements of P are in degree 0, for all i > 0, Sqi acts trivially on
the operadic elements. A P-algebra in U is a graded P-algebra M endowed with an
action of the Steenrod algebra such that the structural morphism S(P ,M) →M is
compatible with the action of A. The compatibility condition corresponds exactly to
the Cartan formula (we will give an example of this computation in the case of the
operad Com). This also shows that S(P ,M), endowed with the action of the Steenrod
algebra given by the Cartan formula, is the free P-algebra in U generated by M .

Example 2.6. All Com-algebras in U satisfy the Cartan formula:
Let M be an unstable module, and θ : S(Com,M) →M a morphism in U endow-

ing M with the structure of a Com-algebra in U . Then θ is compatible with the
action of the Steenrod algebra. Denote by · ∈ Com(2) the operadic generator of Com.
Recall that the (associative and commutative) multiplication of M is then defined by
(x, y) 7→ θ(·;x, y) = ·(x, y). For all x, y ∈M , i ∈ N, one has:

Sqi(·(x, y)) =
∑

j+k+l=i

(Sqj ·)(Sqkx, Sqly) =
∑

k+l=i

·(Sqkx, Sqly).

Corollary 2.7. The map Sq0 is compatible with the action of P. More precisely:
Let M be an unstable module, P an operad in Fvect. For all µ ∈ P(k), x1, . . . , xk ∈

M , one has the following equality in S(P ,M):

Sq0(µ;x1, . . . , xk) = (µ;Sq0x1, . . . , Sq0xk).

Proof. Let M be an unstable module and P be an operad in Fvect. For all µ ∈ P(k),
x1 ∈Mn1 ,. . . ,xk ∈Mnk , Proposition 2.5 gives:

Sqn1+···+nk(µ;x1, . . . , xk) =
∑

i1+···+ik=n1+···+nk

(µ;Sqi1x1, . . . , Sq
ikxk).

Because M is an unstable module, one has Sqixj = 0 as soon as i > nj . So the only
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terms of this sum that are not zero are the ones with ij 6 nj for all j ∈ {1, . . . , k}.
The condition i1 + · · ·+ ik = n1 + · · ·+ nk then implies that:

Sqn1+···+nk(µ;x1, . . . , xk) = (µ;Sqn1x1, . . . , Sq
nkxk),

as required.

3. P-ideals in U

In this section, we recall the definition of a P-ideal, where P is an operad, as well as
the definition of the P-ideal generated by a vector subspace of a P-algebra. We then
extend these definitions to those of a P-ideal in U and of the P-ideal in U generated
by a vector subspace of a P-algebra in U . These objects have the desired universal
properties in the corresponding category.

Definition 3.1 ([6]).

� Let A be a P-algebra. A P-ideal of A is a vector subspace I of A such that, for
all µ ∈ P(n), a1, . . . , an ∈ A,

an ∈ I ⇒ µ(a1, . . . , an) ∈ I.

The structure of P-algebra of A induces a structure of P-algebra on the vector
space A/I.

� Let X ⊂ A be a vector subspace of the P-algebra A. The P-ideal generated by
X, denoted by (X)P , is the smallest P-ideal of A that contains X. It satisfies the
following universal property: For all P-algebras B and all P-algebra morphisms
ϕ : A→ B, ϕ(X) = 0 if and only if ϕ factors in a unique way into a P-algebra
morphism ϕ̃ : A/(X)P → B.

� A P-ideal in U is a P-ideal that is stable under the action of A.

� Let X ⊂M be a vector subspace of the P-algebra M in U . The P-ideal in U
generated by X, denoted by (X)P,U , is the smallest P-ideal in U of M that
contains X.

Proposition 3.2. Let M be a P-algebra in U , N ⊂M a sub-A-module of M . Then
(N)P is stable under the action of A. In particular, (N)P,U = (N)P .

Proof. Every element of (N)P is a sum of monomials of the type t = µ(a1, . . . , an),
with µ ∈ P(n), a1, . . . , an−1 ∈M , and an ∈ N . For all i ∈ N, one has:

Sqit =
∑

i1+···+in=i

µ(Sqi1a1, . . . , Sq
in−1an−1, Sq

inan).

Yet, for all in ∈ N, Sqinan ∈ N , so Sqit ∈ (N)P .
In particular, (N)P is a P-ideal ofM in U . For all P-ideals J ofM in U containing

N , since J is a P-ideal containing N , one has (N)P ⊂ J . This proves that (N)P =
(N)P,U .

4. ⋆-unstable P-algebras over the Steenrod algebra

In this section, we define a notion of unstable algebra over the Steenrod algebra
with respect to the data of an operad endowed with a commutative operation. This
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definition generalises the classical notion of unstable algebra over the Steenrod alge-
bra. With this aim in mind, we recall the definition of the endofunctor Φ of the
category of unstable modules, and we study the natural transformations linking Φ to
S(P ,−).

Definition 4.1 (see [10, 14]). Denote byΦ: U →U the functor defined on objects by:

(Φ(M))n =

{
M

n
2 , if n ≡ 0 [2],

0, otherwise.

For all x∈Mn, Φx denotes the corresponding element in (ΦM)2n. For all i∈N, one has:

SqiΦx =

{

Φ(Sq
i
2x), if i ≡ 0 [2],

0, otherwise.

There is a natural transformation λ : Φ→ idU such that, for all x∈M , λM (Φx)=Sq0x.

Proposition 4.2. Let P be an operad, M an unstable module. There is a natural in-
clusion ∆: Φ →֒S2, where S2(M)=(M⊗2)S2

is the second symmetric power, such that
for all x ∈M , ∆(Φx) = [x⊗ x]S2

. Moreover, for all ⋆ ∈ P(2)S2 , there is a natural
transformation a⋆ : S2 → S(P ,−) that maps [x⊗ y]S2

∈S2(M) to (⋆;x, y)∈S(P ,M).

Proof. The only thing that is not clear is the compatibility of ∆ with the action of
the Steenrod algebra.

For all x ∈M , one checks that

Sqi∆(Φx) = Sqi[x⊗ x]S2
=

∑

j+k=i

[Sqjx⊗ Sqkx]S2
,

=

(
∑

j+k=i,j<k

[Sqjx⊗ Sqkx]S2
+ [Sqkx⊗ Sqjx]S2

)

+ Y,

where

Y :=

{

[Sq
i
2x⊗ Sq

i
2x]S2

, if i ≡ 0 [2],
0, otherwise.

Yet, since [Sqjx⊗ Sqkx]S2
= [Sqkx⊗ Sqjx]S2

, one has

Sqi∆(Φx) = [Sq
i
2x⊗ Sq

i
2x]S2

= ∆(Φ(Sq
i
2x)) = ∆(SqiΦx).

Definition 4.3. Let P be an operad, and ⋆ ∈ P(2)S2 . Denote by α⋆ : Φ → S(P ,−)
the composite a⋆ ◦∆.

A ⋆-unstable P-algebra over the Steenrod algebra is a P-algebra (M, θ) in U such
that θ ◦ α⋆

M = λM , that is, such that for all x ∈M ,

Sq0x = ⋆(x, x).

We denote by K⋆
P the full subcategory of PU

alg formed by ⋆-unstable P-algebras.

Example 4.4.

� A · -unstable uCom-algebra is an unstable algebra in the classical sense (see
[16]), that is, a uCom-algebra (M, ·) in U such that Sq0x = x · x for all x ∈M .

� A ⋆-unstable Lev-algebra is an unstable level algebra as defined in [4], that is,
a Lev-algebra (M,⋆) in U such that Sq0x = x ⋆ x for all x ∈M . Examples of
such objects are given in Section 9.
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Definition 4.5. Denote by MagCom the operad freely generated by an operation
⋆ ∈ MagCom(2)S2 and (MagCom ↓ Op) the category of operads under MagCom
(see [12]).

Remark 4.6. An operadic morphism MagCom → P corresponds to the choice of a
commutative operation ⋆P ∈ P(2)S2 . By abuse of notation we write ⋆P for the cor-
responding object of (MagCom ↓ Op). With this notation, a morphism f : ⋆P → ⋆Q
in (MagCom ↓ Op) corresponds to an operad morphism f : P → Q together with a
choice ⋆P ∈ P(2)S2 , ⋆Q ∈ Q(2)S2 such that f(⋆P) = ⋆Q.

Notice that any object ⋆P in (MagCom ↓ Op) gives rise to the category K⋆
P of

⋆P -unstable P-algebras defined in Definition 4.3.

Proposition 4.7. Let ⋆P , ⋆Q be two objects of (MagCom ↓ Op). Any morphism
f : ⋆P → ⋆Q naturally induces a restriction functor f∗ : K⋆Q

Q → K⋆P

P which is the iden-
tity on the underlying unstable module.

Proof. An operad morphism f : P → Q induces a restriction functor f∗ : Qalg → Palg

taking a Q-algebra A to the P-algebra with the same underlying vector space (see
[11]) by setting, for all µ ∈ P(n), a1, . . . , an ∈ A,

µ(a1, . . . , an) = f(µ)(a1, . . . , an).

Let ⋆P ∈ P(2)S2 and ⋆Q = f(⋆P). If A is a ⋆Q-unstableQ-algebra, then f∗A is clearly
⋆P -unstable.

5. P-central operations

In this section, we define the condition of P-centrality for an operation ⋆ ∈ P(2)S2 .
Such an operation is said to be P-central if it satisfies the interchange relation with
respect to all other operations in P. The condition of P-centrality for an operation
⋆ ∈ P(2)S2 is necessary for the proof of Theorem 6.11 in order to identify certain free
⋆-unstable P-algebras.

Notation 5.1. In this section, the operad P in Fvect is fixed.

Definition 5.2.

� Let ⋆ ∈ P(2)S2 . The operation ⋆ is said to be P-central if it satisfies, for all
µ ∈ P(n), the interchange law:

⋆ (µ, µ) =

(

µ(⋆, . . . , ⋆
︸ ︷︷ ︸

n

)

)

σ2n, (E)

where σ2n ∈ S2n maps 2i to n+ i and 2i− 1 to i for all i ∈ [n].

� Let ⋆ ∈ P(2)S2 . A P-algebra A is said to be ⋆-compatible if, for all µ ∈ P(n),
a1, . . . , an ∈ A, one has:

⋆(µ(a1, . . . , an), µ(a1, . . . , an)) = µ(⋆(a1, a1), . . . , ⋆(an, an)).

Remark 5.3. A P-central operation is a level operation. Indeed, relation (E) with
µ = ⋆ yields ⋆(⋆, ⋆) = ⋆(⋆, ⋆)σ4. Since σ4 = (2 3) is the transposition of 2 and 3, ⋆ is
a level operation.
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Remark 5.4. A P-algebra A is said to be ⋆-compatible if ⋆ acts on it as a P-central
operation, whether or not this operation satisfies the P-centrality property. For
instance, if ⋆ is P-central, then all P-algebras are ⋆-compatible, but an algebra on an
operad P can be ⋆-compatible for an operation ⋆ ∈ P(2)S2 that is not P-central.

Example 5.5. Consider the operad MagCom, which is freely generated by one com-
mutative operation ⋆ ∈ MagCom(2)S2 . Since ⋆ is not required to be a level operation,
the equation (E) with ⋆ = µ is not satisfied.

It is clear that the multiplication of polynomials endows F[x] with a structure of
MagCom-algebra. It is easy to check that, with this definition, F[x] is ⋆-compatible.

Proposition 5.6. All ⋆-unstable P-algebras are ⋆-compatible.

Proof. Let M be a ⋆-unstable P-algebra, µ ∈ P(n), and x1, . . . , xn ∈M . One has

⋆(µ(x1, . . . , xn), µ(x1, . . . , xn)) = Sq0µ(x1, . . . , xn)

= µ(Sq0x1, . . . , Sq0xn)

= µ(⋆(x1, x1), . . . , ⋆(xn, xn)),

where the second equality is a consequence of Corollary 2.7.

The next proposition allows one to check, from a presentation of an operad P, if
an operation ⋆ ∈ P(2)S2 is P-central. It will be used in Lemma 5.11.

Proposition 5.7. Let ⋆ ∈ P(2)S2 . Let F be a sub-symmetric sequence of P. Suppose
that F generates the operad P.

Then ⋆ is P-central if and only if it satisfies relation (E) of Definition 5.2 for all
µ ∈ F .

Proof. It suffices to check that if µ, ν ∈ F satisfy (E), then all partial compositions
µ ◦i ν satisfy (E), and, in this setting, if µ and ν have same arity, µ+ ν satisfies (E).
The additivity statement is easily checked. Let µ, ν ∈ F . Denote by m and n the
respective arities of µ and of ν. If µ and ν satisfy (E), then:

⋆(µ ◦i ν, µ ◦i ν) = ((⋆(µ, µ)) ◦m+i ν) ◦i ν

= ((µ(⋆, . . . , ⋆)σ2m) ◦m+i ν) ◦i ν

= ((µ(⋆, . . . , ⋆) ◦i+1 ν) ◦i ν)σ
′

=

(

µ

(

⋆, . . . , ⋆, ⋆(ν, ν)
︸ ︷︷ ︸

i

, ⋆, . . . , ⋆

))

σ′

=

(

µ

(

⋆, . . . , ⋆, ν(⋆, . . . , ⋆)σ2n
︸ ︷︷ ︸

i

, ⋆, . . . , ⋆

))

σ′

= (µ ◦i ν)(⋆, . . . , ⋆)σ2(m+n−1),

where σ′ ∈ S2m+2n−2 is the block permutation obtained by applying σ to 2m blocks
of size 1, except for the i-th and the (i+ 1)-th, of size n.

Let us now give some examples of operads endowed with central operations.
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Example 5.8. The generator of the operad Com is Com-central. The generator of the
operad Lev defined in 2.3 is Lev-central.

Definition 5.9.

� Set D = F[d], the polynomial algebra in one indeterminate d, seen as an operad
concentrated in arity 1, with unit 1 ∈ F. A D-algebra is a vector space endowed
with an endomorphism d.

� For all s > 0, set Qs D = F[d]/ (ds − 1), seen as an operad concentrated in arity
1. A Qs D-algebra is a vector space endowed with an endomorphism d such that
ds is the identity morphism.

� For all q > 0, set Tq D = F[d]/
(
dq+1

)
, seen as an operad concentrated in arity

1. A Tq D-algebra is a vector space endowed with a nilpotent endomorphism d
of order 6 q + 1.

� Set D± = F[d, d−1], the Laurent polynomial in one indeterminate d, seen as an
operad concentrated in arity 1. A D±-algebra is a vector space endowed with
an automorphism d.

� Denote by Tq Lev the q-th truncation of the operad Lev, that is, the quotient
of Lev by the operadic ideal spanned by all compositions of the generator such
that the composition tree (see [11]) is of height greater than q.

Lemma 5.10. Let P be an operad. The following morphism of S-modules is a dis-
tributive law (see [11]):

D ◦P → P ◦D

(dn;µ) 7→ (µ; dn, . . . , dn
︸ ︷︷ ︸

m

)

and it induces a distributive law on P ◦QsD and on P ◦D±.

Proof. It is a straightforward verification.

Lemma 5.11. The operadic generator ⋆ ∈ Lev(2)S2 yields a Tq Lev-central opera-
tion. The operation (·; d, d) is a uCom ◦D-central operation, a uCom ◦D±-central
operation, and a uCom ◦Qs D-central operation. More generally, if ⋆ ∈ P(2) is P-
central, then (⋆; di, di) is P ◦D, P ◦D±, and P ◦Qs D-central, for all i ∈ N.

Proof. All these assertions are proved by use of Proposition 5.7.

The following statement will be useful in Section 9.

Proposition 5.12. The operadic morphism Lev → Com ◦D (respectively, Lev →
Com ◦D±), mapping the generator ⋆ ∈ Lev(2)S2 to (·; d, d) is a monomorphism. It
passes to the quotients, inducing a monomorphism Tq Lev → Com ◦Tq D.

Proof. The vector spaces Lev(n) are endowed with a basis constituted of ordered par-

titions J = (J0, . . . , Jp) of the set {1, . . . , n}, p being any integer, satisfying
∑p

i=0
|Ji|
2i ,

and where we allow some of the Ji’s to be empty (see [7]).
The vector spaces Com ◦D(n) are endowed (for n > 0) with the same basis without

the summation condition
∑p

i=0
|Ji|
2i .
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The operadic morphism Lev → Com ◦D, mapping the generator ⋆ ∈ Lev(2)S2 to
(·; d, d) injects the given basis of Lev into the given basis of Com ◦D.

The vector space Tq Lev(n) (respectively, Com ◦Tq D(n)) is the quotient vector
space of Lev(n) (resp. Com ◦D(n)) by the vector subspace spanned by the partitions
J = (J0, . . . , Jp) such that there exist an i > q satisfying Ji 6= ∅. Hence, the inclusion
of bases passes to the quotients.

6. ⋆-unstable P-algebras generated by an unstable module

In this section, we build, for any operad P endowed with a commutative operation
⋆ ∈ P(2)S2 , a functor that assigns to an unstable module M the free ⋆-unstable
P-algebra generated by M .

In the beginning of this section, we recall some basic notions for the study of
unstable modules. We refer to [14] for this notation.

The main result of this section is Theorem 6.11, which gives a concise description
of the free ⋆-unstable P-algebra generated by a connected reduced unstable module,
when the operation ⋆ satisfies the P-centrality condition defined in Section 5. Under
these conditions, we identify this ⋆-unstable P-algebra, which is a quotient of a P-
algebra, as a free P-algebra.

When working with the operad uCom, endowed with its generating operation
· ∈ uCom(2)S2 , and when we consider free unstable algebras generated by a free,
monogeneous unstable module, the result of Theorem 6.11 corresponds to the cal-
culation due to Serre of the mod 2 cohomology of the Eilenberg–MacLane spaces of
Z/2Z [15].

Notation 6.1. Throughout this section, we fix an operad P and a commutative oper-
ation ⋆ ∈ P(2)S2 .

Definition 6.2 (see [16, 14, 10]).

� The suspension functor Σ: U → U takes an unstable module M to the unstable
module ΣM defined by (ΣM)d =Md−1, and Sqi(σx) = σ(Sqix), where σx ∈
Md+1 corresponds to the element x ∈Md.

� The functor Σ admits a left adjoint denoted by Ω. For all M ∈ U , the unstable
moduleM/ Im(Sq0) is a suspension, and the de-suspension Σ−1(M/ Im(Sq0)) is
isomorphic to ΩM . The counit of the adjunction (Ω,Σ) is a natural isomorphism
ΩΣM ∼=M .

� Let I = (i1, . . . , ik) be a (finite) sequence of integers. Then I is called admissible
if for all h ∈ {1, 2, . . . , k − 1}, ih > 2ih+1. The excess of an admissible sequence
is the integer e(I) := i1 − i2 − · · · − ik.

� Let I = (i1, . . . , ik) be a (finite) sequence of integers. We denote by SqI the
product Sqi1 · · ·Sqik in A.

Definition 6.3 (see [14]). For n ∈ N, the free unstable module generated by one
element ιn in degree n is denoted F (n). One has HomU (F (n),M) ∼=Mn.

The following assertions are all consequences of the definition of F (n):
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� The unstable module F (n) is isomorphic to:

ΣnA/(SqI : I admissible, and e(I) > n).

Therefore, F (n) admits as a graded vector space basis the set of SqIιn where ιn
is the generator of degree n and I satisfies e(I) 6 n. In particular, the unstable

module F (1) has for basis the set {jk}k∈N, where jk := Sq2
k−1

· · ·Sq1ι1 ∈ F (1)2
k

(j0 = ι1).

� For all n > 0, ΩF (n) is isomorphic as an unstable module to F (n− 1). Indeed,
forM an unstable module, there is a one-to-one correspondence (natural inM):

HomU (ΩF (n),M) ∼= HomU (F (n),ΣM)

∼= (ΣM)
n ∼=Mn−1 ∼= HomU (F (n− 1),M).

Definition 6.4 (see [14]).

� An unstable module M is said to be reduced if the application Sq0 : M →M is
injective.

� An unstable module M is said to be connected if M0 = 0.

Notation 6.5.

� For all k ∈ N, the element ⋆k ∈ P(2k) is inductively defined by:

⋆0 = 1P , and, ∀k > 1, ⋆k = ⋆(⋆k−1, ⋆k−1).

� For all µ ∈ P(n), x ∈M , where M is an unstable module, the element

(µ;x, . . . , x
︸ ︷︷ ︸

n

) ∈ S(P ,M)

is denoted by(µ;x×n). If M is a P-algebra, the element µ(x, . . . , x
︸ ︷︷ ︸

n

) ∈M is

denoted by µ(x×n).

Lemma 6.6. If ⋆ is P-central, then ⋆k belongs to P(2k)S2k .

Proof. Let us show this result by induction. For k = 0, this is obvious since S1 is
trivial.

Suppose that, for a given k ∈ N, ⋆k is stable under the action of Sk. The compati-
bility between operadic composition and symmetric group action implies that ⋆k+1 is
stable under the action of the wreath productS2 ≀S2k ⊂ S2k+1 . Furthermore, assum-
ing that ⋆ is P-central, one checks easily that the element σ2k+1 ∈ S2k+1 defined in
Definition 5.2 stabilises ⋆k+1.

It suffices to show that S2 ≀S2k ∪ {σ2k+1} generates S2k+1 . One can show that
every transposition (i j) is in the subgroup G < S2k+1 generated by S2 ≀S2k ∪
{σ2k+1}. Note that if i, j ∈ {1, . . . , 2k} or i, j ∈ {2k + 1, . . . , 2k+1}, then (i j) ∈ S2k ×
S2k ⊂ S2 ≀S2k . Let us suppose that i ∈ {1, . . . , 2k} and j ∈ {2k + 1, . . . , 2k+1}. Note
that σ2k+1(1) = 1 and σ2k+1(2k+1) = 2. Then σ−1

2k+1(1 2)σ2k+1 is the transposition

(1 2k + 1). So, (1 i)(2k + 1 j)σ−1
2k+1(1 2)σ2k+1(1 i)(2k + 1 j) = (i j). This shows that

(i j) ∈ G.
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Proposition 6.7. Let P be an operad, ⋆ ∈ P(2)S2 be a commutative operation and
M be an unstable module. We set:

K⋆
P(M) := S(P ,M)/({Sq0t+ ⋆(t, t) : t ∈ S(P ,M)})P,U .

Then K⋆
P(M) is a ⋆-unstable P-algebra. Moreover, K⋆

P : U → K⋆
P gives a left adjoint

functor for the forgetful functor U : K⋆
P → U .

Proof. Let t ∈ S(P ,M). One has Sq0[t] = [Sq0t] = [⋆(t, t)] = ⋆([t], [t]) in K⋆
P(M), so

K⋆
P(M) is ⋆-unstable.

Let N be a ⋆-unstable P-algebra, and g : M → N a morphism of A-modules. Since
S(P ,M) is the free P-algebra in U generated by M , there exists a unique morphism
g′ : S(P ,M) → N of P-algebras in U that extends g.

Now, as K⋆
P(M) is ⋆-unstable, g′(({Sq0t+ ⋆(t, t) : t ∈ S(P ,M)})P,U ) = 0. So there

is a unique factorisation morphism g′′ : K⋆
P(M) → N . Thus, since K⋆

P(M) is ⋆-un-
stable, it is the free ⋆-unstable P-algebra generated by M .

The following proposition, using the notation introduced in Section 4, will be useful
in Section 9.

Proposition 6.8. Let ⋆P , ⋆Q be two objects in (MagCom ↓ Op), and M be an unsta-
ble module. Any morphism f : ⋆P → ⋆Q naturally induces a morphism f∗ : K

⋆P

P (M) →
f∗K⋆Q

Q (M), where f∗ : K⋆Q

Q → K⋆P

P is the restriction functor from Proposition 4.7.

Proof. The morphism S(f,M) : S(P ,M) → f∗S(Q,M) passes to the quotients, in-
ducing the desired morphism f∗ : K

⋆P

P (M) → f∗K⋆Q

Q (M).

Lemma 6.9 (see [14]). Let M be an unstable module. The unstable modules ΣΩM
and CokerλM are isomorphic. The following diagram is a short exact sequence when
M is reduced:

ΦM
λM

M
pr

ΣΩM .

Moreover, the morphism pr : M → ΣΩM is the unit of the adjunction (Ω,Σ).

Definition 6.10. Let M be a reduced unstable module. A graded section, denoted
by s : ΣΩM →M , is the data, for all d ∈ N, of a linear section s : (ΣΩM)d →Md

of the map pr : Md → (ΣΩM)d (that is, such that pr ◦ s = idΣΩM ). We draw the
reader’s attention to the fact that a graded section is not, in general, compatible with
the action of A, but is only a graded linear map.

Theorem 6.11. Let P be an operad in Fvect, ⋆ ∈ P(2)S2 be a P-central operation.
For all connected reduced unstable modules M , there exists an isomorphism of graded
P-algebras between the ⋆-unstable P-algebra K⋆

P(M) and the free P-algebra generated
by ΣΩM .

This isomorphism is not natural in M , and depends on the choice of a graded
section s : ΣΩM →M (see Definition 6.10).

Proof. We refer to Section 7.
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7. Proof of Theorem 6.11

Throughout this section, we fix an operad P in Fvect, endowed with a P-central
operation ⋆ ∈ P(2)S2 , and a connected unstable module M endowed with a graded
section s : ΣΩM →M (see Definition 6.10). For the proof of Lemma 7.2 and Propo-
sition 7.3, we do not assume that M is reduced.

The P-algebra K⋆
P(M) is described as a quotient of the free P-algebra S(P ,M)

by an ideal. In Lemma 7.2, Proposition 7.3 and Lemma 7.7, we simplify this ideal,
replacing it by a P-ideal generated by a vector subspace built from ΣΩM .

We then give a construction for the desired P-algebra isomorphism between
K⋆

P(M) and the free P-algebra S(P ,ΣΩM).

Notation 7.1. Let Unst = {Sq0x+ (⋆;x, x) : x ∈M} ⊂ S(P ,M), and

X = {Sq0t+ (⋆; t, t) : t ∈ S(P ,M)} ⊂ S(P ,M).

Lemma 7.2. The vector subspace X ⊂ S(P ,M) defined in 7.1 is stable under the
action of A. In particular, one deduces from Proposition 3.2 that:

K⋆
P(M) = S(P ,M)/(X)P .

Proof. Using the notation of Section 4, there are natural transformations λ : Φ → idU
and α⋆ : Φ → S(P ,−). These yield natural transformations λS(P,−) = Φ ◦ S(P,−) →
S(P,−) and γP ◦ α⋆

S(P,−) : Φ ◦ S(P ,−) → S(P ,−). The vector subspace X is the
image of the map λS(P,M) + γP ◦ α⋆

S(P,M), which is compatible with the action of A.
This implies that X is stable under the action of A.

Proposition 7.3. In S(P ,M), one has (X)P = (Unst)P , where X and Unst are
defined in 7.1. In particular, one deduces from Lemma 7.2 that:

K⋆
P(M) = S(P ,M)/(Unst)P .

Proof. Let us show that Unst ⊂ X and X ⊂ (Unst)P . The first inclusion is clear, let
us prove the second one. Let t := (µ;x1, . . . , xn) ∈ S(P ,M) be a P monomial, with
x1, . . . , xn ∈M . Following Corollary 2.7, one has:

Sq0t = (µ;Sq0x1, . . . , Sq0xn).

So the following element is in (Unst)P :

Sq0t+ µ((⋆;x1, x1), . . . , (⋆;xn, xn)) = Sq0t+ (µ(⋆, . . . , ⋆);x1, x1, . . . , xn, xn),

= Sq0t+ (µ(⋆, . . . , ⋆)σ2n;x1, . . . , xn, x1, . . . , xn).

Since ⋆ is P-central, this element is equal to:

Sq0t+ (⋆(µ, µ);x1, . . . , xn, x1, . . . , xn) = Sq0t+ ⋆(t, t).

Hence, X ⊂ (Unst)P .

Remark 7.4. Note that the P-centrality hypothesis is crucial. The mildest hypothesis
needed on ⋆ ∈ P(2)S2 for the proof of Proposition 7.3 is that for all µ ∈ P(n), if V
denotes the vector space spanned by {x1, . . . , xn}, then in S(P , V ), one has

(µ(⋆, . . . , ⋆)σ2n;x1, . . . , xn, x1, . . . , xn) = (⋆(µ, µ);x1, . . . , xn, x1, . . . , xn),

and this is equivalent to the P-centrality hypothesis.
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Lemma 7.5. Assume that M is reduced. Then, for all n ∈ N,

Mn = {Sqk0s(b) : b ∈ (ΣΩM)2
−kn, k ∈ N},

where we set (ΣΩM)2
−kn = 0 when 2−kn /∈ N.

Proof. This is a reformulation of the fact thatM being reduced, it is freely generated
by s(ΣΩM) under the action of Sq0.

Definition 7.6. Set:

E :=
{

Sqk0s(b) +
(

⋆k; (s(b))
×2k

)

: b ∈ ΣΩM,k ∈ N

}

⊂ S(P ,M).

Lemma 7.7. Suppose that M is reduced. One has (E)P = (Unst)P , where E is
defined in Definition 7.6 and Unst is defined in Notation 7.1. One then deduces
from Proposition 7.3 that:

K⋆
P(M) = S(P ,M)/(E)P .

Proof. Let us show that E ⊂ (Unst)P and Unst ⊂ (E)P .
Proof of the inclusion Unst ⊂ (E)P . Let x ∈M . According to Lemma 7.5, x can be
written as a sum of elements of the form y := Sqk0s(b) ∈M where k ∈ N, b ∈ ΣΩM .

On the one hand, Sq0y = Sqk+1
0 s(b), so the following element α is in (E)P :

α := Sq0y +
(

⋆k+1; (s(b))
×2k+1

)

.

On the other hand, (⋆; y, y) =
(
⋆;Sqk0s(b), Sq

k
0s(b)

)
. So the following element is

in (E)P :

β := (⋆; y, y) + ⋆
((

⋆k; (s(b))
×2k

)

,
(

⋆k; (s(b))
×2k

))

= (⋆; y, y) +
(

⋆k+1; (s(b))
×2k+1

)

.

Thus, the elements of the form α+ β = Sq0y + (⋆; y, y) are in (E)P , so Unst ⊂
(E)P .
Proof of the inclusion E ⊂ (Unst)P . Let k ∈ N, b ∈ ΣΩM . Let us show, by induction
on k ∈ N, that

Sqk0s(b) +
(

⋆k; (s(b))
×2k

)

∈ (Unst)P .

For k = 0, one has Sqk0s(b) +
(

⋆k; (s(b))
×2k

)

= 0 ∈ (Unst)P .

Let us assume that, for all l ∈ N, one has Sql0s(b) +
(

⋆l; (s(b))
×2l

)

∈ (Unst)P . Let

k = l + 1. Note that the following element is in Unst:

α := Sqk0s(b) + (⋆;Sql0s(b), Sq
l
0s(b)).

By the induction hypothesis, the following element is in (Unst)P :

Sql0s(b) +
(

⋆l; (s(b))
×2l

)

.

Thus, the following element is in (Unst)P :

β := ⋆
(

Sql0s(b) +
(

⋆l; (s(b))
×2l

)

, Sql0s(b) +
(

⋆l; (s(b))
×2l

))

=
(
⋆;Sql0s(b), Sq

l
0s(b)

)
+

(

⋆k; (s(b))
×2k

)

.
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Finally, the following element is in (Unst)P :

α+ β = Sqk0s(b) +
(

⋆k; (s(b))
×2k

)

.

Theorem 7.8 (Theorem 6.11). Suppose that M is reduced. The graded section s
induces a P-algebra isomorphism K⋆

P(M) ∼= S(P ,ΣΩM).

Proof. Recall from Lemma 7.7 that K⋆
P(M) ∼= S(P ,M)/(E)P , where E is defined in

Definition 7.6.
The graded section s : ΣΩM →M induces a graded P-algebra monomorphism

S(P , s) : S(P ,ΣΩM) → S(P ,M), which, in turn, induces a graded P-algebra map
ψs : S(P ,ΣΩM) → S(P ,M)/(E)P .

Conversely, using Lemma 7.5, one can define a graded linear map

ϕs : M −→ S(P ,ΣΩM)

by setting ϕs(Sq
k
0 b) = ⋆k(b

×2k), for all b ∈ ΣΩM , k ∈ N. This map induces a graded
P-algebra map ϕ̄s : S(P ,M) → S(P ,ΣΩM).

Let us show that ϕ̄s factorises into a P-algebra morphism ϕ̂s : S(P ,M)/(E)P →
S(P ,ΣΩM). Since ϕ̄s is compatible with the action of P, and since ϕ̄s(s(b)) = b for
all b ∈ ΣΩM , one has

ϕ̄s(Sq
k
0s(b)) =

(

⋆k; b
×2k

)

=
(

⋆k

(

(ϕs(s(b)))
×2k

))

= ϕs

(

⋆k; (s(b))
×2k

)

.

We have proved the existence of the factorisation morphism ϕ̂s : S(P ,M)/(E)P →
S(P ,ΣΩM).

Let us show that ψs is a bijection, and that ϕ̂s is its inverse.
The vector space S(P ,ΣΩM) is spanned by elements of the form (ν; b1, . . . , bm),

where ν ∈ P(n) and b1, . . . , bm ∈ ΣΩM . But, one has:

ϕ̂s ◦ ψs(ν; b1, . . . , bm) = ϕ̂s(ν; s(b1), . . . , s(bm)) = (ν; b1, . . . , bm).

So ϕ̂s ◦ ψs = idS(P,ΣΩM), and ψs is injective.
To complete the proof, it suffices to show that ψs is surjective. For this purpose, let

π : S(P ,M) → S(P ,M)/(E)P denote the canonical projection, so that π ◦ S(P , s) =
ψs. Since π is onto, it suffices to prove that for all s ∈ S(P ,M), there is an s

′ ∈
S(P ,ΣΩM) such that ψs(s

′) = π(s).
Lemma 7.5 implies that S(P ,M) is spanned by the element of the type:

s = (ν;Sqk1

0 s(b1), . . . , Sq
km

0 s(bm)),

where ν ∈ P(m), k1, . . . , km ∈ N, and b1, . . . , bm ∈ ΣΩM . This element can also be
written:

s = (ν;Sqk1

0 s(b1), . . . , Sq
km

0 s(bm)) +
(

ν(⋆k1
, . . . , ⋆km

); (s(b1))
×2k1

, . . . , (s(bm))
×2km

)

︸ ︷︷ ︸

∈(E)P

+
(

ν(⋆k1
, . . . , ⋆km

); (s(b1))
×2k1

, . . . , (s(bm))
×2km

)

︸ ︷︷ ︸

∈Im(S(P,s))

.

Let s′ be the following element of S(P ,ΣΩM):

s
′ =

(

ν(⋆k1
, . . . , ⋆km

); b×2k1

i , . . . , b×2km

m

)

.
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We have found an s
′ such that π(s) = ψs(s

′). So ψs is onto, hence it is a bijection,
and ϕ̂s is its inverse.

8. First examples and applications

In this section, we study some applications of Theorem 6.11, when we take M to
be the free unstable module F (n). Theorem 6.11 gives, under some assumptions on
the unstable moduleM and the operation ⋆ ∈ P(2)S2 , an isomorphism of P-algebras
K⋆

P(M) ∼= S(P ,ΣΩM). This isomorphism is not natural in M , and depends on a
graded section s of M (see Definition 6.10). In the case where M = F (1), we will
see that there is a unique choice for s. When M = F (n), we will give a somewhat
natural choice. In these cases, we will study the action of A obtained on S(P ,ΣΩM)
by transfer from the action of A on K⋆

P(M). We will then show that the result of
Theorem 6.11 needs not hold when M is not reduced.

We will use the notation used in the proof of Theorem 6.11. The isomorphism
K⋆

P(M) ∼= S(P ,ΣΩM) will be denoted by ϕ̂s. It is the factorisation of a graded P-
algebra morphism ϕ̄s : S(P ,M) → S(P ,ΣΩM).

Remark 8.1. Let P be an operad in Fvect, and letM be a connected reduced unstable
module endowed with a graded section s. Following the constructions of the proof of
Theorem 6.11, the inverse of ϕ̂s : K

⋆
P(M) → S(P ,ΣΩM) is the P-algebra morphism

sending x ∈ ΣΩM to [s(x)]E ∈ K⋆
P(M).

Definition 8.2. Let P be an operad in Fvect, M be a connected reduced unstable
module, endowed with a graded section s. One defines an action of A on the graded
P-algebra S(P ,ΣΩM) by setting:

Sqi ⊙ t := ϕ̂−1(Sqiϕ̂(t)).

Definition 8.3.

� The classical graded section s : ΣF (n− 1) → F (n) sends σ(SqIιn−1) ∈ ΣF (n−
1) to SqIιn.

� In the case n=1, since ΣF (0) only contains one non-zero element σι0 of degree 1,
and F (1)1 only contains one non-zero element ι1, the only graded section
ΣF (0) → F (1) sends σι0 to ι1.

Proposition 8.4. K⋆
P(F (1)) is the free P-algebra generated by one element ι1 of

degree 1 endowed with the unstable action of A determined by:

Sqjι1 :=







ι1, if j = 0,
⋆(ι1, ι1), if j = 1,
0, otherwise,

and satisfying the Cartan formula.

Proof. Let us describe the action of A obtained on the graded P-algebra S(P ,ΣF (0))
from the action of A on K⋆

P(F (1)) through the isomorphism ϕ̂s deduced from s as
defined above. Since ϕ̂s is an isomorphism of P-algebras, and since K⋆

P(F (1)) satisfies
the Cartan formula, it suffices to describe the action of A on the generator ι1. Since
Sq0 ⊙ ι1 = ι1, and since Sqi ⊙ ι1 = 0 for all i 6= 0, 1, it suffices to compute Sq1ι1. But,
because KP ⋆ (F (1)) is ⋆-unstable, one necessarily gets Sq1 ⊙ ι1 = (⋆; ι1, ι1).
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Example 8.5. This example shows that for x ∈ ΩM , even when i < |x|, the equality
Sqi ⊙ (σx) = σ(Sqix) does not hold in S(P ,ΣΩM).

SetM = F (2), x := σ(Sq4Sq2Sq1ι1) ∈ ΣF (1) ⊂ S(P ,ΣF (1)). Adem relations give
Sq1Sq4 = Sq5. So, the action of A on ΣF (1) gives Sq1x = σ(Sq5Sq2Sq1ι1), which is
0 because of the instability condition. However, the action of K⋆

P(F (2)) transfered to
S(P ,ΣF (1)) through the isomorphism ϕ̂s, with s as defined above yields:

Sq1 ⊙ x = ϕ̄(Sq1s(x)) = ϕ̄(Sq5Sq2Sq1ι2) = ϕ̄(Sq0Sq
2Sq1ι2)

= ϕ̄(⋆;Sq2Sq1ι2, Sq
2Sq1ι2) = ϕ̄(⋆; s(σSq2Sq1ι1), s(σSq

2Sq1ι1))

= (⋆;σSq2Sq1ι1, σSq
2Sq1ι1).

If ⋆ 6= 0 in P, one deduces that Sq1 ⊙ (σx) 6= σ(Sqix) in S(P ,ΣΩM).

Lemma 8.6. Let P be an operad in Fvect, ⋆ ∈ P(2)S2 be a P-central operation. Let
M be a connected reduced unstable module. For all graded sections s : ΣΩM →M ,
the action of K⋆

P(M) transferred to S(P ,ΣΩM) through the P-algebra isomorphism
ϕ̂s always yields:

Sq0 ⊙ (µ;x1, . . . , xn) = ⋆ ((µ;x1, . . . , xn), (µ;x1, . . . , xn)) ,

where µ ∈ P(n) in x1, . . . , xn ∈ ΣΩM .

Proof. It is a consequence of the ⋆-instability of K⋆
P(M). More precisely, one has,

with the notation of the proof of Theorem 6.11,

Sq0 ⊙ (µ;x1, . . . , xn) = ϕ̄(Sq0µ(s(x1), . . . , s(xn)))

= ϕ̄(⋆(µ(s(x1), . . . , s(xn)), µ(s(x1), . . . , s(xn)))).

Since ϕ̄ is a P-algebra morphism, one deduces that:

Sq0 ⊙ (µ;x1, . . . , xn) = ⋆ (ϕ̄(µ(s(x1), . . . , s(xn))), ϕ̄(µ(s(x1), . . . , s(xn)))) .

The result then follows from Remark 8.1.

Let us now show that, when the generating unstable module is not reduced, the
conclusion of Theorem 6.11 needs not hold.

Example 8.7. Set M = ΣF (0), P = uCom and ⋆ = ·, the generator of uCom. Recall
that ΣF (0) is a dimension 1 vector space concentrated in degree 1 with generator σι0
satisfying Sq0(σι0) = Sq1σι0 = 0. Hence, it is not reduced. In the unstable algebra
K ·

uCom(ΣF (0)), one has ·(σι0, σι0) = Sq1σι0 = 0. So K ·
uCom(ΣF (0)) is isomorphic to

ΣF (0) endowed with a trivial multiplication. On the other hand, recall (see Defi-
nition 6.3) that ΩΣF (0) ∼= F (0), so S(uCom,ΣΩ(ΣF (0))) ∼= S(uCom,ΣF (0)) is the
polynomial algebra on one degree one element. It is clear that, as vector spaces,
K ·

uCom(ΣF (0)) is not isomorphic to S(uCom,ΣΩΣF (0)).

9. Further applications

In this section, we recall the definition and structures of several classical unstable
modules, such as Brown–Gitler modules, Carlsson modules, and Campbell–Selick
modules. These modules come equipped with internal products satisfying different
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properties. We show that some of these classical modules, with their operations, are
free unstable algebras over operads.

We refer to [10] and [14] for the definitions and results on Brown–Gitler modules,
the Brown–Gitler algebra, Carlsson modules and the Carlsson algebra, and we refer
to [2] for the definitions and results on Campbell–Selick modules.

For a different approach to unstable modules, the reader may refer to [8] and [9],
where the author gives a presentation of the Brown–Gitler and Carlsson modules
using the theory of generic representations.

Notation 9.1. For a vector space V , we denote by V ♯ = HomF(V,F) the dual vector
space.

Definition 9.2 ([10]).

� Let n ∈ N. The n-th Brown–Gitler module J(n) is a representing object of the
functor Hn : U → Set, mapping M to (Mn)♯. For all n,m > 0, there is a linear
correspondence J(n)m ∼= (F (m)n)♯.

� The unstable modules J(n) are endowed with an external product µm,n : J(n)⊗
J(m) → J(n+m). The map

µm,n ∈ HomU (J(n)⊗ J(m), J(n+m)) ∼=
(

(J(n)⊗ J(m))
n+m

)♯

is the only non-zero element.

� The unstable module J(n) is endowed with an internal product obtained as a
composite:

J(n)⊗ J(n)
µn,n

J(2n)
·Sqn

J(n) ,

where the second map ·Sqn ∈ HomU (J(2n), J(n)) ∼= (J(2n)n)
♯ ∼= F (n)2n corre-

sponds to the element Sq0ιn ∈ F (n)2n.

� The direct sum J :=
⊕

n∈N
J(n), with the multiplication given by the external

products µm,n, is the Brown–Gitler algebra, also called the Miller algebra. An
element of J(n), seen in J , is said to have weight n, and this weight is additive
with respect to the multiplication of J .

Theorem 9.3 (Miller [13]). The Brown–Gitler algebra J is isomorphic to the poly-
nomial algebra F[xi, i ∈ N], with |xi| = 1, and xi has weight 2i, endowed with the
unstable action of A induced by the ‘shifted action’:

Sqjxi :=







xi, if j = 0,
x2i−1, if j = 1,
0, otherwise,

(SA)

where we set x−1 = 0, and satisfying the Cartan formula.

Definition 9.4 ([3, 10]).

� The n-th Carlsson module K(n) is the limit of the following diagram in U :

J(n) J(2n)
·Sqn

· · · J(2qn) J(2q+1n)
·Sq2

q
n

· · · .

The external products µn,m and the internal products on J(n) pass to the limits,
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yielding an external product µn,m : K(n)⊗K(m) → K(n+m) and an internal
product K(n)⊗K(n) → K(n).

� The direct sum K :=
⊕

n∈N
K(n), with the multiplication given by the external

products µm,n, is the Carlsson algebra.

Theorem 9.5 (Carlsson [3, 10]). The Carlsson algebra K is isomorphic to the poly-
nomial algebra F[xi, i ∈ Z], with |xi| = 1, endowed with the unstable action of A
induced by the shifted action (SA) and satisfying the Cartan formula.

Definition 9.6. The s-th Campbell–Selick module Ms is the polynomial algebra
F[xi, i ∈ Z/sZ], with |xi| = 1, endowed with the unstable action of A induced by
the shifted action (SA) and satisfying the Cartan formula.

Remark 9.7. It is clear from the definition of the shifted action (SA) that the Brown–
Gitler algebra, the Carlsson algebra and the Campbell–Selick modules are not un-
stable algebras in the classical sense of the term. For instance, if they were unstable,
one would have Sq0xi = Sq1xi = x2i , which is not the case.

Applications of our results by identification of structures
We have seen that the Brown–Gitler algebra, the Carlsson algebra and the

Campbell–Selick modules are not unstable algebras in the classical sense. However,
one can check that the Brown–Gitler algebra J is a (·; d, d)-unstable uCom ◦D-
algebra, that the Carlsson algebra K is a (·; d, d)-unstable uCom ◦D±-algebra, that
J(n) and K(n) with their internal products are unstable Lev-algebras, and that Ms

is a (·; d, d)-unstable Qs D-algebra.
We will now identify some of these modules as free unstable algebras over their

respective operads.
We refer to the notation introduced in Section 5 for operads and their central

operations.

Example 9.8. The free · -unstable uCom-algebra generated by F (1) is isomorphic to
H∗(RP∞,F) with the cup-product (see [16]).

The free · -unstable uCom-algebra generated by F (n) is isomorphic to the uCom-
algebra generated by ΣF (n− 1), and this corresponds to the description of the mod
2 cohomology of the n-th Eilenberg–MacLane space of Z/2Z given in [15].

Proposition 9.9. The Carlsson module K(1) with its internal product is isomorphic
to the free unstable level algebra generated by F (1).

Proof. Following Davis’s result [5, Theorem 4.2],K(1) with its internal product is the
free level algebra on one generator of degree 1. This corresponds to the underlying level
algebra structure of K⋆

Lev(F (1)). Since K is endowed with the unstable action of A
induced by the shifted action (SA) and satisfying the Cartan formula, Proposition 8.4
shows that K(1) with its internal product is isomorphic to K⋆

Lev(F (1)) as unstable
level algebras.

Proposition 9.10.

� The Carlsson algebra K, with the algebra endomorphism d : K → K mapping
xi to xi−1, is the free (·; d, d)-unstable uCom ◦D±-algebra generated by F (1).
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� The Campbell–Selick module Ms, with its algebra structure and the algebra
endomorphism d : Ms →Ms mapping xi to xi−1, is the free (·; d, d)-unstable
uCom ◦Qs D-algebra generated by F (1).

� The direct sum of Brown–Gitler modules
⊕2q

i=1 J(i) with the multiplication given

by the external product µm,n, and the endomorphism d :
⊕2q

i=1 J(i) →
⊕2q

i=1 J(i)
defined on J(i) by

d =

{

·Sqi/2 if i ≡ 0 [2],

0 otherwise,

is the free (·; d, d)-unstable uCom ◦Tq D-algebra generated by F (1).

Proof.

� Theorem 9.5 shows that the unitary commutative and associative algebra K is
free on {xi}i∈Z, of degree 1. With the (invertible) map d that sends xi to xi−1,
K is endowed with a structure of uCom ◦D±-algebra structure, and it is clearly
freely generated by x0. The result is then deduced by comparing the action of
A on K given in Theorem 9.5 with Proposition 8.4.

� The proof is similar. As a unitary commutative and associative algebra, Ms is
defined as free on {xi}i∈Z/sZ. With the (cyclic) map d that sends xi to xi−1,Ms

is endowed with a structure of uCom ◦Qs D-algebra structure, and it is clearly
freely generated by x0. The result is then deduced by comparing the action of
A on Ms with Proposition 8.4.

� The proof is again similar. As a unitary commutative and associative algebra,

Theorem 9.3 shows that
⊕2q

i=1 J(i) is, as a sub-algebra of J , freely generated

by {xi}06i6q. With the map d (nilpotent of degree q + 1),
⊕2q

i=1 J(i) is clearly
freely generated by xq. The result is then deduced by comparing the action of
A on J given in Theorem 9.3 with Proposition 8.4.

Morphisms of operads, and links between associated unstable algebras
Recall from Proposition 4.7 and Proposition 6.8 that any morphism f : ⋆P → ⋆Q

in (MagCom ↓ Op) induces a restriction functor f∗ : K⋆Q

Q → K⋆P

P , and a morphism
f∗ : K

⋆P

P (M) → f∗K⋆Q

Q (M) in K⋆
P , natural with respect to the unstable module M .

Notation 9.11. By abuse of notation, we will drop the restriction functor and denote
by K⋆Q

Q (M) the ⋆P -unstable algebra f∗K⋆Q

Q (M).

Example 9.12. The monomorphism Lev → uCom ◦D± mapping ⋆ ∈ Lev(2)S2 to the
operation (·; d, d) ∈ (uCom ◦D±)(2)S2 induces a monomorphism of unstable level

algebras K⋆
Lev(F (1)) → K

(·;d,d)
uCom ◦D±(F (1)). This morphism corresponds to the inclu-

sion K(1) →֒ K of the Carlsson module of weight 1 into the Carlsson algebra.

Proposition 9.13. The Brown–Gitler module of weight 2q, J(2q), with the multi-
plication given by the internal product (·Sq2

q

) ◦ µ2q,2q is the free ⋆-unstable Tq Lev-
algebra generated by F (1).

Proof. The monomorphism Tq Lev → uCom ◦Tq D induces a monomorphism of ⋆-

unstable Tq Lev-algebras K
⋆
Tq Lev(F (1)) → K

(·;d,d)
uCom ◦Tq D(F (1)). This morphism corre-

sponds to the inclusion of the free Tq Lev-algebra generated by xq as a subalgebra of
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⊕2q

i=1 J(i). It is easy to show that the image of this inclusion is J(2q) (for example,
by adapting the proof of [5, Theorem 4.2]).

Proposition 9.14. The truncation tower of Lev induces the following cofiltration of
K(1) in the category of unstable level algebras:

J(1) J(2)
·Sq1

· · · J(2q) J(2q+1)
·Sq2

q

· · · .

Proof. The operad Lev is the limit of the diagram:

T0 Lev T1 Lev · · · Tq Lev Tq+1 Lev · · · ,

where the morphisms Tq+1 Lev → Tq Lev are the operadic projections. Following
Proposition 6.8, the previous diagram induces a diagram:

K⋆
T0 Lev(F (1)) · · · K⋆

Tq Lev(F (1)) K⋆
Tq+1 Lev(F (1)) · · ·

in the category of unstable level algebras. For all q ∈ N, Proposition 9.13 gives the
isomorphism K⋆

Tq Lev(F (1))
∼= J(2q). It is easy to check that the morphism

K⋆
Tq+1 Lev(F (1)) −→ K⋆

Tq Lev(F (1))

induced by the operadic projection corresponds to ·Sq2
q

: J(2q+1) → J(2q). Indeed,
·Sq2

q

is compatible with the internal products on J(2q+1) and J(2q), and maps xq+1

to xq. The unstable module K(1) is defined as the limit of the J(2q)’s under the
morphisms ·Sq2

q

, and its internal product is given as the limit of the internal products
of the J(2q)’s. Hence,K(1) with its internal product is the limit of the desired diagram
in the category of unstable level algebras.
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