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Abstract
In this paper we present a general construction that can be

used to define the higher order Hochschild homology for a non-
commutative algebra. We also discuss other examples where this
construction can be used.

1. Introduction

Higher order Hochschild homology, HX•
n (A,M), was introduced by Pirashvili

in [13]. It is associated to a commutative k-algebra A, a symmetric bimodule M ,
and a simplicial set X•. When the simplicial set X• models S1 with the usual simpli-
cial structure, one recovers the usual Hochschild homology. The cohomology version
of this construction was introduced by Ginot in [5].

Secondary (co)homology of a triple (A,B, ε) was introduced in [14]. In order for the
construction to work we must have that the morphism ε : B → A gives a B-algebra
structure on A, and, in particular, B must be commutative.

As noted above, higher order Hochschild (co)homology is defined only for commu-
tative k-algebras, while Hochschild (co)homology is defined for any k-algebra. The
problem comes from the fact that for a general simplicial set (X•, di, si) we do not
have a natural order on the fibers of the maps di. This means that there is a choice to
be made when we define the pre-simplicial k-module corresponding to higher order
Hochschild (co)homology. One possible approach for this problem is to restrict our-
selves to those simplicial sets that do have a natural order on the fibers of di. However,
this approach does not provide a lot of new examples since any such simplicial set
must be of dimension one (see [1]).

A similar problem appears when we want to define the secondary (co)homology
of a triple (A,B, ε), and the k-algebra B is not commutative. There is a choice to
be made when one wants to write the formulas for the simplicial maps, and none of
those choices give a simplicial module (unless B is commutative).

In this paper we present a construction that allows us to extend several homological
constructions to noncommutative settings. For this we use the simplicial nature of
the higher order Hochschild (co)homology. First, we show that to a so called Λ-
system we can associate a unique maximal pre-simplicial module. Then we construct
several natural examples of Λ-systems. In particular, we associate one such Λ-system
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to a simplicial set X•, a k-algebra A and an A-bimodule M . Then we consider the
associated pre-simplicial module and take its homology. When A is commutative and
M is A-symmetric we recover the usual higher Hochschild homology HX•

n (A,M). Our
construction can also be used to define a secondary homology in the noncommutative
setting.

We discuss in detail the case when X• is modeled by S1. We show that if A
is a commutative k-algebra and M is a symmetric A-bimodule, then HS1

n (A,M) ≃
HS1

n (Ml(A),Ml(M)), and therefore we have Morita invariance for this case. In the
last section we give an account of other related problems and some open questions.

2. Preliminaries

In this paper k is a field, ⊗ is ⊗k, all maps are k-linear, and all algebras have
multiplicative unit. Furthermore, we set the notation N = {0, 1, 2, . . .}. We recall a
few facts and definitions that will be useful in the upcoming sections.

We say that (X•, di) is a pre-simplicial object (others say semi-simplicial) in a
category C if for every n ∈ N, we have an object Xn ∈ C, and for all 0 ⩽ i ⩽ n we
have morphisms δi : Xn+1 → Xn that satisfy the following relation:

δiδj = δj−1δi if i < j.

When C is the category of vector spaces over k, we say that (X•, di) is a pre-simplicial
k-module.

Let A be a k-algebra (not necessarily commutative), and M be an A-bimodule. We
consider the pre-simplicial module (Cn(A,M), di) that is used to define Hochschild
homology. That is Cn(A,M) = M ⊗A⊗n and

di(x0 ⊗ · · · ⊗ xn) =


x0x1 ⊗ x2 ⊗ · · · ⊗ xn if i = 0,

x0 ⊗ · · · ⊗ xi−1 ⊗ xixi+1 ⊗ xi+2 ⊗ · · · ⊗ xn if 1 ⩽ i ⩽ n− 1,

xnx0 ⊗ x1 ⊗ · · · ⊗ xn−1 if i = n.

For more results concerning Hochschild (co)homology, we refer to [3], [4], [9], and [12].
We recall from [13] the construction of the higher order Hochschild homology.

Assume that A is a commutative k-algebra, and M a symmetric A-bimodule.
Let V be a finite pointed set such that |V | = v + 1. We define L(A,M)(V ) =

M ⊗A⊗v. For φ : V → W we define

L(A,M)(φ) : L(A,M)(V ) → L(A,M)(W )

determined as follows:

L(A,M)(φ)(a0 ⊗ a1 ⊗ · · · ⊗ av) = b0m⊗ b1 ⊗ · · · ⊗ bw,

where

bi =
∏

{j∈V | ϕ(j)=i}

aj .

Take X = (X•, di, si) to be a finite pointed simplicial set, and define

CX•
n (A,M) = L(A,M)(Xn).

For each di : Xn → Xn−1 we take (di)∗ = L(A,M)(di) : C
X•
n (A,M) → CX•

n−1(A,M)
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and take ∂n : C
X•
n (A,M) → CX•

n−1(A,M) defined as ∂n =
∑n

i=0(−1)i(di)∗.
The homology of this complex is denoted by HX

• (A,M) and is called the higher
order Hochschild homology. When X• is modeled by S1 with the usual simplicial
structure, one recovers the complex that defines Hochschild homology. For more
results concerning higher order Hochschild (co)homology we refer to [5], [6], [7],
and [13].

Secondary cohomology was introduced in [14] in order to study B-algebra struc-
tures on A[[t]]. The homology version and the associated cyclic (co)homology were
introduced and studied in [11]. The relation between the secondary and higher order
Hochschild cohomology was established in [2].

3. A simplicial construction for noncommutative settings

In this section we give a general construction that is designed to construct pre-
simplicial modules in noncommutative settings. Its practical relevance will become
apparent in the next section, when we use it to define several (co)homology theories
for noncommutative algebras. Fixing the notation N∗ = {1, 2, 3, . . .}, we first consider
several definitions.

Definition 3.1. Suppose that for each n ∈ N∗ and for each 0 ⩽ i ⩽ n, we have a
finite nonempty set Λi

n. We call such a collection a ∆-indexing set, and we denote
it by Λ = {Λi

n | n ∈ N∗, i = 0, . . . , n}.

Definition 3.2. Let Λ = {Λi
n | n ∈ N∗, i = 0, . . . , n} be a ∆-indexing set. We call

M = (Mn, d
α
i ) a Λ-system if it consists of a collection of k-vector spaces {Mn}∞n=0,

and a collection of k-linear morphisms dαi : Mn → Mn−1 for all α ∈ Λi
n.

Note that if we have a pre-simplicial k-module (Mn, di) then we can get Λ-system
(Mn, d

α
i ) by taking |Λi

n| = 1 for all n ∈ N∗, and all 0 ⩽ i ⩽ n and defining dαi = di.
However, in general, a Λ-system does not automatically define a pre-simplicial k-
module or a chain complex. The plan is to prove that every Λ-system contains a
unique maximal pre-simplicial k-module.

Definition 3.3. Let M = (Mn, d
α
i ) be a Λ-system. We call A• = (An)n⩾0 a λ-sub-

complex of the Λ-system M if An is a sub-vector-space of Mn for every n, and for
0 ⩽ i ⩽ n we have

(i) dαi |An
= dβi |An

for all α, β ∈ Λi
n, with this common restriction denoted dAi ,

(ii) dAi (An) ⊆ An−1, and

(iii) dAi d
A
j = dAj−1d

A
i for i < j.

Remark 3.4. Notice that (ii) and (iii) imply that (An, d
A
i ) is a pre-simplicial module

and, in particular, we get a chain complex (hence the name λ-subcomplex).

Remark 3.5. LetM be aΛ-system, and S denote the collection of all λ-subcomplexes.
Since {0} ⊆ S, it is clear that S ̸= ∅. We impart a partial order on S by saying
A• ⩽ B• if there exists inclusions An ⊆ Bn in every dimension n. Notice that both
dAi = dαi |An

and dBi = dαi |Bn
, so since An ⊆ Bn, we have dBi |An

= dAi .
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Theorem 3.6. Let M be a Λ-system. Then M has a unique maximal λ-subcomplex.
In particular, we have a unique maximal pre-simplicial k-module Θ(M).

Proof. First, we show the existence of a maximal λ-subcomplex. To do this, we shall
use Zorn’s Lemma. Consider a countable, totally ordered subset of S, i.e. {Am

• }∞m=0

with Am
• ⩽ Am+1

• .

Claim: Ω• :=
⋃∞

m=1 A
m
• (where Ωn =

⋃
m⩾1

Am
n ) is a λ-subcomplex.

(i): Indeed, if a ∈ Ωn, then a ∈ Am
n for some m. Then for all α, β ∈ Λi

n, d
α
i (a) =

dβi (a) since Am
• is a λ-subcomplex. Thus (i) is satisfied.

(ii): Similarly, as a ∈ Ωn is also in some Am
n , dΩi (a) = dA

m

i (a) ∈ Am
n−1 ⊆ Ωn−1.

Hence (ii) is satisfied.

(iii): As above, take a ∈ Ωn. Then a ∈ Am
n for some m, so

dΩi (d
Ω
j (a)) = dAm

i (dAm
j (a)) = dAm

j−1(d
Am
i (a)) = dΩj−1(d

Ω
i (a)),

therefore (iii) holds.

Thus, Ω• is a λ-subcomplex (i.e. Ω• ∈ S). Now, being the union of all Am
• , each

Am
• ⩽ Ω•, so this is indeed an upper bound of the totally ordered subset {Am

• }∞m=0.
Thus, by Zorn’s Lemma, there exists a maximal element of S.

Now we show there is a unique maximal λ-subcomplex. Suppose there are two
maximal λ-subcomplexes, C• and D•. Consider Y• := C• +D•, where Yn as a k-
vector space is Cn +Dn = {y ∈ Mn | y = c+ d, for some c ∈ Cn, d ∈ Dn}. We show
that Y• is a λ-subcomplex.

(i): Take y ∈ Yn. Then y = c+ d for some c ∈ Cn and d ∈ Dn. So for all α, β ∈ Λi
n,

we have

dαi (y) = dαi (c+ d) = dαi (c) + dαi (d) = dβi (c) + dβi (d) = dβi (c+ d) = dβi (y).

This shows (i).

(ii): If y ∈ Yn, then y = c+ d for some c ∈ Cn and d ∈ Dn, so

dYi (y) = dYi (c+ d) = dYi (c) + dYi (d) = dCi (c) + dDi (d) ∈ Cn−1 +Dn−1 = Yn−1.

Hence (ii) holds.

(iii): Let i < j, and take y ∈ Yn with y = c+ d for some c ∈ Cn and d ∈ Dn. Since
C• and D• satisfy (iii) and using the observation in the proof for (ii), we have:

dYi (d
Y
j (y)) = dYi (d

Y
j (c+ d)) = dYi (d

C
j (c) + dDj (d)) = dYi (d

C
j (c)) + dYi (d

D
j (d))

= dCi (d
C
j (c)) + dDi (dDj (d)) = dCj−1(d

C
i (c)) + dDj−1(d

D
i (d))

and on the other hand,

dYj−1(d
Y
i (y)) = dYj−1(d

Y
i (c+ d)) = dYj−1(d

C
i (c) + dDi (d))

= dYj−1(d
C
i (c)) + dYj−1(d

D
i (d)) = dCj−1(d

C
i (c)) + dDj−1(d

D
i (d)).

Thus, dYi d
Y
j = dYj−1d

Y
i , so (iii) is satisfied.

Therefore, Y• is a λ-subcomplex. Clearly there are injections Cn ↪→ Yn and Dn ↪→
Yn, but they were chosen to be maximal, so it must be that C• = Y• = D•. Hence, a
maximal λ-subcomplex is unique, and we denote it by Θ(M).
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Definition 3.7. Let M be a Λ-system with unique maximal λ-subcomplex Θ(M).
We call the homology of Θ(M) the Λ-homology group of M, and we denote it by
Hn(M) := Hn(Θ(M)•).

Next, we need to talk about morphisms between Λ-systems.

Definition 3.8. Take Γ and Λ to be two ∆-indexing sets, M = (Mn, d
β
i ) a Γ-system,

and N = (Nn, δ
α
i ) a Λ-system. A λ-morphism from M to N is a collection of k-

linear maps fn : Mn → Nn for all n ∈ N, such that if n ⩾ 1, then for all 0 ⩽ i ⩽ n,
and all α ∈ Λi

n there exists a β ∈ Γi
n such that δαi fn = fn−1d

β
i .

We have the following result.

Lemma 3.9. Take Γ and Λ to be two ∆-indexing sets, M = (Mn, d
β
i ) a Γ-system,

and N = (Nn, δ
α
i ) a Λ-system. If f : M → N is a λ-morphism then f induces a

morphism of pre-simplicial modules f : Θ(M) → Θ(N ).

Proof. First we show that fn(Θ(M)n) ⊆ Θ(N )n. If n = 0, then this is obvious since
Θ(N )0 = N0. Define As ⊆ Ns determined by

As = fs(Θ(M)s) for all s ⩾ 0.

We want to show that A• = (As)s⩾0 defines a λ-subcomplex in N .

Because (Θ(M)s)s⩾0 is a λ-subcomplex of M, then for all β1, β2 in Γi
s we have

that dβ1

i = dβ2

i on Θ(M)s. We will denote this map by di (suppressing the s index).

Take n ⩾ 1 and 0 ⩽ i ⩽ n. Since f is a λ-morphism then for α1, α2 ∈ Λi
n we can

find β1, β2 ∈ Γi
n such that δα1

i fn = fn−1d
β1

i and δα2
i fn = fn−1d

β2

i . Take x ∈ An with
x = fn(c) for some c ∈ Θ(M)n. We have

δα1
i (x) = δα1

i (fn(c)) = fn−1(d
β1

i (c)) = fn−1(di(c)) = fn−1(d
β2

i (c)) = δα2
i (fn(c)) = δα2

i (x),

which means that δα1
i = δα2

i on An for all α1, α2 ∈ Λi
n. And so we have condition (i)

from Definition 3.3. We denote the common restriction by δAi .

Take x ∈ An with x = fn(c) for some c ∈ Θ(M)n. Then we have

δAi (x) = δAi fn(c) = δαi fn(c) = fn−1d
β
i (c) = fn−1di(c) ∈ An−1

for some α ∈ Λi
n (and the corresponding β ∈ Γi

n). This means that

δAi (An) ⊆ An−1,

and so we have condition (ii) from Definition 3.3.

Finally, for all i < j, and x = fn(c) for some c ∈ Θ(M)n we have

δAi δ
A
j (x) = δAi δ

A
j (fn(c)) = fn−2(didj(c)) =fn−2(dj−1di(c))= δAj−1δ

A
i (fn(c))= δAj−1δ

A
i (x).

Thus (As)s⩾0 defines an λ-subcomplex, and so we get that An = fn(Θ(M)n) ⊆
Θ(N )n for all n ∈ N.

We already noticed that δAi fn = fn−1di, which means that f is a morphism of
pre-simplicial modules from Θ(M) to Θ(N ).
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4. A few examples

4.1. Higher order Hochschild homology
Let A be a k-algebra (not necessarily commutative), and M be an A-bimodule.

As a warm-up, we define higher order Hochschild homology when the simplicial set
models the sphere S2. We will use the description from [10] as a point of reference.

Example 4.1. Set Λ0
n = {ρ | ρ ∈ Ŝn}, where we let Ŝn be the set of permutations of

{0, 2, . . . , n}. For 0 < i < n, set

Λi
n = {σ = (σ1, . . . , σn−1) | σj ∈ {1, τ}},

and Λn
n = {ρ | ρ ∈ Sn}, where Sn is the set of permutations of {0, . . . , n− 1}. Notice

that σj = 1 represents usual multiplication and σj = τ represents transpose multipli-
cation, as seen below.

Let ρ act on a tensor product of length n by permuting the elements according to
ρ and then taking the product (i.e. ρ(x0 ⊗ x2 ⊗ · · · ⊗ xn) = xρ(0)xρ(2) · · ·xρ(n)). Take

σj(x⊗ y) =

{
xy if σj = 1,

yx if σj = τ.

Observe that σ is an (n− 1)-tuple consisting of usual or transpose multiplication rules

(the σj ’s). We define a Λ-system F by taking Fn = M ⊗A⊗n(n−1)
2 , and dσi : M ⊗

A⊗n(n−1)
2 → M ⊗A⊗ (n−1)(n−2)

2 defined as follows:

dρ0(m0 ⊗


1 a1,2 · · · a1,n

. . .
. . .

...
1 an−1,n

1

) = ρ(m0 ⊗ a1,2 ⊗ · · · ⊗ a1,n)⊗


1 a2,3 · · · a2,n

. . .
. . .

...
1 an−1,n

1

 .

For 1 ⩽ i ⩽ n− 1,

dσi (m0 ⊗


1 a1,2 · · · a1,n

. . .
. . .

...
1 an−1,n

1

) = σi(m0 ⊗ ai,i+1)

⊗



1 a1,2 · · · σ1(a1,i ⊗ a1,i+1) a1,i+2 · · · a1,n
. . .

. . .
...

...
. . .

...
1 σi−1(ai−1,i ⊗ ai−1,i+1) ai−1,i+2 · · · ai−1,n

1 σi+1(ai,i+2 ⊗ ai+1,i+2) · · · σn−1(ai,n ⊗ ai+1,n)
. . .

. . .
...

1 an−1,n

1


.

Finally,

dρn(m0 ⊗


1 a1,2 · · · a1,n

. . .
. . .

...
1 an−1,n

1

) = ρ(m0 ⊗ a1,n ⊗ · · · an−1,n)⊗


1 a1,2 · · · a1,n−1

. . .
. . .

...
1 an−2,n−1

1

 .

Notice that when A is commutative and M is A-symmetric we get the usual higher
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order Hochschild homology HS2

n (A,M).

Next, we want to define higher order Hochschild homology for a general simplicial
set.

Example 4.2. LetX=(X•, di, si) be a pointed simplicial set. Consider the ∆-indexing
set ΛX• defined by

Λi
n =

∏
j∈Xn−1

SZi
n(j)

,

where SZ is the symmetric group on the set Z, and for j ∈ Xn−1 we set Zi
n(j) =

d−1
i (j) where di : Xn → Xn−1.

Let A be a k-algebra and M an A-bimodule. We define the ΛX• -system CX•(A,M)
as follows. For each n define CX•

n (A,M) = M ⊗A⊗xn where xn = |Xn| − 1. For σ =
(σ0, σ1, . . . , σxn−1

) ∈ Λi
n we define dσi : C

X•
n (A,M) → CX•

n−1(A,M) determined by

dσi (a0 ⊗ a1 ⊗ · · · ⊗ axn
) = bσ0 ⊗ bσ1 ⊗ · · · ⊗ bσxn−1

,

where for j ∈ Xn−1 we define

bσj =
∏

{s∈Xn | di(s)=j}

aσ(s).

In the last formula the product is ordered over s. Notice that the order that we pick
on Zi

n(j) is not important, we just want to make sure that we cover all the possible
ordered products.

As one expects, if A is commutative and M is a symmetric A-bimodule we get the
usual higher order Hochschild homology HX

• (A,M).

Example 4.3. Take A a commutative k-algebra, and M a symmetric A-bimodule.
Take e ∈ Ml(A), and m ∈ Ml(B) such that e2 = e, and em = me = m. Consider the
element

Wn(e,m) = m⊗ e⊗xn ∈ CX•
n (A,M).

Notice that dαi (Wn(e,m)) = Wn−1(e,m), which means that if we define Cn =
kWn(e,m) we get a λ-subcomplex, and so Wn(e,m) ∈ Θ(CX•(A,M))n.

Remark 4.4. Notice that the Λ-system from Example 4.2 is completely determined by
A, M and the simplicial set X. We denote the homology groups Hn(Θ(CX(A,M))) by
HX

n (A,M). When A is commutative and M is a symmetric A-bimodule, we recover
the higher order Hochschild homology, so this notation is consistent with [13]. When
the simplicial set models the sphere S2 with the usual simplicial structure (see [10]),
we recover Example 4.1.

4.2. Secondary Hochschild homology

The next example is associated with the secondary Hochschild homology, denoted
HH•(A,B, ε). Recall that in [11] we need A to be a B-algebra, and, in particular, B
must be commutative. Using the construction from the previous section, we are able
to drop that condition.
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Example 4.5. Let A and B be k-algebras, and ε : B → A be a k-algebra morphism.
Here we do not assume B is commutative. TakeΛ = {Λi

n} as follows: for 0 ⩽ i ⩽ n− 1

Λi
n = {σ = (σ0, σ1, . . . , σi, . . . , σn−1) | σj ∈ {1, τ} for j ̸= i, σi ∈ {l, c, r}},

and

Λn
n = {σ = (σ0, σ1, . . . , σi, . . . , σn−1) | σj ∈ {1, τ} for j ̸= 0, σ0 ∈ {l, c, r}}.

We define a Λ-system E(A,B, ε) where we set

En(A,B, ε) = A⊗n+1 ⊗B⊗n(n+1)
2 .

For 0⩽ i⩽n− 1 and σ ∈Λi
n define dσi : A

⊗n+1⊗B⊗n(n+1)
2 →A⊗n⊗B⊗n(n−1)

2 given by

dσi (⊗


a0 b0,1 · · · b0,n−1 b0,n

a1 · · · b1,n−1 b1,n
. . .

...
...

an−1 bn−1,n

an

) =

⊗



a0 · · · b0,i−1 σ0(b0,i ⊗ b0,i+1) b0,i+2 · · · b0,n
. . .

...
...

...
. . .

...
ai−1 σi−1(bi−1,i ⊗ bi−1,i+1) bi−1,i+2 · · · bi−1,n

σi(ai ⊗ ai+1 ⊗ bi,i+1) σi+1(bi,i+2 ⊗ bi+1,i+2) · · · σn−1(bi,n ⊗ bi+1,n)
ai+2 · · · bi+2,n

. . .
...
an


.

Where, for j ̸= i we have

σj(b1 ⊗ b2) =

{
b1b2 if σj = 1 ∈ Λi

n,

b2b1 if σj = τ ∈ Λi
n

for all b1, b2 ∈ B, and

σi(a1 ⊗ a2 ⊗ b) =


ε(b)a1a2 if σi = l ∈ Λi

n,

a1ε(b)a2 if σi = c ∈ Λi
n,

a1a2ε(b) if σi = r ∈ Λi
n

for all a1, a2 ∈ A and b ∈ B. Finally, for i = n we have

dσn(⊗


a0 b0,1 · · · b0,n−1 b0,n

a1 · · · b1,n−1 b1,n
. . .

...
...

an−1 bn−1,n

an

) =

⊗


σ0(an ⊗ a0 ⊗ b0,n) σ1(b0,1 ⊗ b1,n) · · · σn−2(b0,n−2 ⊗ bn−2,n) σn−1(b0,n−1 ⊗ bn−1,n)

a1 · · · b1,n−2 b1,n−1

. . .
...

...
an−2 bn−2,n−1

an−1

 .
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Remark 4.6. We denote the homology of Θ(E(A,B, ε)) by HH•(A,B, ε) and call it
the secondary homology of the triple (A,B, ε). Notice that if B is commutative and
ε(B) ⊆ Z(A), we recover the usual secondary Hochschild homology HH∗(A,B, ε) as
defined in [11].

Example 4.7. Take B to be a commutative k-algebra, A to be a k-algebra, ε : B → A
to be a morphism of k-algebras such that ε(B) ⊆ Z(A), and ι : Ml(B) → Ml(A) to be
the induced k-algebra morphism. Take e ∈ Ml(A), and f ∈ Ml(B) such that e2 = e,
f2 = f , and ef = fe = e. Consider the element

Tn(e, f) = ⊗


e f · · · f f

e · · · f f
. . .

...
...

e f
e

 ∈ En(Ml(A),Ml(B), ι).

Notice that dαi (Tn(e, f)) = Tn−1(e, f). This means that if we define Cn = kTn(e, f),
we get a λ-subcomplex. In particular, Tn(e, f) ∈ Θ(E(Ml(A),Ml(B), ι))n.

5. Back to Hochschild homology

In this section we take A to be a commutative k-algebra, and M is a symmetric
A-bimodule. For the matrix algebra Ml(A) we have two possible different ways of
defining Hochschild homology. We have the classical Hn(Ml(A),Ml(M)) (as in the

preliminary section), and HS1

n (Ml(A),Ml(M)) (as in the previous section). We will
show that the two constructions agree.

Recall the simplicial structure on S1. Take X0 = {∗0} and Xn = {∗n} ∪ {Iab | a+
b+ 1 = n} with

di(∗n) = ∗n−1,

di(I
a
b ) =


∗a+b if a = 0 and i = 0,

Ia−1
b if a ̸= 0 and i ⩽ a,

Iab−1 if b ̸= 0 and i > a,

∗a+b if b = 0 and i = n = a+ 1,

si(∗n) = ∗n+1,

si(I
a
b ) =

{
Ia+1
b if i ⩽ a,

Iab+1 if i > a.

Next we give the details for the ∆-indexing set ΛS1

, as well as the ΛS1

-system
CS1

(Ml(A),Ml(M)), as described in Example 4.2.

One can see that |Λi
n| = 2, so we can identify Λi

n with the set {1, τ}. For all n ∈ N
we have

CS1

n (Ml(A),Ml(M)) = Ml(M)⊗Ml(A)⊗n.

For 0 ⩽ i ⩽ n and α ∈ Λi
n, we have δ

α
i : CS1

n (Ml(A),Ml(M)) → CS1

n−1(Ml(A),Ml(M))
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determined by

δ1i (x0 ⊗ · · · ⊗ xn) =


x0x1 ⊗ x2 ⊗ · · · ⊗ xn if i = 0,

x0 ⊗ · · · ⊗ xi−1 ⊗ xixi+1 ⊗ xi+2 ⊗ · · · ⊗ xn if 1 ⩽ i ⩽ n− 1,

xnx0 ⊗ x1 ⊗ · · · ⊗ xn−1 if i = n,

and

δτi (x0 ⊗ · · · ⊗ xn) =


x1x0 ⊗ x2 ⊗ · · · ⊗ xn if i = 0,

x0 ⊗ · · · ⊗ xi−1 ⊗ xi+1xi ⊗ xi+2 ⊗ · · · ⊗ xn if 1 ⩽ i ⩽ n− 1,

x0xn ⊗ x1 ⊗ · · · ⊗ xn−1 if i = n.

We are now ready to state the following result.

Proposition 5.1. Let A be a commutative k-algebra and M a symmetric A-bimodule.
Then we have

HS1

n (A,M) ≃ Hn(A,M) ≃ Hn(Ml(A),Ml(M)) ≃ HS1

n (Ml(A),Ml(M)).

Proof. Since A is commutative and M is symmetric, the first isomorphism is known
from [13]. Also, it is well known from [12] that the maps iA : A → Ml(A) and
iM : M → Ml(M) determined by

x →


x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


can be extended to a morphism of pre-simplicial modules

ι2 : (Cn(A,M), di) → (Cn(Ml(A),Ml(M)), di),

which induced an isomorphism at the level of homology. Thus Hochschild homology
is Morita invariant, that is Hn(A,M) ≃ Hn(Ml(A),Ml(M)).

Take Υ the trivial ∆-indexing set (i.e. |Υi
n| = 1 for all n and all 0 ⩽ i ⩽ n).

Then every pre-simplicial module is a Υ-system. In particular, one observes that
C(A,M) and C(Ml(A),Ml(M)) are the Υ-systems associated to (Cn(A,M), di) and
(Cn(Ml(A),Ml(M)), di), respectively.

Since A is commutative and M is symmetric, the maps iA : A → Ml(A) and

iM : M → Ml(M) induce a λ-morphism C(A,M) → CS1

(Ml(A),Ml(M)) (as in Defi-
nition 3.8). By Lemma 3.9 we obtain a morphism of pre-simplicial modules

ι0 : (Cn(A,M), di) → (Θ(CS1

(Ml(A),Ml(M)))n, δi).

It easy to check that the identity map CS1

(Ml(A),Ml(M)) → C((Ml(A),Ml(M)))
is a λ-morphism (as in Definition 3.8). Again by Lemma 3.9 this gives a morphism of
pre-simplicial k-modules

ι1 : (Θ(CS1

(Ml(A),Ml(M)))n, δi) → (Cn((Ml(A),Ml(M))), di).

Finally, we have that ι2 = ι1ι0, and since ι2 induces an isomorphism in homology we
get that ι1 also induces an isomorphism HS1

n (Ml(A),Ml(M)) ≃ Hn(Ml(A),Ml(M)),
which finishes the proof.
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6. Final remarks

The setting in Theorem 3.6 is quite general, and if applied to poorly chosen Λ-
systems, the theorem is not likely to give interesting results. One has to balance
between ∆-indexing sets that are too big or too small.

The results from the previous section show that whenX• is modeled by S1, our con-
struction of higher order Hochschild homology for noncommutative algebras behaves
as one would hope. However, the proof depends heavily on the already known exis-
tence and properties of Hochschild homology for noncommutative algebras.

If A is a commutative k-algebra, M a symmetric A-bimodule, and X• a simplicial
set one can show that we have a morphism HX•

n (A,M) → HX•
n (Ml(A),Ml(M)). It

would be interesting to prove that this morphism is actually an isomorphism (i.e. we
have Morita invariance).

One can easily check the functoriality of HX•(A,M). It would be interesting to see
if the construction of H•(MX(A,M)) is invariant under the homotopy equivalence
of the simplicial set X. Notice that we did not use the degeneracy maps of the
simplicial set X, but that information could be easily incorporated in some variation
of Theorem 3.6 (that would deal with maximal simplicial modules instead of maximal
pre-simplicial modules).

Similar constructions can be done if one wants to define higher order Hochschild
cohomology, or for the generalized higher Hochschild (co)homology (see [2] or [8]).
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