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THE EQUIVARIANT FUNDAMENTAL GROUPOID
AS AN ORBIFOLD INVARIANT

DORETTE PRONK and LAURA SCULL

(communicated by Emily Riehl)

Abstract
We construct a 2-category version of tom Dieck’s equivariant

fundamental groupoid for representable orbifolds and show that
the discrete fundamental groupoid is Morita invariant; hence it
is an orbifold invariant for representable orbifolds.

1. Introduction

The equivariant fundamental category π1(G,X) of a G-space X was first defined
by tom Dieck in [22, Definition 10.7]. This category incorporates information from the
fundamental groupoids of the fixed sets XH of X for subgroups H of G, combining
them to create a category fibred in groupoids over the orbit category of G. When G
is a compact Lie group, tom Dieck also defines a discrete fundamental group category
πd1(G,X) in [22, Definition 10.9], which removes some of the information coming
from the topology of the group itself. Since their introduction, these have been used
in a variety of equivariant applications, such as covering spaces, orientation theory,
equivariant surgery theories, and homology theories with twisted coefficients; see [6,
7, 12, 13, 16].

In this paper, we define a discrete tom Dieck fundamental group category as a
homotopy invariant for representable orbifolds. An orbifold is representable if it is
a quotient of an action of a compact Lie group on a manifold. Many, possibly all,
orbifolds can be represented in this way. Given such a representation, we can apply
tom Dieck’s definition to create a category πd1(G,X). However, the G-space represent-
ing an orbifold is not unique: two translation groupoids coming from group actions
represent the same orbifold if and only if they are Morita equivalent.

Morita equivalence in general corresponds to a zig-zag of essential equivalences
between groupoids. However, in [17], we showed that for translation groupoids, Morita
equivalence is generated by two specific types of equivariant maps: one coming from
the quotient of a subgroup which acts freely, and the other by including a space into
a larger space with an induced action of a larger group (Prop. 3.5 of [17], described
in detail in Section 5).

Tom Dieck’s (non-discrete) π1(G,X) is not necessarily invariant under Morita
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equivalence. However, we will build a 2-category version ΠG(X) of this category
which is functorial with respect to equivariant maps, and show that each of our types
of Morita equivalence induces a weak equivalence of 2-categories. This shows that the
2-category ΠG(X) is an orbifold invariant. Furthermore, when we quotient this 2-
category by its 2-cells we obtain tom Dieck’s discrete category πd1(G,X). So we arrive
at the main result of this paper: πd1(G,X) is an orbifold invariant for representable
orbifolds.

We note that there are other ways of defining an orbifold fundamental group and
groupoid. In particular, Thurston introduced the fundamental group of an orbifold
as the group of deck transformations of it universal covering orbifold. This group can
also be obtained as the fundamental group of the topos of sheaves onX with an action
of G (or equivalently, as the fundamental group of the classifying space B(G⋉X)).
For simply connected spaces X, the Borel approach produces the groupoid G⋉X
regardless of any potentially non-trivial fixed sets. This way of thinking has been
developed further by David Roberts in his doctoral thesis [19], where he introduces
the homotopy bigroupoid for a groupoid, classifying the homotopy 2-type. When
applied to representable orbifolds this is in line with the Borel homotopy perspective
on G-spaces. The tom Dieck fundamental groupoid that we develop in this paper
is in line with the Bredon homotopy perspective on G-spaces and provides a finer
invariant, as illustrated in Example 3.6. Another example of the Bredon approach
was given by Johann Leida in [10]. The tom Dieck fundamental groupoid includes
information of the Borel orbifold fundamental group, since this group is isomorphic
to the fibre of the tom Dieck structure associated with the trivial subgroup {e}.

Acknowledgments

The authors thank the referee for asking them to clarify and hence strengthen the
result of Sections 4 and 5.

2. Background on categorical constructions

In this section, we review some categorical constructions that we will use to frame
our definition of tom Dieck’s equivariant fundamental groupoid.

Definition 2.1. Let C be a category, and F : Cop → Cat be a contravariant functor,
where Cat is the 1-category of 1-categories. The Grothendieck category

∫

C
F is defined

by:

� An object is a pair (C, x) with C ∈ C0 and x ∈ F (C)0.

� An arrow (g, ψ) : (C, x) → (C ′, x′) is a pair with g : C → C ′ in C1 and ψ : x→
F(g)(x′) in F(C)1.

� Composition is defined using the fact that F(g) : F(C ′) → F(C) is a functor
between categories:
(

(C, x)
(g,ψ)

(C ′, x′)
(g′,ψ′)

(C ′′, x′′)

)

= (C, x)
(g′◦g,F(g)(ψ′)◦ψ)

(C ′′, x′′) ,

This category comes with a projection functor
∫

C
F → C.
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A bicategorical version of this construction was introduced in [1], and full details
of this construction and its properties for both the 2-categorical and bicategorical
cases were worked out in [5]. The 2-categorical case deals with a functor into the
3-category of 2-categories. This is more general than what we need to express tom
Dieck’s constructions. Therefore we will spell out explicitly what Buckley’s category
of elements [5] becomes in the case of a functor F : Cop → Cat when C is a 2-category,
and Cat is the 2-category of 1-categories. For further details we refer to [5].

Definition 2.2. Let C be a 2-category, and F : Cop → Cat be a contravariant 2-
functor. The 2-dimensional Grothendieck construction

∫

C
F is a 2-category defined

by:

� An object is a pair (C, x) with C ∈ C0 and x ∈ F (C)0 as in Definition 2.1.

� An arrow (g, ψ) : (C, x) → (C ′, x′) is a pair with g : C → C ′ in C1 and ψ : x→
F(g)(x′) in F(C)1 as in Definition 2.1.

� A 2-cell α : (g, ψ) ⇒ (g′, ψ′) : (C, x) ⇒ (C ′, x′) is a 2-cell α : g ⇒ g′ in C such
that the diagram

x
ψ

F(g)(x′)

F(α)x′

x
ψ′

F(g′)(x′)

commutes in F(C).

Horizontal and vertical composition of 2-cells is defined using the usual composi-
tions of natural transformations. It is obvious that vertical composition thus defined
gives rise to the required commutative squares. Horizontal composition is a little more
involved, and we include the details here.

Let α : (g, ψ)⇒ (g′, ψ′) : (C, x)⇒ (C ′, x′) and β : (h, θ)⇒ (h′, θ′) : (C ′, x′)⇒ (C ′′, x′′)
be 2-cells in

∫

C
F . Thus, we have commuting squares

x
ψ

F(g)(x′)

F(α)x′

x′
ϕ

F(h)(x′′)

F(β)x′′in F(C), and in F(C ′).

x
ψ′

F(g′)(x′) x′
ϕ′

F(h′)(x′′)

(1)

Apply both F(g) and F(g′) to the second square in (1) to obtain two commuting
squares in F(C). By the naturality of F(α) the two resulting squares are part of a
commuting cube. We append to this cube the first commuting square from (1):

x
ψ

F(g)(x′)
F(α)x′

F(g)(ϕ)
F(g)F(h)(x′′)

F(g)(F(β)x′′ )
F(α)

F(h)(x′′)

x
ψ′

F(g′)(x′)
F(g′)(ϕ)

F(g′)F(h)(x′′)

F(g′)(F(β)x′′ )

F(g)(x′)
F(α)x′ F(g)(ϕ′)

F(g)F(h′)(x′′)

F(α)
F(h′)(x′′)

F(g′)(x′)
F(g′)(ϕ′)

F(g′)F(h′)(x′′)
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Then F(β ◦α) = F(g′)(F(β)x′′) ◦F(α)F(h)(x′′) = F(α)F(h′)(x′′) ◦F(g)(F(β)x′′) is the
diagonal of the right side of the cube, so the diagram

x
F(g)(ϕ)◦ψ

F(g)F(h)(x′′)

F(β◦α)

x
F(g′)(ϕ′)◦ψ′

F(g′)F(h′)(x′′)

commutes and defines the horizontal composition F(β ◦ α).

3. The equivariant fundamental groupoid

We will present tom Dieck’s equivariant fundamental groupoid from [22] from a
categorical point of view, using the framework of the previous section.

Fix a compact Lie group G. When studying a G-space X, we often look at the
diagram of its fixed sets {XH} = {x ∈ X|hx = x for all h ∈ H} for the closed sub-
groups H 6 G, with the inclusion maps between these spaces. This is a diagram in the
shape of the orbit category OG of G. This category OG has objects given by canonical
orbits G/H for a closed subgroup of G, with arrows defined by G-equivariant maps
between them. Explicitly, an equivariant map G/H → G/K is defined by eH 7→ αK
for some α ∈ G such that H 6 αKα−1; then equivariance requires that gH → gαK.
Two elements α, β ∈ G define the same map when αK = βK, so the map is defined
by a coset αK. Thus, maps G/H → G/K are defined by elements α ∈ (G/K)H .

A G-map G/H
x
X is determined by eH 7→ x for some point x ∈ XH ; then

gH 7→ gx. We think of such a map as defining a G-point in X, consisting of the
point x and its orbit {gx}. Then X defines a contravariant functor Φ: OG → Spaces:

G/H 7→ XH , and if α : G/H → G/K, then given G/K
x
X we can compose and

get G/H
α
G/K

x
X . This is defined by eH 7→ αK 7→ αx, so x ◦ α is just given by

the action αx: it is easy to confirm that if α ∈ (G/K)H and x ∈ XK , then αx ∈ XH

and the action agrees with the composition above. In what follows, we will use the
group action notation, αx, rather than the composition notation.

We can create equivariant invariants as diagrams indexed by OG by applying
topological invariants to the diagram of fixed sets. Tom Dieck used this idea to create
a category out of the fundamental groupoids of the fixed sets.

Definition 3.1 ([22, Definition 10.7]). Objects of π1(G,X) are G-maps x : G/H →
X. An arrow from x : G/H → X to y : G/K → X is a pair (α, [γ]) consisting of a G-
map α : G/H → G/K, and a G-homotopy class (rel G/H × ∂I) of G-paths γ : G/H ×
I → X such that γ(0) = x and γ(1) = αy.

We can interpret π1(G,X) as a Grothendieck category as in Definition 2.1. Define
the functor ΠX from spaces into the category of groupoids: ΠX(G/H) = Π(XH) is
the fundamental groupoid of XH . Explicitly, ΠX(G/H) is the category which has

objects given by equivariant maps G/H
x
X , or equivalently, points x ∈ XH , and

arrows given by homotopy classes of paths in XH .
For α : G/H → G/K, we define a functor ΠX(α) : ΠX(G/K) → ΠX(G/H). This

ΠX(α) is the functor Π(XK) → Π(XH) which sends an object x ∈ XK to αx ∈ XH ,
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and a homotopy class of paths [γ] in XK to [αγ] in XH . Then we consider the
Grothendieck category

∫

OG
ΠX .

Explicitly, objects are pairs (G/H, x) with x ∈ XH , and arrows are pairs

(α, [γ]) : (G/H, x) → (G/K, y),

where α : G/H → G/K and [γ] is a homotopy class (rel endpoints) of paths in XH

from x to αy, recovering Definition 3.1. The resulting category is not a groupoid, but
rather a category fibred in groupoids over OG.

For non-discrete groups, tom Dieck also gives a version of the fundamental groupoid
which accounts for the topology of G.

Definition 3.2 ([22], Definition 10.9). Objects of πd1(G,X) are again G-maps
x : G/H → X. Morphisms are now given by equivalence classes of the morphisms
of Definition 3.1, where (α0, [γ0]) is equivalent to (α1, [γ1]) when there exists a G-
homotopy σ : G/H × I → G/K between α0 and α1 and a G-homotopy Λ: G/H ×
I × I → X such that

Λ(gH, 0, t) = x,

Λ(gH, 1, t) = σ(t)y,

Λ(gH, s, 0) = γ0(s),

Λ(gH, s, 1) = γ1(s).

To define πd1(G,X) categorically, we use Definition 2.2, a 2-categorical version of
the Grothendieck category. When G is a compact Lie group, OG is a 2-category:
OG[G/H,G/K] ∼= (G/K)H is a topological space. So given two arrows α, β : G/H →
G/K, we define a 2-cell [s] : α→ β to be a homotopy class (rel endpoints) of paths,
[s] : I → (G/K)H , from α to β. Then the functor ΠX defined above can be extended
to a 2-functor ΠX : OG → Cat, where Cat is the 2-category of small categories. For
G/H ∈ OG, ΠX(G/H) = Π(XH), the fundamental groupoid of XH , and ΠX(α) is
the functor Π(XK) → Π(XH) as described above. Given a 2-cell in OG defined by
a homotopy class [σ] of paths from α to β in OG[G/H,G/K], we define a natural
transformation ΠX([σ]) : ΠX(α) → ΠX(β). This natural transformation has compo-
nents ΠX([σ])x = σx for x : G/K → X:

αx

[αγ]

[σx]
βx

[βγ]

αy
[σy]

βy.

This is well-defined, since if σ′ is homotopic to σ in (G/K)H , then the path defined by
σ′x is homotopic to σx in XH . The compositions are defined by σx ∗ βγ and αγ ∗ σy,
where ∗ denotes the usual concatenation of paths. These can be written as

σx ∗ βγ = (σ ∗ cβ)(cx ∗ γ),

αγ ∗ σy = (cα ∗ σ)(γ ∗ cy),

where c denotes the constant path at the respective point. It is straightforward to
show that these are homotopic by sliding σ along from 0 6 t 6 1

2 to 1
2 6 t 6 1, and
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sliding γ in the opposite way:

σ

cα σ

cβ

γ

cx γ

cy

Therefore this defines a natural transformation as required.

Definition 3.3. Apply Definition 2.2 to the 2-functor ΠX : OG → Cat. This defines
a Grothendieck 2-category:

ΠG(X) =
∫

OG
ΠX .

The category obtained by identifying all arrows connected by 2-cells will be denoted
by ΠdG(X).

The 2-category ΠG(X) and its quotient ΠdG(X) will be our main objects of study
from here on. We begin by explicitly describing ΠG(X). Objects are pairs (G/H, x)
with x ∈ XH , and arrows are pairs

(α, [γ]) : (G/H, x) → (G/K, y),

where α : G/H → G/K and [γ] is a homotopy class (rel endpoints) of paths in XH

from x to αy, as in the 1-category case.

To describe 2-cells, let (α, [γ]), (α′, [γ′]) : (G/H, x) → (G/K, y) be maps in
∫

OG
ΠX .

A 2-cell (α, [γ]) ⇒ (α′, [γ′]) is given by a homotopy class of paths [σ] : α→ α′ in
OG[G/H,G/K] such that the following diagram commutes in ΠX(G/H):

x

idx

[γ]
αy

[σy]

x
[γ′]

α′y .

Arrows of ΠX(G/H) are homotopy classes of paths in XH , and so this means that
for any choice of representatives γ, γ′, and σ, we have that the concatenation γ ∗ σy
is homotopic (rel endpoints) to γ′ in XH . So there is a homotopy Λ in XH that fills
the following square

x

idx

γ

Λ(γ,γ′,σ)

αy

σy

x
γ′

α′y .

Then πd1(G,X) from Definition 3.2 is exactly the quotient of the 2-category ΠG(X)
by these 2-cells. So tom Dieck’s discrete category is exactly ΠdG(X).

For future use, we explicitly describe the horizontal composition of 2-cells for this
category. Given a 2-cell [σ] from (α, [γ]) to (α′, [γ′]) and a 2-cell [ω] from (β, [ζ]) to
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(β′, [ζ ′]), we know that we have homotopies

x
γ

αy

σy

y
ζ

βz

ωzand

x
γ′

α′y y
ζ′

β′z .

The composition of [σ] and [ω] is defined by applying both α and α′ to the second
square, to get

αy
αζ

αβz

αωz

α′y
α′ζ

α′βz

α′ωzand

αy
αζ′

αβ′z α′y
α′ζ′

α′β′z .

Then we form the diagram

x
γ

αy
σy

αζ
αβz

αωz
σβz

x
γ′

α′y
α′ζ

α′βz

α′ωz

αy
σy αζ′

αβ′z

σβ′z
α′y

α′ζ′
α′β′z

Define the composition by

[σ][ω] = [S] = [σβ ∗ α′ω] ≃ [αω ∗ σβ′].

This is a 2-cell from (αβ, [γ ∗ αζ]) to (α′β′, [γ′ ∗ α′ζ ′]) as required, since we have a
homotopy

x
γ∗αζ

αβz

Sz

x
γ′

∗α′ζ′
α′β′z .

Example 3.4. Let G = Z/2 = {e, τ} and X = S1 where τ acts on X by reflection
through the horizontal axis. Then XG = {E,W}, where E and W are the east and
west cardinal points on the circle, and Xe = S1. Then the objects of ΠG(X) consist
of (G/e, λ) for any λ ∈ S1, and the points (G/G,E) and (G/G,W ).

In between the points (G/e, λ1) and (G/e, λ2), there are arrows of type (e, [γ])
where γ is a path in S1 from λ1 to λ2; these correspond to winding numbers in
Z. Additionally, there are arrows of type (τ, [ζ]) where ζ is a path from λ1 to τλ2.
Together with the arrows of the first type, we get a D∞ worth of arrows between
points of this type.

There are also arrows from (G/e, λ) to (G/G,E), again corresponding to winding
numbers in Z; and similarly to (G/G,W ). Since G is discrete, there are no non-trivial
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2-cells; so ΠdG(X) = ΠG(X) in this case. A skeleton of this category is given below;
for more details, see [4].

(G/e, λ)
ZZ

D∞

(G/G,E) (G/G,W )

Example 3.5. Let G = S1, the circle group, and X = T 2 = S1 × S1, where the
action is given by λ(α, β) = (α, λβ). Then the fixed set XH is empty for any H 6=
{e}, so the objects of ΠG(X) are all of the form (G/e, (α, β)). Between objects
(G/e, (α1, β1)) and (G/e, (α2, β2)), there are maps defined by (λ, [γ]) for λ ∈ S1, where
γ is a path in T 2 from (α1, β1) to (α2, λβ2). Again, we can classify [γ] using wind-
ing numbers in the α and β coordinates, so there are S1 × (Z⊕ Z) worth of arrows
between any two points. This time, however, G has non-trivial topology, so many of
these are connected by 2-cells. In fact, we can look at the projection of γ onto the β
coordinate and use this to define a path σ in S1. Then we have a 2-cell from (e, [γ]) to
(e, [γ ∗ σ−1(α2, β2)]), showing that every arrow has a 2-cell connecting it to an arrow
which has the same projection onto the first coordinate, but is constant in the second
coordinate:

(α1, β1)

id

γ
(α2, λβ2)

σ−1(α2,β2)

(α1, β1)
γ′

(α2, β1) .

Thus two arrows are connected by 2-cells if the projections of the paths onto the
first coordinates are homotopic, and ΠdG(X) has a Z worth of paths between any two
points. Hence, ΠdG(X) is a category equivalent to the fundamental groupoid of the
circle.

The following example gives a case where the extra information coming from the
fixed sets contains important topological information.

Example 3.6. Let G = Z/2 andX = S2, with the group acting by reflection through
the equatorial plane. Since all paths are homotopic in the sphere, the fundamental
groupoid contains only two arrows between points (G/e, x) and (G/e, y): (e, [γ]) where
γ is the unique homotopy class of paths from x to y, and (τ, [γ′]) where γ′ is the unique
homotopy class of paths from x to τy. However, when we look at arrows between
points of the form (G/G, x) and (G/G, y), where x, y ∈ XG, the arrows correspond
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to homotopy classes of paths from x to y inside of the fixed set XG, which is the
equatorial circle. Thus these points have a Z worth of arrows connecting them, and
the category has recovered information about the fundamental groupoid of the fixed
set.

Remark 3.7. Tom Dieck also defined a notion of an equivariant π0, such that each
π0(G,X) can be viewed as a Grothendieck category but this notion is not invariant
under Morita equivalence.

4. Functoriality of ΠG(X)

In this section, we study the functoriality of the ΠG(X) construction. To do this
we will represent a G-space X for a Lie group G by a smooth translation groupoid
G⋉X. We define a 2-category of translation groupoids and equivariant smooth maps,
denoted EqTrGpd, below. Our goal is to show that the construction of ΠG(X) extends
to a 2-functor Π from EqTrGpd to the 2-category of small 2-categories with 2-functors
and pseudo natural transformations.

We begin by describing the 2-category of translation groupoids EqTrGpd in detail.

Definition 4.1. Let G be a Lie group with a smooth left action on a manifold M .
Then the translation groupoid (also called action groupoid) G⋉M is defined as
follows. The space of objects is M , and the space of arrows is defined to be G×M
with the source of an arrow (g, x) defined by s(g, x) = x, and the target by using
the action of G on M , t(g, x) = gx. So (g, x) is an arrow from x to gx. The units
map is defined by u(x) = (e, x), where e is the identity element in G, composition by
(g′, gx) ◦ (g, x) = (g′g, x), and inverses by (x, g)−1 = (gx, g−1).

Definition 4.2. An equivariant map G⋉X → H ⋉ Y between translation groupoids
is a pair (ϕ, f), where ϕ : G→ H is a group homomorphism and f : X → Y is a ϕ-
equivariant smooth map, i.e., f(gx) = ϕ(g)f(x) for g ∈ G and x ∈ X.

The maps described in Definition 4.2 form a particular kind of smooth functors
between the smooth groupoids of Definition 4.1. We want to consider the 2-category of
translation groupoids, with 2-cells given by smooth natural transformations between
these functors.

Definition 4.3. Let (ϕ1, f1), (ϕ2, f2) : G1 ⋉X1 ⇒ G2 ⋉X2 be equivariant smooth
maps. A smooth natural transformation (ϕ1, f1) ⇒ (ϕ2, f2) is given by a smooth
map r : X1 → G2 ×X2 such that r(x) : f1(x) → f2(x) (as arrow in G2 ⋉X2) for all
x ∈ X1, satisfying the naturality condition. So r is determined by a map r̂ : X1 → G2

such that r̂(x) = rx satisfies rxf1(x) = f2(x). The naturality condition is equivalent
to requiring that for any g ∈ G1 the following diagram commutes in G2 ⋉X2:

f1(x)

(ϕ1(g),f1(x))

(rx,f1(x))
f2(x)

(ϕ2(g),f2(x))

f1(gx) = ϕ1(g)f1(x)
(rgx,f1(gx))

f2(gx) = ϕ2(g)f2(x) .

Thus, rgxϕ1(g) = ϕ2(g)rx in G2, for all g ∈ G1 and x ∈ X1.
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We will show that ΠG(X) extends to a 2-functor Π: EqTrGpd → 2-Cat, where 2-Cat
is the 2-category of small 2-categories, 2-functors and pseudo natural transformations.
We start by considering the effect of a map as in Definition 4.2 on the orbit categories.

Lemma 4.4. If ϕ : G1 → G2 is a group homomorphism, then we have a functor
OG1

→ OG2
defined by ϕ(G1/H) = G2/ϕ(H), and ϕ(α) : G2/ϕ(H) → G2/ϕ(K) for

α : G1/H → G1/K.

Proof. The map α is defined by a coset αK where H ⊆ αKα−1. Then ϕ(α)ϕ(K)
defines a coset and ϕ(H) ⊆ ϕ(α)ϕ(K)ϕ(α)−1.

Next, we verify that an equivariant map respects fixed sets.

Lemma 4.5. Let (ϕ, f) : G1 ⋉X1 → G2 ⋉X2 be a homomorphism of translation

groupoids. If x ∈ XH
1 for H 6 G1, then f(x) ∈ X

ϕ(H)
2 .

Proof. Suppose that x ∈ XH
1 , so hx = x for all h ∈ H. Then f(hx) = f(x), and so

ϕ(h)f(x) = f(x). So f(x) ∈ X
ϕ(H)
2 as claimed.

Now we define Π on the maps of Definition 4.2.

Proposition 4.6. Let (ϕ, f) : G1 ⋉X1 →G2 ⋉X2. Then we get an induced 2-functor
between the 2-categories, Π(ϕ, f) : ΠG1

(X1) → ΠG2
(X2)

Proof. We have shown in Lemma 4.4 that G1/H → G2/ϕ(H) defines a functor from
OG1

to OG2
. We define a functor F = Π(ϕ, f) : ΠG1

(X1) → ΠG2
(X2) as follows:

Objects: F (G1/H, x) = (G2/ϕ(H), f(x)). If x ∈ XH
1 , then Lemma 4.5 shows that

f(x) ∈ X
ϕ(H)
2 , so this is well-defined.

Arrows: If (α, [γ]) : (G1/H, x)→ (G1/K, y) is an arrow in ΠG1
(X1), then α : G1/H →

G1/K and [γ] is a homotopy class of paths x→ αy in XH
1 . Then f [γ] = [fγ] defines a

homotopy class of paths from f(x) to f(αy) = ϕ(α)f(y), defining an arrow F (α, [γ]) =
(ϕ(α), f [γ]) : (G2/ϕ(H), f(x)) → (G2/ϕ(K), f(y)) in ΠG2

(X2).

We show that this assignment preserves composition on the nose. Given

(G1/H, x)
(α,[γ])

(G1/K, y)
(β,[δ])

(G1/L, z), (2)

its composition in ΠG1
(X1) is given by

(αβ, [γ] ∗ α[δ]) : (G1/H, x) → (G1/L, z).

Taking the images of the arrows in (2) under Π(ϕ, f) gives us

(G2/ϕ(H), f(x))
(ϕ(α),f [γ])

(G2/ϕ(K), f(y))
(ϕ(β),f [δ])

(G2/ϕ(L), f(z)).

Composition of these arrows in ΠG2
(X2) results in

(ϕ(α)ϕ(β), f [γ] ∗ ϕ(α)f [δ]) : (G2/ϕ(H), f(x)) → (G2/ϕ(L), f(z)).

Now, (ϕ(α)ϕ(β), f [γ] ∗ ϕ(α)f [δ]) = (ϕ(αβ), f [γ] ∗ f [αδ]) = Π(ϕ, f)(αβ, [γ] ∗ α[δ]) as
claimed.
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2-Cells: Suppose that [σ] is a homotopy class of maps G1/H → G1/K, given by
σ : I → (G1/K)H from α to α′ such that the following commutes:

x

idx

[γ]
αy

[σy]

x
[γ′]

α′y .

So we have a homotopy Λ from γ ∗ σy to γ′. Define F ([σ]) = [ϕ(σ)] : ϕ(α) → ϕ(α′).
This gives a homotopy class of paths in (G2/ϕ(H))ϕ(K), and f(Λ) provides a homo-
topy from f(γ) ∗ ϕ(σ)f(y) to f(γ′) making the following diagram commute:

f(x)

idf(x)

[γ]
ϕ(α)f(y)

[ϕ(σ)f(y)]

f(x)
[γ′]

ϕ(α′)f(y) .

It can be checked by a straightforward verification that this preserves both horizontal
and vertical composition.

Lastly, we extend the definition of Π to the 2-cells of EqTrGpd.

Proposition 4.7. Let r be a natural transformation of smooth groupoids, r : (ϕ1, f1)
⇒ (ϕ2, f2) : G1 ⋉X1 ⇒ G2 ⋉X2. Then we have an induced pseudo natural transfor-
mation Π(r) : Π(ϕ1, f1) ⇒ Π(ϕ2, f2).

Proof. Given a natural transformation r, represented by a smooth map r : X1 →
G2, x 7→ rx, we will define a map from ΠG1

(X1)0 → ΠG2
(X2)1 such that an object

(G/H, x) gets mapped to an arrow (β, [γ]) where γ is a path from f1(x) to βf2(x) in

X
ϕ(H)
2 . First, we claim that ϕ1(H) = r−1

x ϕ2(H)rx: we know that rhxϕ1(h) = ϕ2(h)rx.
But since x ∈ XH , hx = x and so rxϕ1(h) = ϕ2(h)rx, and hence ϕ1(h) = r−1

x ϕ2(h)rx.
Therefore r−1

x defines a map G2/ϕ1(H) → G2/ϕ2(H) in OG2
.

So now define the components of the pseudo natural transformation: to every point
(G/H, x) we assign the arrow

(r−1
x , [cf1(x)]) : (G2/ϕ1(H), f1(x)) → (G2/ϕ2(H), f2(x)),

where cf1(x) is the constant path from f1(x) to r
−1
x f2(x) = f1(x). Now let

(α, [γ]) : (G1/H, x) → (G1/K, y)

be an arrow of ΠG1
(X1), and consider the naturality square

f1(x)

(ϕ1(α),[f1(γ)])

(r−1
x ,[cf1(x)])

f2(x)

(ϕ2(α),[f2(γ)])

f1(gx)
(r−1

y ,[cf1(y)])
f2(y) .

Comparing the two compositions, we see that going one way we have

(r−1
x ϕ2(α), [cf1(x) ∗ r

−1
x f2(γ)]) = (r−1

x ϕ2(α), [r
−1
x f2(γ)]).
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Going the other way gives

(ϕ1(α)r
−1
y , [f1(γ) ∗ cf1(y)]) = (ϕ1(α)r

−1
y , [f1(γ)]).

These are not equal, so this is not a strict natural transformation.

To define this as a pseudo natural transformation, to every morphism (α, [γ]) we
need to assign a 2-cell [s] : ϕ1(α)r

−1
y → r−1

x ϕ2(α) in G2 which will fill in the diagram

f1(x)
f1(γ)

ϕ1(α)r
−1
y f2(y)

f1(x)
r−1
x f2(γ)

r−1
x ϕ2(α)f2(y)

and satisfy the required coherence properties. We will leverage the fact that we know
that f1(γ) = r−1

γ f2(γ). So we are trying to compare the following:

f1(x)
r−1
γ f2(γ)

r−1
y ϕ2(α)f2(y)

f1(x)
r−1
x f2(γ)

r−1
x ϕ2(α)f2(y),

where across the top the adjustment elements rγ are changing while the single adjust-
ment element r−1

x has been used along the bottom. Written in this form, it becomes
evident that we can define a 2-cell

s(α, [γ])(t) = s(t) = r−1
γ(t−1)ϕ2(α).

We can define a homotopy between f1(γ) ∗ s(t)f2(y) and r
−1
x f2(γ) by writing the first

map as

f1(γ) ∗ s(t)f2(y) =
(

r−1
γ(t)f2(γ)

)

∗
(

r−1
γ(1−t)ϕ2(α)f2(y)

)

=
(

r−1
γ(t) ∗ r

−1
γ(1−t)

)

(

f2(γ) ∗ cf2(αy)
)

.

Then it is easy to write a homotopy collapsing the first part to the constant map r−1
x

and expanding the second to f2(γ):

r−1
γ(t)

cx cx

r−1
γ(1−t) f1(γ) cf2(αy)

f1(γ)

Coherence conditions can be verified by a straightforward calculation.

Theorem 4.8. The assignment of Π on objects, Π(G,X) = ΠG(X) as in Defini-
tion 3.3, on arrows as in Proposition 4.6 and on 2-cells as in Proposition 4.7 defines
a 2-functor

Π: EqTrGpd → 2-Cat.
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Proof. We show that Π preserves composition of arrows on the nose and leave the
other details to the reader. Let

(G1, X1)

(ϕ,f)

(ϕ′ϕ,f ′f)
(G3, X3)

(G2, X2)
(ϕ′,f ′)

be a commutative triangle in EqTrGpd. The image under Π is the following triangle
in 2-Cat:

ΠG1
(X1)

Π(ϕ,f)

Π(ϕ′ϕ,f ′f)
ΠG3

(X3) .

ΠG2
(X2)

Π(ϕ′,f ′)

We check commutativity of this triangle on objects: Let (G1/H, x) be an object in
ΠG1

(X1). Then

Π(ϕ′, f ′)(Π(ϕ, f)(G1/H, x)) = Π(ϕ′, f ′)(G2/ϕ(H), f(x))

= (G3/ϕ
′ϕ(H), f ′f(x))

= Π(ϕ′ϕ, f ′f)(G1/H, x)

as required. The verification on arrows and 2-cells is equally straightforward.

5. The fundamental category as an orbifold invariant

The classical definition of orbifolds is a generalization of the definition of manifolds
based on charts and atlases, where the local neighbourhoods are homeomorphic to
U = Ũ/G where G is a finite group acting on an open set Ũ ⊆ R

n. Note that we will
not require that G acts effectively on Ũ . An orbifold can then be defined in terms
of an orbifold atlas, which is a locally compatible family of charts (Ũ , G) such that
the sets Ũ/G give a cover of M . The usual notion of equivalence of atlases through
common refinement is used; details can be found in [20, 21] for the effective case and
in [18] for the more general case.

Working with orbifold atlases is cumbersome, and an alternate way of representing
orbifolds using groupoids has been developed. It was shown in [15] that every smooth
orbifold can be represented by a Lie groupoid, which is determined up to essential
equivalence. We are interested in representing orbifolds by a particular type of Lie
groupoid: translation groupoids G⋉M coming from the smooth action of a compact
Lie group G on a manifoldM as in Definition 4.1, where all of the isotropy groups are
finite. Many, possibly all, orbifolds can be represented this way. Satake showed that
every effective orbifold can be represented in this way [21]. His proof does not hold
for non-effective orbifolds, but a partial result was obtained by Henriques and Metzler
[9]; their Corollary 5.6 shows that all orbifolds for which all the ineffective isotropy
groups have trivial centres are representable. It is conjectured that all orbifolds are
representable, but this is currently unknown.

For this paper, we restrict our attention to those orbifolds that are representable,
so that we can work with their translation groupoids. In what follows, we think of a
groupoid of EqTrGpd as a representation of its underlying quotient space, encoding
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this orbifold and its singularity types. However, this representation is not unique;
the same orbifold can be represented by different groupoids. To represent orbifolds,
the equivalence relation on groupoids is generated by the notion of essential equiva-
lence for categories internal to the category of smooth manifolds: an equivalence of
categories that respects the topology on the groupoids. It is shown in [17] that for
representable orbifolds, we only need to look at equivariant essential equivalences,
that is, essential equivalences of the form of Definition 4.2. Thus we can describe the
category of representable orbifolds as a bicategory of fractions EqTrGpd(W−1), where
the objects of this category are Lie translation groupoids with finite isotropy groups,
and a morphism G → H is a span of homomorphisms

G K
ω ϕ

H ,

where ω is an equivariant essential equivalence. Such morphisms are also called gen-
eralized maps. We can think of this as replacing the source groupoid G with an
essentially equivalent groupoid K and then using the new representative K to define
our map.

The main results of this paper are:

Theorem 5.1. For every equivariant essential equivalence of smooth translation
groupoids

ϕ : G⋉X → H ⋉ Y,

the induced functor between the equivariant fundamental groupoids,

Π(ϕ) : ΠG(X) → ΠH(Y ),

is a weak equivalence of 2-categories.

Corollary 5.2. For every equivariant essential equivalence of smooth translation
groupoids

ϕ : G⋉X → H ⋉ Y,

the induced functor between the discrete equivariant fundamental groupoids,

Πd(ϕ) : ΠdG(X) → ΠdH(Y ),

is a weak equivalence of categories.

There are a couple of obvious types of maps which are equivariant essential equiv-
alences: if we have a G-space X such that a normal subgroup N of G acts freely on
X, then the quotient map

G⋉X → G/N ⋉X/N, (3)

is an essential equivalence. Similarly, for any (not necessarily normal) subgroup L
of a group G and L-space X, we can create a G-space G×L X = G× Z/ ∼, where
[gℓ, z] ∼ [g, ℓz] for any ℓ ∈ L, and the inclusion X → G×L X defined by x→ [e, x]
gives an essential equivalence

L⋉X → G⋉ (G×L X). (4)

It turns out that these are the only forms of equivariant weak equivalences we need
to deal with, since they generate all other equivariant essential equivalences through
composition.
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Proposition 5.3 ([17, Prop. 3.5]). Any equivariant essential equivalence is a com-
posite of maps of the forms (3) and (4) described above.

Thus we have an explicit description of the equivalences in EqTrGpd(W−1), and
can verify that we have an orbifold invariant by checking its behaviour under these
two types of maps. The proof of Theorem 5.1 will follow from Propositions 5.6 and 5.9
below, showing that Π induces a weak equivalence of 2-categories under each of these
types of equivariant essential equivalences.

We will start by considering the case where a normal subgroup N of G acts freely.

Definition 5.4. We set the following notation: X is a G space and N is a normal
subgroup acting freely. Then we denote the projection by p : G→ G/N , and abbrevi-
ate G/N = Ḡ, p(g) = ḡ and p(H) = H̄ for any subgroup H ⊆ G. Similarly, we denote
the projection p : X → X/N , and p(x) = x̄.

Proving the equivalence of fundamental categories in this case will use some lifting
of paths, and we will make use of the following lemma comparing different lifts.

Lemma 5.5. Suppose that G is a compact Lie group acting smoothly on X and N
is a normal subgroup of G which acts freely on X. Suppose that γ and ζ are two
paths [0, 1] → XH such that γ(0) = ζ(0) and p(γ) = p(ζ) in X̄H̄ . Then there exists a
continuous path η : I → G with η(0) = e, such that γ(t) = η(t)ζ(t) and η(t) ∈ N(H)
for all t ∈ [0, 1].

Proof. Consider the map ǫ : N ×X → X ×X̄ X defined by ǫ(n, x) = (nx, x), where
X ×X̄ X = {(x, y)|x̄ = ȳ}. BecauseN acts freely onX, this map is a homeomorphism.
Now consider the map I → (X ×X̄ X) defined by (ζ, γ). Composing with ǫ−1 gives a
map I → N ×X defined by (nt, xt) = (η, γ) where η(t)γ(t) = ζ(t). Since γ(0) = ζ(0)
we must have η(0) = e.

Now we know that γ and ζ lie in XH . Thus if h ∈ H, then hγ(t) = γ(t) and hζ(t) =
ζ(t), so hη(t)γ(t) = η(t)γ(t). So η(t)hγ(t) = η(t)γ(t) = hη(t)γ(t) = η′(t)hγ(t), where
η′(t) = hη(t)h−1. This means that η′(t)hγ(t) = η(t)hγ(t), and since N acts freely,
η(t) = η′(t). Thus, hη(t)h−1 = η(t), so η(t) ∈ N(H).

Proposition 5.6. Suppose that G is a compact Lie group acting smoothly on X,
and N is a normal subgroup of G which acts freely on X. Then the map ΠG(X) →
ΠG/N (X/N) induced by the projection is an equivalence of 2-categories.

Proof. Throughout this proof, we use the notation from Definition 5.4.
Surjective on objects: Suppose that (Ḡ/L̄, x̄) is an object of ΠḠ(X̄). Let x ∈ X

be such that p(x) = x̄, and define L = p−1(L̄) ∩ Ix where Ix denotes the isotropy of
x. Then L ⊆ Ix and so x ∈ XL. We claim that p(L) = L̄: if ℓ̄ ∈ p(L), then ℓ̄ = p(ℓ)
for ℓ ∈ L, and so ℓ ∈ p−1(L) and hence ℓ̄ ∈ L̄. Conversely, if ℓ̄ ∈ L̄, then choose ℓ in G
such that p(ℓ) = ℓ̄. So since ℓ̄x̄ = x̄, we know there exists n ∈ N such that nℓx = x. So
nℓ ∈ Ix and nℓ ∈ p−1(L̄), and so nℓ ∈ L such that p(nℓ) = ℓ̄, showing that L̄ ⊆ p(L).
Therefore (G/L, x) is an element of ΠG(X) such that p(G/L, x) = (Ḡ/L̄, x̄).

Surjective on arrows: Suppose we have objects (G/H, x) and (G/K, y) of
ΠG(X), and an arrow (Ḡ/H̄, x̄) → (Ḡ/K̄, ȳ) in ΠḠ(X̄). This arrow is given by (ᾱ, [γ̄])
where ᾱ : Ḡ/H̄ → Ḡ/K̄, so ᾱ ∈ Ḡ/K̄ with ᾱ−1H̄ᾱ ⊆ K̄, and γ̄ represents a homotopy
class of paths γ̄ : x̄→ ᾱȳ in X̄H̄ .
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First, choose α̂ ∈ G such that p(α̂) = ᾱ. Next, p : XH → X̄H̄ is the quotient of the
free action of N , so this is a principal fibration and we can lift γ̄ to γ ∈ XH starting
at x. So we have γ : x→ z in XH , and we know that z̄ = ᾱȳ = α̂y. Therefore there
exists n ∈ N such that nα̂y = z. Define α = nα̂, so that γ : x→ αy in XH . Then
p(α, [γ]) = (ᾱ, [γ̄]). So we just need to show that α : G/H → G/K. To see this, we
need to show that αHα−1 ⊆ K.

Let h ∈ H. Then h̄ ∈ ᾱK̄ᾱ−1, and h = αkα−1n for some n ∈ N . Now ky = y for
any k ∈ K, and we know that αy ∈ XH , so hαy = αy for any h ∈ H, and hence
α−1hαy = y. Thus y = ky = α−1hαy = α−1(αkα−1n)αy = kn̂y. So y = n̂y and n̂ = e
since N acts freely. So h = αkα−1 as required.

Full on 2-cells: Suppose we have two arrows (α, [γ]) and (β, [ζ]) from (G/H, x) to
(G/K, y) in ΠG(X). So γ : x→ αy and ζ : x→ βy in XH . And suppose there exists

a 2-cell from p(α, [γ]) to p(β, [ζ]) in ΠḠ(X̄). This means that we have σ̄ in (G/K)H

from ᾱ to β̄ such that γ̄ ∗ σ̄ȳ is homotopic to σ̄ via Λ̄ in X̄H̄ :

x̄
γ̄

ζ̄

Λ̄

ᾱȳ

σ̄ȳ

β̄ȳ.

Now y ∈ XK , so K ∩N = {e} since N acts freely. So the map (G/K)H → (G/K)H

is a principal fibration and we can lift σ̄ to σ in (G/K)H starting at α. Next, we can
lift the homotopy Λ̄ to XH starting at γ ∗ σy to get a homotopy Λ:

x
γ

ω

Λ
αy
σy

z.

Now we have a new end path Λ(s, 1) = ω such that ω̄ = ζ̄ in X̄H̄ . By Lemma 5.5,
there is a continuous η : I → N such that ζ = ηω, and η(t) ∈ N(H). We will use this η
to adjust Λ: define Λ′(s, t) = η(t)Λ(s, t). This homotopy fits in the following triangle
of paths:

x
γ

ζ=ηω

Λ′

αy

ησy

βy.

We claim that ησ together with the homotopy Λ′ gives a 2-cell in ΠG(X). So we
need that ησ ∈ (G/K)H and Λ′ is in XH . This follows from the fact that σ satisfies
σ−1Hσ ⊆ K and η(t) ∈ N(H), so (ησ)−1H(ησ) = σ−1Hσ ⊆ K; similarly Λ ∈ XH ,

so Λ′ = ηΛ ∈ Xη−1Hη = XH .
Faithful on 2-cells: Suppose we have σ1 and σ2 representing 2-cells from (α, [γ])

to (β, [ζ]) in ΠG(X). So there are homotopies Λ1 : ζ ≃ γ ∗ σ1y and Λ2 : ζ ≃ γ ∗ σ2y in
XH . And suppose that [σ̄1] = [σ̄2], meaning that there is a homotopy Ω̄ between σ̄1
and σ̄2 in (G/K)H . Let Y = (G/K); then since K ∩N = {e}, Y is a free N -space,
and so the projection p is a principal fibration and we can lift Ω̄ in Ȳ H̄ to Ω in Y H ,
starting at σ1. Thus we have a homotopy from σ1 to ω, where σ̄2 = ω̄. Applying
Lemma 5.5 gives η(t) : I → N such that ηω = σ2 and η ∈ N(H). Again, we define a
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new homotopy Ω′(s, t) = η(t)Ω(s, t), and note that since Ω ∈ Y H , so is ηΩ. Thus Ω′

gives a homotopy from σ1 ≃ σ2 in (G/K)H , showing that [σ1] = [σ2] in ΠG(X).

Now we consider the other case, where we have an L-spaceX and take the inclusion
of X to G×L X. For this, we need the following lemmas.

Lemma 5.7. Given a path γ in (G×L X)H defined by γ(t) = (gt, xt) with g0 = e,
there exists a continuous path ℓt ∈ L with ℓ0 = e, such that

� (gtℓt)
−1Hgtℓt = H and

� (gtℓt)
−1γ lies in the image of XH in (G×L X)H .

Proof. Suppose we have a path γ in (G×L X)H defined by γ(t) = (gt, xt) with g0 = e.
By the equivariant slice theorem, at any point x ∈ X, there exists a neighbourhood
of the form L×Ix Y for Ix the isotropy group of x, and Y an Ix space. By com-
pactness, we can cover the path xt with a finite number of such neighbourhoods
N0, N1, N2, . . . , Nk around x0, xs1 , xs2 , . . . , xsk . Now for each neighbourhood, γ takes
the form (gt, (nt, yt)) where yt ∈ Yj and Yj is an Ixsj

-space. Our strategy will be to

choose, for each neighbourhood, a ‘transition’ element ℓ̂j and then define ℓt = ntℓ̂j .
We will also choose transition points xt1 , xt2 , xt3 , . . . , xtn where each xti ∈ Ni−1 ∩Ni;
these are the points where we will switch from using one coordinate system to another.

Start with the first neighbourhood, so γ = (gt, xt) and xt = (nt, yt) for a continuous
choice of nt ∈ L and yt ∈ Y0. Now by assumption, (gt, (nt, yt)) ∈ (G×L X)H , so xt =

(nt, yt) ∈ Xg−1
t Hgt and therefore yt ∈ Y ℓ

−1
t g−1

t Hgtℓt ; note that g0 = e and n0 = e. Now
ℓ−1
t g−1

t Hgtℓt forms a continuous family of conjugate subgroups of Ix0
, starting from

H at t = 0; and since Ix0
is discrete, this family must be constant. So for the first

neighbourhood, we take the transition element ℓ̂0 = e, and define ℓt = nt for 0 6 t 6
t1, so that ℓ−1

t g−1
t Hgtℓt = H and (gtℓt)

−1γ = (e, (e, yt)) lies in the image of XH .
Now we will inductively assume that the neighbourhood around xsj−1

gives coordi-

nates (mt, yt) for yt ∈ Y for Y an Ixsj−1
-space, and that ℓt = mtℓ̂j−1 has been defined

for 0 6 tj . We want to extend to Nj , given by coordinates (nt, zt) where zt ∈ Z for Z
an Ixsj

-space. We use the fact that at our chosen transition point in the intersection,

xtj can be written both as (mtj , ytj ) and (ntj , ztj ), and define our new transition

element ℓ̂j = n−1
tj mtj ℓ̂j−1. So for tj 6 t 6 tj+1 we will define ℓt = ntℓ̂j ; this will be

continuous since at t = tj , we have ℓtj = mtj−1
ℓ̂j−1 = ntjn

−1
tj mtj−1

ℓ̂j−1 = ntj ℓ̂j .

Now we know by assumption, (gtj ℓtj )
−1Hgtj ℓtj = H, and so

ℓ̂−1
j−1m

−1
tj g

−1
tj Hgtjmtj ℓ̂j−1 = H.

Therefore,

m−1
tj g

−1
tj Hgtjmtj = ℓ̂j−1Hℓ̂

−1
j−1

and so

n−1
tj g

−1
tj Hgtjntj = n−1

tj mtjm
−1
tj g

−1
tj Hgtjmtjm

−1
tj ntj

= n−1
tj mtj ℓ̂j−1Hℓ̂j−1m

−1
tj ntj

= ℓ̂jHℓ̂
−1
j .

So inNj , we have a family of subgroups n−1
t g−1

t Hgtnt of Ixsj
which is equal to ℓ̂jHℓ̂

−1
j
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at tj , and so by discreteness of Ixs
they must be constant. Thus, we have that

ℓ̂−1
j n−1

t g−1
t Hgtntℓ̂j = H,

and so (gtℓt)
−1Hgtℓt = H for tj 6 t 6 tj+1, and

(gtℓt)
−1γ = ℓ̂−1

j n−1
t g−1

t (gt, (nt, zt)) = (e, (ℓ̂j , zt)),

which lies in the image of XH .

Lemma 5.8. Given a homotopy Λ in (G×L X)H defined by Λ(t) = (gs,t, xs,t) with
g0,0 = e, there exists a continuous family ℓs,t ∈ L such that

� (gs,tℓs,t)
−1Hgs,tℓs,t = H and

� (gs,tℓs,t)
−1Λ lies in the image of XH .

Proof. We use a similar strategy as in the proof of Lemma 5.7, working with local
neighbourhoods of the form L×I Y and producing adjustment elements that allow
us to piece together the local coordinates into a continuous whole. So we begin by
covering the image of xx,t by a set of neighbourhoods of the form L×Ix Y where Ix
is the isotropy of a point x, and Y is a space with Ix action. By compactness, we
will assume that the number of these neighbourhoods is finite, and that they cover a
grid pattern where the horizontal and vertical sides of the images of the grid are in
overlapping neighbourhoods:

In the first neighbourhood, centred at x0,0, we have coordinates (ns,t, ys,t) and
can define ℓs,t = ns,t; note that ℓ0,0 = e. To extend to new neighbourhoods, we work
across the top row, then down the left row, and then through the middle of the grid,
row by row. So we need to be able to extend in the following scenarios: when the
ℓs,t have been defined for the neighbourhood to the left; when the ℓs,t have been
defined for the neighbourhood above; and when ℓs,t have been defined for both the
neighbourhood to the left and the neighbourhood above. In each case, we will use the
grid edges in the overlap of adjacent neighbourhoods to give us our new adjustment
elements. These overlaps occur along lines instead of single points, so our adjustment
elements will not be constant on each neighbourhood, but rather an extension of
the edge adjustment lines. All of our extensions will produce continuous adjustment
factors, hence continuous choices of ℓs,t, and the discreteness of the isotropy group
Ix on each neighbourhood will ensure that we retain the properties we need.

To extend across the top row of neighbourhoods, we assume that we have defined
our ℓ̂s,t on the neighbourhood to the left, and look along the transition line at s = S,
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along the segment xS,t for 0 6 t 6 t1. Then we have two neighbourhood parametriza-
tions, (ms,t, ys,t) for the left neighbourhood and (ns,t, zs,t) for the right where we
are looking to extend; and the vertical transition line at s = S. We define the new
transition element using the values along this transition line, constant horizontally,
by ℓ̂s,t = n−1

S,tmS,tℓ̂S,t:

(ms,t, ys,t) (ns,t, zs,t)

s = S

Similarly, to extend down the left row, we use neighbourhood parametrizations
(ms,t, ys,t) for the upper and (ns,t, zs,t) neighbourhood, and look at the horizontal
transition line at t = T . We define the new transition elements using values along this
line, constant vertically, by ℓ̂s,t = n−1

s,Tms,T ℓ̂s,T :

(ms,t, ys,t)

(ns,t, zs,t)

t = T

Lastly, consider how to extend to a neighbourhood where ℓ̂s,t has been defined for
a neighbourhood above and to the left of it. Suppose that the neighbourhood above
our new one has coordinates (ms,t, ys,t), and the one to the left has coordinates
(m′

s,t, y
′
s,t); and the new neighbourhood has coordinates (ns,t, zs,t). Then we have

two transition segments. Along the horizontal segment at t = T , we know that xs,T
can be written as both (ms,T , ys,T ) and (ns,T , zs,T ); and along the vertical segment
s = S, we know that xS,t can be written as (m′

S,t, y
′
S,t) and (nS,t, zS,t). Then we can

extend diagonally across the new neighbourhood using transition element

ℓ̂s,t =

{

n−1
s−t,Tms−t,T ℓ̂s−t,T if s− S 6 t− T ,

n−1
S,s−tm

′
S,s−tℓ̂S,s−t else.

(ms,t, ys,t)

(m′
s,t, y

′
s,t)

(ns,t, zs,t)

t = T

s = S
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In this way we can define our transition elements on the entire region.

Proposition 5.9. If L is a compact Lie group which acts smoothly on X with finite
isotropy groups, and L ⊆ G for some compact Lie group G, then there is an inclusion
map L →֒ G, and an equivariant inclusion ϕ : X → G×L X by ϕ(x) = [e, x]. Then
ϕ : ΠL(X) → ΠG(G×L X) is an equivalence of 2-categories.

Proof. Essentially surjective on objects: Given (G/H, [g, y]) in ΠG(G×L X), we

know that [g, y] ∈ (G×L X)H , and so [e, y] ∈ (G×L X)g
−1Hg. So y ∈ Xg−1Hg. Con-

sider (L/g−1Hg, y) ∈ ΠL(X). Then ϕ(L/g−1Hg, y) = (G/g−1Hg, [e, y]) and (g, c)
represents an arrow from (G/H, [g, y]) to (G/g−1Hg, [e, y]), where c is the constant
path at [g, y].

Essentially surjective on arrows: Suppose we have (L/H, x) and (L/K, y)
in ΠL(X), and an arrow (α, [γ]) : (G/H, [e, x]) → (G/K, [e, y]) in ΠG(G×L X). So
we have a path γ : [e, x] → [α, y] in (G×L X)H , and γ takes the form γ(t) = [gt, xt].
By Lemma 5.7, we know that there exists a continuous family ℓt such that
(gtℓt)

−1Hgtℓt = H and (gtℓt)
−1γ ∈ (e×L X

H). Define ζ = (gtℓt)
−1γ. Then ζ is a

path in XH which starts at x and ends at ℓ−1
1 y, and so (e, (ℓ−1

1 , ζ)) is an arrow in
ΠL(X) from (L/H, x) to (L/K, y). Now define a 2-cell σ = (gtℓt)

−1 from (α, γ) to
ϕ(ℓ−1

1 , ζ): to show this is a 2-cell in ΠG(G×L X), we need a homotopy γ ∗ σy ≃ ζ.
We define Λ(s, t) = σ(s)γ(t):

x
γ

ζ=σγ

αy

σy

ℓ−1y .

Thus, every arrow between ϕ(L/H, x) and ϕ(L/K, y) has an invertible 2-cell to an
arrow in the image of ΠL(X).

Full on 2-cells Suppose we have two arrows (α, [γ]) and (β, [ζ]) from (L/H, x)
to (L/K, y) in ΠL(X), and that when we take their images under ϕ, there is a 2-cell
connecting them in ΠG(G×L X). Specifically, γ is a path from x to αy in XH , and
ζ is a path from x to βy in XH ; and there is a σ from α to β in (G/K)H , and
a homotopy Λ from [e, γ] ∗ [σ, y] to [e, ζ] in (G×L X)H . Now apply Lemma 5.8 to
Λ(s, t) = [gs,t, xs,t] to get a continuous ℓs,t ∈ L such that (gtℓt)

−1γ ∈ (e×L X
H) and

(gtℓt)
−1Hgtℓt = H.

Define ω(t) = (g1,tℓ1,t)
−1σ(t) and Ω(s, t) = (gs,tℓs,t)

−1Λ(s, t). Then ω is a map in
(L/K)H from (g1,0ℓ0,1)

−1α to (g1,1ℓ1,1)
−1β, and Ω gives a homotopy in XH from

(gs,0ℓs,0)
−1γ ∗ ωy to (gs,1ℓs,1)

−1ζ.

[e, x]
(gs,0ℓs,0)

−1γ

(gs,1ℓs,1)
−1ζ

(g1,0ℓ1,0)
−1αy

ωy

(g1,0ℓ1,0)
−1βy

We want to use this to create a 2-cell in ΠL(X) from (α, [γ]) to (β, [ζ]). Now we know
that γ ∈XH , and [e, γ(s)] = Λs,0 = (gs,0, xs,0). So we must have gs,0 ∈ L. Thus, we can
define a 2-cell in ΠL(X) from (α, [γ]) to ((g1,0ℓ1,0)

−1α, [(gs,0ℓs,0)
−1γ]) using gs,0ℓs,0.
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Similarly, on the other end, we have a 2-cell from ((g1,1ℓ1,1)
−1β, [(gs,0ℓs,0)

−1ζ]) to
(β, [ζ]) using gs,1ℓs,1, again using the fact that Λs,1 = [e, ζ] and hence gs,1 ∈ L.

Faithful on 2-cells Suppose we have two 2-cells σ, ω in ΠL(X) from (α, [γ]) to
(β, [ζ]). And when we embed in G×L X, they are homotopic: we have Γ: σ → ω in
(G/K)H , which gives Γy : σy → ωy in (G×L X)H . Note that when we write Γy in the
form (gs,t, xs,t) we can take gs,t = Γ(s, t) and xs,t = y. Apply Lemma 5.8 to Γy written

in this form to get ℓs,t; then define Γ̂ = (gs,tℓs,t)
−1Γ = ℓ−1

s,t . Because Γ ∈ (G/K)H , we

know that gs,tHg
−1
s,t 6 K, and so ℓ−1

s,t g
−1
s,tHgs,tℓs,t 6 ℓ−1

s,tKℓs,t and so ℓ−1
s,t gives a map

from L/H to L/K as required; giving a 2-cell in ΠL(X) from g−1
s,0σ to (gs,1ℓs,1)

−1ω.
Then since σ ∈ L, we know that gs,0 ∈ L, allowing us to create a homotopy from
g−1
s,0σ to σ; and similarly from (gs,1ℓs,1)

−1ω to ω in (L/K)H . Concatenating these
homotopies gives the required homotopy from σ to ω, showing that these 2-cells were
equivalent in ΠL(X).

Remark 5.10. In Section 4 we presented Π: EqTrGpd → 2-Cat as a strict 2-functor.
The 2-equivalences of this section are only weak 2-equivalences. However, subject to
the axiom of choice we are able to choose a pseudo inverse for each Morita equivalence
and to induce a pseudo functor

Orbifolds ≃ EqTrGpd(W−1)
Π̂

−→ 2-Cat

that extends Π, although this functor is not canonical.

Example 5.11. Suppose that G = Z/2 acts on the circle X = S1, where τ acts by
rotation by π. Then G acts freely on X, with quotient space X̄ ≃ S1, and so the
projection G⋉X → e⋉ X̄ is an equivariant essential equivalence.

Now Ḡ = {e} and so ΠḠX̄ is just the usual fundamental groupoid of X̄, with
arrows indexed by the winding number of their path in Z between any two points.
Since G is discrete, ΠḠX̄ = Πd

Ḡ
X̄.

On the other hand, ΠG(X) consists of points (G/e, x) and arrows (e, [γ]) where
γ is a path from x to y, again classified by winding number n; and arrows (τ, [ζ])
where ζ is a path from x to τy, classified by winding number m. Then the projection
map takes (e, [γ]) to (ē, [γ̄]), which will have winding number 2n; and takes (τ, [ζ])
to (ē, [ζ̄]) with winding number 2m+ 1. Again, ΠG(X) = ΠdG(X). So we have the
equivalence of categories ΠdG(X) −→ Πd

Ḡ
X̄.

Example 5.12. Consider G = S1 acting on the torus X = T 2 as in Example 3.5.
The circle acts freely, so again the projection G⋉X → e⋉ X̄ is an equivariant essen-
tial equivalence. Here X̄ ≃ S1 and again ΠḠX̄ = Πd

Ḡ
X̄ is the groupoid with arrows

indexed by Z between any objects.
The category ΠG(X) was described in Example 3.5, where it was shown that every

arrow had a 2-cell to an arrow of the form (e, [γ]) where γ was constant in the second
coordinate. Therefore, ΠdG(X) is isomorphic to Πd

Ḡ
X̄.

Example 5.13. Consider L = Z/2 andX = S1 from Example 3.4. We can consider L
as a subgroup of G = S1, and form the space G×L X = (G×X)/ ∼, where (λ, x) ∼
(τλ, τx) for τ = eiπ. Since τ acts on X via a reflection, this is topologically a Klein
bottle.
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The objects of ΠG(G×L X) are of the form (G/e, [α, β]) for [α, β] ∈ S1 ×L S
1, and

(G/G, [α, z]) for z ∈ XZ/2, so z ∈ {E,W}.
Between points of the first type, we have arrows of the form (λ, [γ]) for γ a path

from x to λy in the Klein bottle; so we have a copy of S1 × (Z⊕ Z)/〈abab−1〉. Sim-
ilarly the points (G/G, [α, z]) have arrows (λ, [ζ]) between them, where ζ is a path
from (α, z) to (α′, z) in (G×L X)Z/2 ≃ S1; and arrows (λ, [γ]) from (G/e, [α, β]) to
(G/G, [α, z]).

There are 2-cells identifying many of these arrows. Between (G/e, [α1, β1]) and
(G/e, [α2, β2]), there are 2-cells between arrows (λ, [γ]) and (e, [γ ∗ Λ−1(α2, β2)]) by
defining Λ to be a path in S1 from e to λ.

Now consider the arrow (e, [b]) corresponding to a generating loop along β. This has

a 2-cell to the map (τ, [b̂]) which is constant in β, where b̂ is a path from x to τx.

Then (τ, [b̂])2 = e. Thus, in ΠdG(G×L X), we have arrows indexed by elements of
the group Z⊕ Z/〈abab−1, b2〉, recovering the infinite dihedral maps of Example 3.4.
Similarly, arrows from (G/Z/2, [α, z]) to (G/Z/2, [α′, z]) are identified in ΠdG(G×L X)
by taking a path from α to α′ in S1 and using it to produce a 2-cell, and we get our
equivalence ΠdL(X)

∼
→ ΠdG(G×L X).
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