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CONSTRUCTIONS OF SELF-MAPS OF SU(4)
VIA POSTNIKOV TOWERS

JIM FOWLER and CHRIS KENNEDY

(communicated by Donald M. Davis)

Abstract
Cohomology operations restrict the degree of a self-map of

SUp4q to be either odd or a multiple of 8; we find self-maps
realizing these possible degrees. The notion of the degree of a
self-map can be refined to a notion of multidegree which records
the effect of the self-map on each of the generators ofH‹pSUp4qq.
We find restrictions on the possible multidegrees of self-maps of
SUp4q and, via Postnikov towers, build self-maps stage-by-stage
realizing the possible multidegrees.

1. Introduction

For closed oriented n-dimensional manifolds M and N , let DpM,Nq be the set of
degrees of maps M Ñ N , i.e.,

DpM,Nq :“ tdeg f | f : M Ñ Nu.

Often we are interested in DpMq “ DpM,Nq, the set of degrees of self-maps of M .
Much work has gone into studying DpM,Nq for high-dimensional manifolds, e.g.,

for certain six-manifolds [2] and for highly-connected manifolds [4]. The case of SUp3q
is considered in recent work [6, 15] where it is shown that d P DpSUp3qq exactly when
d is odd or a multiple of 4. This paper studies DpSUp4qq. Self-maps of SUp4q are
not as well-studied as those of H-spaces with fewer cells, but there has been some
prior work on self-maps SUp4q, e.g., see [11] on the nilpotency of the group of self-
maps rSUp4q, SUp4qs and see [13, Corollary 5.7] which exhibits self-maps of degree
8mp2ℓ` 1q.

The structure of the cohomology ring of SUpnq makes it a particularly interesting
choice when studying the degree of self-maps. Specifically, H‹pSUpnq;Zq is exterior on
generators x3, x5, . . . , x2n´1. Therefore, a self-map f : SUpnq Ñ SUpnq has a multi-
degree.

Definition 1.1. For map f : SUpnq Ñ SUpnq, the multidegree of f is the tuple

pt3, t5, . . . , t2n´1q,

where f‹pxiq “ ti xi.
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An investigation of DpSUp4qq can therefore be refined to an investigation of the
set of possible multidegrees of self-maps of SUpnq.

Theorem A. There is a map φ : SUp4q Ñ SUp4q of multidegree pt3, t5, t7q if and only
if t3 ” t5 pmod 2q and t3 ” t7 pmod 6q.

Observing that deg f “
ś

i ti and performing some elementary number theory
yields a corollary.

Corollary B. There is a map φ : SUp4q Ñ SUp4q of degree d exactly when d is odd
or a multiple of 8.

In Section 2, we sketch the necessity of the congruences in Theorem A. Then
Section 3 introduces the machinery that faciliates building maps stage-by-stage, e.g.,
Lemma 3.5 and Lemma 3.7. The proof of Theorem A is presented in Section 4, and
Corollary B is discussed in Section 5. The paper ends by highlighting some future
directions.

Conventions
Throughout the paper, “space” means a 1-connected CW-complex, and homology

and cohomology with unspecified coefficients means the coefficient ring is Z.
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2. Necessity

We sketch why the congruence condition in Theorem A is necessary. The coho-
mology ring H‹pSUp4qq is generated by classes x3, x5, x7 having deg xi “ i. Nonzero
cohomology groups occur in dimensions 0, 3, 5, 7, 8, 10, 12, and 15.

Suppose φ : SUp4q Ñ SUp4q has multidegree pt3, t5, t7q, meaning φ‹pxiq “ ti xi.
Here, and throughout the paper, we write ρm for the coefficient homomorphism on
cohomology induced by reduction Z Ñ Z{m. Note that

Sq2 : H3pSUp4q;Z{2q Ñ H5pSUp4q;Z{2q

is an isomorphism, so by naturality,

Sq2 ρ2φ
‹x3 “ φ‹ρ2x5,

and thus t3 ” t5 mod 2.
The reduced power operation

P 1 : H3pSUp4q;Z{3q Ñ H7pSUp4q;Z{3q

satisfies P 1ρ3x3 “ ρ3x7. We check this by with a formula involving the Chern classes
c2, c4 in H‹pBSUp4qq. Specifically,

P 1ρ3c2 “ pρ3c2q2 ` ρ3c4,

and the square vanishes after desuspending. Calculations of P 1 in this context can
be found in [3]. Consequently, t3 ” t7 mod 3.
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Finally, we check t3 ” t7 mod 2. One may have hoped to use

Sq2 : H5pSUp4q;Z{2q Ñ H7pSUp4q;Z{2q

but that maps is trivial. Instead, we verify that t3 ” t7 mod 2 by invoking a secondary
operation; this is described in Subsection 4.2.

3. Building maps stage-by-stage

We show the condition in Theorem A is sufficient by exhibiting self-maps of SUp4q.
The tool we use to construct such maps are Postnikov towers [12]. Indeed, we wish to
construct the maps stage-by-stage, meaning we desire to deal with stages of Postnikov
towers and the maps between those stages in the absence of a total space. Postnikov
systems are convenient for such reasoning. But Postnikov systems are less well-known
than Postnikov towers, so we recall the key facts we need in the sequel. As we climb
the Postnikov tower, cohomology operations (Subsection 3.4) and H-space structures
(Subsection 3.5) will help us continue to climb to the next rung.

3.1. Postnikov systems
Definition 3.1. A Postnikov system Pn is a sequence ppπi, kiqqni“2 of groups πi and
elements ki defined recursively so that

• the empty sequence (n “ 1) is a Postnikov system,

• the data ppπi, kiqqn´1
i“2 constitutes a Postnikov system,

• the abelian group πn is finitely generated, and

• the “k-invariant” kn lives in the appropriate home, i.e., kn P Hn`1pXn´1;πnq.

We permit Postnikov systems with infinitely many stages, which we denote by
ppπi, kiqqi.

Given ppπi, kiqqi the total space can be recovered, and the Postnikov tower of that
total space has the expected stages. To build the stages, start with X1 “ t˚u. Then for
n ě 2 let Xn be the homotopy fiber of the classifying map kn : Xn´1 Ñ Kpπn, n` 1q
which fits into a fiber sequence

KpπnpXq, nq
inÝÑ Xn

qnÝÑ Xn´1
knÝÑ KpπnpXq, n` 1q.

These stages assemble to the desired total space.

3.2. Morphisms of Postnikov systems
Having introduced objects, we introduce morphisms.

Definition 3.2 (cf. [14]). For Postnikov systems P “ ppπi, kiqqi and P
1 “ ppπ1

i, k
1
iqqi,

a morphism of Postnikov systems is a collection of group homomorphisms fi : πi Ñ
π1
i with the recursive property: the collection of maps pfiq

n´1
i“2 defines a continuous

map φn´1 : Xn´1 Ñ X 1
n´1 in such a way that the maps φ‹

n´1 : H
n`1pX 1

n´1;π
1
nq Ñ

Hn`1pXn´1;π
1
nq and fn˚ : H

n`1pXn´1;πnq Ñ Hn`1pXn´1;π
1
nq satisfy the coherence

condition

φ‹
n´1pk1

nq “ fn˚pknq. (‹)
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This coherence condition is precisely what makes it possible, given a map on the
n´ 1 stage, to produce a map on the next stage.

Lemma 3.3. Consider Postnikov systems ppπi, kiqqi and ppπ1
i, k

1
iqqi with n´ 1 stage

Xn´1 and X 1
n´1, respectively. If the morphism φn´1 : Xn´1 Ñ X 1

n´1 satisfies the
coherence condition (‹), then φn´1 extends to a morphism φn : Xn Ñ X 1

n.

Proof. The coherence condition (‹) is equivalent to the commutativity of the right-
hand square in

Xn Xn´1 Kpπn, n` 1q

X 1
n X 1

n´1 Kpπ1
n, n` 1q

φn

kn

φn´1 fn

k1

n

because Hn`1pKpπn, n` 1q;π1
nq can be naturally identified with Hompπn, π

1
nq. Since

the right square commutes and Xn and X 1
n are the homotopy fibers of kn and k1

n,
respectively, there is an induced map φn : Xn Ñ X 1

n.

By Lemma 3.3, the data of a morphism of Postnikov systems permits us to build
maps φn : Xn Ñ X 1

n. Often X “ X 1; we vary the notation to make clear whether we
are speaking of the source or target.

3.3. Whitehead sequence
We will occasionally make use of Whitehead’s “certain exact sequence” [16].

Definition 3.4. For a space X with n-skeleton Xpnq, the Whitehead sequence

¨ ¨ ¨ ÝÑ Hn`1pXq
bn`1

ÝÝÝÑ ΓnpXq
jnÝÑ πnpXq

hnÝÑ HnpXq ÝÑ ¨ ¨ ¨ ,

is exact and natural. Here, ΓnpXq “ im
`

i‹ : πnpXpn´1qq Ñ πnpXpnqq
˘

.

That this is exact was shown by Whitehead.
The significance of the Whitehead sequence to us lies largely with its relationship

to Postnikov towers. For instance, if Xn´1 is a Postnikov stage for X, there is a
natural identification

ΓnpXq ” Hn`1pXn´1q.

This is proved in [1, Section 2.7].
Moreover, in certain situations the map jn can be related to a k-invariant. Baues

shows that kn can be naturally identified with jn if ExtpHnpXn´1, πnpXqqq “ 0, and
kn can be identified with the extension πnpXq Ñ HnpXq Ñ HnpXn´2q if

Hn`1pXn´1q “ πn´1pXq “ 0.

With this in mind, here is a simple but useful lemma for disposing of some nonzero
k-invariants.

Lemma 3.5. Let φn´1 : Xn´1 Ñ X 1
n´1 be a map of Postnikov stages, and assume

that

(i) the homology groups HnpXn´1q and HnpX 1
n´1q are free,
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(ii) the maps bn`1 : Hn`1pXq Ñ Hn`1pXn´1q and b1
n`1 are both zero, and

(iii) the Hurewicz maps hn : πnpXq Ñ HnpXq and h1
n : πnpX 1q Ñ HnpX 1q are both

zero.

Then φn´1 extends to φn : Xn Ñ X 1
n.

Proof. The k-invariants to extend φn´1 to φn are found in Hn`1pXn´1;πnpXqq and
Hn`1pX 1

n´1;πnpX 1qq. Via universal coefficients we see

Hn`1pXn´1;πnpXqq – HompHn`1pXn´1q, πnpXqq ‘ ExtpHnpXn´1q, πnpXqq,

and the Ext term is zero by (i). Hence the k-invariants are exactly the maps
j : Hn`1pXn´1q Ñ πnpXq and j1 : Hn`1pX 1

n´1q Ñ πnpX 1q. Since bn`1 “ 0 by (ii) and
hn “ 0 by (iii), the map j is an isomorphism, and similarly for j1. By Lemma 3.3,
φn exists if a suitable map fn : πnpXq Ñ πnpX 1q exists, and in this case we can take
fn “ j1φn´1j

´1.

3.4. Cohomology operations
The congruence conditions in Theorem A, e.g., t3 ” t5 pmod 2q, are the numero-

logical shadow of cohomology operations. In general, cohomology operations are not
additive, but we will only consider operations which are.

Definition 3.6. A primary, secondary, or higher cohomology operation Θ is said to
be a linear operation on a space X if

1. Θpx` yq “ Θpxq ` Θpyq for all x, y P DefpΘ, Xq, and

2. IndpΘ, Xq “ 0.

All stable primary operations are linear. With this definition in mind, we are
ready for Lemma 3.7. It plays a key role in the sequel. Here pn´1 : X Ñ Xn´1 is the
Postnikov section. We denoteX “ SUp4q. The map pn´1 : X Ñ Xn´1 is the Postnikov
section. And finally, d1 “ 3 and d2 “ 5 and d3 “ 7 so H‹pXq is generated by txdi

u.

Lemma 3.7. Suppose the cohomology of X is generated by txdi
u with 1 ď i ď r, and

fix ℓ “ di ă dj “ n for some i, j ď r. Assume that

1. there is a map φn´1 : Xn´1 Ñ Xn´1,

2. the Whitehead sequence for X contains an exact fragment

¨ ¨ ¨
0

ÝÑ πnpXq
hnÝÑ HnpXq

bnÝÑ HnpXn´2q
0

ÝÑ ¨ ¨ ¨ ,

where HnpXq – Z,

3. the group Hn`1pXń 1;πnpXqq is naturally isomorphic to ExtpHnpXń 2q, πnpXqq,

4. there is a cohomology class χℓ P HℓpXn´1;πℓpXqq such that p‹
n´1pχℓq “ xℓ,

5. there is an isomorphism πℓpXq – Z, and

6. there is a linear cohomology operation Θ such that kn “ Θpχℓq.

Then φn´1 may be extended to φn if and only if the degree tn satisfies tn ” tℓ pmod mq
where m is the smallest positive integer such that mΘpχℓq “ 0.

Proof. We will need to distinguish between πn of the source and the target, so to avoid
confusion we will call the target X 1; every fact deduced about X obviously also holds
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for X 1. Since pn´1 : X Ñ Xn´1 is an isomorphism on cohomology in dimension ℓ,
φ‹
n´1pχ1

ℓq “ tℓχℓ. On the other hand, by (2), HnpXq – Z and hn is injective, so πnpXq
is either Z or 0. If πnpXq “ 0 then there is no obstruction to extending φn´1, so we
may assume πnpXq – Z and hn is multiplication by c for some c P Z, and hence that

HnpXn´2q – Hn`1pXn´1;πnpXqq – Z{c

by (3) and (4). Therefore, in the diagram

πnpXq HnpXq HnpXn´2q

πnpX 1q HnpX 1q HnpX 1
n´2q

hn

fn

bn

tn pφn´1q‹

h1

n
b1

n

we must have that fn is multiplication by tn, and pφn´1q‹ is multiplication by
tn mod c. We then apply those facts to the following diagram obtained from (5) and
(6) illustrating both the operation Θ and the matching condition fn˚pknq “ φ‹

n´1pk1
nq.

HℓpXn´1;πℓpXqq HℓpXn´1;πℓpX
1qq HℓpX 1

n´1;πℓpX
1qq

Hn`1pXn´1;πnpXqq Hn`1pXn´1;πnpX 1qq Hn`1pX 1
n´1;πnpX 1qq

tℓ

Θ Θ Θ

tℓ

tn

fn˚

tn

φ‹

n´1

On the bottom row, multiplication by tn is taken to be modulo c. The map φn´1

extends to φn if the above diagram can be made to commute by an appropriate
choice of fn, which is precisely a choice of tn. But the condition for commutativity of
each square is tℓΘpχℓq “ tnΘpχ1

ℓq, which implies that the diagram commutes and the
map extends if and only if tℓ ” tn pmod mq, where m is the order of Θpχℓq, which
divides but may not necessarily equal c.

3.5. H-spaces

We will occasionally use the fact that the spaces we consider have H-space struc-
tures. For us an “H-space structure” means a multiplication µ : X ˆX Ñ X and a
strict identity element e P X such that the µpx, eq “ µpe, xq “ x.

Definition 3.8 ([5]). Let pX,µq be an H-space and x P HnpX;Rq. Consider the nat-
ural splitting

HnpX ˆX;Rq – HnpX _X;Rq ‘HnpX ^X;Rq,

where X ^X is the smash product pX ˆXq{pX _Xq. Let p̄ be projection onto the
second term above. Then x is R-primitive if p̄µ‹pxq “ 0.

For H-spaces, the morphisms are H-maps f : pX,µq Ñ pY, νq meaning maps for
which νpf ˆ fq » fµ. Zabrodsky provides a useful criterion for “potential” H-maps.
If Y is an H-space, rX,Y s is an algebraic loop in which we define Dpf, gq P rX,Y s
for maps f, g : X Ñ Y to be the (unique) element satisfying Dpf, gq ` g “ f . The
H-deviation of an arbitrary map f : X Ñ Y is the element Df P rX ^X,Y s defined
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so that

Dfp “ Dpfµ, νpf ˆ fqq

and is trivial if and only if f is an H-map.

Lemma 3.9. Let pX,µq and pY, νq be H-spaces, and let f : X Ñ Y be a map. Then
Y admits another multiplication ν1 such that f : pX,µq Ñ pY, ν1q is an H-map if and
only if the H-deviation Df lies in the image of the map

pf ^ fq‹ : rY ^ Y, Y s Ñ rX ^X,Y s.

Proof. See [17, Proposition 1.5.1(a)].

Viewing x as a map X Ñ KpR,nq, the H-deviation Dx of x is in rX ^X,

KpR,nqs “ HnpX ^X;Rq, and, in fact, is the difference between µ‹pxq and i‹1pxq `
i‹2pxq, where ij : X Ñ X _X is inclusion to the jth factor. Hence x is primitive if
and only if its classifying map is an H-map. Applying this fact to the context of Post-
nikov towers, Kahn [5] proves that primitive k-invariants are, in fact, exactly what is
necessary to give X an H-space structure.

Theorem 3.10. Let X be a 1-connected space with homotopy groups πn for n ě 2.
Then X is an H-space if and only if it has a Postnikov tower in which each Postnikov
invariant kn is πn-primitive. Furthermore, if X is an H-space, all its Postnikov stages
Xn are H-spaces.

Proof. The first assertion as applied to spaces with only finitely many homotopy
groups is [5, Theorem 3.2] and can be extended to arbitrary X by an argument of
Barratt [5, p. 450]. The second assertion is [5, Corollary 3.1].

To extend an H-map of Postnikov stages φn´1 : Xn´1 Ñ X 1
n´1 to an H-map of the

next stages φn : Xn Ñ X 1
n, we use the following lemma.

Lemma 3.11. Let X and X 1 be H-spaces, let φn´1 : Xn´1 Ñ X 1
n´1 be an H-map, and

set πn “ πnpXq and π1
n “ πnpX 1q so that fn : πn Ñ π1

n induces a map φn : Xn Ñ X 1
n.

If the induced map

pφn ^ φnq‹ : HnpX 1
n ^X 1

n;π
1
nq Ñ HnpXn ^Xn;π

1
nq

is surjective, then there is an H-structure on X 1
n such that φn is an H-map.

Proof. By Lemma 3.9, there will be an H-structure on X 1
n that makes φn an H-map

if the H-deviation Dφn
is in the image of the map

pφn ^ φnq# : rX 1
n ^X 1

n, X
1
ns Ñ rXn ^Xn, X

1
ns.

Here we have used # rather than ‹ to distinguish from the map on cohomology in the
hypothesis. Let Kn “ Kpπn, n` 1q and K 1

n “ Kpπ1
n, n` 1q to arrive at the following

diagram.

ΩKn Xn Xn´1 Kn

ΩK 1
n X 1

n X 1
n´1 K 1

n

in

Ωfn

qn

φn

kn

φn´1 fn

i1

n
q1

n
k1

n

Since X and X 1 are H-spaces, kn and k1
n are both H-maps, which implies that qn and

q1
n are also H-maps, so φn´1qn is also an H-map. From the fiber sequence ΩK 1 Ñ
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X 1
n Ñ X 1

n´1 we get a commuting diagram of Puppe sequences.

rX 1
n ^X 1

n,ΩK
1s rX 1

n ^X 1
n, X

1
ns

“

X 1
n ^X 1

n, X
1
n´1

‰

rXn ^Xn,ΩK
1s rXn ^Xn, X

1
ns

“

Xn ^Xn, X
1
n´1

‰

i1

n

pφn^φnq‹

q1

n

pφn^φnq#

i1

n
q1

n

Since φn´1qn : Xn Ñ X 1
n´1 is an H-map, the image of Dφn

under q1
n is trivial, so

Dφn
is in the image of i1n. As the homotopy sets furthest left are exactly the coho-

mology groups of the hypothesis, and the left square above commutes, surjectivity of
pφn ^ φnq‹ is enough to imply that Dφn

P impφn ^ φnq# as desired.

4. Proof of Theorem A

We now prove Theorem A. We rely on Lemma 3.7 to translate the congruence
conditions into initial progress climbing the Postnikov tower; after we have gotten
started, we rely on Lemma 3.5 to climb the rest of the way.

To be more precise, the proof will be accomplished in the following steps. Using the
condition t3 ” t5 pmod 2q, we construct φ5 in Subsection 4.1. With t3 ” t7 pmod 6q,
we extend this to φ7 in Subsection 4.2. We arrange for t3, t5, and t7 to be units
modulo 30 in Subsection 4.3, which facilitates the argument (Subsection 4.4) that
φ8 can be constructed to be an H-map. Then Subsection 4.5 extends φ8 to φ10, and
the latter can be taken to be an H-map (Subsection 4.6) and can be extended to φ14
(Subsection 4.7) and finally, extended to SUp4q in Subsection 4.8.

4.1. Construct φ5
Since X3 “ KpZ, 3q, we construct φ3 : X3 Ñ X 1

3 via t3ι3 P H3pX3q – Z. Here, and
in the remainder of the paper, write ιn for the generator of HnpKpG,nq;Gq when G
is clear from context.

Because π4pSUp4qq vanishes, we have φ4 “ φ3. To construct φ5, we apply Lem-

ma 3.7 with the stable and primary (hence linear) operation β̃Sq
2
. Here (and in the

remainder of the paper) denote the Bockstein of the coefficient sequence Z
¨n

ÝÑ Z Ñ
Z{n by β̃ to distinguish it from the Bockstein β of the mod-p Steenrod algebra.

4.2. Extend φ5 to φ7
Now we extend φ5 to φ7, the k-invariant for which lies in H8pX6;π7q. Applying

the relative Hurewicz theorem to the pair pSUp4q, SUp3qq and inspecting the long
exact sequence for the fibration SUp3q Ñ SUp4q Ñ S7, we see that the Hurewicz map
h7 : π7 Ñ H7pXq in the Whitehead sequence is exactly the map π7pSUp4qq Ñ π7pS7q
in the long exact sequence; hence the map π7 Ñ H7pXq is multiplication by 6 and,
since π6 “ 0, we have

H7pX5q “ H7pX6q “ Z{6.

This also implies that the map H8pX6q Ñ π7 is zero, which combined with the facts
that H8pXq “ Z and π8 is finite implies that H8pX6q “ Z. In conclusion, we have

H8pX6;π7q “ HompH8pX6q,Zq ‘ ExtpH7pX5q,Zq “ Z ‘ Z{6,
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where the splitting is natural since the HompH8pX6q,Zq is free. Furthermore, since
H7pX6;Zq “ 0, the long exact sequence for the coefficients Z Ñ Z Ñ Z{6 implies that
the group H7pX6;Z{6q must be Z{6, and therefore that the Bockstein

β̃ : H7pX6;Z{6q Ñ H8pX6;Zq

identifies it with the Z{6 of the latter group.
Now we need to identify the generators. We first identify the Z{2 piece; for brevity,

we write Sq
2
for Sq2 ρ2. Consider the Leray-Serre spectral sequence for the fibra-

tion KpZ, 5q Ñ X5 Ñ KpZ, 3q, with Z coefficients. Since the fibration is nontrivial,

the transgression takes ι5 to the generator of H6pKpZ, 3qq, which is β̃Sq
2
ι3. So we

compute that

τpι5q “ βSq
2
ι3,

τpSq
2
ι5q “ Sq

2
β̃Sq

2
ι3 “ 0,

τpβ̃Sq
2
ι5q “ 0, and

d6pι3ι5q “ ι3β̃Sq
2
ι3.

ThenH7pX6;Z{2q is generated by an element λ7 for which i
‹
5λ7 “ Sq

2
ι5, which defines

a secondary operation Φ based on the relation

Sq
2

˝ β̃Sq
2

“ 0

in dimension 3. In general, for a CW-complex Y , we have

DefpΦ, Y q “ tx P H3pY ;Zq : β̃Sq
2
x “ 0u,

IndpΦ, Y q “ Sq
2
H5pY ;Zq,

and, in particular, Φ is a linear cohomology operation for Y “ SUp4q (since it is the
looping of an operation on BSUp4q), taking values in H7pSUp4q;Z{2q. It follows that

β̃pλ7q generates the Z{2 portion of H8pX6;Zq.
The Z{3 piece is much more straightforward. The k-invariant attaching KpZ, 5q to

KpZ, 3q is trivial modulo 3, so we get H7pX5;Z{3q – Z{3, generated by q‹
5P

1ρ3ι3. The
k-invariant for constructing X7 is nontrivial modulo 3, and the generator for the Z

piece of H8pX5;Zq is 2pq‹
5ι3qι5, which is not primitive. But k7, as a k-invariant for an

H-space, must be primitive, so it follows that

k7 “ β̃pλ7 ` q‹
5P

1ρ3ι3q.

Since this has order 6, applications of Lemma 3.7 modulo 2 and 3 show that φ5 can
be extended to φ7 if and only if t3 ” t7 pmod 6q.

4.3. Modify t3, t5, t7
The algebraic loop rSUp4q, SUp4qs has a homomorphism to Z

3 given by the multi-
degree; since the identity p1, 1, 1q is clearly a valid map of SUp4q and by assumption
t3 ” t5 ” t7 pmod 2q, we may change pt3, t5, t7q to pt3 ` 15, t5 ` 15, t7 ` 15q if neces-
sary to ensure the ti are all units modulo 2 without changing their class modulo 3 or
5. Similarly, since t3 ” t7 pmod 3q, we may add a multiple of p10, 10, 10q to make the
ti all units modulo 3, and a multiple of p6, 6, 6q to do it modulo 5.
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4.4. Ensure φ8 is an H-map
We first check that φ3, φ5, and φ7 are H-maps. The map φ3 is a group homomor-

phism of KpZ, 3q, so is certainly an H-map. For the latter two, the sets in which their
H-deviations lie are surjected onto by the groups

H5pX5 ^X5;Zq “ 0,

H7pX7 ^X7;Zq “ 0,

so φ5 and φ7 are both H-maps (independent of the modification from Subsection 4.3).
Next, φ7 can be extended to φ8 by Lemma 3.5.

By Lemma 3.9, φ8 can be modified to be an H-map if

pφ8 ^ φ8q‹ : H8pX 1
8 ^X 1

8;Z{24q Ñ H8pX8 ^X8;Z{24q

is a surjection. A simple calculation shows that the groups on each side are

H8pX8 ^X8;Z{24q – H3pX8;Z{24q bH5pX8;Z{24q ‘H5pX8;Z{24q bH3pX8;Z{24q

and similarly with primes. Since t3 and t5 are units modulo 2 and 3, pφ8 ^ φ8q‹ is
multiplication by a unit of Z{24 ‘ Z{24, hence a surjection. So φ8 can be taken to be
an H-map, possibly after modifying the H-structure of X 1

8.

4.5. Extend φ8 to φ10
To extend φ8 to φ10, we first determine H10pX8;π9q. In the Whitehead sequence,

H10pX8q sits in the middle of the short exact sequence

Z “ H10pXq Ñ H10pX8q Ñ π9 “ Z{2

so H10pX8q is either Z or Z ‘ Z{2. The k-invariant group H10pX8;π9q is therefore
either Z{2 or Z{2 ‘ Z{2. But H

10pX8;π9q must contain a nonzero multiple of a combi-
nation of pullbacks of ι3ι7, which is not primitive, whereas the k-invariant is primitive
(and nonzero). Therefore H10pX8;π9q – Z{2 ‘ Z{2 generated by k9 and a version of
ι3ι7. It is then clear that the coherence condition φ‹

8pk1
9q “ f9˚pk9q is satisfied since

φ8 is an H-map, and hence must take a primitive element to a primitive element.
Once φ9 has been constructed, φ10 follows immediately by Lemma 3.5.

4.6. Ensure φ10 is an H-map
We have built φ10 but we do not yet know it is an H-map. Arranging for it to be

such will be similar to the procedure for φ8. Note that φ9 is an H-map since

H9pX9 ^X9;Z{2q “ 0

so there is no H-deviation. For φ10, we examine the map pφ10 ^ φ10q‹, which involves
the groups

H10pX10 ^X10; Iq – H3pX10; Iq bH7pX10; Iq ‘H7pX10; Iq bH3pX10; Iq

and similarly with X 1
10, where the coefficient group is I “ π10pXq “ Z{120 ‘ Z{2. In

Subsection 4.3 we arranged t3 and t7 to be units modulo 2, 3, and 5, so pφ10 ^ φ10q‹

is multiplication by a unit and hence a surjection, meaning φ10 can be an H-map.

4.7. Extend φ10 to φ14
Extending φ10 to φ11 is the same argument as in Subsection 4.5 but with π11 “ Z{4

instead of π9 “ Z{2 and the other parts carrying through mutatis mutandis.
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Extending φ11 to φ12 is an application of Lemma 3.5, and φ12 can be taken to be
an H-map by logic analogous to Subsection 4.6 using the fact that t3, t5, t7 are all
units modulo 60.

Extending to φ13 follows by Lemma 3.5, and it can be made an H-map since

H13pX13 ^X13;π13q “ 0

and so construction of φ14 is again analogous to Subsection 4.5.

4.8. Construct the self-map of SUp4q
Note that SUp4q is a 15-dimensional space. So constructing φ14 is enough by apply-

ing the following result with X “ X 1 “ SUp4q.

Proposition 4.1. Suppose X and X 1 are n-dimensional spaces. If φn´1 : Xn´1 Ñ
X 1

n´1 is a map of their respective Postnikov stages, then there is a map φ : X Ñ X 1

for which

HipX 1
n´1q HipXn´1q

HipX 1q HipXq

φ‹

n´1

φ‹

commutes for 0 ď i ď n´ 1

Proof. We may assume that Xn´1 has the same n-skeleton as X, and similarly for

X 1
n´1 and X

1. We may also assume φn´1 is cellular. The restriction of φn´1 to X
pnq
n´1 is

therefore the desired map φ, and induces the same maps on cohomology for i ď n´ 1
since HipXq can be naturally identified with HipXn´1q for i ď n´ 1 (and similarly
for X 1).

We have proved Theorem A.

5. Explicit self-maps

The significance of Theorem A is its ability to produce self-maps with specified
multidegree. If the reader is interested merely in degree and not multidegree, there
are easier routes to prove Corollary B directly.

The challenging part is constructing maps of all the required degrees. There are
explicit sources of self-maps SUp4q Ñ SUp4q of odd-degree [13]. For odd k, let
ψk : SUp4q Ñ SUp4q be such a map with degψk “ k.

By the congruence condition Theorem A, the multidegree of ψ3 : SUp4q Ñ SUp4q
must be either p1, 3, 1q or p´1, 3,´1q but exactly which choice occurs depends on
the chosen construction. Adapting the construction from [6, Lemma 4.5] it possible
to be opinionated about the multidegree of ψk in certain cases. Let fk : S

7 Ñ S7

be a map of degree k. Then pull-back the bundle SUp4q Ñ S7 to obtain f‹
k pSUp4qq,

an SUp3q-bundle over S7, and a degree k map ψk : f
‹
k pSUp4qq Ñ SUp4q. It remains

to check that f‹
k pSUp4qq – SUp4q. Principal bundles over S7 with fiber SUp3q are

classified by S7 Ñ BSUp3q which is π6pSUp3qq – Z{6. The bundle SUp4q is classified
by the generator of Z{6 [9, Section 3], so by this method we produce maps with degree
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k ” 1 mod 6 and multidegree p1, 1, kq. Of special importance is the map ψ7 which we
have now arranged to have multidegree p1, 1, 7q.

With maps of odd degree ψk, it remains to produce self-maps of SUp4q with degree
each multiple of 8. The power map pk : SUp4q Ñ SUp4q defined by pkpAq “ Ak has
deg pk “ k3, so deg p2 “ 8. (Not coincidentally, the cubes in Z{8 are t0, 1, 3, 5, 7u,
which are exactly the residue classes DpSUp4qq mod 8.) For self-maps f, g : SUp4q Ñ
SUp4q, define a new self-map f ‚ g by the rule pf ‚ gqpAq “ fpAq ¨ gpAq. With respect
to degree, this behaves quite differently from composition. Specifically, since the coho-
mology of SUp4q is primitively generated, the multidegree of f ‚ g is the termwise sum
of the multidegrees of f and g. We arranged for multidegree of ψ7 to be p1, 1, 7q, and
consequently, ψ7 ‚ p´3 has multidegree p´2,´2, 4q which has degree 16. Table 1 shows
maps of other multiples of 8; that degree is multiplicative under the usual composition
˝ completes this alternate proof of Corollary B.

map degree
p2 8

ψ7 ‚ p´3 16
ψ3 ˝ p2 24
ψ7 ‚ id 32
ψ5 ˝ p2 40

ψ3 ˝ pψ7 ‚ p´3q 48
ψ7 ˝ p2 56
p2 ˝ p2 64

Table 1: There is a self-map of SUp4q having degree d “ 8, 16, . . . , 64.

6. Next steps

A natural improvement would be to hope that φ : SUp4q Ñ SUp4q is an H-map.
We can arrange for φ14 to be an H-map by requiring t3, t5, t7 to be units modulo 7.
But this requirement is not sufficient to ensure the final map φ : SUp4q Ñ SUp4q is
an H-map because we have ignored the H-structure when collapsing the higher cells
of X14 to get X. Indeed, one would need to do an analysis similar to Lemma 3.11
with X “ SUp4q ^ SUp4q and X 1 “ SUp4q in order to construct an H-map on SUp4q
itself. See [7, 8, 10] for more discussion of existence or non-existence of nontrivial
self-H-maps.

The techniques of this paper can be applied to other Lie groups. The case of
SUp2q – S3 is easy, recent work [6, 15] covers the case of SUp3q, and having just
worked through SUp4q, a natural next step is SUpnq for n ě 5. Based on our pre-
liminary investigations, it appears plausiable that self-maps of SUpnq are controlled
merely by additional congruences.

Conjecture 6.1. For each n there are indices ik and jk and moduli mk P Z so that
there is a self-map SUpnq Ñ SUpnq of multidegree pt3, t5, . . . , t2n´1q exactly when the
congruence conditions tik ” tjk pmod mqk are satisfied.
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[13] T. Püttmann. Cohomogeneity one manifolds and self-maps of nontrivial degree.
Transform. Groups, 14(1):225–247, 2009.

[14] J. Rubio and F. Sergeraert. Postnikov “invariants” in 2004. Georgian Math.
J., 12(1):139–155, 2005.

[15] X. Wang. Degrees of maps between S3-bundles over S5, 2018. arXiv:1810.10154

[16] J.H.C. Whitehead. A certain exact sequence. Ann. Math. (2), 52:51–110, 1950.

[17] A. Zabrodsky. Hopf spaces. North-Holland Publishing Co., Amsterdam-New
York-Oxford, 1976. North-Holland Mathematics Studies, Vol. 22, Notas de
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