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CONSTRUCTIONS OF SELF-MAPS OF SU(4)
VIA POSTNIKOV TOWERS

JIM FOWLER aAnp CHRIS KENNEDY

(communicated by Donald M. Davis)

Abstract

Cohomology operations restrict the degree of a self-map of
SU(4) to be either odd or a multiple of 8; we find self-maps
realizing these possible degrees. The notion of the degree of a
self-map can be refined to a notion of multidegree which records
the effect of the self-map on each of the generators of H*(SU(4)).
We find restrictions on the possible multidegrees of self-maps of
SU(4) and, via Postnikov towers, build self-maps stage-by-stage
realizing the possible multidegrees.

1. Introduction

For closed oriented n-dimensional manifolds M and N, let D(M, N) be the set of
degrees of maps M — N, i.e.,

D(M,N):={degf | f: M — N}.

Often we are interested in D(M) = D(M, N), the set of degrees of self-maps of M.

Much work has gone into studying D(M, N) for high-dimensional manifolds, e.g.,
for certain six-manifolds [2] and for highly-connected manifolds [4]. The case of SU(3)
is considered in recent work [6, 15] where it is shown that d € D(SU(3)) exactly when
d is odd or a multiple of 4. This paper studies D(SU(4)). Self-maps of SU(4) are
not as well-studied as those of H-spaces with fewer cells, but there has been some
prior work on self-maps SU(4), e.g., see [11] on the nilpotency of the group of self-
maps [SU(4),SU(4)] and see [13, Corollary 5.7] which exhibits self-maps of degree
8M(2¢ +1).

The structure of the cohomology ring of SU(n) makes it a particularly interesting
choice when studying the degree of self-maps. Specifically, H*(SU(n); Z) is exterior on
generators xs,Ts,...,%2,—1. Therefore, a self-map f: SU(n) — SU(n) has a multi-
degree.

Definition 1.1. For map f: SU(n) — SU(n), the multidegree of f is the tuple

(t3,t5, . ,t2n71),

where f*(x;) = t; z;.
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An investigation of D(SU(4)) can therefore be refined to an investigation of the
set of possible multidegrees of self-maps of SU(n).

Theorem A. There is a map ¢: SU(4) — SU(4) of multidegree (ts,ts,t7) if and only
if ts =t5 (mod 2) and t3 = t7 (mod 6).

Observing that deg f =[], t; and performing some elementary number theory
yields a corollary.

Corollary B. There is a map ¢: SU(4) — SU(4) of degree d exactly when d is odd
or a multiple of 8.

In Section 2, we sketch the necessity of the congruences in Theorem A. Then
Section 3 introduces the machinery that faciliates building maps stage-by-stage, e.g.,
Lemma 3.5 and Lemma 3.7. The proof of Theorem A is presented in Section 4, and
Corollary B is discussed in Section 5. The paper ends by highlighting some future
directions.

Conventions
Throughout the paper, “space” means a 1-connected CW-complex, and homology
and cohomology with unspecified coefficients means the coefficient ring is Z.
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2. Necessity

We sketch why the congruence condition in Theorem A is necessary. The coho-
mology ring H*(SU(4)) is generated by classes x3, x5, z7 having degx; = i. Nonzero
cohomology groups occur in dimensions 0, 3, 5, 7, 8, 10, 12, and 15.

Suppose ¢: SU(4) — SU(4) has multidegree (t3,t5,t7), meaning ¢*(z;) = ¢; x;.
Here, and throughout the paper, we write p,, for the coefficient homomorphism on
cohomology induced by reduction Z — Z,,. Note that

Sq*: H*(SU(4);Z)2) — H(SU(4); Zy)
is an isomorphism, so by naturality,

Sq® p2d* s = ¢* pas,

and thus t3 = t5 mod 2.
The reduced power operation

P': H*(SU(4);Z/3) — H'(SU(4);Z/3)
satisfies P!psx3 = psz7. We check this by with a formula involving the Chern classes
2, ¢4 in H*(BSU(4)). Specifically,
P'pscy = (psca)? + psca,

and the square vanishes after desuspending. Calculations of P! in this context can
be found in [3]. Consequently, t3 = t; mod 3.
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Finally, we check t3 = t7 mod 2. One may have hoped to use
Sq*: H*(SU(4); Zj2) — H'(SU(4); Zy2)

but that maps is trivial. Instead, we verify that t3 = ¢; mod 2 by invoking a secondary
operation; this is described in Subsection 4.2.

3. Building maps stage-by-stage

We show the condition in Theorem A is sufficient by exhibiting self-maps of SU(4).
The tool we use to construct such maps are Postnikov towers [12]. Indeed, we wish to
construct the maps stage-by-stage, meaning we desire to deal with stages of Postnikov
towers and the maps between those stages in the absence of a total space. Postnikov
systems are convenient for such reasoning. But Postnikov systems are less well-known
than Postnikov towers, so we recall the key facts we need in the sequel. As we climb
the Postnikov tower, cohomology operations (Subsection 3.4) and H-space structures
(Subsection 3.5) will help us continue to climb to the next rung.

3.1. Postnikov systems
Definition 3.1. A Postnikov system P, is a sequence ((m;, k;))"_o of groups m; and
elements k; defined recursively so that

e the empty sequence (n = 1) is a Postnikov system,
e the data ((m;, k;))!'—, constitutes a Postnikov system,
e the abelian group 7, is finitely generated, and

e the “k-invariant” k, lives in the appropriate home, i.e., k, € H"*1 (X, _1;7,).

We permit Postnikov systems with infinitely many stages, which we denote by
(i, ks ))i-

Given ((m;, k;)); the total space can be recovered, and the Postnikov tower of that
total space has the expected stages. To build the stages, start with X; = {«}. Then for
n = 2 let X,, be the homotopy fiber of the classifying map k,,: X,—1 — K(m,,n + 1)
which fits into a fiber sequence

These stages assemble to the desired total space.

3.2. Morphisms of Postnikov systems
Having introduced objects, we introduce morphisms.

Definition 3.2 (cf. [14]). For Postnikov systems P = ((m;, k;)); and P’ = ((n}, k.))4,
a morphism of Postnikov systems is a collection of group homomorphisms f;: m; —
7, with the recursive property: the collection of maps ( fi)?’:_; defines a continuous
map ¢n_1: X1 — X/, in such a way that the maps ¢X_,: H"*Y(X! ;7
H" Y (X, _1;7h) and fre: H"Y(X,_1;7m,) — H" Y(X,,_1; 7)) satisfy the coherence
condition

) —

On1(kn) = frs (kn). (*)
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This coherence condition is precisely what makes it possible, given a map on the
n — 1 stage, to produce a map on the next stage.

Lemma 3.3. Consider Postnikov systems ((m;, k;)): and (7}, k})); with n —1 stage

Xn—1 and X|_,, respectively. If the morphism ¢n_1: Xp—1 — X/,_ satisfies the
coherence condition (%), then ¢,_1 extends to a morphism ¢, : X, — X/,.

Proof. The coherence condition () is equivalent to the commutativity of the right-
hand square in

Xp —— Xno1 —" K(mn,n + 1)

R

X, — X, | —— K(rl,,n+1)

because H" (K (m,,n + 1); 7)) can be naturally identified with Hom(7,, 7). Since
the right square commutes and X,, and X, are the homotopy fibers of k, and &/,
respectively, there is an induced map ¢,,: X,, — X . O

By Lemma 3.3, the data of a morphism of Postnikov systems permits us to build
maps ¢, : X, — X,,. Often X = X’; we vary the notation to make clear whether we
are speaking of the source or target.

3.3. Whitehead sequence
We will occasionally make use of Whitehead’s “certain exact sequence” [16].

Definition 3.4. For a space X with n-skeleton X (), the Whitehead sequence

bn ‘71, mn
- Hpr (X) 25 T (X) 2% 7, (X) 22 H(X) — -

is exact and natural. Here, T',(X) = im (i, : 7, (X)) — m,, (X ().

That this is exact was shown by Whitehead.

The significance of the Whitehead sequence to us lies largely with its relationship
to Postnikov towers. For instance, if X,,_1 is a Postnikov stage for X, there is a
natural identification

Fn<X) = Hn+1(Xn71>-
This is proved in [1, Section 2.7].
Moreover, in certain situations the map j, can be related to a k-invariant. Baues

shows that k, can be naturally identified with j, if Ext(H,(X,—1,m(X))) = 0, and
k,, can be identified with the extension 7, (X) — H,(X) - H,(X,—2) if

HnJrl(anl) = anl(X) = 0.
With this in mind, here is a simple but useful lemma for disposing of some nonzero

k-invariants.

Lemma 3.5. Let ¢,,—1: X,,—1 — X be a map of Postnikov stages, and assume
that

(i) the homology groups H,(X,—1) and H,(X],_,) are free,
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(i1) the maps bpi1: Hpp1(X) = Hypy1(Xn—1) and b}, are both zero, and

(111) the Hurewicz maps hy: mp(X) — Hp(X) and bl : 7, (X') > H,(X') are both
zero.

Then ¢n—1 extends to ¢pn: X,, — X,.

Proof. The k-invariants to extend ¢,_1 to ¢, are found in H"*1(X,,_1;7,(X)) and

H" Y (X! _;;m,(X)). Via universal coefficients we see

H" N (X, 1m0 (X)) = Hom(Hyp 1 (Xn—1), 70 (X)) @ Ext(Hp (Xpo1), 10 (X)),
and the Ext term is zero by (i). Hence the k-invariants are exactly the maps
i Hpp1(Xn—1) = m(X) and j': Hpi1(X),_1) — 7 (X’). Since b, 11 = 0 by (ii) and
h, =0 by (iii), the map j is an isomorphism, and similarly for j’. By Lemma 3.3,
¢n exists if a suitable map f,,: m,(X) — 7, (X’) exists, and in this case we can take
fn = j/(bnfljil' O

3.4. Cohomology operations

The congruence conditions in Theorem A, e.g., t3 = t5 (mod 2), are the numero-
logical shadow of cohomology operations. In general, cohomology operations are not
additive, but we will only consider operations which are.

Definition 3.6. A primary, secondary, or higher cohomology operation © is said to
be a linear operation on a space X if

1. Oz +y) =0O(x) +O(y) for all z,y € Def(O, X), and

2. Ind(©, X) = 0.

All stable primary operations are linear. With this definition in mind, we are
ready for Lemma 3.7. It plays a key role in the sequel. Here p,,_1: X — X,,_1 is the

Postnikov section. We denote X = SU(4). The map p,,—1: X — X,,_1 is the Postnikov
section. And finally, dy = 3 and dy = 5 and d3 = 7 so H*(X) is generated by {zg4, }.

Lemma 3.7. Suppose the cohomology of X is generated by {x4,} with 1 <i <r, and
fix L =d; <d;j =n for somei,j <r. Assume that

1. there is a map ¢n_1: Xp—1 — Xn—1,

2. the Whitehead sequence for X contains an exact fragment

'Lﬂn(X) &Hn(X) b, W (Xp2) LN .

where H,(X) = Z,
3. the group H" 1 (X,1; 7,(X)) is naturally isomorphic to Ext(H, (X, 2), m,(X)),
4. there is a cohomology class x; € H(X_1;7(X)) such that pl,_;(xe) = ¢,
5. there is an isomorphism m(X) = Z, and
6. there is a linear cohomology operation © such that k, = ©(xy).
Then ¢p,—1 may be extended to ¢y, if and only if the degree t,, satisfiest, = t, (mod m)

where m is the smallest positive integer such that mO(xe) = 0.

Proof. We will need to distinguish between 7, of the source and the target, so to avoid
confusion we will call the target X’; every fact deduced about X obviously also holds
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for X’. Since p,_1: X — X,,_1 is an isomorphism on cohomology in dimension ¢,

v _1(x7) = texe. On the other hand, by (2), H,(X) = Z and h,, is injective, so 7, (X)
is either Z or 0. If 7,(X) = 0 then there is no obstruction to extending ¢, _1, so we
may assume 7, (X ) = Z and h,, is multiplication by ¢ for some ¢ € Z, and hence that

Hy(Xn—2) = H" ™ (Xpo1;mn (X)) = Z)e
by (3) and (4). Therefore, in the diagram

Tn(X) —2 s Ho(X) =22 H,\(Xn2)

fn ltn | lwnfl)*

(X)L Ho(XY) —2 Ho(X )

we must have that f,, is multiplication by t,, and (¢,—1)« is multiplication by
t, mod c. We then apply those facts to the following diagram obtained from (5) and
(6) illustrating both the operation © and the matching condition fp,(kn) = ¢k _1(kL).

n—1

HYX 13 me(X)) —— HYX 13 mo( X)) —— HYX!_imo(X7))

n—1»

Jo Jo Jo
H™ N (X7 (X)) =2 H™ (X3 ma(X)) 42— HPHH(X 5w (X))
nk n—1
On the bottom row, multiplication by ¢, is taken to be modulo ¢. The map ¢,_1
extends to ¢, if the above diagram can be made to commute by an appropriate
choice of f,, which is precisely a choice of ¢,,. But the condition for commutativity of
each square is t,0(x¢) = t,0(x}), which implies that the diagram commutes and the
map extends if and only if ¢, = ¢, (mod m), where m is the order of ©(x,), which
divides but may not necessarily equal c. O

3.5. H-spaces

We will occasionally use the fact that the spaces we consider have H-space struc-
tures. For us an “H-space structure” means a multiplication pu: X x X — X and a
strict identity element e € X such that the u(z,e) = u(e,z) = .

Definition 3.8 ([5]). Let (X, u) be an H-space and « € H"(X; R). Consider the nat-
ural splitting

H' X xX;R)=H"(X v X;R)®H"(X A X;R),

where X A X is the smash product (X x X)/(X v X). Let p be projection onto the
second term above. Then x is R-primitive if pu*(x) = 0.

For H-spaces, the morphisms are H-maps f: (X, u) — (Y,v) meaning maps for
which v(f x f) ~ fu. Zabrodsky provides a useful criterion for “potential” H-maps.
If Y is an H-space, [X,Y] is an algebraic loop in which we define D(f,g) € [X,Y]
for maps f,g: X =Y to be the (unique) element satisfying D(f,g) + g = f. The
H-deviation of an arbitrary map f: X — Y is the element D; € [X A X,Y] defined
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so that
Dsp = D(fp,v(f x f))

and is trivial if and only if f is an H-map.

Lemma 3.9. Let (X, p) and (Y,v) be H-spaces, and let f: X —Y be a map. Then
Y admits another multiplication v' such that f: (X, u) — (Y,v') is an H-map if and
only if the H-deviation Dy lies in the image of the map

(f A f) [V AV Y] > [X A X, Y],
Proof. See [17, Proposition 1.5.1(a)]. O

Viewing x as a map X — K(R,n), the H-deviation D, of z is in [X A X,
K(R,n)] = H"(X A X;R), and, in fact, is the difference between p*(z) and i (z) +
i5(z), where i;: X — X v X is inclusion to the jth factor. Hence x is primitive if
and only if its classifying map is an H-map. Applying this fact to the context of Post-
nikov towers, Kahn [5] proves that primitive k-invariants are, in fact, exactly what is
necessary to give X an H-space structure.

Theorem 3.10. Let X be a I-connected space with homotopy groups m, for n = 2.
Then X is an H-space if and only if it has a Postnikov tower in which each Postnikov
mvariant k, is T,-primitive. Furthermore, if X is an H-space, all its Postnikov stages
X, are H-spaces.

Proof. The first assertion as applied to spaces with only finitely many homotopy
groups is [5, Theorem 3.2] and can be extended to arbitrary X by an argument of
Barratt [5, p. 450]. The second assertion is [5, Corollary 3.1]. O

To extend an H-map of Postnikov stages ¢,,—1: X;,—1 — X,_; to an H-map of the
next stages ¢, : X,, — X/, we use the following lemma.
Lemma 3.11. Let X and X' be H-spaces, let ¢pp—1: X,,—1 — X/, _; be an H-map, and
set Ty = mp(X) and wwl, = mp(X') so that fr,: m, — 7, induces a map ¢ X, — X|,.
If the induced map
(n A bp)*: HY (X)) A X)5mh) — HY (X A Xp;7l)
is surjective, then there is an H-structure on X, such that ¢, is an H-map.

Proof. By Lemma 3.9, there will be an H-structure on X/, that makes ¢,, an H-map
if the H-deviation Dy, is in the image of the map

(b A )T [ XD A XL XD — [Xn A X, X0

n

Here we have used # rather than * to distinguish from the map on cohomology in the
hypothesis. Let K,, = K(m,,n + 1) and K|, = K(n],n + 1) to arrive at the following
diagram.

in n kn
0K, —5 X, 5 X, 1 — K,

Q.f"nl J{‘ﬁn J{anfl J{fﬂ
’ ’ k'

U I n
QK —— X! —— X! — K/,

n—1

Since X and X’ are H-spaces, k,, and k!, are both H-maps, which implies that g,, and
q,, are also H-maps, so ¢,_1¢g, is also an H-map. From the fiber sequence QK’' —
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X! — X _, we get a commuting diagram of Puppe sequences.

’
In

[X] A X, QK] iy (X A X, X[ — [ X A X0, X ]

n—1
J/((bn /\¢n)* J/(an /\¢n)# J/

[Xp A X, QK] —2 [Xp A Xy, X0] —2 [ X A X, XU ]
Since ¢p—1¢n: X, — X,,_; is an H-map, the image of Dy, under g;, is trivial, so
D, is in the image of i/,. As the homotopy sets furthest left are exactly the coho-
mology groups of the hypothesis, and the left square above commutes, surjectivity of

(bn A ¢n)* is enough to imply that Dy, € im(¢, A ¢n)* as desired. d

4. Proof of Theorem A

We now prove Theorem A. We rely on Lemma 3.7 to translate the congruence
conditions into initial progress climbing the Postnikov tower; after we have gotten
started, we rely on Lemma 3.5 to climb the rest of the way.

To be more precise, the proof will be accomplished in the following steps. Using the
condition t3 = t5 (mod 2), we construct ¢5 in Subsection 4.1. With ¢35 = t; (mod 6),
we extend this to ¢ in Subsection 4.2. We arrange for t3, t5, and ¢7 to be units
modulo 30 in Subsection 4.3, which facilitates the argument (Subsection 4.4) that
¢s can be constructed to be an H-map. Then Subsection 4.5 extends ¢g to ¢19, and
the latter can be taken to be an H-map (Subsection 4.6) and can be extended to ¢14
(Subsection 4.7) and finally, extended to SU(4) in Subsection 4.8.

4.1. Construct ¢5

Since X3 = K(Z,3), we construct ¢3: X5 — X} via t313 € H3(X3) = Z. Here, and
in the remainder of the paper, write ¢,, for the generator of H"(K(G,n); G) when G
is clear from context.

Because m4(SU(4)) vanishes, we have ¢4 = ¢3. To construct ¢s5, we apply Lem-
ma 3.7 with the stable and primary (hence linear) operation 587(12 Here (and in the

remainder of the paper) denote the Bockstein of the coefficient sequence Z 57—
Zy, by B to distinguish it from the Bockstein 3 of the mod-p Steenrod algebra.

4.2. Extend ¢5 to ¢7

Now we extend ¢5 to ¢7, the k-invariant for which lies in H8(Xg;77). Applying
the relative Hurewicz theorem to the pair (SU(4),SU(3)) and inspecting the long
exact sequence for the fibration SU(3) — SU(4) — S7, we see that the Hurewicz map
hz: w7 — Hy(X) in the Whitehead sequence is exactly the map 77(SU(4)) — 77(S7)
in the long exact sequence; hence the map m; — H7(X) is multiplication by 6 and,
since mg = 0, we have

H7(X5) = H7(X¢) = Zyg.

This also implies that the map Hg(Xg) — w7 is zero, which combined with the facts
that Hg(X) = Z and 7g is finite implies that Hg(Xg) = Z. In conclusion, we have

H®(X¢;m7) = Hom(Hs(Xe), Z) ® Ext(H7(X5),Z) = Z® L,
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where the splitting is natural since the Hom(Hgs(Xs),Z) is free. Furthermore, since
H"(Xe;7Z) = 0, the long exact sequence for the coefficients Z — Z — Z 6 implies that
the group H'(Xe; Z,5) must be Z, and therefore that the Bockstein

B: H'(Xe;Zsg) — H® (X3 2)
identifies it with the Z s of the latter group.
Now we need to identify the generators. We first identify the Z , piece; for brevity,

we write 8712 for Sq? pa. Consider the Leray-Serre spectral sequence for the fibra-
tion K(Z,5) — X5 — K(Z,3), with Z coefficients. Since the fibration is nontrivial,
the transgression takes t5 to the generator of H%(K(Z,3)), which is BS_qQLg. So we
compute that

(L5) = 5501 037
(Sq t5) = 5801 13 =0,
(5Sq t5) =
de(L3ts) = L3ﬂSq L3.

Then H"(X¢;7Z /2) is generated by an element A7 for which iz\7 = @2%, which defines
a secondary operation ® based on the relation

S0 #Sq = 0
in dimension 3. In general, for a CW-complex Y, we have

Def(®,Y) = {x € H3(Y;Z) : fSq = = 0},
Ind(®,Y) = Sq HO(Y; Z),

and, in particular, ® is a linear cohomology operation for Y = SU(4) (since it is the
looping of an operation on BSU(4)), taking values in H7(SU(4); Z3). It follows that
B()q) generates the Z, portion of H3(X6;Z).

The Z ;3 piece is much more straightforward. The k-invariant attaching K(Z,5) to
K (7Z,3) is trivial modulo 3, so we get H (X5; Z;3) = 73, generated by gt Plp3i3. The
k-invariant for constructing X7 is nontrivial modulo 3, and the generator for the Z
piece of H8(X5;7Z) is 2(g2t3)ts, which is not primitive. But k7, as a k-invariant for an
H-space, must be primitive, so it follows that

k7 = B(\r + g5 P paiz).

Since this has order 6, applications of Lemma 3.7 modulo 2 and 3 show that ¢5 can
be extended to ¢7 if and only if t3 = t7 (mod 6).

4.3. MOdify t3, t5, t7

The algebraic loop [SU(4),SU(4)] has a homomorphism to Z3 given by the multi-
degree; since the identity (1,1,1) is clearly a valid map of SU(4) and by assumption
ts =t5 = t7 (mod 2), we may change (t3,t5,t7) to (t3 + 15,t5 + 15,t7 + 15) if neces-
sary to ensure the ¢; are all units modulo 2 without changing their class modulo 3 or
5. Similarly, since t3 = t7 (mod 3), we may add a multiple of (10, 10, 10) to make the
t; all units modulo 3, and a multiple of (6,6,6) to do it modulo 5.
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4.4. Ensure ¢g is an H-map

We first check that ¢3, ¢5, and ¢7 are H-maps. The map ¢3 is a group homomor-
phism of K(Z,3), so is certainly an H-map. For the latter two, the sets in which their
H-deviations lie are surjected onto by the groups

H(X5 A X5;7Z) =0,
H7(X7 A X7,Z) = 07
50 ¢5 and ¢7 are both H-maps (independent of the modification from Subsection 4.3).

Next, ¢7 can be extended to ¢g by Lemma 3.5.
By Lemma 3.9, ¢g can be modified to be an H-map if

(¢s A @8)* s HY(X§ A X§; Zpoa) — H®(Xs A Xs;Zjo4)
is a surjection. A simple calculation shows that the groups on each side are
H®(Xg A X5;Zjog) = H*(Xg;Z24) @ H* (X5 Zyog) ® H (X3 Zjaa) ® H (X5 Z24)

and similarly with primes. Since t3 and ¢5 are units modulo 2 and 3, (¢s A ¢g)* is
multiplication by a unit of Z /4 @ Z 34, hence a surjection. So ¢g can be taken to be
an H-map, possibly after modifying the H-structure of X§.

4.5. Extend ¢g to ¢19
To extend ¢g to ¢19, we first determine H'%(Xg;m9). In the Whitehead sequence,
Hyp(Xs) sits in the middle of the short exact sequence

Z = Hlo(X) - Hlo(Xg) — g = Z/Q

so Hig(Xg) is either Z or Z@ Zj. The k-invariant group H'0(Xg;mg) is therefore

either Zy or Z» @ Z . But H'*(Xg; m9) must contain a nonzero multiple of a combi-

nation of pullbacks of ¢3¢7, which is not primitive, whereas the k-invariant is primitive

(and nonzero). Therefore H'(Xg;mg) = Z/» @ Z /> generated by kg and a version of

tgt7. It is then clear that the coherence condition ¢} (k§) = fox (ko) is satisfied since

¢s is an H-map, and hence must take a primitive element to a primitive element.
Once ¢g has been constructed, ¢19 follows immediately by Lemma 3.5.

4.6. Ensure ¢y is an H-map
We have built ¢19 but we do not yet know it is an H-map. Arranging for it to be
such will be similar to the procedure for ¢g. Note that ¢g is an H-map since

H?(Xo A Xo;Zj9) =0
so there is no H-deviation. For ¢1¢, we examine the map (¢19 A ¢10)*, which involves
the groups
H"(X10 A X10;51) = H*(X10; 1) @ H' (X105 1) ® H' (X103 1) ® H*(X10; 1)
and similarly with X7y, where the coefficient group is I = m10(X) = Z/190 ® Z/3. In

Subsection 4.3 we arranged t3 and t7 to be units modulo 2, 3, and 5, so (¢10 A ¢10)*
is multiplication by a unit and hence a surjection, meaning ¢19 can be an H-map.

4.7. Extend ¢10 to ¢14
Extending ¢10 to ¢11 is the same argument as in Subsection 4.5 but with 711 = Z 4
instead of mg = Z/, and the other parts carrying through mutatis mutandis.
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Extending ¢11 to ¢12 is an application of Lemma 3.5, and ¢12 can be taken to be
an H-map by logic analogous to Subsection 4.6 using the fact that ts,t5,t7 are all
units modulo 60.

Extending to ¢13 follows by Lemma 3.5, and it can be made an H-map since

H"(X13 A X13;m13) =0

and so construction of ¢14 is again analogous to Subsection 4.5.

4.8. Construct the self-map of SU(4)
Note that SU(4) is a 15-dimensional space. So constructing ¢4 is enough by apply-
ing the following result with X = X’ = SU(4).

Proposition 4.1. Suppose X and X' are n-dimensional spaces. If ¢p_1: Xpn_1 —
X! _, is a map of their respective Postnikov stages, then there is a map ¢: X — X'
for which

HI(X], ) 25 Hi(X,0)

n—1

! |

Hi(X) — 5 B(X)

commutes for 0 <i<n—1

Proof. We may assume that X,,_; has the same n-skeleton as X, and similarly for
X! _; and X'. We may also assume ¢,,_1 is cellular. The restriction of ¢,,_; to Xfﬁ)l is
therefore the desired map ¢, and induces the same maps on cohomology for i < n — 1
since H*(X) can be naturally identified with H(X,,_1) for i <n — 1 (and similarly
for X'). |

We have proved Theorem A.

5. Explicit self-maps

The significance of Theorem A is its ability to produce self-maps with specified
multidegree. If the reader is interested merely in degree and not multidegree, there
are easier routes to prove Corollary B directly.

The challenging part is constructing maps of all the required degrees. There are
explicit sources of self-maps SU(4) — SU(4) of odd-degree [13]. For odd k, let
Y SU(4) — SU(4) be such a map with deg )y, = k.

By the congruence condition Theorem A, the multidegree of v3: SU(4) — SU(4)
must be either (1,3,1) or (—1,3,—1) but exactly which choice occurs depends on
the chosen construction. Adapting the construction from [6, Lemma 4.5] it possible
to be opinionated about the multidegree of 1) in certain cases. Let fi: ST — S7
be a map of degree k. Then pull-back the bundle SU(4) — S7 to obtain f;(SU(4)),
an SU(3)-bundle over S7, and a degree k map 1y : f7(SU(4)) — SU(4). It remains
to check that f7(SU(4)) =~ SU(4). Principal bundles over S7 with fiber SU(3) are
classified by S” — BSU(3) which is ms(SU(3)) = Z/g. The bundle SU(4) is classified
by the generator of Z s [9, Section 3], so by this method we produce maps with degree
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k =1 mod 6 and multidegree (1,1, k). Of special importance is the map 7 which we
have now arranged to have multidegree (1,1,7).

With maps of odd degree 1, it remains to produce self-maps of SU(4) with degree
each multiple of 8. The power map py: SU(4) — SU(4) defined by pp(A4) = A* has
degpy = k3, so degps = 8. (Not coincidentally, the cubes in Zs are {0,1,3,5,7},
which are exactly the residue classes D(SU(4)) mod 8.) For self-maps f,g: SU(4) —
SU(4), define a new self-map f = g by the rule (f = g)(A) = f(A) - g(A). With respect
to degree, this behaves quite differently from composition. Specifically, since the coho-
mology of SU(4) is primitively generated, the multidegree of f = g is the termwise sum
of the multidegrees of f and g. We arranged for multidegree of 17 to be (1,1,7), and
consequently, 17 » p_3 has multidegree (—2, —2, 4) which has degree 16. Table 1 shows
maps of other multiples of 8; that degree is multiplicative under the usual composition
o completes this alternate proof of Corollary B.

map degree
D2 8
Yrmp_3 16
3 0 p2 24
7 mid 32
s 0 p2 40
Yzo(Prmp_g)| 48
7 0 P2 56
D2 0 P2 64

Table 1: There is a self-map of SU(4) having degree d = 8,16, ...,64.

6. Next steps

A natural improvement would be to hope that ¢: SU(4) — SU(4) is an H-map.
We can arrange for ¢14 to be an H-map by requiring ts, t5, t7 to be units modulo 7.
But this requirement is not sufficient to ensure the final map ¢: SU(4) — SU(4) is
an H-map because we have ignored the H-structure when collapsing the higher cells
of Xy4 to get X. Indeed, one would need to do an analysis similar to Lemma 3.11
with X = SU(4) A SU(4) and X’ = SU(4) in order to construct an H-map on SU(4)
itself. See [7, 8, 10] for more discussion of existence or non-existence of nontrivial
self-H-maps.

The techniques of this paper can be applied to other Lie groups. The case of
SU(2) = S3 is easy, recent work [6, 15] covers the case of SU(3), and having just
worked through SU(4), a natural next step is SU(n) for n > 5. Based on our pre-
liminary investigations, it appears plausiable that self-maps of SU(n) are controlled
merely by additional congruences.

Conjecture 6.1. For each n there are indices iy and jr and moduli my € Z so that
there is a self-map SU(n) — SU(n) of multidegree (t3,ts, ... ,tan—1) exactly when the
congruence conditions t;, =t;, (mod m)y are satisfied.
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