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ESTANISLAO HERSCOVICH

(communicated by Claude Cibils)

Abstract
We give an elementary computation of the algebra structure

of the Yoneda algebra of the Fomin–Kirillov algebra FK(3) over
a field of characteristic different from 2 and 3. The computation
is based on a new bootstrap technique we introduce which is
built upon the (nonacyclic) Koszul complex of FK(3).

1. Introduction

In the mini-workshop “Cohomology of Hopf Algebras and Tensor Categories” orga-
nized in Oberwolfach in March 2019, Sarah Witherspoon asked about new techniques
to compute the algebraic structure of the Yoneda algebra of Hopf algebras, for exam-
ple different from the well-known ones based on multiplicative spectral sequences.
Moreover, in the same workshop Nicolás Andruskiewitsch emphasized the problem
of the computation of the cohomology of the Fomin–Kirillov algebras FK(n), for
n = 3, 4, 5. The latter are Nichols algebras (see [14, 7]), which appear in the clas-
sification of finite dimensional pointed Hopf algebras (see [1]), and they were also
intensively studied due to their connection to the Schubert calculus of flag manifolds
(see [5, 10, 11])

The cohomology of the Fomin–Kirillov algebra FK(3) was recently computed by
Ştefan and Vay1 in [18]. However, their computation is highly involved, based on
clever calculations using the heavy machinery of spectral sequences. Our computa-
tion of the cohomology of FK(3) is different from that of [18] and is based on a new
bootstrap technique we introduce in this article. The main ingredient is to compute
the homology of the Koszul complex of FK(3), which is the only “heavy” calculation
in this article (see the Appendix). The reason to do so is based on the fact that the
minimal projective resolution of k in the category of bounded-below graded modules
over any quadratic algebra contains the (possibly nonacyclic) Koszul complex as a
subcomplex (see Proposition 2.2), and sometimes (as in the case of FK(3)) the latter
complex is enough to easily construct the whole minimal projective resolution (see
Proposition 3.3), as well as the algebraic structure of the Yoneda algebra (see Theo-
rem 3.5). Indeed, the minimal projective resolution of k is obtained by “repairing” the
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degrees where the Koszul complex is not acyclic by means of the Horseshoe Lemma,
and for FK(3) this repair process is performed using only the same Koszul complex
one started with, giving a simple bootstrap mechanism. This repairing mechanism
can be applied in principle to any nice family of subcomplexes of minimal projective
resolutions of modules over any nonnegatively graded connected algebra to obtain
the corresponding complete projective resolutions but for such general algebras the
computations quickly become very complicated, since much more repairing is needed.
It is for this reason that we refrain from explaining the procedure in the general sit-
uation here. In any case, we hope that this new point of view will be useful in the
computation of the cohomology of other quadratic algebras, e.g. FK(n) for n = 4, 5.

In Section 2, we recall the basic terminology and results on quadratic algebras (see
Subsection 2.2), the Fomin–Kirillov algebras (see Subsection 2.3), and some basic
results on the Yoneda algebra of a bialgebra in a braided monoidal category (see
Subsection 2.4). The only possibly new result in this section is Proposition 2.2, which
is the starting point for our bootstrap technique for computing the minimal projective
resolution of k in the category of bounded-below graded modules over the Fomin–
Kirillov algebra FK(3).

The main result of this work, namely, a simple computation of the cohomology of
FK(3) over a field of characteristic different from 2 and 3, is included in Section 3
(see Proposition 3.3 and Theorem 3.5). To highlight the simplicity of the proof of
the previous results, we leave the technical details concerning the computation of the
homology of the Koszul complex of FK(3) to the Appendix. The homology of the
Koszul complex of FK(3) was mentioned (without proof) in [17], but we did not find
an explicit computation anywhere in the literature.
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2. Preliminaries

2.1. Basic notation
In this article, we work over a fixed field k. We write N for the set of (strictly)

positive integers and N0 for the set of nonnegative integers. Given i, j ∈ Z such that
i 6 j, we will denote by [[i, j]] the set {m ∈ Z : i 6 m 6 j}.

All morphisms between vector spaces will be k-linear (satisfying further require-
ments if they are so decorated). All unadorned tensor products ⊗ would be over k. We
will consider (bi)graded vector spaces M = ⊕i,j∈ZM

i,j , where i denotes the cohomo-
logical degree, following the usual Koszul sign rule, and j is the internal (or Adams)
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degree, that does not give rise to any signs. We will also write M = ⊕i∈ZM
i, where

M i = ⊕j∈ZM
i,j . If M is bigraded, a shift in the cohomological degree will be denoted

by M [1], i.e. M [1]i,j = M i+1,j , for all i, j ∈ Z, whereas a shift in the internal degree
will be denoted by M(1), i.e. M(1)i,j = M i,j+1, for all i, j ∈ Z. As usual, we will
write M−i,j = M i,j , if changing from homological to cohomological notation, where
the Adams degree remains unchanged. The morphisms in the category of Adams
graded A-modules over an Adams graded algebra are homogeneous of degree zero,
unless otherwise stated. We will also consider in some cases homogeneous morphisms
of a fixed degree, and even the internal space of sums of homogeneous morphisms, but
we will explicitly say so. Given a complex (C•, ∂•)•∈N0

, where ∂n : Cn+1 → Cn for all
n ∈ N0, an augmentation will be a morphism ǫ : P0 → M such that ǫ ◦ ∂0 = 0, or,
equivalently, such that ǫ is a morphism of complexes from P• to the complex given
by M concentrated in homological degree zero.

2.2. Basics on quadratic algebras
All of the following results are classical and can be found in [15], with the possible

exception of the last proposition. Recall that a unitary (associative) k-algebra A is
said to be nonnegatively graded if A = ⊕n∈N0

An is a direct sum decomposition
(as vector spaces) such that An ·Am ⊆ An+m, for all n,m ∈ N0, and 1A ∈ A0. The
grading will be called internal (or Adams) to emphasize that it does not intervene
in the Koszul sign rule. A is said to be connected if we also have A0 = k. Let
A>0 = ⊕n∈NAn and let V be a graded vector subspace of A>0 such that the restriction
of the canonical projection A>0 → A>0/(A>0 ·A>0) to V is a bijection. We will
assume for the rest of this subsection that V is finite dimensional. We say in this case
that A is a finitely generated algebra. Then, the canonical map TV → A induced
by the inclusion V ⊆ A is surjective. We will usually write the product of TV by
juxtaposition. A nonnegatively graded connected algebra A is said to be quadratic
if there is a vector subspace R ⊆ V ⊗2 such that the kernel of TV → A is the (two-
sided) ideal generated by R. By abuse of terminology, we will identify the quadratic
algebra A with its presentation (V,R), where A = TV/〈R〉.

Let V ∗ be the dual vector space of V and for every integer n > 2 define the pairing
γn : (V

∗)⊗n ⊗ V ⊗n → k by γn(f1 ⊗ · · · ⊗ fn, v1 ⊗ · · · ⊗ vn) = f1(v1) · · · fn(vn), for all
v1, . . . , vn ∈ V and f1, . . . , fn ∈ V ∗. Set R⊥ ⊆ V ∗ ⊗ V ∗ to be the vector subspace
orthogonal to R for γ2, i.e.

R⊥ =
{

α ∈ (V ∗)⊗2 : γ2(α, r) = 0, for all r ∈ R
}

.

The quadratic dual A! of a quadratic algebra A = TV/〈R〉 is the algebra given
by T (V ∗)/〈R⊥〉. The induced internal grading is denoted by A! = ⊕n∈−N0

A!
n. Note

that A!
0 = k and A!

−1 = V ∗. Moreover, for any integer n > 2, the composition of the

isomorphism (V ∗)⊗n ∼
→ (V ⊗n)∗ induced by the pairing γn and the dual of the canon-

ical inclusion ∩n−2
i=0 V

⊗i ⊗R⊗ V ⊗(n−i−2) → V ⊗n induces a canonical isomorphism of
vector spaces

A!
−n

∼
−→

( n−2⋂

i=0

V ⊗i ⊗R⊗ V ⊗(n−i−2)

)∗

. (1)

Recall that the graded dual (A!)# = ⊕n∈N0
(A!

−n)
∗ is a graded bimodule over A!
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via (a · f · b)(c) = f(bca), for all a, b, c ∈ A! and f ∈ (A!)#. Note, in particular, that
v · f ∈ (A!

−n)
∗, for all f ∈ (A!

−n−1)
∗, v ∈ V ∗ and n ∈ N0. Since V ∗ ⊗ V ≃ End(V ),

there is a unique element ι ∈ V ∗ ⊗ V whose image under the previous isomorphism
is the identity of V . It is easy to prove that, if {vi}i∈I is a basis of V and {fi}i∈I

is the dual basis of V ∗, then ι =
∑

i∈I fi ⊗ vi. For n ∈ N0 set Kn(A) = (A!
−n)

∗ ⊗A,
provided with the regular (right) A-module structure, and dn : Kn+1(A) → Kn(A) as
the multiplication by ι on the left. Furthermore, let ǫ : K0(A) → k be the canonical
projection from A onto A0 = k. It is easy to see that dn−1 ◦ dn = 0, for all n ∈ N,
and ǫ ◦ d0 = 0. The complex (K•(A), d•)•∈N0

is called the (right) Koszul complex
of A. As usual, we can consider the Koszul complex as a complex indexed by Z,
with Kn(A) = 0 and dn = 0, for all n ∈ Z<0. Equivalently, if we use the composition
of the canonical isomorphism V ⊗n ∼

→ (V ⊗n)∗∗ and the dual of (1) for A!
−n, then

dn : Kn+1(A) → Kn(A) is the restriction of the map d̃n : V
⊗(n+1) ⊗A → V ⊗n ⊗A

determined by

(v1 ⊗ · · · ⊗ vn+1)⊗ a 7→ (v1 ⊗ · · · ⊗ vn)⊗ vn+1a, (2)

for all v1, . . . , vn+1 ∈ V , a ∈ A and n ∈ N0.

The quadratic algebra A is said to be Koszul if the complex (K•(A), d•)•∈N0
is

acyclic in positive homological degrees, i.e. Ker(dn) = Im(dn+1), for all n ∈ N0. It
is easy to prove that H0(K•(A), d•) = A/A>0 ≃ k and H1(K•(A), d•) = 0, for any
quadratic algebra. Moreover, the complex

K2(A)
d1−→ K1(A)

d0−→ K0(A)
ǫ

−→ k → 0 (3)

is the beginning of a minimal projective resolution of k in the category of bounded-
below graded (right) A-modules. Recall that a complex (C•, ∂•)•∈N0

of bounded-
below free (or projective) graded A-modules is minimal if ∂n ⊗A idk vanishes for all
n ∈ N0, and that minimal projective resolutions exist in the category of bounded-
below graded (right) A-modules and are unique up to nonunique isomorphism (see
[15, Ch. 1, Section 4]).

If A is a quadratic algebra with finite dimensional TorAn (k, k) for all n ∈ N0,
the Yoneda algebra Ext•A(k, k) given by deriving the functor HomA(−,−) of all
homomorphisms of A-modules coincides with the one given by deriving the func-
tor HomA(−,−) of sums of homogeneous homomorphisms of A-modules. This fol-
lows from the fact that both functors coincide HomA(M,N) = HomA(M,N) for all
graded A-modules M and N such that M is finitely generated. In consequence, the
(internal) grading of A induces an extra-grading on Ext•A(k, k), and we will denote
the space of elements of cohomological degree i and internal degree j by Exti,jA (k, k).
The following result is well known (see [15, Ch. 1, Prop. 3.1]).

Proposition 2.1. Let A be a quadratic algebra. Then, there is a natural map of
graded algebras (for the internal grading)

i : A! → Ext•A(k, k)

whose image is precisely the subalgebra ⊕i∈N0
Exti,−i

A (k, k) of Ext•A(k, k). Moreover,

if p : Ext•A(k, k) → ⊕i∈N0
Exti,−i

A (k, k) denotes the quotient by the ideal generated by

the terms Exti,−j
A (k, k), where i < j, then p ◦ i is an isomorphism.
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The morphism p in the previous statement can also be derived from the next result.
We believe that it must be well known to the experts, but we could not find it in the
literature. It essentially states that, if we want to construct the minimal projective
resolution of a quadratic algebra, the Koszul complex is a starting point.

Proposition 2.2. Let A be a quadratic algebra and let (P•, δ•) be a projective res-
olution of k in the category of bounded-below graded A-modules. Then, there is an
injective morphism of (augmented) complexes ι• : K•(A) → P•, such that the coker-
nel is a complex of free graded modules, so P• is the mapping cone of a morphism of
complexes from the cokernel of ι• to K•(A)[1].

Proof. It suffices to prove the result in case (P•, δ•) is a minimal projective resolution
of k (in the category of bounded-below graded A-modules), since any other projec-
tive resolution of k in that category can be written as a direct sum of the minimal
projective resolution and an acyclic complex (see [15, Ch. 1, Prop. 4.2]). Moreover, it
suffices to prove that there is a decomposition Pi ≃ Ki(A)⊕ Ci of free graded right
A-modules, for all i ∈ N0, such that the differential of P• sends Ki+1(A) to Ki(A),
and this restriction coincides with the differential of K•(A).

Set C = ⊕n∈N0
Cn as C0 = k, C1 = V and Cn is given by the dual of the right mem-

ber of (1) if n > 2. It is a coaugmented graded coalgebra (where the internal degree
coincides with the homological degree) for the deconcatenation coproduct, and the
morphism p in the previous proposition can be identified with the dual of a morphism
of coaugmented graded coalgebras i : C → TorA• (k, k) whose image is the diagonal
coalgebra ⊕i∈N0

TorAi,i(k, k), where we are writing TorA• (k, k) = ⊕i,j∈N0
TorAi,j(k, k),

the degree i is homological and j is the induced internal degree. By a theorem by B.
Keller, D = TorA• (k, k) has a unique (up to noncanonical weak equivalence) minimal
coaugmented A∞-coalgebra structure (extending the previous coalgebra structure on
TorA• (k, k)) such that there is quasi-isomorphism fτ of dg algebras from the cobar
construction of D to A, and the minimal projective resolution of k in the category of
bounded-below graded A-modules is obtained as the twisted tensor product D ⊗τ A,
where τ : D → A is the twisting cochain induced by fτ (see [8, Thm. 4.7]). Moreover,
the higher comultiplications {∆n}n>2 of D can be chosen to preserve the internal
degree. We will write Di = TorAi (k, k) and Di,j = TorAi,j(k, k) for all i, j ∈ N0. Recall
that Di,j = 0 if i > j (see [15, Prop. 3.1]).

Since A is concentrated in homological degree zero and τ has cohomological degree
1, τ vanishes on TorAi (k, k) for i 6= 1. Using the linear isomorphism TorA1 (k, k) ≃ V
given by (3), we can consider its only possibly nonzero component τ̄ = τ |V : V → A.
The fact that D is minimal and fτ is a quasi-isomorphism implies that τ̄ is injective.
Moreover, by internal degree reasons the equation defining the twisting cochain τ
given by

∑

i∈N

(−1)i(i+1)/2µ
(i)
A ◦ τ⊗i ◦∆i = 0

(see [9, p. 133]) reduces to µA ◦ τ̄⊗2 ◦∆2|R = 0. Indeed, note that τ⊗i ◦∆i|Di′,i
= 0 if

i′ 6= 2(i− 1). Moreover, since 2(i− 1) > i for i > 3, in which case D2(i−1),i vanishes,
the only remaining case is i = 2, giving the mentioned equation by using the iden-
tification TorA2 (k, k) ≃ R. Since ∆2|R : R → V ⊗2 can be chosen to be the inclusion
(see [12, Thm. A]), µA ◦ τ̄⊗2 ◦∆2|R = 0 is then tantamount to τ̄⊗2(R) ⊆ R, which
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means that the unique isomorphism of algebras TV → TV induced by τ̄ gives an
isomorphism of algebras gτ : A → A. As a consequence, by composing with g−1

τ , we
may assume without loss of generality that τ̄ is the canonical inclusion of V inside
of A. In this case, the differential

∑

i∈N

(−1)i(i+1)/2(idD ⊗ µ
(i+1)
A ) ◦ (idD ⊗ τ⊗i ⊗ idA) ◦ (∆i+1 ⊗ idA) (4)

of the minimal projective resolution D ⊗τ A (see [9, p. 135]) preserves the graded
vector subspace C ⊗A. Indeed, by grading considerations we see that

(
(idD ⊗ τ⊗i) ◦∆i+1

)
(Dj,j) ⊆ Dj−1,j−i ⊗ V ⊗i

for all i ∈ N and j ∈ N0, which vanishes if i 6= 1, since Dj−1,j−i = 0 for all i > 1
and j ∈ N0. Moreover, the restriction of the mapping (4) to C ⊗A gives precisely the
map −(idD ⊗ µA) ◦ (idD ⊗ τ ⊗ idA) ◦ (∆2 ⊗ idA), which coincides with minus the dif-
ferential of the Koszul complex K•(A). We have thus proved that there is a canonical
injection ι• from the Koszul complex K•(A) to the minimal projective resolution P•

of k in the category of bounded-below graded A-modules. Furthermore, the remain-
ing part of the statement follows easily, since each projective module Pi = Di ⊗A
decomposes as a direct sum (Di,i ⊗A)⊕ (Di,>i ⊗A), where Di,>i = ⊕j>iDi,j , and
the differential of Pi = Di ⊗A sends Di,i ⊗A to Di−1,i−1 ⊗A.

2.3. Basics on Fomin–Kirillov algebras
All the following results are classical and can be found in [5] (see also [10, 6]). For

this section we fix n ∈ N>2. Define the vector space

V (n) = spank

〈{
[i, j] : i, j ∈ [[1, n]], i 6= j

}〉/〈{
[i, j] + [j, i] : i, j ∈ [[1, n]], i 6= j

}〉

,

where we recall that, given i, j ∈ Z such that i 6 j, [[i, j]] = {m ∈ Z : i 6 m 6 j}. We
will denote the class of [i, j] also by [i, j]. Let Sn be the group of permutations
of {1, . . . , n}, and for i, j ∈ [[1, n]] different, let (i, j) ∈ Sn be the unique transposi-
tion interchanging i and j (and fixing all other elements of [[1, n]]). It is clear that
V (n) has a (left) action of kSn given by σ · [i, j] = [σ(i), σ(j)], for all σ ∈ Sn and
[i, j] ∈ V (n). Moreover, V (n) is also a (left) comodule over kSn via the left coaction
δ : V (n) → kSn ⊗ V (n) defined as δ([i, j]) = (i, j)⊗ [i, j]. Recall that, for a group G,
a left kG-comodule (V, δ) is equivalent to a G-decomposition V = ⊕g∈GV

g, by means

of δ(v) = g ⊗ v, for all v ∈ V g and g ∈ G. Let kSn

kSn
Y D be the category of (left) Yetter–

Drinfeld modules over the Hopf algebra kSn (in the symmetric monoidal category of
vector spaces). We recall that a Yetter–Drinfeld module over a group Hopf algebra
kG is just a G-module V together with a G-decomposition V = ⊕g∈GV

g such that

g · v ∈ V ghg−1

, for g, h ∈ G and v ∈ V h. We remark that kG
kGY D is a braided monoidal

category, with the tensor product ⊗ (and the usual G-action and G-coaction for
tensor products), the unit k (with the trivial G-action and G-coaction) and the
braiding cV,W : V ⊗W → W ⊗ V of the form v ⊗ w 7→ g · w ⊗ v, for v ∈ V g, g ∈ G
and w ∈ W (see [16, 11.6]). It is easy to verify that V (n) is, in fact, a Yetter–Drinfeld
module for the previous structures. In particular, the braiding cn : V (n)⊗2 → V (n)⊗2

on V (n) is of the form

cn
(
[i, j]⊗ [k, ℓ]

)
= (i, j) · [k, ℓ]⊗ [i, j],
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for all [i, j], [k, ℓ] ∈ V (n).
Let TV (n) be the tensor algebra with the product given by concatenation, but

which will be denoted simply by juxtaposition. Define the subsets of V (n)⊗2 given
by

R2(n) =
{

[i, j]2 : for all i, j ∈ [[1, n]] with #{i, j} = 2
}

,

as well as

R3(n)=
{

[i, j][j, k] + [j, k][k, i] + [k, i][i, j] : for all i, j, k ∈ [[1, n]] with #{i, j, k} = 3
}

and

R4(n) =
{

[i, j][k, ℓ]− [k, ℓ][i, j] : for all i, j, k, ℓ ∈ [[1, n]] with #{i, j, k, ℓ} = 4
}

.

The Fomin–Kirillov algebra FK(n) is the (unitary) algebra defined as the quotient
of TV (n) by the (two-sided) ideal generated by the vector subspace R(n) ⊆ V (n)⊗2

spanned by R2(n) ∪R3(n) ∪R4(n). By definition, it is a quadratic algebra.
Since kSn

kSn
Y D is a braided monoidal category and FK(n) is a unitary algebra

in kSn

kSn
Y D , for the subspace R(n) of V (n)⊗2 is a Yetter–Drinfeld submodule (see

[16, Def. 11.6.4], for the definition), the braiding of the latter category implies that
FK(n)⊗2 is also a unitary algebra in kSn

kSn
Y D (see [16, Def. 11.5.2]). Define the map

∆: FK(n) → FK(n)⊗2 as the unique morphism of unitary algebras satisfying that
∆([i, j]) = 1⊗ [i, j] + [i, j]⊗ 1, for all [i, j] ∈ V (n), and ǫ : FK(n) → k as the unique
morphism of unitary algebras satisfying that ǫ([i, j]) = 0, for all [i, j] ∈ V (n). The
following result is well known and easy to prove (see also [14, Example 6.2]).

Proposition 2.3. The Fomin–Kirillov algebra FK(n) provided with the coproduct
∆ and the counit ǫ is a bialgebra in the braided monoidal category kSn

kSn
Y D . It is,

moreover, a Hopf algebra in kSn

kSn
Y D , with the unique antipode S : FK(n) → FK(n)

satisfying that S([i, j]) = −[i, j], for all [i, j] ∈ V (n).

Remark 2.4. The notion of bialgebra makes sense in any braided monoidal category,
as well as the ability to naturally endow the tensor product of two algebras with
an algebra structure, by making use of the braiding (see [16, 11.5]). However, when
the braiding is not symmetric several anomalies arise, which do not occur in the
symmetric case. It is for this reason that a bialgebra (resp., Hopf algebra) object in
a braided monoidal category is usually called a braided bialgebra (resp., braided
Hopf algebra), to emphasize that the braiding of the underlying monoidal category
is not symmetric.

The inclusion ιn : V (n) → V (n+ 1) sending [i, j] ∈ V (n) to the same element con-
sidered in V (n+ 1) induces an algebra morphism In : FK(n) → FK(n+ 1). More-
over, there is a retraction πn+1 : V (n+ 1) → V (n) of ιn sending [i, n+ 1] ∈ V (n+ 1)
to zero for all i ∈ [[1, n]]. It induces an algebra morphism Πn+1 : FK(n+ 1) → FK(n)
such that Πn+1 ◦ In is the identity of FK(n).

Since the Fomin–Kirillov algebra FK(n) is quadratic, it is canonically a graded
algebra (over N0), by setting the degree |[i, j]| to be 1, for all [i, j] ∈ V (n). Recall that
the Hilbert series of a graded vector space W = ⊕i∈ZWi is defined as the formal
series W (t) =

∑

i∈Z
dim(Wi)t

i ∈ k[[t−1, t]]. The Hilbert series of FK(n) is well known
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for n = 2, 3, 4, 5, and in those cases FK(n) is also finite dimensional. However, it is not

known if FK(6) is even finite dimensional. For m ∈ N, denote [m] =
∑m−1

i=0 ti. Then
the Hilbert series of FK(2) is [2], that of FK(3) is [2]2[3] = 1 + 3t+ 4t2 + 3t3 + t4,
that of FK(4) is [2]2[3]2[4]2 and that of FK(5) is [4]4[5]2[6]4 (see [5, (2.8)]). Note that

the dimension of a graded vector space with Hilbert series
∏j

i=1[di]
ri is

∏j
i=1 d

ri
i . In

consequence, the dimension of FK(2) is 2, that of FK(3) is 12, that of FK(4) is 576
and that of FK(5) is 8294400.

Remark 2.5. It is easy to show that FK(n) is a symmetric algebra in the sense
introduced by Ardizzoni in [2, Def. 3.5], i.e. it is the universal enveloping algebra of a
braided vector space with zero (braided) bracket. In this case, (V (n), cn) is the braided
vector space. A braided vector space with a (braided) bracket is one of the possible
definitions of braided Lie algebra. However, there is no canonical (co)homology
theory associated to such a braided Lie algebra similar to the one obtained from
the Chevalley–Eilenberg complex for traditional Lie algebras (in symmetric monoidal
categories).

Note the linear isomorphism

V (n)∗ ≃ spank

〈{
〈i, j〉 : i, j ∈ [[1, n]], i 6= j

}〉/〈{
〈i, j〉+ 〈j, i〉 : i, j ∈ [[1, n]], i 6= j

}〉

.

We will denote the class of 〈i, j〉 also by 〈i, j〉. The previous isomorphism comes
from considering {〈i, j〉}16i<j6n as the dual basis to {[i, j]}16i<j6n in V (n). The
(left) action of kSn on V (n) induces a (left) action of kSn on V (n)∗ by the usual
formula (σ · f)(v) = f(σ−1 · v), for all v ∈ V (n), f ∈ V (n)∗ and σ ∈ kSn. It is just
σ · 〈i, j〉 = 〈σ(i), σ(j)〉, for all σ ∈ Sn, and 〈i, j〉 ∈ V (n)∗. Analogously, V (n)∗ is also
a (left) comodule over kSn via the (left) coaction δ′ : V (n)∗ → kS

∗
n ⊗ V (n) given

by δ′(〈i, j〉) = (i, j)⊗ 〈i, j〉, dual to that of V (n). Recall that the dual V ∗ of a finite
dimensional Yetter–Drinfeld V ∈ kG

kGY D for the usualG-action (g · f)(v) = f(g−1 · v),
for v ∈ V , f ∈ V ∗ and g ∈ G, and the usual G-coaction given by the decomposition
V ∗ = ⊕g∈G(V

∗)g with (V ∗)g = (V g−1

)∗, is also a Yetter–Drinfeld module over kG.
Hence, V (n)∗ is a Yetter–Drinfeld module over kSn for these structures and the
induced braiding c!n : (V (n)∗)⊗2 → (V (n)∗)⊗2 is

c!n
(
〈i, j〉 ⊗ 〈k, ℓ〉

)
= (i, j) · 〈k, ℓ〉 ⊗ 〈i, j〉,

for all 〈i, j〉, 〈k, ℓ〉 ∈ V (n)∗.

The quadratic dual FK(n)! of FK(n) is given as the quotient of T (V (n)∗) by the
(two-sided) ideal 〈R(n)⊥〉 generated by the image of id(V (n)∗)⊗2 + c!n. More concretely,

〈R(n)⊥〉 is generated by the sets

R
!
3(n) =

{
〈i, j〉〈j, k〉+ 〈j, k〉〈i, k〉 : for all i, j, k ∈ [[1, n]] with #{i, j, k} = 3

}

and

R
!
4(n) =

{
〈i, j〉〈k, ℓ〉+ 〈k, ℓ〉〈i, j〉 : for all i, j, k, ℓ ∈ [[1, n]] with #{i, j, k, ℓ} = 4

}
.

Since the vector subspace of (V (n)∗)⊗2 spanned by R
!
3(n) and R

!
4(n) is a Yetter–

Drinfeld submodule, FK(n)! is a unitary algebra in kSn

kSn
Y D . These algebras were

intensively studied in [20].
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Remark 2.6. Let A be the Fomin–Kirillov algebra FK(n). Recall that if V is a Yetter–
Drinfeld module over kG, then the inverse Yetter–Drinfeld module V inv is given by
the same G-module V but the coaction is induced by (V inv)g = V g−1

, for g ∈ G. It
is clearly a Yetter–Drinfeld module over kG. Note that Ki(A) = ((A!

−i)
∗)inv ⊗A is

naturally a Yetter–Drinfeld module over kSn, and the maps di : Ki+1(A) → Ki(A)
are morphisms of Yetter–Drinfeld modules, for all i ∈ N0. The last statement can be
proved as follows. First, one notes that the isomorphisms (1) are of Yetter–Drinfeld
modules over kSn if the left member has inverse Yetter–Drinfeld module structure,
and then one uses the equivalent description of the Koszul differential given in (2),
which is clearly a morphism of kSn-modules and kSn-comodules.2 We will omit the
superscript inv from now on to simplify the notation. As a consequence, the homology
H•(K•(A), d•) is also a Yetter–Drinfeld module over kSn.

2.4. More on Yoneda algebras
Recall that a (cohomologically) graded (braided) algebra A = ⊕n∈ZA

n with prod-
uct µA in a braided monoidal category C with braiding c is called braided graded
commutative if (µA ◦ cA,A)(a⊗ b) = (−1)nmµA(a⊗ b), for all a ∈ An and b ∈ Am.
For example, if the internal grading of FK(n)! is set to coincide with minus the coho-
mological one (i.e. 〈i, j〉 has cohomological degree 1, for all i 6= j in [[1, n]]), then
FK(n)! is a braided graded commutative algebra in the braided monoidal category
kSn

kSn
Y D . This also follows from the next result together with Proposition 2.1, since

the map i there is clearly a morphism of Yetter–Drinfeld modules in case A = FK(n).
The following result is proved in [13, Thm. 3.12].

Proposition 2.7. Let B be a (braided) bialgebra in a braided closed monoidal cat-
egory C with tensor product ⊗ and unit e, that is abelian (as a category) with suf-
ficient projectives and such that the tensor product ⊗ is exact. Then, the Yoneda
algebra Ext•B(e, e), computed as the cohomology of the internal homomorphisms of
B-modules from a B-projective resolution of e to e, is a braided graded commutative
algebra in C .

Remark 2.8. The previous result also follows from the Hilton–Eckmann argument
explained in [19, Thm. 1.7], if one works with a suspended monoidal category (see
[19, Def. 1.4]) that is enriched in a braided monoidal category (V , c), a particular
case of the notion introduced in [3, Def. 3.1]. Indeed, under the extra-hypothesis, the
new version of [19, Thm. 1.7], implies that the shifted endomorphism algebra of the
unit e is a braided graded commutative algebra. The proof is precisely the same, with
the minor exception that one should replace f ⊗ g in the upper left square of the
last diagram in [19, p. 2243], by c(f ⊗ g). Concerning the proof of our proposition,
consider now a braided closed monoidal category C . It is clearly enriched over itself
and the associated bounded derived category for the underlying abelian structure
of C is clearly a suspended monoidal category enriched in the braided monoidal

2The need of the inverse construction comes from the fact that the isomorphism (V ⊗n)∗ ≃ (V ∗)⊗n

induced by γn in Subsection 2.2 is not of kSn-comodules. One can also solve this problem by consid-
ering instead γ′

n
: (V ∗)⊗n

⊗ V ⊗n

→ k by γ′
n
(fn ⊗ · · · ⊗ f1, v1 ⊗ · · · ⊗ vn) = f1(v1) · · · fn(vn),

for v1, . . . , vn ∈ V and f1, . . . , fn ∈ V ∗. This has the disadvantage that we should replace A! by
the opposite algebra in most of the statements. In any case, we decided to use γn since it is very
common in the literature (see [15]).
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category C . The modified version of [19, Thm. 1.7], gives us now the statement in
the proposition. For an even more general statement, see [3, Thm. 5.6].

3. The main result: the Yoneda algebra of FK(3)

It is well known that FK(n) is not Koszul for any n ∈ N>3 (see [17]). However,
we have the following result, which was mentioned without proof in [17].

Proposition 3.1. Let A be the Fomin–Kirillov algebra FK(3). Then, we have the
isomorphisms of (bi)graded Yetter–Drinfeld modules over kS3 given by

Hn

(
K•(A), d•

)
≃

{

k(−2n), if n = 0, 3,

0, else,
(5)

where k(2n) has the trivial action and coaction over kS3.

Proof. We will prove this result in the Appendix.

For convenience, we now recall a basic result on homological algebra, called the
Horseshoe lemma (see [4, Ch. V, Prop. 2.2]).

Lemma 3.2. Let A be any algebra and let

0 → M ′ i
−→ M

p
−→ M ′′ → 0 (6)

be a short exact sequence of A-modules. If (P ′′
• , ∂

′′
• )•∈N0

is a complex of projective A-
modules together with an augmentation ǫ′′ : P ′′ → M ′′, and (P ′

•, ∂
′
•)•∈N0

is an complex
of A-modules acyclic in positive homological degrees together with a quasi-isomorphic
augmentation ǫ′ : P ′ → M ′, then there is a collection of maps {fn : P

′′
n → P ′

n−1}n∈N of
A-modules such that fn ◦ ∂′′

n = −∂′
n−1 ◦ fn+1 for all n ∈ N, a map f0 : P

′′
0 → M such

that i ◦ ǫ′ ◦ f1 = −f0 ◦ ∂
′′
0 and p ◦ f0 = ǫ′′, a complex (P•, ∂•)•∈N0

with Pn = P ′′
n ⊕ P ′

n

and ∂n(p
′′ + p′) = ∂′′

n(p
′′) + fn+1(p

′′) + ∂′
n(p

′) for all p′ ∈ P ′
n+1, p

′′ ∈ P ′′
n+1 and n ∈

N0, and an augmentation ǫ : P0 → M given by ǫ(p′′ + p′) = f0(p
′′) + ǫ′(p′), for all

p′ ∈ P ′
0, p

′′ ∈ P ′′
0 . The canonical inclusion i• : P

′
• → P• and projection p• : P• → P ′′

•

induce a short exact sequence

0 0 · · · 0 0 0

· · · P ′
n P ′

n−1 · · · P ′
1 P ′

0 M ′ 0

· · · Pn Pn−1 · · · P1 P0 M

· · · P ′′
n P ′′

n−1 · · · P ′′
1 P ′′

0 M ′′

0 0 · · · 0 0 0

∂′
n

∂′
n−1

in

∂′
n−2

in−1

∂′
1 ∂′

0

i1

ǫ′

i0 i

∂n ∂n−1

pn

∂n−2

pn−1

∂1 ∂0

p1

ǫ

p0 p

∂′′
n

∂′′
n−1 ∂′′

n−2 ∂′′
1 ∂′′

0 ǫ′′

of augmented complexes extending (6).
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The next result is a bootstrap technique for computing the minimal projective
resolution of k in the category of bounded-below graded FK(3)-modules. It does not
appear in [18].

Proposition 3.3. Let A be the Fomin–Kirillov algebra FK(3). Then, the minimal
projective resolution (P•, δ•)•∈N0

of k in the category of bounded-below graded A-
modules is given as follows. For n ∈ N0, set

Pn =
⊕

i∈[[0,⌊n/4⌋]]

ωi.Kn−4i(A), (7)

where ⌊z⌋ = sup{n ∈ Z : n 6 z} denotes the (floor) integer part of z ∈ R, ωi is a sym-
bol of internal degree 6i for all i ∈ N0, and the differential δn−1 : Pn → Pn−1 is given
by

δn−1

(
∑

i∈[[0,⌊n/4⌋]]

ωi.ρn−4i

)

=
∑

i∈[[0,⌊n/4⌋]]

(
ωi.dn−4i−1(ρn−4i) + ωi−1.fn−4i(ρn−4i)

)
,

(8)
for some homogeneous morphisms fj : Kj(A) → Kj+3(A) of A-modules of (inter-
nal) degree 6 for j ∈ N0, where ρj ∈ Kj(A), for all j ∈ N0 and ω−1 = 0. It gives
a (minimal) resolution of k by means of the augmentation ǫ : P0 = K0(A) → k of
the Koszul complex. Furthermore, if char(k) 6= 2, 3, then the maps {f•}•∈N0

can fur-
ther be chosen so that (P•, δ•)•∈N0

is a projective resolution of k in the category of
bounded-below graded A-modules provided with a Yetter–Drinfeld module structure
over kS3.

Proof. Note first that we identify the Koszul complex (K•(A), d•)•∈N0
with the sub-

complex (ω0.K•(A), δ•)•∈N0
of (P•, δ•)•∈N0

. Recall that two complexes (C•, ∂•)•∈Z

and (C ′
•, ∂

′
•)•∈Z coincide up to (homological) degree n if Ci = C ′

i for all i 6 n and
∂i = ∂′

i for all i < n. We note first that, since Hn(K•(A), d•) = 0 for n = 1, 2 (by
Proposition 3.1) and the Koszul complex is minimal, (K•(A), d•)•∈N0

coincides with
the minimal projective resolution (P•, δ•)•∈N0

up to degree 3. Proposition 3.1 gives
us the short exact sequence

0 → Im(d3)
inc
−→ Ker(d2)

π
−→ k(−6) → 0

of bounded-below graded A-modules, and it tells us that the complex (C ′
•, ∂

′
•)•∈N0

given by C ′
n = Kn+4(A) and ∂′

n = dn+4 for all n ∈ N0 is a (projective) resolution of
Im(d3), for the augmentation d3 : K4(A) → Im(d3). On the other hand, the Adams
shifted Koszul complex (K•(A)(−6), d•)•∈N0

together with the augmentation map
ǫ : K0(A)(−6) → k(−6) is a (nonacyclic) complex of projective A-modules. By Lem-
ma 3.2, there are morphisms fj : Kj(A) → Kj+3(A) of graded right A-modules of
(internal) degree 6 for j ∈ N0, such that dj+3 ◦ fj+1 = −fj ◦ dj for all j ∈ N0,
d2 ◦ f0 = 0 and π ◦ f0 = ǫ. We now consider the projective A-modules P• given in (7)
provided with the maps δ• defined in (8) for the maps fj : Kj(A) → Kj+3(A) previ-
ously defined for all j ∈ N0. Note that this is indeed a complex since fj+3 ◦ fj = 0,
for all j ∈ N0, for the top degree of A is 4.

We can depict the complex (P•, δ•)•∈N0
as follows. It is given as the total complex
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of the following first quadrant double complex

P
(0)
•

P
(1)
•

P
(2)
•

P
(3)
•

ω3.K0(A) · · ·

ω2.K0(A) · · · ω2.K3(A) · · ·

ω2.K0(A) · · · ω2.K3(A) · · · ω2.K6(A) · · ·

ω1.K0(A) · · · ω1.K3(A) · · · ω1.K6(A) · · · ω1.K9(A) · · ·

ω0.K0(A) · · · ω0.K3(A) · · · ω0.K6(A) · · · ω0.K9(A) · · · ω0.K12(A) · · ·

f0

d0

f0

d0 d2

f3

d3

f0

d0 d2

f3

d3 d5

f6

d6

f0

d0 d2

f3

d3 d5

f6

d6 d8

f9

d9

d0 d2 d3 d5 d6 d8 d9 d11 d12

(9)

where ωi.Kj(A) is situated at position (3i+ j, i), for i, j ∈ N0, and we have omitted
the symbols ωi when writing the components d• and f• of the differential δ• of P•.

Given m ∈ N0 we denote by (P
(m)
• , δ

(m)
• )•∈N0

the subcomplex of (P•, δ•)•∈N0
given

by

P (m)
n =

⊕

i ∈ [[0,m]]
i 6 ⌊n/4⌋

ωi.Kn−4i(A),

for n ∈ N0. It is clear that it is a subcomplex of (P•, δ•)•∈N0
. Indeed, (P

(m)
• , δ

(m)
• )•∈N0

is precisely the total complex of the double complex given by the lowest m+ 1 rows
in (9), i.e. the rows indexed from 0 to m (see (9)).

A direct recursive argument based on Proposition 3.1 and Lemma 3.2 shows that

Hn

(
P

(m)
• , δ•

)
≃







k

(

− 6n(m+1)
3+4m

)

, if n = 0, 3 + 4m,

0, else.
(10)

Indeed, the previous isomorphism for m = 0 is exactly stated in Proposition 3.1, since

(P
(0)
• , δ

(0)
• )•∈N0

is the Koszul complex (K•(A), d•)•∈N0
. Assume that (10) also holds

for 0, . . . ,m, with m ∈ N0. Consider the short exact sequence of complexes

0 → P
(m)
• → P

(m+1)
• → K•(A)[4(m+ 1)]

(
− 6(m+ 1)

)
→ 0,

where the first nonzero map is the canonical inclusion. This sequence directly follows
from the inclusion of the double complex in (9) given by the lowest m+ 1 rows inside
of the double complex given by the lowest m+ 2 rows, and the fact that the cokernel
is precisely a shift of the Koszul complex (K•(A), d•)•∈N0

. The long exact sequence
in homology together with (10) for 0 and m give the purported result for m+ 1, since
the connecting homomorphism

H4(m+1)

(

K•(A)[4(m+ 1)]
(
− 6(m+ 1)

))

→ H4m+3(P
(m)
• )

is the identity of k(−6(m+ 1)). This last statement can be checked by the usual
diagram chasing argument in the Snake lemma. Since filtered colimits are exact in the
category of graded modules, (P•, δ•)•∈N0

is acyclic in positive homological degrees, as
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was to be shown. Moreover, the complex (P•, δ•)•∈N0
is minimal, i.e. δ• ⊗A idk = 0.

This follows from the explicit form of δ• given by (8), as d• ⊗A idk vanishes (due
to (2)) and f• ⊗A idk = 0, for f• has internal degree 6.

The last part of the statement follows directly from the fact that (ωi)i∈N0
can be

taken to be trivial for the action and coaction of S3 due to Proposition 3.1, together
with general nonsense about the construction of the minimal projective resolution
of k in the category of bounded-below graded A-modules provided with a Yetter–
Drinfeld module structure, since the category of Yetter–Drinfeld modules over S3 is
semisimple if char(k) 6= 2, 3.

The following result is a consequence of the first part of the previous proposition
and the well-known isomorphism of graded vector spaces ExtnA(k, k) ≃ HomA(Pn, k)
for any quadratic algebra A and any minimal projective resolution Pn of k in the
category of bounded-below graded A-modules. Indeed, consider for n ∈ N0 the graded
vector space

Jn =
⊕

i∈[[0,⌊n/4⌋]]

ωi.Cn−4i,

where C0 = k, C1 = V , Cn is the dual of (1) for n ∈ N>2, and zero else. Then,
HomA(Pn, k) ≃ J∗

n ≃ ⊕
i∈[[0,⌊n/4⌋]](ωi.Cn−4i)

∗, for n ∈ N0, giving the next result.

Corollary 3.4. Let A be the Fomin–Kirillov algebra FK(3). For every n ∈ N0, we
have the isomorphism of vector spaces

Extn,iA (k, k) ≃

{

k, if i ∈
{
− n− 2j : j ∈ [[0, ⌊n/4⌋]]

}
,

0, else.

We continue to denote the Fomin–Kirillov algebra FK(3) by A. We now show that
the algebraic structure of the Yoneda algebra Ext•A(k, k) follows without much more
effort. Recall first that the cohomology of the dg algebra EndA(P•) with differen-
tial given by g• 7→ δ• ◦ g• − (−1)|g|g• ◦ δ• for any homogeneous morphism of graded
A-modules g• : P• → P• of cohomological degree |g| is precisely the graded algebra
Ext•A(k, k). Indeed, the morphism EndA(P•) → HomA(P•, k) given by g• 7→ ǫ ◦ g• is
the desired quasi-isomorphism.

We now prove the main result in [18], namely their Thm. 4.17.

Theorem 3.5. Let A be the Fomin–Kirillov algebra FK(3) over a field k of charac-
teristic different from 2 and 3. Then, there is an isomorphism of (bi)graded algebras

Ext•A(k, k) ≃ A![ω]

in kS3

kS3
Y D , where ω has cohomological degree 4 and internal degree −6 and it is

invariant and coinvariant under kS3, and A![ω] denotes the polynomial algebra with
coefficients in A!.

Proof. Recall the canonical injection i : A! → Ext•A(k, k) given in Proposition 2.1,
which is a morphism of (bi)graded algebras in kS3

kS3
Y D . To prove the theorem it suffices

to find a central regular element ω ∈ Ext•A(k, k) of cohomological degree 4 and internal
degree −6 that is invariant and coinvariant under kS3.
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Let Ω: P• → P•[4](−6) be the homogeneous morphism of complexes of cohomo-
logical degree −4 and internal degree 6 given by Ω(ω0.ρj) = 0 for all j ∈ N0 and
Ω(ωi.ρj) = s4,−6(ωi−1.ρj), for all i ∈ N and j ∈ N0, where s4,−6 : P• → P•[4](−6) is
the suspension morphism (in the homological and internal degrees), i.e. the homoge-
neous morphism of cohomological degree −4 and internal degree 6 whose underlying

set theoretic map is the identity, and ρj ∈ Kj(A). The kernel of Ω is then P
(0)
• , which

is canonically identified with the Koszul complex K•(A). Hence, we obtain the short
exact sequence

0 → K•(A) → P•
Ω

−→ P•[4](−6) → 0

of complexes of graded A-modules.

Let us denote the composition of Ω with s−1
4,−6 by Ω̄. Since Ω is a morphism of

complexes, Ω̄ is a cycle of cohomological degree 4 and internal degree −6 in the dg
algebra EndA(P•). Note that the map EndA(P•) → EndA(P•) given by g• 7→ g• ◦ Ω̄
is injective on cohomology. Indeed, if ǫ ◦ g• ∈ (ωi.Cn)

∗ is a nonzero element, for some
i, n ∈ N0, then ǫ ◦ g• ◦ Ω is a nonzero element of (ωi+1.Cn)

∗. Moreover, the map it
induces on cohomology is exactly the right multiplication by the cohomology class
of Ω̄, i.e. [f•] 7→ [f•][Ω̄], where the brackets denote here the cohomology class of the
corresponding cocycles. Set ω = [Ω̄] ∈ Ext4,−6

A (k, k). Since Ω̄ is S3-equivariant, then
ω is invariant under the action of kS3. Moreover, as Ext•A(k, k) is a braided graded
commutative algebra by Propositions 2.3 and 2.7, and Ω̄ ∈ Ext4,−6

A (k, k) is invariant
under the action of kS3, it is in the center of Ext•A(k, k). It is also S3-coinvariant by
Proposition 3.3. The theorem is thus proved.

The computation of the algebraic structure of the Yoneda algebra of the bosoni-
zation FK(3)#kS3 from the algebra structure of the Yoneda algebra of FK(3) is then
standard, if char(k) 6= 2, 3 (see [18, Lemma 4.18 and Thm. 4.19]). Moreover, given
V any finite dimensional right module over A = FK(3) with a compatible Yetter–
Drinfeld module structure over kS3, one also gets immediately that Ext•A(k, V ) is
a finitely generated module over Ext•A(k, k), since V is obtained from k via a finite
sequence of extensions. Since taking S3-invariants is exact if char(k) 6= 2, 3, the module
Ext•A#kS3

(k, V ) over Ext•A#kS3
(k, k) is also finitely generated.

Appendix A.

We present in this section the detailed proof of Proposition 3.1. This is the only
computationally involved part of the article, and can be regarded as “brute force”.
However, despite its length, it is more or less straightforward provided one has bases of
the algebras A = FK(3) and A!, as well as the structure constants (for the products)
on those bases. Moreover, by the periodicity of the behavior of the expression of the
differential of the Koszul complex after degree 4, where all morphisms starting at
even degrees behave in the same way and all differentials starting at odd degrees too
(see (11)), the computations can be checked using a mathematical software.

Recall that the Koszul complex (K•(A), d•)•∈N0
is always acyclic in homological

degree 1 and H0(K•(A), d•) ≃ k by (7). Moreover, the latter isomorphism is clearly of
S3-modules and S3-comodules, where k has the trivial action and the trivial coaction
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over S3. Hence, to prove Proposition 3.1 it suffices to compute Hn(K•(A), d•) for
n > 2.

Let us write a = [1, 2], b = [2, 3] and c = [3, 1], and let B!
1 = {A,B,C} be the dual

basis to the basis B1 = {a, b, c} of V (3). Then,

A ≃ k〈a, b, c〉/〈a2, b2, c2, ab+ bc+ ca, ba+ ac+ cb〉,

A! ≃ k〈A,B,C〉/〈BA−AC,CA−AB,AB −BC,CB −BA〉.

It is easy to see that

B =
{

1
︸︷︷︸

B0

, a, b, c
︸ ︷︷ ︸

B1

, ab, bc, ba, ac
︸ ︷︷ ︸

B2

, aba, abc, bac
︸ ︷︷ ︸

B3

, abac
︸︷︷︸

B4

}

is a basis (of homogeneous elements) of A.
Note that the relations appearing in the presentation of A! do not satisfy the

conditions in Bergman’s diamond lemma. Moreover, given {X,Y, Z} = {A,B,C},
then XY = Y Z and XY = ZX in A!. The next identities follow easily from the
previous property.

Fact A.1. Let {X,Y, Z} = {A,B,C}. Then X2 ∈ Z (A!). Moreover, for i ∈ N0, the
following identities hold in A!:

(i) X2iY = Z2iY and X2i+1Y = Z2i+1X;

(ii) B2i+2A = AB2i+2 = A2i+1B2, AB2i+1 = A2i+1B and B2i+1A = A2i+1C;

(iii) C2i+2A = AC2i+2 = A2i+1B2, AC2i+1 = A2i+1C and C2i+1A = A2i+1B.

Using the previous result and well chosen algebra morphisms A! → k, one obtains
the following (see [18, Lemma 4.4], but also [20, Thm. 4.10]).

Lemma A.2. For n > 2, set B!
n =

{
An, Bn, Cn, An−1B,An−1C,An−2B2

}
⊆ A!

−n.
Note that #(B!

2) = 5 but #(B!
n) = 6 for n > 3. Then, B!

n is a basis of A!
−n for all

n ∈ N.

We will now write down the Koszul complex ((A!
−•)

∗ ⊗A, d•)•∈N0
. To do so, it is

convenient to write ǫ! ∈ (A!
0)

∗ for the augmentation of A!, {α1, β1, γ1} ⊆ (A!
−1)

∗ for
the dual basis to B!

1, {α2, β2, γ2, α1β, α1γ} ⊆ (A!
−2)

∗ for the dual basis to B!
2, and

if n > 3, {αn, βn, γn, αn−1β, αn−1γ, αn−2β2} ⊆ (A!
−n)

∗ for the dual basis to B!
n. We

will usually omit the subindex 1, and write thus α instead of α1, etc. To ease the
notation we assume that if the subindex of the previous elements is zero or negative
the corresponding element is zero (e.g. α0β = 0). Moreover, let χ2Z : Z → {0, 1} be
the characteristic function of 2Z and write χn instead of χ2Z(n).

The next result is a straightforward computation.

Fact A.3. The action of A! on (A!)# is given as follows. First, A.α = B.β = C.γ = ǫ!

and the other actions of B!
1 on the other basis elements of (A!

−1)
∗ vanish. If n > 2,

then

(i) A.αn = αn−1, A.βn = A.γn = 0, A.αn−1β = χnγn−1 + αn−2γ,
A.αn−1γ = χnβn−1 + αn−2β, and A.αn−2β2 = χn+1(βn−1 + γn−1) + αn−3β2;

(ii) B.βn = βn−1, B.αn = B.γn = 0, B.αn−1β = αn−1 + χn+1γn−1 + αn−3β2,
B.αn−1γ = χnγn−1 + αn−2γ, and B.αn−2β2 = αn−2β;
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(iii) C.γn = γn−1, C.αn = C.βn = 0, C.αn−1β = χnβn−1 + αn−2β,
C.αn−1γ = αn−1 + χn+1βn−1 + αn−3β2, and C.αn−2β2 = αn−2γ.

The differential d• of the Koszul complex K•(A) is explicitly given as follows. The
differential d0 : (A

!
−1)

∗ ⊗A → (A!
0)

∗ ⊗A sends α⊗ x to ǫ! ⊗ a.x, β ⊗ x to ǫ! ⊗ b.x,
and γ ⊗ x to ǫ! ⊗ c.x, and if n > 2, then dn−1 : (A

!
−n)

∗ ⊗A → (A!
−n+1)

∗ ⊗A gives

αn|x 7→ αn−1|a.x, βn|x 7→ βn−1|b.x, γn|x 7→ γn−1|c.x,

αn−1β|x 7→
(
χnγn−1 + αn−2γ

)
|a.x+

(
χnβn−1 + αn−2β

)
|c.x

+
(
αn−1 + χn+1γn−1 + αn−3β2

)
|b.x,

αn−1γ|x 7→
(
χnβn−1 + αn−2β

)
|a.x+

(
χnγn−1 + αn−2γ

)
|b.x

+
(
αn−1 + χn+1βn−1 + αn−3β2

)
|c.x,

αn−2β2|x 7→
(
χn+1(βn−1 + γn−1) + αn−3β2

)
|a.x+ αn−2β|b.x+ αn−2γ|c.x,

(11)

for all x ∈ A, where we have used vertical bars between the elements instead of tensor
products to reduce space. We will use this notation for the rest of this section.

Since dn−1((A
!
−n)

∗ ⊗Am) ⊆ (A!
−n+1)

∗ ⊗Am+1, it suffices to study the mapping
dn−1,m = dn−1|(A!

−n)
∗⊗Am

, for m ∈ N0 and n ∈ N. Moreover, since A = ⊕
m∈[[0,4]]Am,

we can restrict ourselves to m ∈ [[0, 4]]. Note first that dn−1,4 = 0, for all n ∈ N.

Fact A.4. We have Im(dn−1,3) = (A!
−n+1)

∗ ⊗A4 for n ∈ N, which in turn implies
that Hn(K•(A), d•) ∩ ((A!)# ⊗A4) vanishes for all n ∈ N0 and

dim
(
Ker(dn−1,3)

)
=







3, if n = 0,

8, if n = 1,

13, if n = 3,

12, if n = 2 or n > 4.

(12)

Proof. The first identity follows from (11). Indeed, if n = 1, ǫ!|abac = d0(α|bac), and
if n > 2, then

αn−1|abac = dn−1(αn|bac), βn−1|abac = dn−1(βn|abc),

γn−1|abac = dn−1(−γn|aba),

αn−2β|abac = dn−1(αn−1γ|bac− χnβn|abc),

αn−2γ|abac = dn−1(αn−1γ|abc+ χnγn|aba),

αn−3β2|abac = dn−1

(
αn−2β2|bac− χn+1(βn|abc− γn|aba)

)
.

For the last identity we have simply used that dim(Ker(dn−1,3)) is

dim
(
(A!

−n)
∗ ⊗A3

)
− dim

(
Im(dn−1,3)

)
= 3dim(A!

−n)− dim(A!
−n+1).

Lemma A.5. We have that

dim
(
Im(dn−1,2)

)
=







3, if n = 1,
8, if n = 2,
12, if n > 3,

and dim
(
Ker(dn−1,2)

)
=







4, if n = 0,
9, if n = 1,

12, if n > 2.
(13)

From the first identity and (12) we get that Hn(K•(A), d•) ∩ ((A!)# ⊗A3) = 0, for
all n ∈ N0 such that n 6= 3, and H3(K•(A), d•) ∩ ((A!)# ⊗A3) ≃ k(−6).
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Proof. The first identity follows from computing (11) for a basis of (A!
−n)

∗ ⊗A2

and extracting the linearly dependent elements. The linear independence of the sets
below is either trivial or it follows clearly from considering the underlined terms
(in the given order). The fact that they are systems of generators for n 6= 3 follows
from the dimensions computed in (12), and by a simple inspection in case n = 3. If
n = 1, we have the basis of Im(d0,2) given by ǫ!|abc = d0(α|bc), ǫ

!|aba = d0(α|ba) and
ǫ!|bac = d0(β|ac). If n > 2,

{

αn−1|abc = dn−1(αn|bc), αn−1|aba = dn−1(αn|ba), βn−1|aba = dn−1(βn|ab),

βn−1|bac = dn−1(βn|ac), γn−1|abc = dn−1(γn|ba), γn−1|bac = dn−1(γn|ab)
} (14)

is clearly a linearly independent set of Im(dn−1,2). A basis of Im(d1,2) is given by the
union of (14) (for n = 2) and

{

β|abc+ γ|aba = d1(αβ|ba), α|bac− β|abc = d1(αβ|ac)
}

.

A basis of Im(d2,2) is given by the union of (14) (for n = 3) and
{

αβ|aba+ β2|abc = d2(α2γ|ba− α3|bc), αγ|abc− αβ|bac = d2(α2β|bc),

αγ|aba+ αβ|abc = d2(α2β|ba), α2|bac− αβ|abc = d2(α2β|ac− γ3|ab),

γ2|aba+ αβ|bac = d2(α2β|ab− α3|ba), αγ|bac− β2|abc = d2(α2γ|ac+ α3|bc)
}

,

whereas a basis of Im(dn−1,2) for n > 4 is given by the union of (14) (for n > 4) and
{

αn−2γ|bac− χn+1βn−1|abc− αn−3β2|abc = dn−1(αn−1γ|ac+ αn|bc− χnγn|ab),

αn−3β2|bac+ αn−1|bac−
(
χnβn−1 + αn−2β

)
|abc = dn−1(αn−1β|ac− χn+1γn|ab),

αn−3β2|aba+ χn+1γn−1|aba+ αn−2β|bac = dn−1(αn−1β|ab− αn|ba− χnβn|ac),

αn−2β|bac− αn−2γ|abc = dn−1(αn−2β2|ac),

αn−2γ|bac+ αn−2β|aba = dn−1(αn−2β2|ab),

αn−2γ|aba+
(
αn−2β + χnβn−1

)
|abc+ χnγn−1|aba = dn−1(αn−1β|ba)

}

.

The second identity follows from the first, since dim(Ker(dn−1,2)) is

dim
(
(A!

−n)
∗ ⊗A2

)
− dim

(
Im(dn−1,2)

)
= 4dim(A!

−n)− dim
(
Im(dn−1,2)

)
.

The last statement is immediate.

Lemma A.6. We have that

dim
(
Im(dn−1,1)

)
=







4, if n = 1,
9, if n = 2,
12, if n > 3,

and dim
(
Ker(dn−1,1)

)
=







3, if n = 0,
5, if n = 1,
6, if n > 2.

(15)

Comparing the first of the previous identities and the second identity of (13) we
conclude that Hn(K•(A), d•) ∩ ((A!)# ⊗A2) = 0, for all n ∈ N0.

Proof. Again, the first identity follows from computing (11) for a basis of the vector
space (A!

−n)
∗ ⊗A1 and extracting the linearly dependent elements. As in the previous



384 ESTANISLAO HERSCOVICH

lemma, the linear independence of the sets below is either trivial or it directly follows
from considering the underlined terms (in the given order), and the fact that they are
systems of generators follows from the second identity in (13). If n = 1, we have the
basis of Im(d0,1) given by the elements ǫ!|ab = d0(α|b), ǫ

!|ac = d0(α|c), ǫ
!|bc = d0(β|c)

and ǫ!|ba = d0(β|a). If n > 2, it is direct that
{

αn−1|ab = dn−1(αn|b), αn−1|ac = dn−1(αn|c), βn−1|ba = dn−1(βn|a), βn−1|bc

= dn−1(βn|c), γn−1|(ab+ bc) = dn−1(−γn|a), γn−1|(ba+ ac) = dn−1(−γn|b)
}

(16)
is a linearly independent set of Im(dn−1,1).

A basis of Im(d1,1) is given by the union of (16) (for n = 2) and
{

α|ba− β|ab = d1(αβ|a+ β2|c), α|bc+ γ|ac = d1(αβ|c), β|ac+ γ|bc = d1(αγ|c)
}

.

For n > 3, a basis of Im(dn−1,2) is given by the union of (16) (for n > 3) and
{

− αn−1|bc−
(
χn+1βn−1 + αn−3β2

)
|ab− αn−3β2|bc+

(
χnγn−1 + αn−2γ

)
|ba

= dn−1(αn−1γ|a+ αn|b+ χn+1βn|c),

αn−1|ba+
(
χn+1γn−1 + αn−3β2

)
|ba−

(
αn−2β + χnβn−1

)
|ab− αn−2β|bc

= dn−1(αn−1β|a+ χnβn|c),

χnβn−1|ac+ αn−2β|ac+
(
χnγn−1 + αn−2γ

)
|bc = dn−1(αn−1γ|c),

αn−2β|ba− αn−2γ|(ab+ bc) = dn−1(αn−2β2|a),
(
χn+1(βn−1 + γn−1) + αn−3β2

)
|ac+ αn−2β|bc = dn−1(αn−2β2|c),

(
χn+1(βn−1 + γn−1) + αn−3β2

)
|ab− αn−2γ|(ba+ ac) = dn−1(αn−2β2|b)

}

.

The second identity follows from the first, since dim(Ker(dn−1,1)) is

dim
(
(A!

−n)
∗ ⊗A1

)
− dim

(
Im(dn−1,1)

)
= 3dim(A!

−n)− dim
(
Im(dn−1,1)

)
.

The last statement is immediate.

Fact A.7. We have that

dim
(
Im(dn−1,0)

)
=







3, if n = 1,
5, if n = 2,
6, if n > 3,

(17)

and Ker(d0) = k. The latter implies that H0(K•(A), d•) ≃ k, whereas a comparison
of (17) and the second identity in (15) tells us that Hn(K•(A), d•)∩ ((A!)# ⊗A1) = 0,
for all n ∈ N0.

Proof. If n = 1, we have the basis of Im(d0,0) given by ǫ!|a = d0(α|1), ǫ
!|b = d0(β|1),

and ǫ!|c = d0(γ|1). If n > 2, consider the linearly independent set
{

αn−1|a = dn−1(αn|1), βn−1|b = dn−1(βn|1), γn−1|c = dn−1(γn|1)
}

(18)

in (A!
−n+1)

∗ ⊗A1. Moreover, the union of the previous set for n = 2 with
{

γ|a+ α|b+ β|c = d1(αβ|1), β|a+ γ|b+ α|c = d1(αγ|1)
}



AN ELEMENTARY COMPUTATION OF THE COHOMOLOGY OF FK(3) 385

is a basis of Im(d1,0), and if n > 3, the union of (18) (for n > 3) with
{

αn−1|b+
(
χnγn−1 + αn−2γ

)
|a+

(
χnβn−1 + αn−2β

)
|c+

(
χn+1γn−1 + αn−3β2

)
|b

= dn−1(αn−1β|1),

(
χnβn−1 + αn−2β

)
|a+

(
χnγn−1 + αn−2γ

)
|b+ αn−1|c+

(
χn+1βn−1 + αn−3β2

)
|c

= dn−1(αn−1γ|1),

(
χn+1(βn−1 + γn−1) + αn−3β2

)
|a+ αn−2β|b+ αn−2γ|c = dn−1(αn−2β2|1)

}

is a basis of Im(dn−1,0), since they are clearly linearly independent, as it follows from
considering the underlined terms (in the given order). The fact that the previous sets
are systems of generators follows directly from the dimension of the domain of dn−1,0.
This proves the first statement, and the second follows easily. The last statement is
now immediate.

The isomorphism (5) in Proposition 3.1 is now a consequence of Lemmas A.5
and A.6, as well as Facts A.4 and A.7. Finally, it remains to prove that the iso-
morphism H3(K•(A), d•) ≃ k(−6) is compatible with the structures of S3-modules
and S3-comodules, where k(−6) has the trivial action and coaction. This follows
from picking an S3-invariant and S3-coinvariant element ω̄ in Ker(d2,3) \ Im(d3,2), for
instance,

ω̄ = 2
(

α3|bac+ β3|abc− γ3|aba
)

− α2β|abc+ α2γ|aba− αβ2|bac.

The fact ω̄ /∈ Im(d3,2) follows from showing that ω̄ cannot be written as a linear
combination of the elements in the basis in the proof of Lemma A.5 for n = 4, which
is direct to verify.
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