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BRAIDED CATEGORICAL GROUPS AND

STRICTIFYING ASSOCIATORS

OLIVER BRAUNLING

(communicated by Emily Riehl)

Abstract
A key invariant of a braided categorical group is its quadratic

form, introduced by Joyal and Street. We show that the categor-
ical group is braided equivalent to a simultaneously skeletal and
strictly associative one if and only if the quadratic form comes
from a bilinear form. This generalizes the result of Johnson–
Osorno that all Picard groupoids can simultaneously be strictified
and skeletalized, except that in the braided case there is a genuine
obstruction.

1. Introduction

A braided monoidal category is always braided monoidal equivalent to a skeletal
one, and always braided monoidal equivalent to a strictly associative one. However,
typically it is impossible to achieve both properties simultaneously; even in the more
restrictive symmetric monoidal case. But Johnson and Osorno [JO12] have shown
that this problem, surprisingly, disappears for Picard groupoids, i.e. symmetric cate-
gorical groups. We generalize this to the braided case, except that here one faces an
obstruction. In detail:

A braided categorical group is a braided monoidal category (C,⊗) which is addi-
tionally a groupoid and for all objects X ∈ C, there exists an object X−1 with an
arrow

X ⊗X−1 ∼
−→ 1

to the unit object. The same concept is also called a ‘braided Gr-category’ or ‘braided
weak 2-group’. If the braiding is symmetric, it is called a Picard groupoid.

Joyal and Street [JS93] give a classification of braided categorical groups up to
braided monoidal equivalences. They attach to any such an abelian 3-cocycle in
H3
ab(π0C, π1C). Eilenberg–MacLane canonically identify the latter group with the

group of quadratic forms

tr : H3
ab(G,M)

∼=
−→ Quad(G,M). (1.1)

This isomorphism holds for arbitrary abelian groups G,M . The subtle differences
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between symmetric bilinear forms and quadratic forms cause some intricacies here
unless 2 is invertible, and this issue lies at the heart of the entire matter. Our main
result is as follows.

Theorem A. A braided categorical group (C,⊗) is braided monoidal equivalent to
one which is simultaneously strictly associative and skeletal if and only if its quadratic
form comes from a bilinear form, i.e. q(x) = S(x, x), for some not necessarily sym-
metric bilinear form S.

See Theorem 4.15. This generalizes the following result and reproves it in a different
way.

Theorem B (Johnson–Osorno [JO12]). Every Picard groupoid (C,⊗) is symmetric
monoidal equivalent to one which is simultaneously strictly associative and skeletal.

We call a quadratic form polar if its polarization, i.e. the symmetric bilinear form

b(x, y) := q(x+ y)− q(x)− q(y),

is of the shape t(x, y) + t(y, x) for some bilinear form t : G×G→M (where t is not
required to be symmetric or non-degenerate in any way). This property turns out
to be equivalent to the existence of a (usually different) bilinear form S such that
q(x) = S(x, x) (Corollary 4.14). Theorem B now follows from our main result since for
Picard groupoids the polarization always vanishes, so one can just take t(x, y) := 0.
We give explicit examples of non-polar forms. Even in the non-polar situation, one
can always add new objects to the category to make it polar.

Theorem C. For every braided categorical group (C,⊗), there exists an essentially
surjective and faithful (but typically not full) braided monoidal functor from another
braided categorical group

(Ĉ,⊗) −→ (C,⊗),

surjective on π0, and an isomorphism on π1, such that (Ĉ,⊗) is simultaneously strictly

associative and skeletal. We call (Ĉ,⊗) a polar cover of (C,⊗).

See Theorem 4.16. This construction is not canonical. It has occasionally been
asked1 how to find the commutativity constraint explicitly if one is only given the
quadratic form. We answer this in the polar case.

Theorem D. Let G,M be abelian groups. Let (βi)i∈I be a basis of the F2-vector space
G/2G. Let q ∈ Quad(G,M) be a polar quadratic form and pick a t : G×G→M such
that b(x, y) = t(x, y) + t(y, x). Then

q(x) := q(x)− t(x, x)

defines an element q ∈ HomZ(G/2G,M) and each q(βi) is 2-torsion in M . Define the

1“But I had difficulty seeing in an explicit way how to get an associator and braiding from a
quadratic form.” [Var]. Quinn [Qui99, §2.5] or Galindo–Jaramillo [GJ16, §4.4] discuss G finite

and M = U(1). Various further results exist in the literature, mostly for G finite and M inside C×,
Wall [Wal63], Durfee [Dur77].
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abelian 3-cocycle (h, c) ∈ H3
ab(G,M) with

h(x, y, z) := 0,

c(x, y) := t(x, y) +
∑

i∈I

xi · yi · q(βi),

where x, y are the vectors we get under the quotient map G։ G/2G, spelled out with
respect to the basis (βi). This means that xi, yi ∈ F2. Then (h, c) maps to q under the
isomorphism of Equation 1.1.

Note that while [JO12] abstractly proves that Picard groupoids can be made
strictly associative and skeletal by showing that the symmetric 3-cohomology class
must have a representative with trivial associator, the above provides an explicit
3-cocycle having this property.

When preparing this text, I sometimes got stuck because in a lot of literature many
little (and often admittedly harmless) verifications are left as Exercises, especially in
the older literature, where perhaps most of this was considered folklore. I found this
a little inconvenient, so this text is written in a quite self-contained way, providing
details for many of these customary omissions.

Acknowledgments

I thank Niles Johnson and Brad Drew for helpful correspondence. I am also thank-
ful for a number of clarifications in the proofs which were suggested by the referee.

2. Braided categorical groups

Definition 2.1. A braided categorical group is a braided monoidal category (C,⊗)
which is additionally a groupoid and for every object X ∈ C, we are given an object
X−1 with an arrow

εX : X ⊗X−1 ∼
−→ 1 (2.1)

to the unit object. Alternative names are: braided Gr-categories, braided weak 2-
groups.

It may appear more natural to demand the existence of an inversion functor

(−)−1 : Cop −→ C (2.2)

sending X to X−1 functorially. The definition above does not a priori guarantee any
functoriality in the formation of inverses. However, Laplaza has shown that in any
categorical group the inverses X−1 necessarily extend uniquely to give a functor as
in Equation 2.2, [Lap83, Proposition 4.3]. This is also discussed in [BL04].

Definition 2.2. If the braiding

sX,Y : X ⊗ Y
∼
−→ Y ⊗X

is symmetric, i.e. sY,X ◦ sX,Y = idX⊗Y for all X,Y ∈ C, then (C,⊗) is called a Picard
groupoid.
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The definition of braided categorical groups goes back to Joyal and Street [JS93,
§3].

Given braided categorical groups P,P′, we write Hom⊗(P,P′) for the category of
braided monoidal functors from P to P

′: Objects are functors P→ P
′ preserving the

monoidal structure along with the braiding and associativity constraints; morphisms
(usually called “homotopies”) are natural transformations between such functors,
which, however, also need to be compatible with the braided monoidal structure.
A fully spelled out definition of braided monoidal functors is given for example in
[CK07, §6, take G = 1].

Remark 2.3 (Notation). Some variation in language exists. In Deligne’s work [Del87,
§4.1] Picard groupoids are called ‘commutative Picard categories’, while in [Bre11,
§2.1] merely ‘Picard categories’. Monoidal categories are often called tensor categories
instead.

2.1. General skeletalization and strictification methods
A braided categorical group (C,⊗) has three key invariants:

1. π0(C,⊗), the set of isomorphism classes of objects; an abelian group,

2. π1(C,⊗), the automorphism group of the unit object 1C; another abelian group,

3. the map q : π0(C,⊗)→ π1(C,⊗) which assigns to any object X ∈ C its signature

q([X]) := sX,X ⊗X
−1 ⊗X−1,

which is an automorphism of the unit 1C. Here sX,X denotes the braiding

sX,X : X ⊗X
∼
−→ X ⊗X.

This is an automorphism of X ⊗X, and along the contractions εX of Equa-
tion 2.1 induces one of 1C, thus giving an element of π1(C,⊗).

There are particularly nice types of braided categorical groups:

Definition 2.4. A category C is called skeletal if for any isomorphic objectsX,X ′ ∈ C

we must have X = X ′, i.e.

X ≃ X ′ ⇒ X = X ′.

Definition 2.5. A braided categorical group (C,⊗) is called strict (but we usually
write strictly associative2) if the associativity constraint

aX,Y,Z : X ⊗ (Y ⊗ Z)
∼
−→ (X ⊗ Y )⊗ Z

and the unit constraints

1C ⊗X
∼
−→ X and X ⊗ 1C

∼
−→ X

are all identity maps (and, in particular, the objects on the left and right of these
isomorphisms are the same). If the braiding is symmetric, one also calls such a (C,⊗)
a permutative category.

2Sometimes people use the word “strict” also to imply that the commutativity constraint would
have to be trivial, which would be much more restrictive.



BRAIDED CATEGORICAL GROUPS AND ASSOCIATORS 299

Both of these properties do not really occur in nature much.

Example 2.6. Let k be a field. The category (Vectf (k),⊗) of k-vector spaces with the
usual tensor product has neither property. In particular, if one honestly follows the
definitions,

kℓ ⊗ (kn ⊗ km)
∼
−→ (kℓ ⊗ kn)⊗ km

is an isomorphism between two genuinely different objects.

This example is too basic, and in many ways not really helpful. The associativity
constraint does such a truly basic and light thing in this example that it is really
hard to imagine that anything could ever go wrong or that it is truly worth keeping
the associativity constraint in mind.

As this is a critical possible misconception, we shall dwell on this for a bit, even
though every category theory inclined reader may shake their head in boredom. We
shall look at some non-trivial examples soon.

But first, we point out two basic simplication procedures for arbitrary braided
categorical groups:

Theorem 2.7. Every braided monoidal category is braided monoidal equivalent to a
skeletal one. We call this skeletalization.

Theorem 2.8 (Mac Lane–Isbell). Any given braided monoidal category is braided
monoidal equivalent to a strictly associative one. We call this strictification.

We shall sketch both proofs below, in order to see what can go wrong. However,
aside from proving these, and this is crucial, in general it is absolutely impossible to
achieve being strictly associative and skeletal simultaneously.

Proof sketch for Theorem 2.7. Any category is equivalent to a skeletal one: Given
C, (as Step 1) pick precisely one object X from any isomorphism class. Further, for
any object in C, pick (as Step 2) a fixed isomorphism to the single chosen object
representing its isomorphism class. Now consider the full subcategory C

′ of these
objects. It is, by construction, skeletal. The inclusion C

′ → C is clearly a fully faithful
functor, but it is also essentially surjective by construction. Now we make C

′ braided
monoidal: For any X,Y ∈ C

′ we have X ⊗C Y in C, and there will be precisely one
object CX,Y ∈ C

′ in the same isomorphism class (by Step 1). DefineX ⊗C′ Y := CX,Y .
Define the associativity and commutativity constraint by pre- and postcomposing the
ones in C with the fixed isomorphisms (of Step 2) to the fixed objects representing
the isomorphism classes of C uniquely in C

′.

We gave the proof because it makes clear how this procedure can mess up the asso-
ciativity and commutativity constraints, even if they were easy maps in the original
category.

Example 2.9. In the notation of the proof, given X,Y ∈ C, we obtain objects CX,Y
and CY,X in C

′ and the braiding becomes

CX,Y
∼
−→ X ⊗ Y

∼
−→
sX,Y

Y ⊗X
∼
←− CY,X , (2.3)

where sX,Y is the original braiding of C. Since our category C
′ is skeletal, we must

have CX,Y = CY,X , so the composite map is just an automorphism of CX,Y . However,
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since we have no overall control of the two outer isomorphisms in Equation 2.3 (the
ones chosen in Step 2 of the proof sketch above), it is by no means clear that this is
the identity automorphism.

But one may believe that a more careful construction in the proof would be able to
solve this problem. This is not so. Although well-documented in the literature, let us
have a look at Isbell’s highly instructive counterexample, which immediately crushes
all hope.

Theorem 2.10 (Isbell [Isb69]). Let C be a category which has all products. Suppose
there is some object X such that X ×X ≃ X and End(X) has at least two elements.
Make C a symmetric monoidal category using the product, i.e. X ⊗ Y is a product of
X,Y . Then (C,⊗) is not monoidal equivalent to any simultaneously strictly associa-
tive and skeletal monoidal category.

Example 2.11. The category of sets or the category of all k-vector spaces are exam-
ples. The category of all finite-dimensional k-vector spaces is not an example (see
Example 2.12).

Proof. For a product of objectsX,Y , we write pX,YX resp. pX,YY for the two projections.
Let f, g, h : X → X be arbitrary morphisms. We consider the following four composite
morphisms:

(X ×X)×X
pX×X,X

X×X

X ×X
f×g

X ×X,

(X ×X)×X
(f×g)×h

(X ×X)×X
pX×X,X

X×X

X ×X,

X × (X ×X)
f×(g×h)

X × (X ×X)
pX,X×X

X
X,

X × (X ×X)
pX,X×X

X
X

f
X.

(2.4)

Note that the first and the second composite morphism agree on the nose. Moreover,
the third and the fourth composite morphism agree. Proof by contradiction: Assume C
is monoidal equivalent to a strictly associative skeletal category C

′, say by some func-
tor F . We apply this functor and consider the four morphisms above. For simplicity,
let us from now on write X instead of F (X); or equivalently without loss of generality
assume C had been C

′ to start with. Two new things happen: Since our target category
is strictly associative, the associativity constraint X × (X ×X) −→ (X ×X)×X is
between the same objects and the identity map. Since the monoidal bifunctor is
natural in each variable, it follows that the second and third composite morphism
simplify to

X ×X ×X
f×g×h

X ×X ×X
pX×X,X

X×X

X ×X,

X ×X ×X
f×g×h

X ×X ×X
pX,X×X

X
X

and the left arrows in both lines agree. However, since the category is skeletal,
X ×X ∼= X means that these are the same object. This means that all first fac-
tor projections of the products here agree with pX,XX , using that our equivalence of
categories has preserved products. Thus, also the second arrows in both lines above
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agree. But this means that the composites agree. Hence, all four morphisms in Equa-
tion 2.4 are the same. Moreover, X ×X ×X = X. Thus, comparing the first with
the last composite in Equation 2.4, we obtain

f ◦ pX,XX = (f × g) ◦ pX,XX

and this is valid for arbitrary choices of f, g, h above. As pX,XX is an epic, we deduce
f = f × g. Swapping the rôles of f, g, we also obtain f × g = g, and then f = g for
arbitrary f, g, contradicting that f, g ∈ End(X) can be chosen different by assump-
tion.

Example 2.12. The category of all finite-dimensional k-vector spaces with the direct
sum (Vectf (k),⊕) is symmetric monoidal equivalent to a both strictly associative
and skeletal symmetric monoidal category. As objects for our strictly associative
skeletal C′ take Z>0 and define n⊞m := n+m, HomC′(n,m) := Homk(k

n, km) with
the identity commutativity constraint. Then F : (C′,⊞)→ (Vectf (k),⊕) sending n
to kn is a symmetric monoidal equivalence. One can try to extend this to allowing
countably infinite dimension. As objects take Z>0 ∪ {∞} and define n⊞∞ :=∞ and
∞⊞∞ :=∞, and take F (∞) := k⊕∞. Given f, g ∈ Homk(k

∞, k∞), it is unclear how
to define

f ⊕ g ∈ Homk(k
∞, k∞),

leading us back to Isbell’s counterexample.

Now, let us quickly look at how to make a braided monoidal category strictly
associative.

Proof sketch for Theorem 2.8. Let X be the free monoid generated by the objects of
C, i.e. objects are finite formal words

“x1x2 . . . xm”,

where the letters “x1, . . . , xm” are objects xi ∈ C. The empty word is also allowed.
We define a category C

′ by having X as its objects, and define on objects

ψ : C′ −→ C,

“x1x2 . . . xm” 7−→ (· · · (x1 ⊗ x2)⊗ · · ·)⊗ xm−1)⊗ xm),

i.e. we apply the monoidal bifunctor to “x1x2 . . . xm”, bracketed all to the left. The
empty word goes to 1C, a single letter “x1” to the object it represents, “x1x2” to
x1 ⊗ x2, “x1x2x3” to ((x1 ⊗ x2)⊗ x3) and so on. We equip C

′ with the structure of a
category by demanding that the above should be a fully faithful functor. This means
that

HomC′(“x1x2 . . . xm”, “y1y2 . . . yn”) := HomC(ψ(x1x2 . . . xm), ψ(y1y2 . . . yn)). (2.5)

Define a functor ψ′ : C→ C
′ in the opposite direction by sending the object x to

the single letter word “x”. This gives an equivalence of categories. Define a braided
monoidal structure on C

′ by simply concatenating words,

“x1x2 . . . xm”⊗ “y1y2 . . . yn” := “x1x2 . . . xmy1y2 . . . yn”,

and compatibly on morphisms (as the Hom-sets agree with the input category C, one
can import this part of the structure, see Equation 2.5). Let the empty word “ ” act
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as the tensor unit 1C′ . Since we really just concatenate words, it is clear that

1C′ ⊗ “x1x2 . . . xm” = “x1x2 . . . xm”,

and correspondingly for “x1x2 . . . xm”⊗1C′ , so (C′,⊗) indeed is a strictly associative
braided monoidal category. Finally, one has to check that the equivalence of categories
ψ is braided monoidal. See [JS93] for a complete argument.

We see that the above procedure increases the cardinality of pairwise isomorphic
objects massively.

Example 2.13. If we strictify associativity in (Vectf (k),⊕) using the procedure of the
above proof, objects will be finite words of vector spaces “x1x2 . . . xm” which end up
being isomorphic if and only if

∑
dimxi =

∑
dimx′i. Thus, we get a very different

category from the strictly associative one in Example 2.12.

We also see that alternating between this strictification and skeletalization pro-
cedure will just yield more and more complicated categories, which rather carry us
farther away from our goal of having a simultaneously skeletal and strictly associative
model.

3. Strictification

3.1. Abelian and symmetric cohomology

In order to dig a little deeper into these problems, we should first recall two ‘coho-
mology theories’ (of sorts). We first need to recall how group cohomology can be
defined, from two different viewpoints. Let G be a group and M a G-module. In pure
algebra, group cohomology is usually defined as

Hn
grp(G,M) := Extn

Z[G](Z,M)

in the category of Z[G]-modules, where Z[G] is the group ring. Since Ext0
Z[G](Z,M) =

HomZ[G](Z,M) =MG, these Ext-groups then correspond to the right-derived functor
groups Rn(−)G of the left-exact functor of taking G-invariants. In topology one may
prefer a different take on the same concept: Write K(M,n) for the n-th Eilenberg–
MacLane space with single non-zero homotopy group M in degree n. If M has the
trivial G-module structure, one can also define group cohomology as

Hn
grp(G,M) := [K(G, 1),K(M,n)],

the pointed homotopy classes of maps from K(G, 1) (which is nothing but the clas-
sifying space of the group).

The topological as well as the algebraic approach to the definition are equivalent
and give the same cohomology groups. While we mostly work with an algebraic
viewpoint below, the topologist’s definition makes it much easier to motivate the
construction of two other cohomology theories:

Definition 3.1 (Eilenberg–MacLane). Let G be an abelian group and M an abelian
group (regarded as a trivial G-module).
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1. The groups

Hn
ab(G,M) := [K(G, 2),K(M,n+ 1)]

are called abelian cohomology.

2. The groups

Hn
sym(G,M) := [K(G, 3),K(M,n+ 2)]

are called symmetric cohomology.

We can quickly motivate where these definitions originate from: There are equiva-
lences of homotopy categories, due to Joyal–Tierney (following ideas of Grothendieck),

Ho(categorical groups) −→ Ho(homotopy [1, 2]-types),

Ho(braided categorical groups) −→ Ho(homotopy [2, 3]-types), (3.1)

Ho(Picard groupoids) −→ Ho(homotopy [n, n+ 1]-types)

(for any n > 3),

where on the right we refer to pointed unstable homotopy types. In each case the
objects on the right-hand side are determined by providing the groups G,M forming
the two consecutive non-trivial πn, πn+1 as well as a cocycle corresponding to the
corresponding Postnikov invariant, and concretely the relevant k-invariant lies in

H3(G,M), resp. H3
ab(G,M), resp. H3

sym(G,M),

depending on which of the three cases one considers. In Equation 3.1 the functor
inducing the equivalence is always a suitable kind of nerve. We refer to [BCC93],
[CC96], [GMdR02], [JO12] for details on this story. We shall see this in a little
more detail in § 3.2 in the braided case, which is the only instance of the above
relevant for our purposes.

While introducing the cohomology groups of Definition 3.1 in the above topological
language is nice conceptually, it does not help much for computations. For group
cohomology one can use the standard Chevalley–Eilenberg projective resolution of
the trivial G-module Z as a Z[G]-module in order to compute Extn

Z[G](Z,M). When
using the quasi-isomorphic complex of normalized cocycles P• (so that the complex

(HomZ[G](P•,M), ∂•)

is the one which is frequently called the complex of ‘inhomogeneous chains’, e.g.,
[NSW08, Chapter I, §2]) instead, a group 3-cocycle is a map

h : G3 −→M

such that ∂h = 0, which unravels as the condition

h(x, y, z) + h(u, x+ y, z) + h(u, x, y) = h(u, x, y + z) + h(u+ x, y, z). (3.2)

A group 3-coboundary is ∂k for some k : G2 →M such that h has the shape

h(x, y, z) = k(y, z)− k(x+ y, z) + k(x, y + z)− k(x, y). (3.3)

These explicit expressions can directly be unravelled from [NSW08, Chapter I, §2]
for example.

In the literature on symmetric or braided monoidal categories, one often uses the
following additional condition:
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Definition 3.2. An inhomogeneous chain h : Gn →M is called normalized if we have
h(x1, . . . , xn) = 0 as soon as xi = 0 for some i.

One can always restrict to considering normalized cochains in view of the following
fact.

Lemma 3.3. Given an inhomogeneous chain h : Gn →M , there exists a normalized
inhomogeneous chain h′ : Gn →M such that [h] ≡ [h′] ∈ Hn(G,M) both represent the
same group cohomology class.

Proof. This corresponds to using the normalized versus the unnormalized bar com-
plex, see [Wei94, Chapter 6, §6.5.5] for background. For a direct proof without going
back to the formalism of bar complexes, one can follow [NSW08, Chapter I, §2,
Exercise 5].

Next, following Eilenberg and MacLane we discuss the analogous explicit expres-
sions for abelian and symmetric cohomology.

Definition 3.4. Let G,M be abelian groups.

1. An abelian 3-cocycle is a pair (h, c) consisting of a group 3-cocycle h : G3 →M
such that

h(x, 0, z) = 0

and a map c : G2 →M which satisfies

h(y, z, x) + c(x, y + z) + h(x, y, z) = c(x, z) + h(y, x, z) + c(x, y), (A)

−h(z, x, y) + c(x+ y, z)− h(x, y, z) = c(x, z)− h(x, z, y) + c(y, z), (A’)

for all x, y, z ∈ G.

2. An abelian 3-coboundary is a group 3-cocycle h = ∂k for some map k : G2 →M
with k(x, 0) = 0 and k(0, y) = 0. It can be interpreted as an abelian 3-cocycle
(h, c) using

c(x, y) := k(x, y)− k(y, x). (3.4)

Note that every abelian 3-coboundary is indeed an abelian 3-cocycle, e.g.

h(x, 0, z) = k(0, z)− k(x, 0) = 0

holds by Equation 3.3.

Remark 3.5. The condition h(x, 0, z) = 0 in Equation 3.4 implies h(x, y, z) = 0 as
soon as one of x, y, z is zero. To see this, use Equation 3.2 for y = 0, giving h(u, x, 0) =
0 and then Equation 3.2 with x = 0. This shows that these cocycles are automatically
assumed normalized in the sense of Definition 3.2.

Definition 3.6. A symmetric 3-cocycle is an abelian 3-cocycle (h, c) such that

c(x, y) = −c(y, x)

for all x, y ∈ G. A symmetric 3-coboundary is the same as an abelian 3-coboundary.

Note that an abelian 3-coboundary is indeed always a symmetric 3-cocycle, as is
seen from Equation 3.4.
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Definition 3.7. A quadratic form q : G→M is any map of sets such that q(x) =
q(−x) and

b(x, y) := q(x+ y)− q(x)− q(y) (3.5)

is Z-bilinear for all x, y ∈ G. This bilinear form is called the polarization form. Write
Quad(G,M) for the set of all quadratic forms.

Theorem 3.8 (Eilenberg–Mac Lane). The group H3
ab(G,M) (resp. H3

sym(G,M)) of
Definition 3.1 can be described as the set of abelian (resp. symmetric) 3-cocycles
modulo abelian (resp. symmetric) 3-coboundaries in the sense of Definition 3.4 (resp.
Definition 3.6). The map

tr : H3
ab(G,M) −→ Quad(G,M), (3.6)

(h, c) 7−→ (x 7→ c(x, x))

is an isomorphism.

We refer to [ML52] for an overview. The paper [EML53] is essentially entirely
devoted to making the type of translation underlying the above theorem.

3.2. Joyal–Street classification
We quickly summarize the Joyal–Street classification. We shall write Quad for

the 1-category (a) whose objects are triples (G,M, q) with G,M abelian groups
and q ∈ Quad(G,M), and (b) morphisms (G,M, q)→ (G′,M ′, q′) are pairs of group
homomorphisms

f : G→ G′ and g : M →M ′

such that the square

G
f

q

G′

q′

M
g

M ′

commutes. Write BCG for the 2-category (a) whose objects are braided categorical
groups and (b) whose arrows are braided monoidal functors and (c) whose 2-arrows
are braided monoidal natural equivalences of functors. For details on the precise defi-
nition we would perhaps recommend the nice and very careful treatment of Cegarra–
Khmaladze [CK07, §6]. They treat the G-graded case, so for G = 1 the trivial group,
their description specializes to the concepts we use here. We write Ho(BCG) for what
one could call the homotopy category of braided categorical groups (or 1-category
truncation); its objects are braided categorical groups and morphisms are the equiva-
lence classes of braided monoidal functors. As homotopy (or 2-equivalence) preserves
composition, Ho(BCG) is a well-defined 1-category. There is a functor

T : Ho(BCG) −→ Quad, (C,⊗) 7→ (π0C, π1C, q),

where q is the quadratic form attached to the abelian 3-cohomology class encoding
the associator and braiding, using Equation 3.6.

Theorem 3.9 (Joyal–Street). The functor T has the following properties:
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1. It is well-defined.

2. It is essentially surjective.

3. It is conservative, i.e. F : (C,⊗)→ (C′,⊗′) is a braided monoidal equivalence if
and only if TF is an isomorphism in Quad.

4. It is full, i.e. any morphism of Quad comes from a (homotopy class of) braided
monoidal functor(s) of braided categorical groups.

See [JS93, Theorem 3.3 and Remark 3.3] or [CK07, page 435, again for G = 1
and the category is called H3

1,ab instead] or [JS86, §6–7]. Śınh had earlier proven an
analogous result in the case of symmetric braidings, i.e. Picard groupoids, [Śın75].

We can be a bit more precise: The essential surjectivity is proven by providing an
explicit skeletal model with the given invariants:

Definition 3.10. Given abelian groups G,M and an abelian 3-cocycle (h, c), let
T (G,M, (h, c)) be the following braided categorical group:

1. objects are elements in G,

2. automorphisms of any object X ∈ G are Aut(X) :=M ,

3. there are no morphisms except for automorphisms, and their composition is
addition in M ,

4. the monoidal structure is

(X
f
−→ X)⊗ (X ′ f ′

−→ X ′) := (X +X ′ f+f
′

−→ X +X ′),

where addition is just addition in G (on objects) resp. in M (for f, f ′),

5. the associator

aX,Y,Z : X ⊗ (Y ⊗ Z)
∼
−→ (X ⊗ Y )⊗ Z

is just the automorphism defined by h(X,Y, Z) ∈M ,

6. and analogously for the commutativity constraint and c(X,Y ).

As implied by Theorem 3.9 and the remark about how to prove essential surjectiv-
ity, any braided categorical group (C,⊗) is braided monoidal equivalent to the skeletal
braided categorical group T (π0C, π1C, (h, c)) for some [(h, c)] ∈ H3

ab(π0C, π1C), where
[(h, c)] is well-defined up to abelian 3-coboundaries. Moreover, this detects braided
monoidal equivalence: A braided monoidal functor F : (C,⊗)→ (C′,⊗′) is an equiva-
lence if and only if it induces isomorphisms on π0, π1 and under these the cohomology
class gets identified. For Picard groupoids, these results were established earlier by
Śınh. The functor T can also be used to describe various unstable homotopy types
combinatorially by combining it with Equation 3.1. See [Bau91] for more on this.

Lemma 3.11. A skeletal braided categorical group is braided monoidal equivalent to
a skeletal strictly associative one if and only if the cohomology class [(h, c)] has an
abelian 3-cocycle representative with h(x, y, z) = 0 for all x, y, z ∈ G.

Proof. Just use that any skeletal braided categorical group C is necessarily of the
form T (π0C, π1C, (h, c)) itself.
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4. Polar forms

4.1. Polar quadratic forms
Definition 4.1. We will call a quadratic form polar (or polar for t) if its polarization
is of the shape

b(x, y) = t(x, y) + t(y, x)

for some bilinear form t (which is not required to be symmetric or non-degenerate).

As we shall see in Lemma 4.12, this definition uniformly characterizes two some-
what different sources of examples in one.

Example 4.2. Suppose t : G×G→M is a Z-bilinear form, not necessarily symmetric.
Then q(x) := t(x, x) is a polar quadratic form by direct computation,

b(x, y) = t(x, y) + t(y, x).

Example 4.3. Suppose s : G→M is any group homomorphism to an F2-vector space
M . Then q(x) := s(x) is a polar quadratic form because b(x, y) = q(x+ y)− q(x)−
q(y) = 0.

Example 4.4. Consider q(x) := x2 as a map Z→ Z. This restricts to a well-defined
map Z/2→ Z/4 in view of

(x+ 2m)2 = x2 + 4mx+ 4m2 ≡ x2 mod 4.

Thus, for G := Z/2 and M := Z/4 we obtain a quadratic form, q(−x) = q(x), with
the bilinear symmetric polarization b(x, y) := 2xy. We claim that this form is not
polar. Assume it were. We must have t : F2 × F2 → Z/4Z and t(x, y) = xyn for some
n ∈ Z by bilinearity, and thus without loss of generality n = 1 as we need b(x, y) =
t(x, y) + t(y, x). However, (x, y) 7→ xy is not bilinear as a map F2 × F2 → Z/4Z: We
have

0 = c(0, 1) = c(1 + 1, 1) 6= c(1, 1) + c(1, 1) = 2 in Z/4.

On the other hand, define

h(x, y, z) :=

{
2 for x = y = z = 1,
0 else

and c(x, y) := xy, which is just

c(x, y) :=

{
1 for x = y = z = 1,
0 else.

Then (h, c) is an abelian 3-cocycle. We repeat that c is not bilinear, contrary to what
the trained eye might misconceive.

Lemma 4.5. An arbitrary map of sets q : G→M is quadratic if and only if

q(−x) = q(x),

q(x+ y + z) + q(x) + q(y) + q(z) = q(y + z) + q(z + x) + q(x+ y) (4.1)

both hold for all x, y, z ∈ G.
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Proof. We demand q(−x) = q(x) in both situations, so we only need to show that
Equation 4.1 is equivalent to the Z-bilinearity of b(x, y) in Equation 3.5. Since the
latter is visibly symmetric, it suffices to check linearity in the first variable, that is,
the vanishing of

b(x+ y, z)− b(x, z)− b(y, z)

for all x, y, z. When unravelling each b(−,−) using Equation 3.5, we obtain an expres-
sion which is zero if and only if Equation 4.1 holds.

Lemma 4.6. If (h, c) is an abelian 3-cocycle, we have
∑

σ∈S3

sgn(σ)h(xσ(1), xσ(2), xσ(3)) = 0,

i.e. the alternating sum over all permutations of the arguments is zero.

Proof. In Identity A bring all terms relying on c on the left side, giving

c(x, y + z)− c(x, y)− c(x, z) = −h(x, y, z) + h(y, x, z)− h(y, z, x).

The left side of the equation is invariant under swapping y and z, and thus so must
be the right side. Thus, their difference

−h(x, y, z) + h(y, x, z)− h(y, z, x) + h(x, z, y)− h(z, x, y) + h(z, y, x) = 0

must be zero. But this is what we had to prove.

Lemma 4.7. If (h, c) is an abelian 3-cocycle, then W (x, y) := c(x, y) + c(y, x) is Z-
bilinear and symmetric.

Proof. Since W is symmetric in x, y, it suffices to check linearity in x. We find

W (x+ z, y)−W (x, y)−W (z, y) = c(x+ z, y) + c(y, x+ z)

− c(x, y)− c(y, x)− c(z, y)− c(y, z)

and evaluating c(x+ z, y) using Identity A’ (and observing a number of cancellations),
we obtain

= h(x, z, y)− h(x, y, z) + h(y, x, z) + c(y, x+ z)− c(y, x)− c(y, z).

Next, unravel c(y, x+ z) using Identity A, giving

= h(x, z, y)− h(x, y, z) + h(y, x, z)− h(y, x, z) + h(x, y, z)− h(x, z, y) = 0,

which vanishes (all terms appear twice, but with opposite signs).

Lemma 4.8. If (h, c) is an abelian 3-cocycle, then we have

c(y + z, y + z)− c(y, y)− c(z, z) =W (y, z)

for all y, z and W as in the previous lemma.
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Proof. We again use Identity A, in the form

c(x, y + z)− c(x, y)− c(x, z) = −h(x, y, z) + h(y, x, z)− h(y, z, x).

Now we plug in x := y + z. This yields

c(y + z, y + z)− c(y + z, y)− c(y+z, z)

= −h(y + z, y, z) + h(y, y + z, z)− h(y, z, y + z)

and now use Identity A’ to unravel c(y + z, y) and c(y + z, z). We get

c(y + z, y + z) −c(z, y)− c(y, y)− c(y, z)− c(z, z)

= −h(y + z, y, z) + h(y, y + z, z)− h(y, z, y + z) + h(z, y, z) + h(y, z, y).

Recall the group 3-cocycle condition, Equation 3.2, but plug in u := y and x := z.
Then the cocycle condition tells us that the right side of this equation vanishes. This
proves our claim.

Lemma 4.9. If (h, c) is an abelian 3-cocycle, then q(x) := c(x, x) is a quadratic form.

This quadratic form is called the trace and underlies the map of Equation 1.1. The
above lemma is of course due to Eilenberg and MacLane, and quite old, but since
almost all texts just refer to this verification as an Exercise, we felt we should spell
it out, if only to provide a reference.

Proof. (Step 1) We compute, just by unravelling q in terms of c and using Lemma 4.8
three times, that q(x+ y) + q(y + z) + q(x+ z) is

= c(x+ y, x+ y) + c(y + z, y + z) + c(x+ z, x+ z)

= 2c(x, x) + 2c(y, y) + 2c(z, z) +W (x, y) +W (y, z) +W (x, z). (4.2)

Next, use Lemma 4.8 but plug in x+ y instead of y, giving

c(x+ y + z, x+ y + z)− c(x+ y, x+ y)− c(z, z) =W (x+ y, z).

Apply Lemma 4.8 to unravel c(x+ y, x+ y) and use the bilinearity ofW (Lemma 4.7),
giving

c(x+ y + z, x+ y + z)− c(x, x)− c(y, y)− c(z, z) =W (x, y) +W (x, z) +W (y, z).

Now, we plug in Equation 4.2 for the W -terms in the above equation, giving

q(x+ y + z) + q(x) + q(y) + q(z) = q(x+ y) + q(y + z) + q(x+ z). (4.3)

Thus, by Lemma 4.5, we are done once we show that q(x) = q(−x).
(Step 2) To this end, use Equation 4.3 with y := −x, z := x. We get

3q(x) + q(−x) = 2q(0) + q(2x). (4.4)

Lemma 4.8 with all variables zero shows −q(0) =W (0, 0) = 0 by the bilinearity ofW .
Next, use Lemma 4.8 with y = z and call the variable x. We get q(2x)− 2q(x) =
W (x, x). Combine all three formulas to obtain q(x) + q(−x) =W (x, x), but unravel-
lingW using its definition yields 2q(x). Thus, we obtain q(−x) = q(x), as desired.

The following goes back to Whitehead [Whi50].
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Lemma 4.10. There is a commutative diagram

Hom(G⊗G,M)

h
sym

0 Hom(G/2G,M)
ψ

Quad(G,M)
ϕ

Hom(G⊗G,M)

0 H3
sym(G,M)

∼=

H3
ab(G,M),

∼=

where ψ sends a map to itself and ϕ sends q to its polarization, Equation 3.5. The
downward arrow h sends a bilinear map B to q(x) := B(x, x), and the diagonal arrow
is the symmetrization map

b(x, y) := B(x, y) +B(y, x).

The middle row in the diagram is exact. The upward arrows send (h, c) to x 7→ c(x, x).

Proof. The commutativity of the upper triangle is a one line computation. We check
the exactness of the middle row: If f : G/2→M is any Z-linear map and b = ϕ(f),
then we clearly have b(x, y) = 0 in Equation 3.5 by linearity and f(a) = f(−a) holds
since all elements in G/2 are 2-torsion, so ψ is well-defined and injective (see also
Example 4.3). If ϕ sends a quadratic form q to zero, we have q(x+ y) = q(x) + q(y),
so it follows that q is Z-linear. Moreover, q(x) = q(−x) = −q(x) forces that 2q(x) = 0
for all x, but this is q(2x). Hence, 2G lies in the kernel and by the universal property
of cokernels, we get a unique map f : G/2G→M , giving exactness in the middle.
The inclusion H3

sym(G,M) ⊆ H3
ab(G,M) follows from the fact that while symmetric

3-cocycles have the additional constraint

c(x, y) = −c(y, x), (4.5)

the sets of symmetric vs. abelian 3-coboundaries are the same (Definition 3.6). The
lower square commutes because the upward arrows are the same map, just restricted
to a subgroup, and on all of H3

ab(G,M) its values are quadratic forms by Lemma 4.9.
Further, Equation 4.5 implies 2c(x, x) = 0, so the image of the subgroup H3

sym(G,M)
lands in those quadratic forms such that the polarization is zero, so it factors over
Hom(G/2G,M) by the exactness of the middle row. The upward arrows being iso-
morphisms follows from Theorem 3.8.

Lemma 4.11. Suppose G is a free abelian group, M arbitrary. Then every quadratic
form q : G→M is polar.

The following argument is vaguely analogous to [DGNO10, Lemma D.1].

Proof. Pick a basis (ei)i∈I (for some index set I) of G as a free Z-module. Write
b(x, y) for the polarization of q, as in Equation 3.5. Pick an arbitrary total order on
the set I. Define

t(ei, ej) :=




b(ei, ej) if i < j,
q(ei) if i = j,
0 if i > j.

Then if i 6= j we have t(ei, ej) + t(ej , ei) = b(ei, ej) and for i = j we get t(ei, ei) +
t(ei, ei) = 2q(ei), but we also have b(ei, ei) = q(2ei)− 2q(ei) = 2q(ei) since q(2x) =
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4q(x) for all x ∈ G by the same computation as in Equation 4.4. Thus, by Z-linear
extension and since (ei)i∈I is a basis, we conclude that t(x, y) + t(y, x) = b(x, y) holds
for all x, y ∈ G.

For an abelian group M we write nM = ker(M
·n
−→M).

Lemma 4.12. Let t : G×G→M be a bilinear map. A quadratic form q : G→M

1. is polar for this t, if and only if

2. there exists some q ∈ HomF2
(G/2G, 2M ) such that q(x) = t(x, x) + q(x) holds

for all x ∈ G.

Proof. Suppose q is polar for the given t. As usual, let b(x, y) := q(x+ y)− q(x)−
q(y) be its polarization form, and by assumption we have b(x, y) = t(x, y) + t(y, x).
Define q(x) := q(x)− t(x, x) for x ∈ G. We claim that q is a quadratic form. Indeed,

q(−x) = q(−x)− t(−x,−x) = q(x)− t(x, x) = q(x)

since q is quadratic and t bilinear. The polarization of q is

b(x, y) = q(x+ y)− q(x)− q(y)

= q(x+ y)− t(x+ y, x+ y)− q(x) + t(x, x)− q(y) + t(y, y)

= b(x, y)− (t(x, y) + t(y, x)) = 0.

We see that this polarization is (trivially) Z-bilinear, completing the verification that q
is quadratic, but also proving that q ∈ HomF2

(G/2G, 2M ) by the exactness of middle
row in Lemma 4.10. Conversely, suppose we know that q exists. Then q being polar
for t amounts to combining Example 4.2 and Example 4.3.

4.2. Proof of the main results

Theorem 4.13. Let G,M be abelian groups. Let (βi)i∈I be a basis of the F2-vector
space G/2G. Let q ∈ Quad(G,M) be a polar quadratic form. Then it can be written
as

q(x) = t(x, x) + q(x)

(by Lemma 4.12) for t : G×G→M bilinear and q ∈ HomF2
(G/2G, 2M ). Define an

abelian 3-cocycle

h(x, y, z) := 0,

c(x, y) := t(x, y) +
∑

i∈I

xi · yi · q(βi),

where x, y are the vectors we get under the quotient map G։ G/2G, spelled out with
respect to the basis (βi). This means that xi, yi ∈ F2. Then the trace of (h, c) is just
the quadratic form q. That is, we have found a preimage under

H3
ab(G,M)

∼
−→ Quad(G,M). (4.6)

This preimage is independent of the choice of the basis (βi).
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Proof. (Step 1) Note that we can write the polarization of q as

b(x, y) = q(x+ y)− q(x)− q(y) = t(x, y) + t(y, x) (4.7)

for the bilinear form t : G×G→M in the statement of the theorem by Lemma 4.12.
Next, we check that (h, c) is an abelian 3-cocycle. Indeed, having h(x, y, z) = 0, Iden-
tity A and A’ simplify to the condition that c : G×G→M is supposed to be Z-
bilinear, so this is all we have to show. Since t is Z-bilinear, it suffices to prove that

c′(x, y) :=
∑

i∈I

xi · yi · q(βi)

is Z-bilinear. However, this is clear since each q(βi) ∈ 2M is a 2-torsion element; it
factors over G/2G×G/2G→ 2M , where it is a bilinear form on F2-vector spaces.

(Step 2) Now that we know that (h, c) is an abelian 3-cocycle, we need to check
that its trace is q. Let us denote its trace by Q, i.e. Q(x) := c(x, x). We obtain the
explicit formula

Q(x) = t(x, x) +
∑

i∈I

x2i · q(βi) = t(x, x) +
∑

i∈I

xi · q(βi),

where we exploit that the values of q lie in the F2-vector space 2M , and n2 ≡ n in
F2 for all integers. The polarization of Q is

B(x, y) = Q(x+ y)−Q(x)−Q(y) = t(x, y) + t(y, x) = b(x, y).

However, this is also the polarization of q, see Equation 4.7. Thus, by the exactness
of middle row in Lemma 4.10 we deduce that the quadratic form Q− q comes from
HomF2

(G/2G, 2M ). In particular, Q− q is a linear map on the F2-vector space G/2G.
In order to show that it is zero, it suffices to verify that it is zero on the basis vectors
βj with j ∈ I. We compute

(Q− q)(x) = t(x, x)− q(x) +
∑

i∈I

xi · (q(βi)− t(βi, βi) ) .

So for x := βj we have xi = δi=j (Kronecker delta) and thus

(Q− q)(βj) = t(βj , βj)− q(βj) + q(βj)− t(βj , βj) = 0.

As this also vanishes, Lemma 4.10 implies that Q− q is the zero quadratic form, i.e.
Q = q. Finally, our class (h, c) is independent of the choice of the basis (βi)i∈I since
by the Eilenberg–MacLane theorem (Theorem 3.8) the trace map in Equation 4.6 is
bijective.

Corollary 4.14. A quadratic form q is polar if and only if there exists a bilinear
form S : G×G→M such that q(x) = S(x, x).

Proof. If it is polar, then by Theorem 4.13 we have q(x) = c(x, x) and c is bilinear,
so we can take S(x, y) := c(x, y). The converse is immediate, see Example 4.2.

Theorem 4.15. A braided categorical group (C,⊗) is braided monoidal equivalent to
one which is simultaneously strictly associative and skeletal if and only if its quadratic
form is polar.
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Proof. We find a braided monoidal equivalence (C,⊗) ≃ T (G,M, (h, c)) forG := π0C,
M := π1C, and (h, c) ∈ H3

ab(G,M) by the properties of the functor T of Theorem 3.9.
Being skeletal, the triviality of the associator means that h(x, y, z) = 0 for all x, y, z,
Lemma 3.11. Using this, Identity A and A’ simplify to say that c : G×G→M is
bilinear. Let q(x) := c(x, x) be its trace, which is quadratic by Lemma 4.9. For the
polarization of q we compute

b(x, y) = c(x+ y, x+ y)− c(x, x)− c(y, y) = c(x, y) + c(y, x).

Thus, q is polar, because we may use t(x, y) := c(x, y) in Definition 4.1. Conversely,
suppose (h, c) under the Eilenberg–MacLane isomorphism of Equation 1.1 gets sent
to a polar quadratic form. Then we may apply Theorem 4.13 and it produces a
cohomologous abelian 3-cocycle representative of the shape (0, c′), so reversely by
Lemma 3.11 we get a braided monoidal equivalence

(C,⊗) ≃ T (G,M, (0, c′)),

from Theorem 3.9, but the right side is both skeletal and strictly associative.

Theorem 4.16. For every braided categorical group (C,⊗), there exists an essentially
surjective and faithful (but typically not full) braided monoidal functor from another
braided categorical group

(Ĉ,⊗) −→ (C,⊗), (4.8)

surjective on π0, and an isomorphism on π1, such that (Ĉ,⊗) is simultaneously strictly

associative and skeletal. We call (Ĉ,⊗) a polar cover of (C,⊗).

Proof. By the Joyal–Street classification (Theorem 3.9), there exists an equivalence

F : (C,⊗)
∼
→ T (π0C, π1C, (h, c))

for (h, c) an abelian 3-cocycle representing the relevant cohomology class. Let c : P ։

π0C be a surjective homomorphism from a free abelian group P (e.g., pick a projective
cover of π0C as a Z-module). We get a commutative square

P
c

q◦c

π0C
q

π1C π1C,

describing a morphism (P, π1C, q ◦ c)→ (π0C, π1C, q) in the category Quad of §3.2.
Note that q ◦ c is indeed again a quadratic form since c is Z-linear. As the functor T
of Theorem 3.9 is full and essentially surjective, and the skeletal categorical groups
T (−,−,−) are concrete representatives for the essential surjectivity, we obtain some
braided monoidal functor

G : T (P, π1C, (h
′, c′)) −→ T (π0C, π1C, (h, c)),

where (h′, c′) is an abelian 3-cocycle corresponding to the lifted quadratic form q ◦ c
under the Eilenberg–MacLane isomorphism of Equation 1.1. Next, by Lemma 4.11
since P is free abelian, the quadratic form q ◦ c is necessarily polar and thus has
a representative of the shape (0, c′′) within its cohomology class in H3

ab(P, π1C) by
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Theorem 4.13. Hence, we can pre-compose G with a braided monoidal equivalence

T (P, π1C, (0, c
′′))

∼
−→ T (P, π1C, (h

′, c′)) −→ T (π0C, π1C, (h, c))

and as explained in Lemma 3.11 the braided categorical group T (P, π1C, (0, c
′′)) is

both skeletal and strictly associative. Call it (Ĉ,⊗). Using the above composition
of functors, we get the braided monoidal functor of Equation 4.8; the surjection on
the level of π0 is the map c, and the isomorphy on the level of π1 is clear. As the
map on the level of π0 is surjective, the functor is essentially surjective. On the
level of morphisms only two things can happen: Morphisms are π1C if the objects
are isomorphic, or vacuous otherwise. It follows that the functor is faithful, but not
necessarily full since non-isomorphic objects may become isomorphic, namely when
two distinct elements of P map to the same element in π0C.

Appendix A. Strictifying the universal determinant

Finally, we explain a consequence of our results to Deligne’s universal determinant
functor of an exact category. Allowing ourselves an anachronistic interpretation, the
idea of the universal determinant functor is as follows:

Take the truncation of the K-theory spectrum K(C) of an exact category C to
its stable homotopy [0, 1]-type. We get a map K(C)→ τ61K(C) and using a stable
variant of Equation 3.1 (e.g., concretely [JO12] or [Pat12, §5]), the stable homotopy
[0, 1]-type τ61K(C) can be modelled as a Picard groupoid. Deligne has observed in his
paper [Del87, §4.2] that this map and the relevant Picard groupoid can equivalently
be described as the target of the universal determinant functor defined on the category
C, giving a formulation which is a priori independent of any algebraic K-theory. This
yields a connection to the far less homotopically defined determinant functors in terms
of top exterior powers of vector bundles, as they would occur in algebraic geometry
(e.g., the determinant line bundle on moduli spaces of vector bundles on curves, as
just one possible application).

Now, being a Picard groupoid, it already follows from the result of Johnson–Osorno
[JO12] that τ61K(C) can be made skeletal and strictly associative. In this appendix
we explain how to pin down the relevant symmetry constraint, using the formula
from our Theorem 4.13. It will also follow readily that besides the target, the entire
universal determinant functor can be strictified.

We have not found this fact recorded anywhere in the literature.
In detail: Suppose C is an exact category with a fixed zero object. Deligne con-

structs the Picard groupoid of virtual objects V (C): Let QC be the Quillen Q-
construction of C; see for example [Wei13, Chapter IV, §6] for a precise definition.
Write N•QC for its nerve. As QC has the same objects as C itself, the fixed zero
object pins down a 0-simplex of N•QC, rendering the latter a pointed simplicial set.

Set up a new category V (C)

1. whose objects are closed loops in the space N•QC around the base point, and

2. whose morphisms are based homotopy classes of homotopies between loops.

The composition of morphisms is defined as the composition of homotopies. The
associativity law for composition then holds (and only holds) because morphisms are
only taken modulo their based homotopy class.
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One checks that the above makes V (C) a groupoid. A monoidal structure on V (C),
i.e. a suitable bifunctor ⊗ : V (C)× V (C)→ V (C) is defined as the composition of
loops on the level of objects. This bifunctor can be promoted to a symmetric monoidal
structure. We refer to [Del87, §4.2] for further details.

In [Del87, §4.3] Deligne gives a second construction of V (C). He first sets up
the concept of a determinant functor. Given any exact category C, we write C

× for
the same category, except that we only keep isomorphisms as morphisms (this is
sometimes called the maximal inner groupoid or group core). This is a groupoid.

Definition A.1 ([Del87, §4.3]). Let C be an exact category and let (P,⊗) be a
Picard groupoid. A determinant functor on C is a functor D : C× → P along with the
following extra structure and axioms:

1. For any exact sequence Σ: G′ →֒ G։ G′′ in C, we are given an isomorphism

D(Σ): D(G)
∼
−→ D(G′)⊗

P

D(G′′)

in P. This isomorphism is required to be functorial in morphisms of exact
sequences.

2. For every zero object Z of C, we are given an isomorphism z : D(Z)
∼
→ 1P to

the unit object of the Picard groupoid.

3. Suppose f : G→ G′ is an isomorphism in C. We write

Σl : 0 →֒ G։ G′ and Σr : G →֒ G′
։ 0

for the depicted exact sequences. We demand that the composition

D(G)
∼
−→
D(Σl)

D(0)⊗
P

D(G′)
∼
−→
z⊗1

1P ⊗
P

D(G′)
∼
−→
P

D(G′) (A.1)

and the natural map D(f) : D(G)
∼
→ D(G′) agree. Further, require that D(f−1)

agrees with a variant of Equation A.1 using Σr instead of Σl.

4. If a two-step filtration G1 →֒ G2 →֒ G3 is given, we demand that the diagram

D(G3)
∼

∼

D(G1)⊗D(G3/G1)

∼

D(G2)⊗D(G3/G2) ∼
D(G1)⊗D(G2/G1)⊗D(G3/G2)

(A.2)

commutes.

5. Given objects G,G′ ∈ C consider the exact sequences

Σ1 : G →֒ G⊕G′
։ G′ and Σ2 : G

′ →֒ G⊕G′
։ G

with the natural inclusion and projection morphisms. Then the diagram

D(G⊕G′)
D(Σ1) D(Σ2)

D(G)⊗D(G′)
sG,G′

D(G′)⊗D(G)
(A.3)

commutes, where sG,G′ denotes the symmetry constraint of P.



316 OLIVER BRAUNLING

At the end of [Del87, §4.3] Deligne now considers the category det(C,P) of deter-
minant functors, i.e.

1. objects are determinant functors in the sense of the above definition, and

2. morphisms are natural transformations of determinant functors.

Details for this are spelled out in [Bre11, §2.3], especially a full description of a
morphism of determinant functors is [Bre11, Definition 2.5]. We also took over his
notation det(C,P) for this category.

Definition A.2. A determinant functor D : C× −→ P is called universal if for every
given Picard groupoid P

′ the functor

Hom⊗(P,P′) −→ det (C,P′) , ϕ 7→ ϕ ◦ D

is an equivalence of categories.

This is already in Deligne [Del87, §4.3], but perhaps a little more detailed in
[Bre11, §4.1]. Deligne then argues that a universal determinant functor exists and
can be constructed using V (C). To set it up, recall that the Q-construction category
QC has the same objects as C, and for every admissible monic (resp. epic) f in C,
there are arrows f! (resp. f

!) in QC; see for example [Qui73, §2] or [Sri96, Chapter 6].
Let 0 be the fixed zero object of C. We use the notation

0A! = (0 և 0 →֒ A) and 0!A = (0 և A →֒ A),

using the canonical arrows coming from the fact that 0 is both initial and final in C.
For every object X ∈ C one considers the diagram

0
0X
!

X 0
0!X

(A.4)

showing that (0A! )
−1 ◦ 0!A is a closed loop around the base point in the nerve of QC.

We denote it by [X]. We can now formulate Deligne’s fundamental result. Recall that
defining a morphism in V (C) can be done by pinning down a homotopy of loops.

Theorem A.3 (Deligne, [Del87, §4.4-4.5]). Let C be an exact category with a fixed
zero object 0. Then V (C) is a Picard groupoid. Define a functor D : C× → V (C) by

X 7→ [X]

on objects, i.e. the loop of Equation A.4. Isomorphisms ϕ : X → Y give rise to a
homotopy of loops

X

ϕ0

0X
!

0Y
!

0

0!X

0!YY

and this defines the functor on morphisms. To any exact sequence

Σ: A
α
→֒ B

β
։ C
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attach the homotopy D(Σ)

0
0B
!

0A
!

B 0

0!C

0!B

A α! Cβ!

0,0!A
0C
!

(A.5)

which are four 2-simplices giving a homotopy between the required loops. The dashed

arrow is (0 և A
α
→֒ B) in QC. Then D is a universal determinant functor.

Usually, although Definition A.2 is a little more subtle in its formulation, this
is (very reasonably) simply called the universal determinant functor. Next, we shall
apply the strictification methods of § 4 to Deligne’s constructions. First of all, V (C) is
a Picard groupoid, i.e. a braided categorical group whose braiding is symmetric. We
apply Joyal–Street’s skeletalization, giving a braided (symmetric) monoidal equiva-
lence

V (C)
∼
−→ T (π0V (C), π1V (C), (h, c)), (A.6)

where [(h, c)] is the abelian 3-cohomology class in H3
ab(π0V (C), π1V (C)) encoding the

braiding and associativity constraint. Since we have canonical isomorphisms

π0V (C) ∼= K0(C) and π1V (C) ∼= K1(C),

using that the virtual objects arise as the truncation of the K-theory spectrum to
its stable [0, 1]-type, we understand these groups. Moreover, since the braiding is
symmetric, this cocycle lies in the subgroup H3

sym ⊆ H
3
ab, as in Lemma 4.10.

It follows from the exact middle row in Lemma 4.10 that the polarization form
of the quadratic form q ∈ Quad(K0(C),K1(C)) is zero. In particular, q is polar; just
pick t(x, y) := 0 in Definition 4.1. Now apply Theorem 4.13. Let (βi)i∈I be a basis
of the F2-vector space K0(C)/2K0(C). We have q = q (in the notation of the cited
theorem) since t vanishes, so the symmetric 3-cocycle

h(x, y, z) := 0 c(x, y) :=
∑

i∈I

xi · yi · q(βi)

is a representative of the symmetric cohomology class of [(h, c)]. Without loss of
generality, we may assume that this is the representative we had started with. We next
compute the q(βi) in terms of the original exact category C. Returning to Lemma 4.10,
we see that q is an F2-linear mapK0(C)/2K0(C)→ 2K1(C) . AsK0(C) is the algebraic
group completion of the monoid of isomorphism classes of objects in C, all its elements
have the shape [X]− [Y ] with X,Y ∈ C objects. In particular, for each βi pick

βi = [X]− [Y ], (A.7)

where X,Y ∈ C are objects. We have q(βi) = q([X])− q([Y ]) since q is linear, and
q(x) = c(x, x), meaning that

q([X]) = sX,X : D(X)⊗D(X) −→ D(X)⊗D(X),

referring to the symmetry constraint of the virtual objects V (C). In order to compute
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this map sX,X , we can rely on

D(X ⊕X)
D(Σ1) D(Σ2)

D(X)⊗D(X)
sX,X

D(X)⊗D(X)

(which is Diagram A.3 in the special case of using the same object). The bottom
arrow is the one we need, but the upper arrows come from D(Σ1) resp. D(Σ2), still in
the notation loc. cit., which only differ by the swapping isomorphism in the middle
term of X →֒ X ⊕X ։ X, and the identity map on the two outer copies of X. In the
attached homotopies, as in Equation A.5, also all vertices agree, and all outer edges
agree, and only the three inner edges are different, because they differ exactly by the
swapping of the two copies of X. For any object X ∈ C, the swapping map

X ⊕X −→ X ⊕X, x1 ⊕ x2 7→ x2 ⊕ x1

is an automorphism, and thus functorially induces an automorphism of D(X ⊕X),
meaning a homotopy, and this homotopy agrees with the one of D(Σ2)

−1 ◦ D(Σ1). It
follows that sX,X ∈ K1(C) is just the automorphism attached to the swapping map
of X ⊕X.

This finishes describing T (π0V (C), π1V (C), (0, c)) in detail. Next, we make the
composition

detstrict : C× −→ V (C)
∼
−→ T (π0V (C), π1V (C), (h, c))

a determinant functor. It is already a functor, and is taking values in a skeletal and
strictly associative Picard groupoid. Explicitly:

Observation 1. The functor detstrict has the following properties:

1. on the level of objects, it sends X ∈ C to its K0-class [X] ∈ K0(C),

2. on the level of automorphisms ϕ : X → X, it sends ϕ to its K1-class [X,ϕ] ∈
K1(C).

Here we use that K0(C) has the well-known explicit description of being the free
abelian group on isomorphism classes of objects in C (and quotient out [X] = [X ′] +
[X ′′] whenever an exact sequence X ′ →֒ X ։ X ′′ exists); and that K1(C) contains
canonical elements attached to automorphisms of objects (see for example [Wei13,
Chapter IV, Exercise 8.7, or Example 9.6.2]). If C = Pf (R) is the category of finitely
generated projective modules over a ring R, the group K1 is actually generated by the
classes coming from such automorphisms (this can also be used to give a presentation
of the K1-group; there is a discussion of this in [Nen98]).

We do not get a good description of morphisms on all of C×, since isomorphisms
between different objects will be sent to the class of the automorphism gotten once
having pre- and post-composed the concrete choices of isomorphisms between the
objects of C and our choices tacitly made when picking a skeleton earlier, so this will
not admit a choice-free description. Certainly, if one only needs to do a computation
on finitely many objects, all this data can be chosen concretely and unravelled.

To promote detstrict : C× → T (π0V (C), π1V (C), (0, c)) to a genuine determinant
functor, it only remains to transport the datum D(Σ) attached to exact sequences Σ.
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However, given Σ: G′ →֒ G։ G′′ in C, then under the equivalence of Equation A.6
in the isomorphism

D(Σ): D(G)
∼
−→ D(G′)⊗

P

D(G′′)

both sides are the same because the Picard groupoid is skeletal. Thus, D(Σ) really
only defines an automorphism of an object after going all to T (π0V (C), π1V (C), (0, c)).
Such an automorphism is an element BΣ ∈ K1(C). Equation A.2 now translates to
the cocycle type identity

BG2 →֒G3։G3/G2
−BG1 →֒G3։G3/G1

+BG1 →֒G2։G2/G1
−BG2/G1 →֒G3/G1։G3/G2

= 0.

Observation 2. The functor detstrict is a universal determinant functor.

This holds because we constructed it from a universal one by symmetric monoidal
equivalence (Definition A.2). Summarizing, this shows that at least abstractly there
is a strict model for Deligne’s universal determinant functor. Of course, in concrete
terms, picking a genuine skeleton of V (C) can be hard or impossible, depending on C.
For C = Vectf (k) being finite-dimensional vector spaces over a field, it can be done.
Just sketching this, for each n ∈ K0(k) = Z pick the object X := kn if n > 0 and k−n

for n < 1, along with the standard basis. Then for an arbitrary finite-dimensional
vector space picking a basis amounts to making the isomorphism to some kn explicit.
The symmetry constraint can be computed using Equation A.7. One gets the standard
Koszul type sign of the determinant line by observing that the matrix of the swapping
map goes to +1 or −1 in K1, depending on the rank (see [Wei13, Chapter III,
Example 1.2.1]). Finally, working out the BΣ ∈ K1(C) yields exactly the well-known
rules for the top exterior power of the usual graded determinant line (restricted to
this skeleton).
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