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SO, WHAT IS A DERIVED FUNCTOR?

VLADIMIR HINICH

(communicated by Emily Riehl)

Abstract
We rethink the notion of derived functor in terms of corre-

spondences, that is, functors E → [1]. While derived functors in
our sense, when they exist, are given by Kan extensions, their
existence is a strictly stronger property than the existence of
Kan extensions. We show, however, that derived functors exist
in the cases one expects them to exist. Our definition is espe-
cially convenient for the description of a passage from an adjoint
pair (F,G) of functors to a derived adjoint pair (LF,RG). In
particular, canonicity of such a passage is immediate in our
approach. Our approach makes perfect sense in the context of
∞-categories.

1. Introduction

This is a new rap on the oldest of stories –
Functors on abelian categories.
If the functor is left exact
You can derive it and that’s a fact.
But first you must have enough injective
Objects in the category to stay active.
If that’s the case no time to lose;
Resolve injectively any way you choose.
Apply the functor and don’t be sore –
The sequence ain’t exact no more.
Here comes the part that is the most fun, Sir,
Take homology to get the answer.
On resolution it don’t depend:
All are chain homotopy equivalent.
Hey, Mama, when your algebra shows a gap
Go over this Derived Functor Rap.

P. Bressler, Derived Functor Rap, 1988
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1.0. Advertisement
Our approach to derived functors can be explained in one sentence.

In the language of cocartesian fibrations over [1], calculation of a left derived
functor becomes a localization.

This sentence is, actually, a recipe:

• Convert a functor f : C → D into a cocartesian fibration p : E → [1].

• Localize E.

• If the localization E′ of E remains a cocartesian fibration over [1], we say that
f has a left derived functor; this is the functor classifying E′.

One similarly treats the right derived functors as well as the derived functors of
an adjoint pair of functors.

In this paper we argue that this approach leads to a very good notion of derived
functor. We show that, given an adjoint pair of functors, their respective derived
functors, if they exist, are automatically adjoint. We also show that the derived
functors defined in this way behave nicely in families, as explained in Subsection 1.4.1
below.

1.1. A bit of history
The prehistoric understanding of derived functors, based on the existence of reso-

lutions, is beautifully described in the epigraph. While this description makes perfect
sense, it cannot possibly serve as a definition; it is merely a construction.

A historic period starts with the reformulation of derived functors in terms of local-
ization of categories, performed by Grothendieck and Verdier in the abelian setting,
and by Quillen in topology. It was first documented in Hartshorne’s notes [RD]. The
idea of this approach is that, in order to make sense of arbitrary choices of resolu-
tions, one has to construct a category where an object of an abelian category and
its resolution become isomorphic; this is the derived category, and it is constructed
by localizing the category of complexes. A similar idea led Quillen [Q.HA] to define
model categories and their localizations, homotopy categories.

Using the language of localization, derived functors are defined by a universal
property: according to Hartshorne [RD, 1.5], and Quillen [Q.HA, 4.1], a left derived
functor can be defined as (what is nowadays called) the right Kan extension, whereas
a right derived functor can be defined as the left Kan extension.

A similar approach is used for defining derived functors in the context of ∞-cat-
egories, see Cisinski [C].

Another definition of derived functor was suggested by Deligne in his report
on étale cohomology with proper support, see [D], in the context of triangulated
categories. The value of a left derived functor, according to Deligne, is a pro-object
of the respective localization. If the values of a derived functor so defined are corep-
resentable, then the derived functor is a right Kan extension of the original functor.
However, the existence of a right Kan extension does not seem to imply corepre-
sentability of Deligne’s derived functor.
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1.2.

The definition of derived functors via Kan extensions is not, in our opinion, fully
satisfactory. Here is one of the problems. The functors one has to derive often come
in pairs.1 And, given an adjoint pair of functors, one expects them to give rise to
an adjoint pair of derived functors. Each separate derived functor has a universal
description as a Kan extension; but an adjoint pair is not just a pair of functors: to
define an adjunction one also needs to specify a unit or a counit of the adjunction.
This cannot be deduced in general from the description of derived functors as Kan
extensions.

1.3. Summary

In Section 2.3 we define, following the recipe explained in 1.0, left and right derived
functors. Our definition immediately implies that, for f left adjoint to g, if Lf and
Rg exist, they are automatically adjoint.

In Section 3 we describe the category of correspondences and its full subcategory
of cocartesian correspondences.

The main results are proven in Section 4.

They include:

Corollary 4.2 saying that the left derived functor, in the sense of Definition 2.1, if
it exists, is a right Kan extension.

A sufficient condition for existence of left (right) derived functors, including the
case of left (right) Quillen functors.

In Section 4.2 we study the properties of diagrams of derived functors. The details
are explained in Subsection 1.4.1 below.

In Section 4.3 we show that Deligne’s definition of derived functors, given in [D],
is a special case of our definition.

In Section 4.4 we show that, if f ′ : C′ → D′ is ∞-categorical derived functor, pas-
sage to the respective homotopy categories defines a derived functor with respect to
conventional localizations.

1.4. Remarks
1. The derived functors defined by Deligne are known to automatically preserve

adjunction, see Keller’s [K, 13.6].

2. In 2007 George Maltsiniotis [Mal] made a beautiful observation: if Kan exten-
sions Lf and Rg of an adjoint pair of functors (f, g) are absolute, Lf and Rg
acquire an automatic adjunction. The same holds for an adjunction of infinity
categories, see [C]. In particular, Quillen’s adjunction leads to absolute Kan
extensions, so the derived functors between the infinity categories underlying a
Quillen pair, are automatically adjoint. Derived functors in the sense of Defini-
tion 2.1 are, actually, absolute.
We are not sure, however, that defining derived functors as absolute Kan exten-
sions would yield a notion preserving diagrams of derived functors as in Sub-
section 1.4.1 below.

1adjoint pairs.
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1.4.1. Diagrams of derived functors

It is known that the derived functor of a composition is not necessarily a composition
of derived functors; it turns out, however, that this is the only obstacle to functoriality
of the passage to derived functors; in Section 4.2 we prove that, given a (∞-)functor
F : B → Cat and an appropriate collection of (∞-)subcategoriesWb ⊂ F (b), b ∈ B, so
that for any arrow a : b → b′ in B the derived functor of F (a) exists, and is compatible
with compositions, then the family of derived functors LF (a) “glue” to a functor
LF : B → Cat carrying b ∈ B to the localization F (b)′ of F (b) with respect to Wb,
and any arrow a : b → b′ to LF (a) : F (b)′ → F (b′)′.

We expect this property will be useful in studying higher descent in style of [HS]
and [Me].
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2. Left and right derived functors

We will now present our definition of derived functors and formulate the main
results.

In what follows the word “category” means infinity category, and “conventional
category” means a category in the conventional sense. Our way of dealing with infinity
categories is model-independent in the following sense. We work in the (infinity)
category of (infinity) categories Cat. All properties of categories or of morphisms
in categories we use are invariant under equivalences. In particular, all limits and
colimits in this paper are in the sense of infinity categories. Since Quillen equivalence
of model categories gives rise to equivalent infinity categories, and all existing models
for infinity categories are Quillen equivalent to each other, we can use existing results
proven in specific models to claim properties of our “model-independent” Cat. See
more details about this approach in [H.EY, Section 2].

2.1.

A functor f : C → D can be converted, via the Grothendieck construction, to a
cocartesian fibration p : E → [1].

One has E = (C× [1]) ⊔C D, with the map C → D given by f , see [H.lec, 9.8]. Here
is a description of E for conventional categories:

• Ob(E) = Ob(C) ⊔Ob(D).
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• HomE(x, y) =


HomC(x, y), x, y ∈ C,

HomD(x, y), x, y ∈ D,

HomD(f(x), y), x ∈ C, y ∈ D,

∅, x ∈ D, y ∈ C.

The cocartesian fibration classified by the functor f : C → D will be denoted
pf : Ef → [1].

2.2.
Similarly, a functor f : C → D can be converted to a cartesian fibration qf : Ff → [1]

given by the formula Ff = D ⊔C (C× [1]). Its fibers at 0 and 1 are D and C respec-
tively.

2.3. Derived functors
2.3.1. Localization
Recall that the localization of a category C with respect to a subcategory W (we
assume M contains the maximal subspace Ceq of C) is defined by a universal property:
the functor C → C[W−1] is an initial object among functors carrying W to equiva-
lences. Localization is functorial in the following sense. Define Cat+ to be the category
of marked categories, that is pairs (C,C◦) where C◦ is a subcategory of C containing
Ceq . Then localization defines a functor L : Cat+ → Cat left adjoint to the functor2

C 7→ (C,Ceq).

2.3.2.
Let f : C → D be a functor. Let qC : C → C′ and qD : D → D′ be localizations3 defined
by subcategories WC and WD of C and D respectively. Denote by E′f the localization
of Ef with respect to WC ∪WD.

Definition 2.1. If E′f is a cocartesian fibration over [1], we define a left derived
functor Lf : C′ → D′ as the functor classifying the cocartesian fibration E′f .

Right derived functors are defined similarly. Denote by F′f the localization of the
cartesian fibration Ff with respect to WC ∪WD.

Definition 2.2. If F′f is a cartesian fibration over [1], we define a right derived functor
Rf : C′ → D′ as the functor classifying the cartesian fibration F′f → [1].

We will discuss in Section 4 the existence of derived functors defined in Defini-
tions 2.1 and 2.2 and compatibility of these notions with the known ones.

The application to deriving adjunction is immediate.

Proposition 2.3. Let f : C−→←−D : g be an adjoint pair of functors. Let q : C → C′ and
q : D → D′ be localizations. Assume that the derived functors Lf and Rg exist. Then
they form an adjoint pair.

In fact, Ef = Fg and so E′f = F′g.

2This is the most general notion of localization in infinity categories. We called it Dwyer-Kan local-
ization, see [H.L], in order to stress the origin of this notion.
3Without loss of generality we can think that D = D′.
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3. Correspondences and Kan extension

The key to understanding derived functors lies in the category of correspondences
Cor and its full subcategory Corcoc of cocartesian correspondences.

3.1. Correspondences
Recall that a correspondence from C to D is given by a functor C×Dop → S, where

S is the category of spaces. Equivalently, a correspondence can be defined as a functor
D → P (C) to presheaves of C, or, vice versa, as a functor Cop → P (Dop).

Equivalently, a correspondence from C to D can be encoded into a functor p : E →
[1], together with the equivalences C

∼→ E0, D
∼→ E1, see [L.T, 2.3.1.3] and [H.L,

9.10]. A detailed proof of this fact (in a greater generality) can be found in [H.EY,
Section 8].

We define Cor = Cat/[1] the category of correspondences and Corcoc its full sub-
category spanned by cocartesian fibrations over [1]. Note that arrows in Corcoc do
not necessarily preserve cocartesian arrows.

3.1.1.
The map {0} ⊔ {1} → [1] defines, by the base change, a functor ∂ = (∂0, ∂1) : Cor →
Cat× Cat. Correspondences can be composed: if X,Y ∈ Cor and D := ∂1(X)= ∂0(Y ),
the composition Y ◦X is defined as follows. The category Z := X ⊔D Y is endowed
with a map to [2]; one defines Y ◦X as the base change of Z with respect to
δ1 : [1] → [2].

We denote by the same letter the restriction of ∂ to Corcoc ; the fiber at (C,D)
is denoted by CorcocC,D. The assignment (C,D) 7→ CorcocC,D is covariant in D and con-
travariant in C. In fact, a map f : C → C′ defines a functor f∗ : CorcocC′,D → CorcocC,D car-
rying X ∈ CorcocC′,D to the composition X ◦ Ef . Similarly, g : D → D′ defines a functor
g∗ : Cor

coc
C,D → CorcocC,D′ carrying X ∈ CorcocC,cD to the composition Eg ◦X. Actually, the

map ∂ : Corcoc → Cat× Cat is a bifibration in the sense of [H.EY, 2.2.6]; the proof
is given in Subsection 3.1.3 below, after a reminder of the relevant notions.

3.1.2. Bifibrations. Lax bifibrations
Let p : X → B × C be a functor. We denote by pB and pC its compositions with the
projections to B and C, and Xb,c (resp., Xb• or X•c) the fiber of p at (b, c) (resp, the
fiber of pb at b or the fiber of pC at c).

Definition 3.1. The functor p : X → B × C is called a lax bifibration if

(1) pB is a cartesian fibration and pC is a cocartesian fibration.

(2) p is a morphism of cartesian fibrations over B, as well as of cocartesian fibrations
over C.

If p : X → B × C is a lax bifibration, the restriction pC : Xb• → C is a cocartesian
fibration and pB : X•c → B is a cartesian fibration.

Lemma 3.2. The following conditions on p are equivalent:

(1) pC is a cocartesian fibration, p is a map of cocartesian fibrations over C, and
for any c ∈ C the restriction of pB to X•c is a cartesian fibration.
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(2) pB is a cartesian fibration, p is a map of cartesian fibrations over B, and for
any b ∈ B the restriction of pC to Xb• is a cocartesian fibration.

(3) p is a lax bifibration.

Proof. Let us show that (1) implies (2).
In the formulas below we use the following notation. Given p : X → B × C, x, y ∈

X and f : p(x) → p(y), we denote Mapf (x, y) the fiber of the map MapX(x, y) →
MapB×C(p(x), p(y)) at f ; we denote x → f!(x) the cocartesian lifting of f , and
f !(y) → y the cartesian lifting of f (if it exists).

For arrows β : b → b′ in B and γ : c → c′ in C, and for x ∈ Xb,c and y ∈ Xb′,c′

one has Map(β,γ)(x, y) = Map(β,c
′)(γ!x, y) = Map(b,c

′)(γ!x, β
!y). This formula imme-

diately implies that the map β!(y) → y is locally pB-cartesian. Since composition of
such arrows has the same form, pB is a cartesian fibration. The rest of the properties,
as well as the opposite implication, are clear.

A lax bifibration can be described as a functor Bop → Cat/C carrying each object
of Bop to a cocartesian fibration over C, or, equivalently, as a functor C → Cat/B
carrying each object of C to a cartesian fibration over B.

Lemma 3.3. Let p : X → B × C be a lax bifibration. Then

• p[1] : X [1] → B[1] × C [1] is also a lax bifibration.

• The fiber X
[1]
β,γ of p[1], with β : b → b′ and γ : c → c′ arrows in B and C, is

naturally equivalent to the fiber product

Xb,c ×Xb,c′ X
[1]
b,c′ ×Xb,c′ Xb′,c′ . (1)

Proof. The functor Fun([1], ) is well known to preserve cartesian and cocartesian
fibrations, see, for instance, [H.lec, 9.6.3]. This implies the first claim of the lemma.

The fiber X
[1]
β,γ is the category of sections FunB×C([1], X), with [1] → B × C given

by (β, γ). Recall that, for a cocartesian fibration p : E → [1] classified by a functor
E0 → E1, Ei = p−1(i) for i = 0, 1, the category of sections is described by the formula

Fun[1]([1], E) = E0 ×E1
E

[1]
1 , (2)

see, for instance, [H.lec, 9.8.5]. We get the formula (1) for lax bifibrations by applying
the formula (2) (and a similar formula for cartesian fibrations) twice. First of all, since
pB is a cartesian fibration, we get

X
[1]
β• = X

[1]
b• ×Xb• Xb′•. (3)

The category X
[1]
β,γ that we wish to describe is the fiber at γ of (3), so that

X
[1]
β,γ = X

[1]
b,γ ×Xb,c′ Xb′,c′ .

Finally, since the restriction of pC to Xb• is a cocartesian fibration, one gets

X
[1]
b,γ = Xb,c ×Xb,c′ X

[1]
b,c′ .

This proves the lemma.

Definition 3.4. A map p : X → B × C is called a bifibration if it is a lax bifibration
and the following equivalent extra conditions are fulfilled:
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• For any β : b → b′ the functor β! : Xb′• → Xb• preserves pC-cocartesian arrows.

• For any γ : c → c′ the functor γ! : X•c → X•c′ preserves pB-cartesian arrows.

Thus, a bifibration p : X → B × C is classified by a functor Bop × C → Cat.

3.1.3.

Let us calculate Map(Ef ,Ef ′) for f : C → D and f ′ : C′ → D′. We have Ef = (C×
[1]) ⊔C D, so the result can be calculated as a fiber product. We have

Map(C× [1],Ef ′) = Map(C,Fun[1]([1],Ef ′)) = Map(C,C′ ×D′ D′
[1]
),

see the formula (2). Therefore,

Map(Ef ,Ef ′) = Map(C,C′)×Map(C,D′) Map(C,D′
[1]
)×Map(C,D′) Map(D,D′). (4)

The formula (4) shows that, for any f : C → C′, g : D → D′ and X ∈ CorcocC′,D, the
morphismX ◦ Ef → X is a cartesian lifting of f , whereasX → Eg ◦X is a cocartesian
lifting of g. This proves the following.

Lemma 3.5. The map ∂ : Corcoc → Cat× Cat is a bifibration.

3.2. Kan extensions

Let f : C → D be a functor. A right extension of f with respect to q : C → C′ is a
functor f ′ : C′ → D, endowed with a morphism of functors θ : f ′ ◦ q → f . A right Kan
extension is, by definition, a terminal object in the category of right extensions, see
[L.T, 4.3.3] for the version for quasicategories.

The category REq(f) is defined, therefore, as the fiber product

REq(f) = Fun(C′,D)×Fun(C,D) Fun(C,D
[1])×Fun(C,D) {f},

where the map Fun(C′,D) → Fun(C,D) is given by composition with q.

Definition 3.6. A right Kan extension of f : C → D with respect to q : C → C′ is a
terminal object in REq(f).

3.2.1.

Fix f : C → D. Let ∂f : Cor
coc
f/ → CatC/ × CatD/ be induced by ∂ : Corcoc → Cat×

Cat. Denote (Corcoc/f )q the fiber of ∂f at (q, idD).

In Section 3.3 below we prove the following.

Proposition 3.7. One has a natural equivalence REq(f)
op = (Corcocf/ )q.

This allows one to redefine a right Kan extension of f : C → D with respect to
q : C → C′ as the initial object in (Corcocf/ )q.

In other words, a right extension of f along q is an arrow θ : Ef → Ef ′ in Corcoc ,
with ∂0(θ) = q, ∂1(θ) = idD.

A right Kan extension is an initial object in the category of such θ’s.



SO, WHAT IS A DERIVED FUNCTOR? 287

3.3. Construction of equivalence
We will now identify the bifibration Corcoc given by a functor Catop × Cat → Cat

carrying (C,D) to CorcocC,D, with the opposite to the internal Hom in Cat.

Lemma 3.8. There is an equivalence

Fun(C,D)op = CorcocC,D,

functorial in C, D.

To deduce Proposition 3.2.1, we apply Lemma 3.3 to Corcoc and the arrow [1] →
Cat× Cat given by the pair (q, idD).

Proof of Lemma 3.8. Recall an important way of presentation of categories going
back to Rezk’s CSS model structure for ∞-categories.

The embedding ∆ → Cat defines a functor N : Cat → P (∆) = Fun(∆op, S) assign-
ing to a category C its “Rezk nerve”, a simplicial space carrying [n] to Map([n],C).
The functor N is fully faithful; its image consists of simplicial spaces that are Segal
and complete. Moreover, this embedding has a left adjoint L : Fun(∆op, S) → Cat

which is a localization.4

Let us describe the simplicial space N(Fun(C,D)). One has

Map([n],Fun(C,D)) = Map[n](C× [n],D× [n]).

Lemma 3.2, (1), shows that this is the space of lax bifibrations p : X → [n]× [1]
satisfying the conditions

X•0 = [n]× C and X•1 = [n]×D. (5)

Let us now describe N(CorcocC,D). We use the cartesian version of the Grothendieck
construction and Lemma 3.2, (2), to describe Map([n], CorcocC,D) as the space of lax
bifibrations p : X → [n]op × [1] satisfying the conditions (5). Using the canonical iso-
morphism [n] = [n]op, we get the required equivalence.

4. Main results

The results listed below are mostly direct consequences of the constructions of
Section 3.

Lemma 4.1. Let f : C → D be as above, and let qC : C → C′ and qD : D → D′ be
localizations. Let E′f be the localization of Ef described in Section 2.3 and let θ : Ef →
Ef ′ be a right extension of qD ◦ f along qC. Then θ uniquely factors through E′f .

We denote the unique map E′f → Ef ′ as θ′.

Corollary 4.2. Let f : C → D admit a left derived functor Lf . Then the canonical
equivalence E′f → ELf presents ELf as a right Kan extension of qD ◦ f along qC.

That is, our left derived functors are right Kan extensions, and right derived func-
tors are left Kan extension.5 Note that our derived functors may not exist, even when
Kan extensions exist. Note also, that

4A localization having fully faithful right adjoint is called a Bousfield localization.
5It is very easy to see that they are actually absolute Kan extensions.
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Proposition 4.3. Let f : C → D be a functor, let WC and WD be subcategories of C
and D respectively, and let f(WC) ⊂ WD. Then the composition q ◦ f : C → D′ factors
uniquely through a functor f ′ : C′ → D′ which is both a left and right derived functor
of f .

Proof. We have to verify that the canonical map θ′ : E′f → Ef ′ is an equivalence. By
universality of localization,

E′f = C′ ⊔C (C× [1]) ⊔C D′,

with the map C → D′ given by a composition q ◦ f . We will show that the natural map
from the expression above to Ef ′ = (C′ × [1]) ⊔C′

D′ is an equivalence. It is enough,
for any X, to prove that the induced map

Fun(Ef ′ ,X) → Fun(E′f ,X)

is an equivalence. It is easy to see that, by universality of localization, both identify
with the full subcategory of Fun(Ef ,X) spanned by the functors carrying WC and
WD to equivalences in X.

4.1. Existence
We will now prove that derived functors exist reasonably often.
Keeping the previous notation, let now i : C0 → C be a functor. We define W0 =

i−1(WC) and we assume that the composition f ◦ i : C0 → D preserves weak equiva-
lences. The commutative diagram

C0
f◦i //

i ��

D

id��
C

f // D

gives rise to a map α : Ef◦i→Ef in Cor, and, after localization, to a map α′ : E′f◦i→E′f .

Proposition 4.4. Let f : C → D, WC and WD be as above. Assume there exists a
functor i : C0 → C satisfying the following properties:

• The composition f ◦ i : C0 → D preserves weak equivalences.

• The map i induces an equivalence i′ : C′0 → C′.

• A right Kan extension of qD ◦ f along qC exists. It is given by a map θ : Ef →
Ef ′ , where f ′ : C′ → D′, such that the composition θ′ ◦ α′ : E′f◦i → E′f → Ef ′ is
an equivalence.

Then the left derived functor Lf exists (and can be calculated as (f ◦ i)′ ◦ i′−1).
Proof. We have to verify that the canonical map θ′ : E′f → Ef ′ obtained by the local-
ization of the right Kan extension θ : Ef → Ef ′ , is an equivalence. Since θ′ ◦ α′ is an
equivalence, its inverse, composed with α′ : E′f◦i → E′f , yields a map Ef ′ → E′f in the
opposite direction.

Both compositions are equivalent to the identity as Ef ′ is universal in (Corcocf/ )q
and E′f is universal in (Corf/)q := Corf/ ×CatC/×CatD/

{(q, idD)}.

Let now f : C → D be a functor between model categories. Applying Proposi-
tion 4.4 to C0, the subcategory of fibrant (resp., cofibrant) objects in C, we get the
following.
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Corollary 4.5. Left (resp., right) Quillen functors admit a left (resp., right) derived
functor in the sense of Definition 2.1 (resp., Definition 2.2).

4.2. Functoriality
4.2.1. Flat fibrations
Recall that a functor p : E → [2] is called a flat fibration if the natural map

E{0,1} ⊔E1 E{1,2} → E

where Ei, resp., E{i,j}, are defined by base change of E with respect to {i} → [2], resp.,
{i, j} → [2], is an equivalence. More generally, a map p : E → B is a flat fibration if
any base change of p with respect to [2] → B is flat in the above sense. An important
property of flat fibrations, see [L.HA, B.4.5], says that, if E → B is flat, the base
change functor Cat/B → Cat/E preserves colimits.

4.2.2.
A derived functor of a composition is not, in general, the composition of derived func-
tors. It is interesting to see what is going on here, in terms of correspondences. A com-
posable pair of functors f : E0 → E1, g : E1 → E2 is given by a cocartesian fibration
p : E → [2]. Given a subcategory W ⊂ E over [2]eq = {0} ∪ {1} ∪ {2}, the localization
E′ is flat over [2], as the universal property of localization gives the presentation

E′ = E′0 ⊔E0 E{0,1} ⊔E1 E′1 ⊔E1 E{1,2} ⊔E2 E′2,

as well as presentations

E′0,1 = E′0 ⊔E0 E{0,1} ⊔E1 E′1 and E′1,2 = E′1 ⊔E1 E{1,2} ⊔E2 E′2.

If Lf and Lg exist, E′ is therefore a cocartesian fibration, that is, it is classified by
the pair of functors Lf , Lg.

The base change of the localization map E → E′ with respect to δ1 : [1] → [2] yields
a map

Eg◦f → ELg◦Lf ,

which induces a map

E′g◦f → ELg◦Lf . (6)

This map is not necessarily an equivalence.6

If the canonical map (6) is an equivalence, the left derived functor of g ◦ f is defined
and Lg ◦ Lf = L(g ◦ f).

4.2.3. Deriving a family of functors
Given a functor F : B → Cat, we can convert it into a cocartesian fibration p : E → B.
Given a subcategory W in p−1(Beq), we can define p′ : E′ → B as the localization of
E with respect to W .

Definition 4.6. We say that the functor F is left derivable with respect to W if

• p′ : E′ → B is a cocartesian fibration.

6Thus, the localization does not always commute with the base change.
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• For each a : [1] → B the base change of E → E′ with respect to a remains a
localization.

Thus, a derivable functor F : B → Cat gives rise to a new functor F ′ : B → Cat

defined by the formulas

F ′(b) = F (b)′, F ′(α) = LF (α).

It is obvious that, when F : B → Cat is left derivable, one has an equivalence

LF (γ)
∼→ LF (β) ◦ LF (α)

for any commutative triangle with edges α, β and γ = β ◦ α in B. The following result
shows that the converse is also true.

Proposition 4.7. Let p : E → B be a cocartesian fibration classified by a functor
F : B → Cat. Let W be a subcategory of p−1(Beq). Assume that

1. For any a : [1] → B the composition F ◦ a : [1] → Cat defines a functor having
a left derived functor with respect to W .

2. For any b : [2] → B with edges α, β and γ = β ◦ α, the natural map

LF (γ)
∼→ LF (β) ◦ LF (α)

is an equivalence.

Then F is left derivable with respect to W .

Proof. The proof will proceed as follows. First of all, we will verify the claim for
B = [n]. Then we will deduce it for a general B, using a presentation of B as a
colimit.

The claim is vacuous for B = [0], [1]. Let us verify it for B = [n]. The maps
s : [1] → [n] and t : [n− 1] → [n] given by the formulas s(0) = 0, s(1) = 1, t(i) =
i+ 1, are flat. E′ is obtained by localizing E with respect to W = ⊔Wi where Wi ⊂
Ei = p−1({i}), i ∈ [n]. This allows one to present E′ as a colimit of the diagram

⊔iEi

''OO
OOO

O

xxrrr
rrr

E ⊔iE
′
i.

The base change with respect to flat s and t preserves colimits. We deduce that, by
induction, p′ : E′ → [n] is a cocartesian fibration.

Now, given c : [1] → [n], we have to verify that the base change of E → E′ with
respect to c, Ec → E′c, is a localization. By induction, it is sufficient to assume that
c(0) = 0, c(1) = n. Look at the commutative triangle γ = β ◦ α in [n] with γ : 0 →
n, α : 0 → 1 and β : 1 → n. We denote by a : [1] → [n] and b : [1] → [n] the maps
corresponding to α and β.

By induction we can assume that Ea → E′a and Eb → E′b are localizations, which
gives, by Condition 2 applied to the commutative triangle γ = β ◦ α, that Ec → E′c is
a localization.

We now treat the case of arbitrary B. Recall that the Grothendieck construc-
tion provides a canonical identification between the category of cocartesian fibra-
tions Coc(B) over B and the category of functors Fun(B, Cat). This implies that,



SO, WHAT IS A DERIVED FUNCTOR? 291

for B = colimBi, one has an equivalence η : Coc(B) → lim Coc(Bi). The map η is
defined by the compatible collection of base change maps Coc(B) → Coc(Bi) for each
Bi → B. Let us describe a quasi-inverse map θ : lim Coc(Bi) → Coc(B). Given a com-
patible collection of cocartesian fibrations Ei → Bi, it assigns a cocartesian fibration
p : E → B endowed with a compatible collection of equivalences Ei → Bi ×B E. Since
p : E → B is flat, the fiber product ×BE preserves colimits, so the collection of maps
Ei → E is a colimit diagram. Thus, θ({Ei}) = colimEi.

Thus, given a compatible collection of cocartesian fibrations pi : Ei → Bi, one has
Ei = E×B Bi where B = colimBi and E = colimEi.

Let now ∆/B denote the full subcategory of Cat/B spanned by the arrows [n] → B.
Denote by π : ∆/B → Cat the functor carrying a : [n] → B to [n] ∈ Cat. It is standard7

that B = colim(π).

Therefore, the functor ρ : ∆/B → Cat, carrying a : [n] → B to Ea = [n]×B E, has
the colimit E = colim(ρ). Recall that E has a marking defined by the subcategory
W ⊂ p−1(Beq). The arrows in ∆/B preserve the markings, so ρ is actually a functor
from ∆/B to Cat+, the category of marked categories, see Subsection 2.3.1. We denote
by ρ′ : ∆/B → Cat the composition of ρ with the localization L : Cat+ → Cat. Since
localization commutes with colimits, we have colim(ρ′) = E′. This implies that for
any a : [n] → B the localization of Ea = [n]×B E is E′a = [n]×B E′.

4.2.4. Deriving a family of adjoint pairs of functors

A family of adjoint pairs of functors is just a functor F : B → Cat such that, for each
arrow α : b → b′ in B, the functor F (α) has a right adjoint. Equivalently, this means
that the corresponding cocartesian fibration p : E → B is also a cartesian fibration.

For W ⊂ p−1(Beq) let p′ : E′ → B be obtained by localizing p : E → B with respect
to W .

Proposition 4.7 implies the following.

Corollary 4.8. Let, in the notation of Proposition 4.7, p : E → B be a cartesian and
cocartesian fibration. Assume as well that, apart of conditions of Proposition 4.7, for
each a : [1] → B the base change E×B [1] has a cartesian and cocartesian localization.
Then p′ : E′ → B is also a cartesian cocartesian localization(and therefore defines a
family of derived adjoint pairs of functors).

4.3. Deligne’s definition

Let f : C → D be a functor between conventional categories, and let W be a multi-
plicative system in C satisfying the right calculus of fractions in the sense of Gabriel–
Zisman [GZ, Section 2].

According to Deligne’s approach [D, Definition 1.2.1],8 the left derived functor Lf
is constructed as follows.

7Cat is a full subcategory of P (∆) and B = colim(π) where the colimit is calculated in P (∆). To
calculate the colimit in Cat, one has to make a complete Segal replacement, which is not needed
since B is already complete and Segal simplicial space.
8Deligne formulates this notion for triangulated categories.
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For x ∈ C denote Lx the category of arrows s : x′ → x in C belonging to W . Define
a functor

f ′ : Cop ×D → Set

by the formula

(x, y) 7→ colim{ϕx,y : L
op
x → Set},

where ϕx,y(s : x
′ → x) = HomD(f(x′), y). The functor f ′ defines a correspondence

from C to D which we denote EDel .
The left derived functor Lf is defined whenever EDel is a cocartesian fibration.
In this case EDel defines a functor C → D carrying W to isomorphisms, and so

having a unique factorization through the localization C′ of C.
Let Ef be the cocartesian fibration classified by the functor f . One has an obvious

map Ef → EDel in Cor. Let E′f be the localization of E with respect to W . One has

a map δ : EDel → E′f defined by the compatible collection of maps HomD(f(x′), y) →
HomE′

f
(x, y) carrying α : f(x′) → y to the composition

x
s−1

// x′
α // y

in E′f . The functor δ induces a functor δ′ : (EDel)′ → E′f from the localization of EDel

with respect to W , to E′f . This map is fully faithful, as (Ef ,W ) satisfies the right
calculus of fractions. Therefore, Deligne’s definition of derived functor, in case W
satisfies a calculus of fractions, coincides with the one defined in Definition 2.1.

4.4. ∞-localization versus conventional localization
Our definition of derived functor makes sense in both contexts, as we only use

the universal property of localizations. Moreover, if a derived functor exists in the
infinity setting, its conventional truncation gives a derived functor in the conventional
setting.

Proposition 4.9. Let f : C → D be a functor between conventional categories. Let
C′ and D′ be their ∞-localizations, and Ho(C),Ho(D) their conventional truncations
obtained by applying the functor π0 to all function spaces. Assume f ′ : C′ → D′ is a
left derived functor of f in the sense of Definition 2.1. Then the induced conventional
functor Ho(f ′) : Ho(C′) → Ho(D′) is a left derived functor in the conventional setting.

The claim immediately follows from the following observation.

Lemma 4.10. Let f : C → D be a functor, and let p : Ef → [1] be the correspond-
ing cocartesian fibration. Then the induced map Ho(p) : Ho(E) → [1] is a cocartesian
fibration classified by the functor Ho(f) : Ho(C) → Ho(D).

Proof. The commutative square

C
f //

��

D

��
Ho(C)

Ho(f) // Ho(D)

induces a map Ef → EHo(f) in Coc([1]). The map Ho(Ef ) → [1] is a cocartesian fibra-
tion as the image in Ho(Ef ) of any cocartesian arrow in Ef is cocartesian. Therefore,
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a map of cocartesian fibrations Ho(Ef ) → EHo(f) is induced. It is an equivalence as
it induces an equivalence of the fibers.
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