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VERIFICATION OF THE QUILLEN CONJECTURE

IN THE RANK 2 IMAGINARY QUADRATIC CASE

BUI ANH TUAN and ALEXANDER D. RAHM

(communicated by Charles A. Weibel)

Abstract
We confirm a conjecture of Quillen in the case of the

mod 2 cohomology of arithmetic groups SL2(OQ(
√
−m )[

1
2 ]),

where OQ(
√
−m ) is an imaginary quadratic ring of integers. To

make explicit the free module structure on the cohomology ring
conjectured by Quillen, we compute the mod 2 cohomology of
SL2(Z[

√
−2 ][ 12 ]) via the amalgamated decomposition of the lat-

ter group.

1. Introduction

The Quillen conjecture on the cohomology of arithmetic groups has spurred a great
deal of mathematics (according to [16]). On the cohomology of a linear arithmetic
group, Quillen did find a module structure over the Chern classes of the containing
group GLn(C) (equivalently, of SLn(C)). Quillen did then conjecture that this module
is free [20]. While the conjecture has been proven for large classes of groups of rank 2
matrices, as well as for some groups of rank 3 matrices, an obstruction against its
validity has been found by Henn, Lannes and Schwartz [15], and this obstruction does
occur at least for matrix ranks 14 and higher [14]. So the scope of the conjecture is not
correct in Quillen’s original statement, and the present paper contributes to efforts
on determining the conjecture’s correct range of validity. Considering the outcomes
of previous research on this question, what seems likely, is that counterexamples may
occur already at low matrix rank. In the present paper, however, we confirm the
Quillen conjecture over all of the Bianchi groups (the SL2 groups over imaginary
quadratic rings of integers), at the prime number 2:

Theorem 1.1. Let G be a discrete subgroup of SL2(C), of finite virtual cohomological
dimension, and let the 2-elements-group C = {−1, 1}, generated by minus the identity
matrix, be contained in G.

Then H∗(G; F2) is a free module over H∗(SL2(C); F2).

The case that we have in mind is that G = SL2(OQ(
√
−m )[

1
2 ]) for OQ(

√
−m ) a

ring of imaginary quadratic integers. Theorem 1.1 is a consequence of a theorem of
Broto and Henn, as we shall explain in Section 3. To make explicit the free module
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structure on the cohomology ring in one example, we compute the mod 2 cohomology
of SL2(Z[

√
−2 ][ 12 ]) via the amalgamated decomposition

SL2(Z[
√
−2 ][

1

2
]) ∼= SL2(Z[

√
−2 ]) ∗Γ0(

√
−2) SL2(Z[

√
−2 ])

which is known from Serre’s classical book [21], and which yields a Mayer–Vietoris
long exact sequence on group cohomology that we evaluate.

For SL2(Z[
√
−1 ][ 12 ]), a computation of the mod 2 cohomology ring structure has

already been achieved by Weiss [22], but the uniformizing element in the amalga-
mated decomposition is different for the Gaussian integers Z[

√
−1 ] from the one for

the other imaginary quadratic rings. And after exclusion of the Gaussian integers,
there is a general description of the mod 2 cohomology rings of the Bianchi groups
and their subgroups [2, 3]. So for our purposes, the Gaussian integers do not pro-
vide a typical example, while the ring Z[

√
−2 ] does. Moreover, having confirmed the

Quillen conjecture for SL2 over the Gaussian integers and over Z[
√
−2 ] removes one

of the obstacles against SL4(Z[
1
2 ]) to satisfy the Quillen conjecture (see diagram (1)

in [22]), because in the centralizer spectral sequence for SL4(Z[
1
2 ]) (compare with

[13]), the stabilizers which have the highest complexity are of types SL2(Z[
√
−2 ][ 12 ]),

SL2(Z[
√
−1 ][ 12 ]) and SL2(Z[

√
2 ][ 12 ]).

We follow Weiss’s strategies for several aspects of our calculation, while we use a
different cell complex and recent homological algebra techniques [2,3] to overcome
specific technical difficulties entering with SL2(Z[

√
−2 ][ 12 ]). Then we arrive at the

result stated in Theorem 1.3 below. To see how this illustrates the module structure
predicted by the Quillen conjecture, let us state the latter over SLn(C).

Conjecture 1.2 (Quillen). Let ℓ be a prime number. Let K be a number field with
ζℓ ∈ K, and S a finite set of places containing the infinite places and the places over ℓ.
Then the natural inclusion OK,S →֒ C makes H∗(SLn(OK,S); Fℓ) a free module over
the cohomology ring H∗

cts(SLn(C); Fℓ).

Theorem 1.3. Denote by e4 the image of the second Chern class of the natural repre-
sentation of SL2(C), so F2[e4] is the image of H∗

cts(SL2(C);F2). Then the cohomology
ring H∗(SL2(Z[

√
−2 ][ 12 ]); F2) is the free module of rank 10 over F2[e4] with basis

{1, x2, x3, y3, z3, s3, x4, s4, s5, s6}, where the subscript of the classes specifies their
degree as a cohomology class.

Organization of the paper

In Section 2, we recall the amalgamated decomposition

SL2(Z[
√
−2 ][

1

2
]) ∼= SL2(Z[

√
−2 ]) ∗Γ0(

√
−2) SL2(Z[

√
−2 ])

on which our calculation is based, as well as its general form which we use in Section 3
in the proof of Theorem 1.1. In Section 4, we describe a cell complex for the involved
congruence subgroup Γ0(

√
−2). We use it to compute the cohomology of the latter in

Section 4.1. In Section 5, we determine the maps induced on cohomology by the two
injections of Γ0(

√
−2) into SL2(Z[

√
−2 ]) that characterize the amalgamated product.

Finally, in Section 6, we conclude the proof of Theorem 1.3.
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2. The amalgamated decomposition

For a quadratic ring OK , in this section we decompose SL2(OK [ 12 ]) as a product
of two copies of SL2(OK) amalgamated over a suitable congruence subgroup. It is
described in Serre’s book Trees [21] how to do such a decomposition in general,
and example decompositions are given for SL2(Z[

1
p ]) in Serre’s book as well as for

SL2(Z[
√
−1 ][ 12 ]) in [22].

The following theorem is implicit in the section 1.4 of chapter II of [21].
Let K be a field equipped with a discrete valuation v. Recall that v is a homomor-

phism from (K \ {0}, ·) to (Q,+) and that

v(x+ y) > min(v(x), v(y)) for x, y ∈ K,

with the convention that v(0) = +∞.
Let O be the subset of K on which the valuation is non-negative. Then O is a

subring of K and called the Discrete Valuation Ring. A uniformizer is an arbitrary
element π ∈ O \ {0} with v(π) > 0 such that for all x ∈ O with v(x) > 0, the inequal-
ity v(π) 6 v(x) holds.

Theorem 2.1 (Serre). Let A be a dense sub-ring of K. Then for any uniformizer π,
we have the decomposition

SL2(A) ∼= SL2(O ∩A) ∗Γ0(π) SL2(O ∩A),

where Γ0(π) is the subgroup of SL2(O ∩A) of upper triangular matrices modulo the
ideal (π) of O ∩A, injecting

• as the natural inclusion into the first factor of type SL2(O ∩A),

• via the formula
(

a b
c d

)

7→
(

π−1dπ π−1c
bπ a

)

into the second factor of type SL2(O ∩A).

Note that in the above formula, we have replaced Serre’s original matrix by an
obviously equivalent one suggested byWeiss [22]. This has been done with the purpose
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to have an alternative description of the injection in question as conjugation by the

matrix

(

0 1
π 0

)

.

We can now apply Serre’s above theorem to quadratic number fields.

Definition 2.2. Let K be a quadratic number field, let p be a prime number, and
let vp be the p-adic valuation of Q. We define a function vNp on K by

vNp (x) := vp(N(x)),

where N(x) is the number-theoretic norm of x ∈ K.

Note that as K is quadratic, N(x) = xx with x the Galois conjugate of x, and for
K imaginary quadratic, the Galois conjugate is the complex conjugate.

Lemma 2.3 (Recall of basic algebraic number theory). The function vNp

(i) is a valuation of K,

(ii) extends the valuation 2vp
(the latter being the double of the p-adic valuation of Q),

(iii) and takes its values exclusively in Z.

An elementary proof can be found in the first preprint version of the present paper.
Now we can turn our attention to SL2(Z[

√
−2][ 12 ]). Choose K := Q(

√
−2), equip-

ped with the valuation vN2 defined above. Then we can expect O = Z(2)[
√
−2]. Fur-

thermore, we expect A := Z[
√
−2][ 12 ] to be dense in Q(

√
−2) with respect to the

topology induced by vN2 ; and O ∩A = Z[
√
−2].

As vN2 (
√
−2) = 1 is minimal on the part of O on which vN2 is positive, we can

choose
√
−2 as a uniformizer. Then Theorem 2.1 yields that

SL2(Z[
√
−2][

1

2
]) ∼= SL2(Z[

√
−2]) ∗Γ0(

√
−2) SL2(Z[

√
−2]),

where Γ0(
√
−2) is the subgroup of SL2(Z[

√
−2]) of upper triangular matrices modulo

the ideal (
√
−2) of Z[

√
−2], injecting

• as the natural inclusion into the first factor of type SL2(Z[
√
−2]),

• via the formula
(

a b
c d

)

7→
(

d
√
−2

−1
c

b
√
−2 a

)

into the second factor of type SL2(Z[
√
−2]).

We note that vN2 (2) = 2, so 2 is not a uniformizer.

3. The module over the Chern class ring

In this section, we shall explain how Theorem 1.1 can be proven with Duflot’s
ideas [10], our access to her ideas being via a theorem of Broto and Henn. The
referee has extracted the crucial argument necessary to use Duflot’s ideas for this
purpose, and distilled a direct proof. We are going to study her/his proof before we
explain how to apply Broto and Henn’s theorem. The referee’s proof works for G
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being any subgroup of SL2(C) which contains the order-2-subgroup C := {−1, 1}.
We let i : G →֒SL2(C) and j : C →֒ G denote the inclusions. We recall from the lit-
erature on characteristic classes of vector bundles that the second Chern class c2
associated to the natural representation of SL2(C) yields the cohomology ring struc-
ture H∗(SL2(C); F2) ∼= F2[c2], where c2 is of degree 4. We recall also that H∗(C; F2) ∼=
F2[t], with t of degree 1, and that (i ◦ j)∗ is injective (namely, (i ◦ j)∗(c2) = t4). Then
the referee states the following theorem, and we are going to look into how it is
proven.

Theorem 3.1. H∗(G; F2) is a free module over H∗(SL2(C); F2).

It has been observed in Duflot’s work [10], pursued by Dwyer and Wilkerson [11]
and then by Broto and Henn [6], that the group morphisms

(g, c) 7→ gc, SL2(C)× C →SL2(C) respectively G× C → G

provide H∗(SL2(C); F2) respectively H∗(G; F2) with a comodule structure with
respect to H∗(C; F2), given by an induced morphism

δ : H∗(SL2(C); F2) → H∗(SL2(C); F2)⊗H∗(C; F2),

respectively,

δ : H∗(G; F2) → H∗(G; F2)⊗H∗(C; F2),

such that the induced morphism i∗ is a comodule map. In order to prove that
H∗(G; F2) is free, it only remains to prove that multiplication with i∗(c2) is injective.
We shall do this in the following lemma of the referee.

Lemma 3.2. If α ∈ H∗(G; F2) is a non-zero element, then i∗(c2) ∪ α is non-zero.

Proof. Making use of the above comodule structure, it is of course enough to show
that δ(i∗(c2) ∪ α) is non-zero. We easily see that δ(i∗(c2)) = i∗(c2)⊗ 1 + 1⊗ t4, and
therefore

δ(i∗(c2) ∪ α) = δ(i∗(c2)) ∪ δ(α) = (i∗(c2)⊗ 1 + 1⊗ t4) ∪ δ(α).

Let r be the largest integer such that δ(α) may be written as

α⊗ 1 +
∑

|β|>|α|−r

β ⊗ t|α|−|β| +
∑

|γ|=|α|−r

γ ⊗ tr,

where the last term is non-trivial (it might be equal to 1⊗ t|α|), which is possible
since α was assumed to be non-zero. In the product (i∗(c2)⊗ 1 + 1⊗ t4) ∪ δ(α), the
term

∑

|γ|=|α|−r γ ⊗ tr+4 cannot cancel, as all other terms are of lower degree on the
second factor of the tensor product. This proves the lemma.

This completes the proof of Theorem 3.1, so, in particular, we have the weaker
statement presented as Theorem 1.1.

The above proof of Theorem 1.1 can be reformulated in the following way using
Broto and Henn’s theorem. For this purpose, we define the depth of an ideal I in
a finitely generated module M over a Noetherian ring as in standard commutative
algebra textbooks [18]: We assume I ·M 6= M . A sequence of elements x1, . . . , xn
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of I of positive degree is called regular on M if x1 is not a zero divisor on M and
xi+1 is not a zero divisor on the quotient M/(x1,...,xi)M . Under these conditions, any
two maximal regular sequences have the same finite length, called the depth.

The following lemma is the special case of depth 1 of a classical commutative
algebra result. The reader can easily work out a proof for it.

Lemma 3.3. Let K be a field and A be a positively graduated, connected K-algebra.
Let M be a graduated A-module with Mn = 0 for n < 0 and Mn a finite-dimensional
K-vector space for all n ∈ N ∪ {0}. Let x be an element in the maximal ideal of A
which operates on M injectively by multiplication. Then M is a free K[x]-module.

Proof of Theorem 1.1. Theorem 1.1 of [6] states, in its variant provided by Re-
mark 2.3 of the same paper:

Let p be a prime, G a discrete group of finite virtual cohomological dimen-
sion, X a G-space, and C a central elementary Abelian p-subgroup of G
acting trivially on X. If H∗(X, Fp) is finite dimensional over Fp, then the
depth of H∗

G(X, Fp) is at least as big as the rank of C.

We set p = 2, and G be a discrete subgroup of SL2(C), of finite virtual cohomological
dimension, containing C = {−1, 1}. Then as we know from Borel and Serre [5], G
acts properly discontinuously on the space X constructed as the direct product of
SL2(C)/SU2 and a Bruhat-Tits building. Note that in the case G = SL2(OQ(

√
−m )[

1
2 ])

that we have in mind, the Bruhat-Tits building is associated to the 2-adic group
SL2(Q(

√
−m)2). Moreover, C acts trivially on X. As X is finite-dimensional, the vir-

tual cohomological dimension of the discrete group G is finite. We consider H∗
G(X, F2)

as an H∗(G, F2)-module via the algebra map H∗(G, F2) → H∗
G(X, F2) induced by

projection from X to a point. Then as H∗(X, F2) is finite dimensional over F2, Broto
and Henn’s above theorem provides us at least depth 1 for the maximal ideal in
H∗

G(X, F2) constituted by the elements of strictly positive degree, and hence a regular
sequence x1, . . . , xn with n > 1, where x1 ∈ H∗(G, F2) is of strictly positive degree and
operates on H∗

G(X, F2) injectively by multiplication. Now we can apply Lemma 3.3
in order to obtain the free module structure on H∗

G(X, F2) As X is contractible,
H∗(G, F2) = H∗

G(X, F2).

4. The cell complex for the congruence subgroup

Due to the above amalgamated decomposition, we want to study the action of the
congruence subgroup

Γ0(
√
−2) :=

{(

a b
c d

)

∈ SL2(Z[
√
−2 ]) | c ∈ 〈

√
−2〉

}

in the Bianchi group SL2(Z[
√
−2 ]) on a suitable cell complex (a 2-dimensional retract

of hyperbolic 3-space). For this purpose, we are in the fortunate situation that the
symmetric space SL2(C)/SU2 acted on by SL2(Z[

√
−2 ]) is isometric to real hyperbolic

3-space H3. We can use the upper half-space model for H3, where as a set, H3 =
{(z, ζ) ∈ C× R | ζ > 0}. Then we can use Poincaré’s explicit formulas for the action:
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For γ = (a b

c d
) ∈ GL2(C), the action of γ on H3 is given by γ · (z, ζ) = (z′, ζ ′), where

z′ =

(

cz + d
)

(az + b) + ζ2c̄a

|cz + d|2 + ζ2|c|2 , ζ ′ =
| det γ|ζ

|cz + d|2 + ζ2|c|2 .

Luigi Bianchi [4] has constructed a fundamental polyhedron for the action on H3 of
SL2(Z[

√
−2 ]), and we use Lakeland’s method [2, Section 6] to find a set translates of

it under elements of SL2(Z[
√
−2 ]) outside Γ0(

√
−2), which constitute a fundamental

domain F for Γ0(
√
−2), strict in its interior: No two points in its interior can be iden-

tified by the action of an element of Γ0(
√
−2). A cumbersome aspect of Bianchi’s fun-

damental polyhedron, and hence also of F , is that it is not compact, but open at cusps
which sit in the boundary of H3. We shall remedy this aspect with an SL2(Z[

√
−2 ])-

equivariant retraction, namely a retraction of H3 onto a 2-dimensional cell complex,
along geodesic arcs away from the cusps, which commutes with the SL2(Z[

√
−2 ])-

action. Our choice of F , and on it Mendoza’s SL2(Z[
√
−2 ])-equivariant retraction [19]

away from all cusps, are depicted in Figure 1(a). An alternative choice would have

(a) Fundamental polyhedron for the action of
Γ0(

√
−2) on hyperbolic 3-space. We retract

it SL2(Z[
√
−2 ])-equivariantly away from the

cusps at 0 and ∞, along the dotted edges.

v′

1

v′

2

v′′

1

v′′

2

v′′′

1
v′′′

2

v2

v1

0

(b) Coordinates of the above vertices
in upper half-space. Denote

√
−2 by ω,

denote the height square by ζ2 and project
to the boundary plane at height ζ = 0.

Vertex Projection z ζ2

v1 − 1
2 − ω

2 1/4

v′1
1
2 − ω

2 1/4

v′′1
1
2 + ω

2 1/4

v′′′1 − 1
2 + ω

2 1/4

v2 − 1
2 − ω

4 1/8

v′2 −ω
2 1/2

v′′2
ω
2 1/2

v′′′2 − 1
2 + ω

4 1/8

(c) A fundamental domain (strict in its inte-
rior) for the action of Γ0(

√
−2) on the 2-

dimensional retract is given by the three
quadrangles with marked vertices from Fig-
ure 1(a).

v2

v′′′

2

v1

v′′′

1

v′

2

v′′

2

v′

1

v′′

1

〈C〉 〈c〉 〈b〉

〈B〉 〈A〉 〈A〉
≫

≫

≫

≫

≫>

≫>

(d) Quotient space of the latter funda-
mental domain by its edge identifications.

v1

v2

Z/4

Z/4

Z/4

Z/4

Z/4

Figure 1: The cell complex for Γ0(
√
−2).
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been to use Flöge’s SL2(Z[
√
−2 ])-equivariant retraction [12] away only from cusps

in the Γ0(
√
−2)-orbit of ∞, and then to use a Borel-Serre compactification on the

remaining cusps; the outcome of that alternative is shown in [2, figure for Γ0(
√
−2)].

In Figure 1(b), we list the coordinates of the vertices of F , and in Figure 1(c), we
display the compact fundamental domain for Γ0(

√
−2) obtained from F in the 2-

dimensional retract of H3. By boundary identifications on the latter compact funda-
mental domain, we obtain the quotient space of the 2-dimensional retract modulo the
Γ0(

√
−2)-action, as drawn in Figure 1(d). The fundamental domain in Figure 1(c) is

subject to edge identifications ≫, ≫ and ≫> carried out by

(

1 0
−
√
−2 1

)

, and >

carried out by

(

1 1
0 1

)

, both of which are in Γ0(
√
−2). With the notation ω :=

√
−2,

the non-trivial edge stabilizers are generated by the order-4-matrices

A =

(

1 ω
ω −1

)

, B =

(

−1− ω −ω
2 1 + ω

)

, C =

(

−1 −1
2 1

)

,

respectively their conjugates by the above mentioned edge identifications. A fun-
damental domain for SL2(Z[

√
−2 ]) is given by the quadrangle (v′2, v

′
1, v

′′
1 , v

′′
2 ). In

SL2(Z[
√
−2 ]), there are two additional edge stabilizer generators,

b =

(

1 −1
1 0

)

, of order 6, and c =

(

0 −1
1 0

)

, of order 4,

which are not in Γ0(
√
−2).

4.1. The cohomology of the congruence subgroup

From Figure 1(d), we see that the orbit space of the 2-dimensional retract X of
hyperbolic space under the action of Γ0(

√
−2) has the homotopy type of a 2-torus, so

dimF2
Hp(Γ0(

√
−2)\X; F2) =















0, p > 2,
1, p = 2,
2, p = 1,
1, p = 0.

We also see in Figure 1(d) that the non-central 2-torsion subcomplex Xs, namely
the union of the cells of X whose cell stabilizers in Γ0(

√
−2) contain elements of

order a power of 2, and which are not in the center of Γ0(
√
−2), has an orbit space

Γ0(
√
−2)\Xs of shape . Following [2,3], we define the co-rank c to be the rank of

the cokernel of

H1(Γ0(
√
−2)\X; F2) → H1(Γ0(

√
−2)\Xs; F2)

induced by the inclusion Xs ⊂ X. Again inspecting Figure 1(d), we can see that the
co-rank c vanishes. Concerning the equivariant spectral sequence discussed in Sec-
tion 5 below, the dp,2q2 differentials for p > 0 are trivial for degree reasons. Further-
more, we obtain the vanishing of the d0,q2 differentials from lemmas in [2]: lemma 19
for d0,4q+2

2 , lemma 21 for d0,4q2 and lemma 25 for d0,4q+3
2 . Grant S. Lakeland did use

classical group-geometric methods (see for instance [17]) to compute for us from the
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information presented in Figure 1 a presentation for Γ0(
√
−2), namely Γ0(

√
−2) =

〈α, β, γ, δ |α · β · α−1 · β−1, γ · δ · γ−1 · δ−1, (α · δ)2, (β · γ)2, (α · γ · α−1 · γ−1)2〉,

where α =

(

1 1
0 1

)

, β =

(

1
√
−2

0 1

)

, γ =

(

1 0
−
√
−2 1

)

, δ =

(

1 0
−2 1

)

. So we obtain

the Abelianization Z2 ⊕ (Z/2Z)2 ∼= (Γ0(
√
−2))ab ∼= H1(Γ0(

√
−2); Z), which we insert

into the dévissage of the equivariant spectral sequence to conclude that the d0,4q+1
2 -

differentials vanish as well. Then using [2, theorem 1], we obtain the following result.

Proposition 4.1.

dimF2
Hp(Γ0(

√
−2); F2) =















5, p ≡ 4 or 5 mod 4 and p > 1,
6, p ≡ 2 or 3 mod 4,
4, p = 1,
1, p = 0.

5. The maps on equivariant spectral sequences

In order to evaluate the Mayer–Vietoris long exact sequence of the amalgamated
decomposition SL2(Z[

√
−2 ][ 12 ])

∼= SL2(Z[
√
−2 ]) ∗Γ0(

√
−2) SL2(Z[

√
−2 ]), we need to

find out what the two injections of Γ0(
√
−2) into SL2(Z[

√
−2 ]), namely i (the natural

inclusion) and j (the conjugation map defined in Theorem 2.1) induce on the mod 2
cohomology rings of these groups. For this purpose, we make use of the equivariant
spectral sequences

Ep,q
1 =

⊕

σ∈representatives(Γ\Xp) H
q(Γσ; F2) converging to Hp+q(Γ; F2),

for Γ being either Γ0(
√
−2) or SL2(Z[

√
−2 ]) (cf. Brown’s book [7, chapter VII] for

the construction of equivariant spectral sequences). The notation Γσ stands for the
stabilizer in Γ of the p-cell σ, and the p-cells indexing the above direct sum run through
a set of orbit representatives. As we let the p-cells for SL2(Z[

√
−2 ]) run through

a fundamental domain contained in the one for Γ0(
√
−2), we get two compatible

equivariant spectral sequences, and can compute the maps on Hp+q(Γ; F2) from the
maps between the two E1-pages. In Section 4.1, we have seen that the d2-differentials
are all trivial for Γ0(

√
−2), and having in mind the cylindrical shape of SL2(Z[

√
−2 ])\X

obtained from the edge identification on the quadrangle (v′2, v
′
1, v

′′
1 , v

′′
2 ), they are trivial

as well for SL2(Z[
√
−2 ]). Therefore, this computation splits into two parts: firstly,

the map on bottom rows Ep,0
2

∼= Hp(Γ\X; F2), where X is the 2-dimensional retract
of hyperbolic space; and secondly the maps supported on cells with 2-torsion in their
stabilizers. We can use the tools developed in [2,3] to take advantage of this splitting.
The result of the first part is the following proposition.

Proposition 5.1. The injections i and j induce a map

⊕

2 H
∗(SL2(Z[

√
−2 ])\X; F2)

(i∗,j∗)
H∗(Γ0(

√
−2)\X; F2)

which is injective, respectively surjective, except for ker(i0, j0)∼=F2 and coker(i
2, j2)∼=F2.

Proof. The two generators of H1(Γ0(
√
−2)\X; F2) are supported on the loops obtained

from the edges stabilized by to the matrices A, respectively C. Considering again the



274 BUI ANH TUAN and ALEXANDER D. RAHM

cylindrical shape of SL2(Z[
√
−2 ])\X obtained from the edge identification on the quad-

rangle (v′2, v
′
1, v

′′
1 , v

′′
2 ), the generator of H

1(SL2(Z[
√
−2 ])\X; F2) is supported on the loop

obtained from the edge stabilized by the matrix c. The matrices c and C = i(C) are

conjugate in SL2(Z[
√
−2 ]) via the matrix h :=

(

1 0
1 1

)

which sends the quadrangle

(v2, v1, v
′′′
1 , v′′′2 ) to the quadrangle (v′2, v

′
1, v

′′
1 , v

′′
2 ). Also, the matrix j(A) ∼ C is con-

jugate to c via h. Hence (i1, j1) identifies the two loops of
⊕

2 H
1(SL2(Z[

√
−2 ])\X; F2)

with those of H1(Γ0(
√
−2)\X; F2), and thus is an isomorphism. The ranks of (i0, j0)

and (i2, j2) are obvious.

As X is a 2-dimensional retract, the Ep,q
1 terms are concentrated in the three

columns p ∈ {0, 1, 2}. And for Ep,q
2 (SL2(Z[

√
−2 ]), X; F2) (we shall use this notation

with arguments to distinguish between the two spectral sequences), they are concen-
trated in the two columns p ∈ {0, 1}, because H2(SL2(Z[

√
−2 ])\X; F2) = 0. As we have

seen in Section 4.1 that d0,q2 (Γ0(
√
−2), X; F2) = 0, the p = 2 column has for all q > 0

stationary terms E2,q
2 (Γ0(

√
−2), X; F2) ∼= H2(Γ0(

√
−2)\X; F2) ∼= F2 which remain as

the E2,q
∞ -term. So the following lemma gives us all the information that we need in

order to achieve the computation.

Lemma 5.2. In degrees q > 0, p ∈ {0, 1}, the map

⊕

2 E
p,q
2 (SL2(Z[

√
−2 ]), X; F2)

(i∗,j∗)
Ep,q

2 (Γ0(
√
−2), X; F2)

is surjective, with kernel

q = 4k + 4 〈ei4 + ej4〉 0

q = 4k + 3 〈bi3 + xj
3, b

j
3 + xi

3〉 〈e〈A〉,i
2 bi1 + e

〈A〉,j
2 bj1〉

q = 4k + 2 0 〈e〈A〉,i
2 + e

〈A〉,j
2 〉

q = 4k + 1 0 〈bi1 + bj1〉
k ∈ N ∪ {0} p = 0 p = 1

where the subscripts specify the degrees of the cohomology classes, and the superscripts
can be ignored (they only serve for tracking back the origin of a class in the calcula-
tion). Throughout the column p = 2, there is a constant term F2 in the corresponding
cokernel.

Proof. From Proposition 5.1, we already know the contribution of the orbit spaces:
a term of type F2 in rows q ≡ 0 mod 4 in the column p = 0, and a constant term
F2 throughout the column p = 2 in the corresponding cokernel. Complementary to
this, there is a contribution of the non-central 2-torsion subcomplexes Xs(Γ), which
we are now going to determine, implicitly making use of information gathered in the
proof of Proposition 5.1, like the action of the matrix h. The maps i and j from the
stabilizers on Xs(Γ0(

√
−2)) to the stabilizers on Xs(SL2(Z[

√
−2 ])),

〈C,B〉〈C〉 〈B,A〉 〈A〉
〈B〉

i, j 〈c〉 〈A, c〉
〈A〉

〈A, b〉
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are determined by the following conjugacies in SL2(Z[
√
−2 ]):

j(A) =

(

−1 1
−2 1

)

= P−1 · C · P = P−1 · i(C) · P, where P =

(

1 + ω −1
−2 1− ω

)

;

j(B) =

(

1+ω −ω
2 −1−ω

)

= Q−1 ·B ·Q = Q−1 · i(B) ·Q, where Q =

(

1 −1−ω
0 1

)

.

In order to untangle the computation below, about which maps are induced by i and
j on the mod 2 cohomology rings of the finite stabilizers, we single out already now
those which induce zero maps on the E2-level. Namely, the assignments

j(C) =

(

1 −ω
−ω −1

)

= R−1 ·A ·R, where R =

(

0 −1
1 −ω

)

, respectively i(A) = A,

induce on the E1,q
2 (Γ0(

√
−2), X,F2) terms, which have their generators supported on

the loops obtained from the edges stabilized by C, respectively A, zero maps coming
from the edge stabilized by A in Xs(SL2(Z[

√
−2 ])), because the latter supports the

zero class in E1,q
2 (SL2(Z[

√
−2 ]), X,F2). Therefore, we can ignore those two assign-

ments, and work only with the remaining ones.

Having singled out where maps pass to zero on the E2 level, we simply mark
“zero map induced” at those places in the following diagrams. For the map i, at the
passage from the 2-torsion subcomplex of Γ0(

√
−2) to the 2-torsion subcomplex of

SL2(Z[
√
−2 ]) when the second loop is being folded down onto the middle edge, we

have remaining

〈C〉 ∼= Z/4

∼=

〈C,B〉 ∼= Q8

∼=

〈B〉 ∼= Z/4

∼=

〈B,A〉 ∼= Q8

A 7→ A,
B 7→ c−1 ·B · c

〈A〉 ∼= Z/4

zero map
induced

〈c〉 ∼= Z/4 〈A, c〉 ∼= Q8 〈A〉 ∼= Z/4 〈A, b〉 ∼= Te24

On mod 2 cohomology rings, this induces

F2[e2](b1)

∼=

F2[e4](x1, y1, x2, y2, x3)

∼=

F2[e2](b1)

∼=

F2[e4](x1, y1, x2, y2, x3)

b3 7→ x3,
e4 7→ e4

F2[e2](b1)

zero map
induced

F2[e2](b1) F2[e4](x1, y1, x2, y2, x3) F2[e2](b1) F2[e4](b3)

For the map j, we have remaining

〈C〉 ∼= Z/4

zero map
induced

∼=

〈C,B〉 ∼= Q8

∼=

〈B〉 ∼= Z/4

∼=

〈B,A〉 ∼= Q8

C 7→ A,
B 7→ b−1 ·A · b

〈A〉 ∼= Z/4

〈c〉 ∼= Z/4 〈A, c〉 ∼= Q8 〈A〉 ∼= Z/4 〈A, b〉 ∼= Te24
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On mod 2 cohomology rings, this induces

F2[e2](b1)

zero map
induced

∼=

F2[e4](x1, y1, x2, y2, x3)

∼=

F2[e2](b1)

∼=

F2[e4](x1, y1, x2, y2, x3) F2[e2](b1)

F2[e2](b1) F2[e4](x1, y1, x2, y2, x3) F2[e2](b1)

b3 7→ x3,
e4 7→ e4

F2[e4](b3)

Assembling the maps i and j to (i, j), we can now see that (i∗, j∗) is surjective on
the Ep,q

1 terms in the two columns p ∈ {0, 1}. To compute the kernel of (i∗, j∗), we
compare the E2 pages:

The E2 page for the action of SL2(Z[
√
−2 ]) on X is concentrated in the two

columns p ∈ {0, 1}, with the following generators, where the superscripts specify the
stabilizer of the supporting cell.

q = 4k + 4 〈e〈A,c〉
4 〉 〈(e〈c〉2 )2〉

q = 4k + 3 〈x〈A,c〉
3 , b

〈A,b〉
3 〉 〈e〈c〉2 b

〈c〉
1 , e

〈A〉
2 b

〈A〉
1 〉

q = 4k + 2 〈x〈A,c〉
2 , y

〈A,c〉
2 〉 〈e〈c〉2 , e

〈A〉
2 〉

q = 4k + 1 〈x〈A,c〉
1 〉 〈b〈c〉1 〉

k ∈ N ∪ {0} p = 0 p = 1

The E2 page for the action of Γ0(
√
−2) on X is concentrated in the three columns

p ∈ {0, 1, 2}, with the following generators.

q = 4k + 4 〈e〈C,B〉
4 + e

〈B,A〉
4 〉 〈(e〈C〉

2 )2, (e
〈A〉
2 )2〉 F2

q = 4k + 3 〈x〈C,B〉
3 , x

〈B,A〉
3 〉 〈e〈C〉

2 b
〈C〉
1 , e

〈B〉
2 b

〈B〉
1 , e

〈A〉
2 b

〈A〉
1 〉 F2

q = 4k + 2 〈x〈C,B〉
2 , y

〈C,B〉
2 , x

〈B,A〉
2 , y

〈B,A〉
2 〉 〈e〈C〉

2 , e
〈B〉
2 , e

〈A〉
2 〉 F2

q = 4k + 1 〈x〈C,B〉
1 , x

〈B,A〉
1 〉 〈b〈C〉

1 + b
〈A〉
1 〉 F2

k ∈ N ∪ {0} p = 0 p = 1 p = 2

This yields the claimed kernel (adding i, respectively j to the superscripts to specify
the relevant copy of Ep,q(SL2(Z[

√
−2 ]), X; F2) for the pre-image), and also yields the

claimed cokernel.

6. Investigating the module structure of the cohomology ring

With the above preparation, we will in this section conclude the proof of Theo-
rem 1.3. Combining Proposition 5.1 and Lemma 5.2, we can see that the injections i
and j induce a map on cohomology of groups,

⊕

2 H
∗(SL2(Z[

√
−2 ]); F2)

(i∗,j∗)
H∗(Γ0(

√
−2); F2)
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which has the following kernel and cokernel dimensions over F2.

q = 4k + 5 0 1
q = 4k + 4 2 1
q = 4k + 3 3 1
q = 4k + 2 1 1
q = 1 0 0
k ∈ N ∪ {0} dimF2

ker(i∗, j∗) dimF2
coker(i∗, j∗)

In the Mayer–Vietoris long exact sequence on group cohomology with F2-coefficients
derived from the amalgamated decomposition

SL2(Z[
√
−2 ][

1

2
]) ∼= SL2(Z[

√
−2 ]) ∗Γ0(

√
−2) SL2(Z[

√
−2 ])

with respect to the maps i and j,

· · · Hn+1(SL2(Z[
√
−2 ][ 12 ]))

Hn(Γ0(
√
−2))

⊕

2
Hn(SL2(Z[

√
−2 ])) Hn(SL2(Z[

√
−2 ][ 12 ]))

· · ·
(in, jn)

the above calculated dimensions yield

1 0 dimF2
H5(SL2(Z[

√
−2 ][ 12 ]))

1 2 dimF2
H4(SL2(Z[

√
−2 ][ 12 ]))

1 3 dimF2
H3(SL2(Z[

√
−2 ][ 12 ]))

1 1 dimF2
H2(SL2(Z[

√
−2 ][ 12 ]))

0 0 dimF2
H1(SL2(Z[

√
−2 ][ 12 ]))

We identify e4 := ei4 + ej4 as the class, multiplication by which yields the 4-period-
icity exposed in Lemma 5.2. Let us set the following names for the remaining classes:

x4 := e
〈A〉,i
2 bi1 + e

〈A〉,j
2 bj1, x3 := bi3 + xj

3 , y3 := bj3 + xi
3, z3 := e

〈A〉,i
2 + e

〈A〉,j
2 , x2 :=

bi1 + bj1 and sq+2 for the image of the generator of H2(Γ0(
√
−2)\X; F2) that is gen-

erating the E2,q
2 term of the equivariant spectral sequence for Γ0(

√
−2) in rows

q ∈ {1, 2, 3, 4}.
Theorem 1.1 tells us that H∗(SL2(Z[

√
−2 ][ 12 ]); F2) is a free module over F2[e4],

hence the above remaining classes, together with 1 ∈ H0(SL2(Z[
√
−2 ][ 12 ]); F2) con-

stitute a basis {1, x2, x3, y3, z3, s3, x4, s4, s5, s6} for it. Thus we get the result stated
in Theorem 1.3.

We can use our result to calculate dimension bounds for Hq(GL2

(

Z[
√
−2 ]

[

1
2

])

; F2),
see [8].
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