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EULER CHARACTERISTICS OF FINITE HOMOTOPY COLIMITS

JOHN D. BERMAN

(communicated by Brooke Shipley)

Abstract
In this note, we provide a calculation of the Euler character-

istic of a finite homotopy colimit of finite cell complexes, which
depends only on the Euler characteristics of each space and
resembles Mobius inversion. Versions of the result are known
when the colimit is indexed by categories with various finite-
ness conditions, but the behavior is more uniform when we
index by a finite quasicategory instead. The formula simultane-
ously generalizes the additive formula for Euler characteristic of
a homotopy pushout and the multiplicative formula for Euler
characteristic of a fiber bundle.

Given a fibration of finite cell complexes E → B with B connected and finite
fiber F , the Euler characteristic satisfies χ(E) = χ(F )χ(B). This is a classical formula
with a number of proofs, notably via the Serre Spectral Sequence. In this note, we
present a proof (Corollary 1.5) as a special case of a formula for Euler characteristics
of homotopy colimits.

We use only the two facts that the Euler characteristic satisfies χ(∅) = 0 and
χ(A ∪h

C B) = χ(A) + χ(B)− χ(C), where ∪h denotes a homotopy pushout. Any col-
imit indexed by a finite category can be built iteratively from the initial object and
pushouts. Similarly, any homotopy colimit indexed by a finite∞-category can be built
iteratively from the initial object and homotopy pushouts [5, 4.4.2.4]. Therefore, the
Euler characteristic of any such homotopy colimit is a linear function of its terms:

Theorem 1.1. If K is a finite ∞-category (see Definition 1.3) and K f−→ Top is a
functor landing in finite CW complexes, then

χ(colim f) =
∑

i∈π0K
µ(i)χ(f(i)),

where π0K is the set of equivalence classes of objects of K, and µ(i) are integer
constants depending only on K.

Remark 1.2. An ∞-category is an object which behaves like a category but is built
out of cells like a CW complex. Lurie’s Higher Topos Theory [5] is the standard text
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on the subject. Although much of the book is technical, the first chapter is a good
introduction.

In this note we explicitly compute the constants µ(i), which generalize Mobius
functions [8] of partially ordered sets, culminating in Theorem 1.7 (at which point
we will also provide a more detailed proof of Theorem 1.1).

The idea of such a formula is not new. In fact, the observation that Euler charac-
teristics ‘linearize’ homotopy colimits is an old one (and a starting point for algebraic
K-theory), but the connection to Mobius functions is more recent. Such formulas
have been studied by Fiore-Lück-Sauer [1, 2], Leinster [4], and Ponto-Shulman [6, 7],
attached to names like the Euler characteristic or Mobius function of categories.

In each case, these authors have to address the question: Which homotopy colimits
are linearized? When we pass to ∞-categories, the answer becomes straightforward:
those indexed by finite ∞-categories. The author believes the resulting formula should
be of some pedagogical interest to algebraic topologists, as a relatively elementary
advertisement of ∞-categorical technology.

Definition 1.3. A finite simplicial set is a simplicial set with finitely many nonde-
generate simplices. A finite ∞-category is an ∞-category modeled (in the Joyal model
structure on simplicial sets) by a finite simplicial set.

Remark 1.4. Finite∞-categories are very different from finite categories (a fact which
may be surprising when first encountered). For example, if BG denotes the category
with one object associated to a group G, BZ/2 ∼= RP∞ is finite as a category but not
as an ∞-category, while BZ ∼= S1 is finite as an ∞-category but not as a category.

Before introducing the main result, we can already prove:

Corollary 1.5. If F → E → B is a homotopy fiber sequence of finite CW complexes,
and B is connected, then χ(E) = χ(F )χ(B).

Lemma 1.6. If B is a finite CW complex, then the associated Kan complex (∞-
groupoid) B, which is unique up to weak equivalence, is finite as an ∞-category.

Proof of Lemma 1.6. This proof is taken from an answer of Simon Henry on Math-
overflow [3]. Suppose X is a finite CW complex, modeled (in the classical Quillen
model structure on simplicial sets) as a finite simplicial set. Label the nondegenerate
1-simplices of X as e1, . . . , en. For each 1 ⩽ i ⩽ n, add two 2-simplices ci, c

′
i to X with

faces s0ci = s2c
′
i = ei, s1ci = s1c

′
i = id. That is, we add both a left inverse s2ci and

a right inverse s0c
′
i to ei. In particular, we do this via iterated pushouts along horns

X ⨿Λ0[2] ∆[2] and X ⨿Λ2[2] ∆[2].

The new simplicial set X ′ is also finite, and the inclusion X → X ′ is a weak equiv-
alence because each pushout did not change the homotopy type of X. (That is, X ′

still models X as a finite CW complex.) Moreover, since every 1-simplex in X ′ has
either a right or left inverse, X ′ models an ∞-groupoid in the Joyal model structure,
which is necessarily the space X. Therefore X is finite as an ∞-groupoid.
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Proof of Corollary 1.5. Let B denote the ∞-groupoid associated to B, whose objects
are points of B. There is a functor E− : B → Top which sends a point b ∈ B to the
homotopy fiber Eb = E ×h

B ∗, and the total space E can be reconstructed as the
colimit [5, 3.3.4.6]

E ∼= colimE−.

Since B is finite and |π0B| = 1, Theorem 1.1 asserts

χ(E) = µ(∗)χ(E∗) = µBχ(F ),

where ∗ is the single element of π0B and µB is a constant that depends only on B.

To compute µB , consider the fiber sequence ∗ → B → B. We have χ(B) = µBχ(∗),
so µB = χ(B). This completes the proof.

We will now extend Theorem 1.1 by explicitly computing the constants µ(i). The-
orem 1.7 categorifies the usual formula for χ(X) given a simplicial model for the
space X. (See Example 1.11.)

Theorem 1.7. If K is a finite simplicial set, and x ∈ K0 is an object (0-simplex),
the Mobius function is µ(x) =

∑
(−1)n|Kx

n|. Here |Kx
n| denotes the number of non-

degenerate n-simplices with initial vertex x.

If K
f−→ Top is a functor that lands in finite cell complexes,

χ(colim f) =
∑
x∈K0

µ(x)χ(f(x)).

Remark 1.8. The connection between Theorems 1.1 and 1.7 is as follows: If K is a
finite simplicial set model for the ∞-category K and i ∈ π0K is an equivalence class
of objects, then

µK(i) =
∑
x∼=i

µK(x).

Proof of Theorems 1.1 and 1.7. The proof exactly follows Lurie’s proof that all finite
colimits (of ∞-categories) can be built out of pushouts and initial objects [5, 4.4.2.4].
We take for granted that the Euler characteristic is 0 on the empty space and takes
homotopy pushouts to sums (as in Example 1.12).

Choose K finite and K
f−→ Top which lands in finite cell complexes. We induct first

on the dimension of K, then on the number of simplices of maximal dimension. When
K is 0-dimensional, the theorems hold by χ(X ⨿ Y ) = χ(X) + χ(Y ).

Otherwise, fix a nondegenerate simplex ∆n inK of maximal dimension, with initial
vertex s and terminal vertex t. Decompose K ∼= K ′ ⨿∂∆n ∆n, and let µ be the Mobius
function on K, µ′ the Mobius function on K ′ (as defined in Theorem 1.7). Note that
K has the same objects as K ′ since n ⩾ 1. Moreover, µ(x) = µ′(x), except at x = s,
where µ(s) = µ′(s) + (−1)n.
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Now we compute the colimit. Let

X = colim(f |K′),

Y = colim(f |∂∆n),

Z = colim(f |∆n).

Then colim(f) = X ⨿Y Z, so χ(colim f) = χ(X) + χ(Z)− χ(Y ). By the induction
hypothesis, χ(Y ) = χ(f(t))− (−1)nχ(f(s)) and χ(Z) = χ(f(t)), so

χ(colim f) = χ(X) + (−1)nχ(f(s)) =
∑
x

µ′(x)χ(f(x)) + (−1)nχ(f(s)).

Since µ(x) = µ′(x) and µ(s) = µ′(s) + (−1)n, this completes the proof. Theorem 1.1
follows as described by Remark 1.4.

Remark 1.9. Notice that we have proven something slightly more general. Suppose C
is an ∞-category which admits finite colimits, A is an abelian group, and χ : π0C → A
is a function satisfying the two conditions:

• if 0 is the initial object, then χ(0) = 0;

• if

A //

��

B

��
C // D

is a homotopy pushout square, then χ(A) + χ(D) = χ(B) + χ(C).

Then for any finite ∞-category K and functor K f−→ C, we have

χ(colim f) =
∑

i∈π0K
µ(i)χ(f(i)).

We will end this note with some examples.

Notice that the Mobius function of Theorem 1.7 recovers the classical Mobius
function [8] of a finite poset. Let P be a finite poset with upper bound 1 (so x ⩽ 1
for all x). Let µP : P → Z be the classical Mobius function. That is, if g, h : P → R
satisfy

h(y) =
∑
x⩽y

g(x),

then

g(1) =
∑
x∈P

µP (x)h(x).

Let P0 = P − {1}, also a finite poset, and note that any (finite) poset is canonically
a (finite) ∞-category, via the nerve of the associated category.

If µ0 denotes our Mobius function (a la Theorem 1.7), then µ0(x) = −µP (x) for
any x ∈ P0, while µP (1) = 1. Hence, we can restate Theorem 1.7 in terms of the

classical Mobius function: If P
f−→ Top is a functor landing in finite cell complexes
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which exhibits f(1) as a colimit of f |P0
, then

0 = χ(f(x))− χ(colim f |P0
) =

∑
x∈P

µP (x)χ(f(x)).

Applying classical Mobius inversion:

Corollary 1.10 (Mobius inversion). If P is a finite poset, P
f−→ Top a functor for

which each f(x) is a finite cell complex, χf(x) the Euler characteristic of f(x), and
dχf(x) = χ(f(x))− χ(colim f |<x) the Euler characteristic obstruction to f(x) being
the colimit of f : P<x → Top, then

χf(y) =
∑
x⩽y

dχf(x).

Many classical properties of Euler characteristics are special cases of Theorems 1.1
and 1.7:

Example 1.11 (χ of a simplicial complex). For a finite simplicial set (or finite ∞-
category) K, the classifying space |K| is the colimit of the constant diagram at a

point K
∗−→ Top [5, 4.4.4.9]. Therefore, the Euler characteristic of its classifying space

is given by

χ|K| =
∑
x∈K0

µ(x) =
∑
n⩾0

(−1)n|Kn|.

We recover the classical fact that the Euler characteristic of a simplicial complex is
the alternating sum of the numbers of n-simplices.

Example 1.12 (χ of a homotopy pushout). Given a homotopy pushout

A //

��

B

��
C // D

of finite cell complexes, then χ(D) = χ(B) + χ(C)− χ(A).

Example 1.13 (χ of a fiber bundle). Regard a finite CW complex B as an∞-groupoid,
also finite by Lemma 1.6. If B is connected and F → E → B is a homotopy fiber
sequence of finite CW complexes, then

χ(E) = χ(colimE−) = χ(F )χ(B).

This is precisely Corollary 1.5.
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