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COMPATIBLE ACTIONS IN SEMI-ABELIAN CATEGORIES

DAVIDE DI MICCO and TIM VAN DER LINDEN

(communicated by Ronald Brown)

Abstract
The concept of a pair of compatible actions was introduced

in the case of groups by Brown and Loday [6] and in the case
of Lie algebras by Ellis [14]. In this article we extend it to the
context of semi-abelian categories (that satisfy the Smith is Huq
condition). We give a new construction of the Peiffer product,
which specialises to the definitions known for groups and Lie
algebras. We use it to prove our main result, on the connection
between pairs of compatible actions and pairs of crossed modules
over a common base object. We also study the Peiffer product
in its own right, in terms of its universal properties, and prove
its equivalence with existing definitions in specific cases.

1. Introduction

The concept of a pair of compatible actions was first introduced in the category
of groups by Brown and Loday, in relation to their work on the non-abelian tensor
product of groups [6]. Later, in [14], the definition was adapted to the context of Lie
algebras, where it was further studied in [26, 13]. Since then, several other particular
instances of compatible actions have been defined or used, in various settings: see for
example [17, 9, 8], and [22, 23] where the non-abelian derived functors of ⊗ were
studied.

The aim of this article is to provide a general definition in semi-abelian categories
(in the sense of [25]), in a way that extends these as special cases. In particular,
this will give us the tools to develop a unified theory, in such a way that computing
the non-abelian tensor product of compatible actions is the same as computing the
non-abelian tensor product of internal crossed modules. This process generalises the
diverse particular notions of non-abelian tensor product that appear in the literature
so far.

With this idea in mind, we first examine the case of groups from a new perspective,
aiming to use a diagrammatic and internal approach whenever this is possible. To do
so, we take advantage of the equivalence between group actions in the usual sense and
internal actions (introduced in [5, 2]) in the category Grp, as well as the equivalence
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between crossed modules of groups and internal crossed modules in Grp (see [24]).
Thus we may separate properties which are specific for groups from those that are
purely categorical.

The conditions which we single out in the category Grp in terms of the internal
action formalism become our general definition of “a pair of compatible actions”. This
definition makes sense as soon as the surrounding category is semi-abelian. However,
we shall always assume that the so-called Smith is Huq condition (SH) holds as well.
This is a relatively mild condition which excludes loops, for instance, but includes
all categories of groups with operations; see [28, 10]. This simplifies our work, since
under (SH) internal crossed modules allow an easier description [24, 28].

Our main tool is an extension, to the semi-abelian context, of the Peiffer product
M ⊲⊳ N of two objects M and N acting on each other (via an action ξNM of N on
M and an action ξMN of M on N). A notion of Peiffer product has already been
introduced in [11], in the special case of a pair of internal precrossed modules over
a common base object. Ours, however, is a different approach, and a priori the two
notions do not coincide. Our definition is a direct generalisation of the group and Lie
algebra versions of the Peiffer product, which were originally introduced respectively
in [32] and in [14]. It is well defined as soon as the two objects M and N act on each
other, whereas for the definition in [11] they also need to satisfy some compatibility
conditions. Moreover, when the actions ξNM and ξMN are compatible, the Peiffer product

M ⊲⊳ N is endowed with internal crossed module structures (M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M )

and (N
lN−→M ⊲⊳ N, ξM⊲⊳N

N ).
We use this as an ingredient in the generalisation of a result, stated in [6] for groups

and in [26] for Lie algebras, to any semi-abelian category that satisfies the condition
(SH). We show namely that two objects M and N act on each other compatibly if
and only if there exists a third object L endowed with two internal crossed module

structures (M
µ
−→ L, ξLM ) and (N

ν
−→ L, ξLN ). Amongst other things, this allows us to

deduce that our definition of compatibility for pairs of internal actions restricts to the
classical definitions for groups and Lie algebras. Another consequence of this result
is that the non-abelian tensor product introduced in the forthcoming article [12] has
two natural interpretations: either as a tensor product of compatible internal actions,
or equivalently as a tensor product of crossed modules over a common base object.

Finally, we study the Peiffer product via its universal properties. We also prove
that, under the additional hypothesis of algebraic coherence [10], our definition of
the Peiffer product coincides with the one given in [11].

Structure of the text

The paper is organised as follows. In the first section we collect preliminary defi-
nitions and results on internal actions in semi-abelian categories. We recall the def-
initions of the bifunctors ♭ and ⋄ as well as some related constructions. For a given
semi-abelian category A, we describe the category of points in A and the category of
internal actions in A, together with the equivalence between the two.

In Section 3 we examine the concept of a pair of compatible actions in the category
of groups. First we consider the definition of compatibility given in [6] and we translate
it into its diagrammatic form. Then we construct the Peiffer product as a coequaliser
and we prove that it coincides with the definition already known for the case of
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groups. In Proposition 3.10 we prove a result stated in [6], namely that two groups
M and N act on each other compatibly if and only if there exists a third group L

endowed with two crossed module structures (M
µ
−→ L, ξLM ) and (N

ν
−→ L, ξLN ).

Section 4 contains our main results. We work in the context of a semi-abelian
category A that satisfies the Smith is Huq condition (SH). We express the definition
of compatibility in this general context and show in Proposition 4.3 that whenever
we have a pair of internal crossed modules over a common base object, they induce
a pair of compatible internal actions.

Then we construct the Peiffer product of two internal actions in three distinct
ways: first we imitate what happens in the case of groups, constructing the Peiffer
product for each pair of objects acting on each other. In Proposition 4.5 we prove
that this is the same as taking the pushout of the two semi-direct products. Then we
give a more specific definition that requires the actions to be compatible. Finally, we
show in Proposition 4.8 that, if the compatibility conditions are satisfied, then the
two definitions coincide.

We prove in Proposition 4.9 that whenever the actions are compatible, their
Peiffer product is automatically endowed with internal crossed module structures

(M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M ) and (N
lN−→M ⊲⊳ N, ξM⊲⊳N

N ). This leads to Theorem 4.11,
which is a generalisation to semi-abelian categories of Proposition 3.10, proven for
groups in the previous section: two objects M and N act on each other compatibly
if and only if there exists a third object L endowed with two internal crossed module

structures (M
µ
−→ L, ξLM ) and (N

ν
−→ L, ξLN ). Via this result we obtain Corollary 4.12

and Corollary 4.13 as confirmations of the equivalence between our general definition
of compatibility and the specific ones in the cases of groups and Lie algebras.

We conclude the paper with a study of the Peiffer product via its universal proper-
ties (Section 5, in particular, Proposition 5.1 and Proposition 4.5). Here we also prove
that, under the additional hypothesis of algebraic coherence [10], our definition of the
Peiffer product coincides with the one given in [11]. Via results in [11], this further
implies that under an additional condition called (UA), the actions induced by two
L-crossed module structures have a Peiffer product which is again an L-crossed mod-
ule; furthermore, it is the coproduct in XModL(A) of the given L-crossed modules.
This generalises Proposition 3.4 in [13].

2. Preliminaries on internal actions

In what follows, we let A be a semi-abelian category [25]: pointed, Barr exact,
Bourn protomodular with binary coproducts. This concept unifies earlier attempts
(including, for instance, [21, 15, 30]) at providing a categorical framework that
extends the context of abelian categories to include non-additive categories of alge-
braic structures such as groups, Lie algebras, loops, rings, etc. In this setting, the
basic lemmas of homological algebra—the 3× 3 Lemma, the Short Five Lemma, the
Snake Lemma—hold [3, 1].

The category of internal actions Act(A) and the category of internal crossed mod-
ules XMod(A) in any semi-abelian category A are again semi-abelian. We give a
quick overview of some important definitions.

Recall that a regular epimorphism is a coequalizer of some pair of arrows. Any
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semi-abelian category is a regular category, which means that finite limits and co-
equalisers of kernel pairs exist, and regular epimorphisms are pullback-stable. A Barr
exact category is a regular category in which every equivalence relation is a kernel
pair. In a pointed setting, Bourn protomodularity is the condition that the Split Short
Five Lemma holds.

Definition 2.1 ([4]). A regular pushout is a commutative square of regular epimor-
phisms as on the left

A
f

α

B
β

A′ f ′

B′

A′ ×B′ B
πB

πA′

B
β

A′ f ′

B′

such that the comparison morphism 〈α, f〉 : A→ A′ ×B′ B to the induced pullback
square on the right is a regular epimorphism as well.

It is well known that in a semi-abelian category, a commutative square of regular
epimorphisms is a regular pushout if and only if it is a pushout. In fact, this charac-
terises semi-abelian categories amongst finitely cocomplete homological categories (in
the sense of [1]: pointed, regular, protomodular). Regular pushouts can be recognised
as follows:

Lemma 2.2 ([4]). Consider a square of regular epimorphisms in a homological cat-
egory and take kernels to the left as in the diagram

Kf

k

kf

A
f

α

B
β

Kf ′

kf′

A′ f ′

B′.

The induced morphism k is a regular epimorphism if and only if the given square is
a regular pushout.

2.1. The bifunctor ♭
For an object A in a semi-abelian category A, internal A-actions are defined as

algebras over a certain monad A♭(−).

Definition 2.3. The bifunctor ♭ : A × A → A is defined on objects as the kernel

A♭B
kA,B

A+B

(

1A
0

)

A.

Using the universal property of kernels, its behaviour on arrows is determined by

A♭B
f♭g

kA,B

A+B
f+g

(

1A
0

)

A
f

A′♭B′
kA′,B′

A′ +B′

(

1A′

0

)

A′.

Example 2.4. In the category Grp the coproduct A+B is the so-called free product
of A and B, the group freely generated by the disjoint union of A and B, modulo
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the relations that hold in A or in B. This means that an element in A+B can be
represented as a word obtained by juxtaposition of elements in A and in B. Then it
is easy to deduce that A♭B is the subgroup of A+B whose elements are represented
by the words of the form a1b1 · · · anbn such that a1 · · · an = 1 ∈ A. Furthermore, it
can be shown that each word in A♭B can be written as a juxtaposition of formal
conjugations, that is

A♭B = 〈aba−1 | a ∈ A, b ∈ B〉.

The following example expresses the idea of the proof, which easy generalises to any
word in A♭B.

a1b1a2b2a3b3 = (a1b1a
−1
1 )(a1a2b2a

−1
2 a−1

1 )(a1a2a3)b3

= (a1b1a
−1
1 )(a1a2b2(a1a2)

−1)1(1b31
−1).

Remark 2.5. For any fixed object A ∈ A, the triple (A♭(−), ηA, µA) is a monad, where
for A, B ∈ A we define ηAB : B → A♭B as in

B

ηA
B

iB

A♭B
kA,B

A+B

(1A

0

)

A

and µA
B : A♭(A♭B) → A♭B as in

A♭(A♭B)

µA
B

kA,A♭B

A+ (A♭B)
( iA

kA,B

)

(1A

0

)

A

A♭B
kA,B

A+B

(1A

0

)

A.

Lemma 2.6. In a semi-abelian category, consider regular epimorphisms α : A→ A′

and β : B → B′. Then both α+ β and α♭β are regular epimorphisms as well.

Proof. The first statement is easily shown checking that, if α = coeq(x1, x2) and
β = coeq(y1, y2), then α+ β = coeq(x1 + y1, x2 + y2). For what regards the second
statement we build the diagram

A♭B
kA,B

α♭β

A+B

α+β

(1A

0

)

A

α

A′♭B′
kA′,B′

A′ +B′

(1A′

0

)

A′.

Thanks to Lemma 2.2 it suffices to show that the right-hand square is a pushout in
order to obtain that α♭β is a regular epimorphism as well. This is easy to do by direct
verification of the universal property of pushouts.

2.2. The cosmash product ⋄
Cosmash products [7] may be used to define commutators [27, 19] and may help

expressing properties of internal actions. We start by exploring the relationship with ♭.
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Definition 2.7. Given two objects A and B in A, consider the morphism

ΣA,B =
(

〈1A,0〉

〈0,1B〉

)

=
〈(

1A

0

)

,
(

0

1B

)〉

: A+B −→ A×B.

Since A is semi-abelian, the morphism ΣA,B is a regular epimorphism. (This is actually
true in the much more general context of a unital category: see [1].) By taking its
kernel we find the short exact sequence

0 A ⋄B
hA,B

A+B
ΣA,B

A×B 0

where A ⋄B is called the cosmash product of A and B.

Remark 2.8. Notice that the inclusion of A ⋄B into A+B factors through A♭B,
because the latter is the kernel of

(

1A
0

)

: A+B → A. Moreover, we have another split
short exact sequence involving the cosmash product, namely

0 A ⋄B
iA,B

A♭B
τA
B

B
ηA
B

0 (1)

where τAB :−
(

0
1B

)

◦ kA,B is the so-called trivial action of A on B: see Example 2.18
where this point of view is explained in detail. The exactness of the sequence can be
shown by constructing the 3× 3 diagram

0 0 0

0 A ⋄B

hA,B

iA,B

iB,A

A♭B
τA
B

kA,B

B 0

0 B♭A
kB,A

τB
A

A+B

( 0

1B

)

(1A

0

)

B 0

0 A A 0 0

0 0 0

from the bottom-right square by taking kernels, and then by noticing that the top-left
object is the kernel of the comparison morphism from A+B to the pullback induced
by the lower-right square: since this morphism is precisely ΣA,B , its kernel is A ⋄B.

Moreover, the upper left square is a pullback and hence A ⋄B can be seen as the
intersection of the subobjects A♭B and B♭A of A+B. Furthermore, since A is semi-
abelian, in the split short exact sequence (1) the morphisms iA,B and ηAB are jointly
extremal-epimorphic [1, Lemma 3.1.22]. Thus we obtain the regular epimorphism

(

iA,B

ηA
B

)

: (A ⋄B) +B → A♭B.

Lemma 2.9. Let X be an object in a semi-abelian category A. Then the functor
(−)♭X : A → A preserves coequalisers of reflexive graphs.

Proof. Consider a reflexive graph with its coequaliser

A
d

c
Be

q
Q



COMPATIBLE ACTIONS IN SEMI-ABELIAN CATEGORIES 227

and the induced diagram

A ⋄X

iA,X

d⋄1X

c⋄1X
B ⋄X

iB,X

q⋄1X
Q ⋄X

iQ,X

A♭X

τA
X

d♭1X

c♭1X

B♭X

τB
X

q♭1X
Q♭X

τ
Q
X

X
1X

1X
X

1X
X

By using Corollary 2.27 in the first arXiv version of [19] we know that q ⋄ 1X is
again the coequaliser of d ⋄ 1X and c ⋄ 1X . We already know that q♭1X is a regular
epimorphism by Lemma 2.6 and that (q♭1X) ◦ (d♭1X) = (q♭1X) ◦ (c♭1X), so it remains
to show the universal property.

First of all, by examining the squares on the right, we can see that they form a hor-
izontal morphism of vertical short exact sequences, and since 1X is an isomorphism,
we conclude that the top square is a pullback. This implies that it is also a pushout:
indeed when we take kernels horizontally we obtain an induced isomorphism between
them, which in turn implies that the given square is a pushout.

Now suppose that there exists a morphism z : B♭X → Z such that z ◦ (d♭1X) =
z ◦ (c♭1X). Then z ◦ iB,X ◦ (d ⋄ 1X) = z ◦ iB,X ◦ (c ⋄ 1X) and hence there is a unique
morphism φ : Q ⋄X → Z such that φ ◦ (q ⋄ 1X) = z ◦ iB,X . Our claim now follows
from the universal property of the pushout.

2.3. The ternary cosmash product

Following [20], in [19] Hartl and Van der Linden define the n-ary version of the
cosmash product. We are interested in the ternary case, and in some relations between
it and the binary case.

Definition 2.10. Given three objects A, B and C in A, consider the morphism

ΣA,B,C =
( iA iA 0

iB 0 iB
0 iC iC

)

: A+B + C −→ (A+B)× (A+ C)× (B + C).

Its kernel is written

A ⋄B ⋄ C
hA,B,C

A+B + C

and it is called the ternary cosmash product of A, B and C. Like in the binary case,
it is obvious that, up to isomorphism, the ternary cosmash product does not depend
on the order of the objects.

In [19] the authors define folding operations linking cosmash products of different
arities: for our purposes we only need to recall one of them.

Definition 2.11. Given two objects A and B we can construct a morphism

SA,B
2,1 : A ⋄A ⋄B → A ⋄B
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through the diagram

A ⋄A ⋄B

S
A,B
2,1

hA,A,B

A+A+B
(

1A

1A

)

+1B

ΣA,A,B

(A+A)× (A+B)× (A+B)
(

1A

1A

)

×

((

0

1B

)

◦π2

)

A ⋄B
hA,B

A+B
ΣA,B

A×B.

The symmetry in the definition of cosmash products allows for numerous straight-
forward variations on this theme; in particular, we write SA,B

2,1 : A ⋄B ⋄A→ A ⋄B
(two As and one B, replace the middle morphism with the one induced by ιA, ιB
and ιA, and the one on the right by the projection on the last two factors followed
by

(

1A
1A

)

×
(

0
1B

)

) and SA,B
1,2 : A ⋄B ⋄B → A ⋄B (two Bs and one A, so use

(

1B
1B

)

instead

of
(

1A
1A

)

). We also need the following morphism from A ⋄B ⋄ C to (A+B)♭C.

Definition 2.12. Consider the object (A+B)♭C and define the morphism jA,B,C as
in the diagram

A ⋄B ⋄ C

jA,B,C

hA,B,C

(A+B)♭C
k(A+B),C

A+B + C

(1A+B

0

)

ΣA,B,C

A+B

(A+B)× (A+ C)× (B + C)

π1

In particular, if A = B, then we have the commutative diagram

A ⋄A ⋄ C

hA,A,B

S
A,C
2,1

jA,A,C

(A+A)♭C
k(A+A),C

(1A

1A

)

♭1C

A+A+ C
(1A

1A

)

+1C

A ⋄ C

hA,B

iA,C

A♭C
kA,C

A+ C

Lemma 2.13. It is possible to cover the object (A+B)♭C with the three components
(A ⋄B ⋄ C), (A♭C) and (B♭C).

Proof. By Lemma 2.12 in [19] we know that there is a regular epimorphism of the
form

(A ⋄B ⋄ C) + (A ⋄ C) + (B ⋄ C)
e

(A+B) ⋄ C.

Using Remark 2.8 we are able to construct the square

(A⋄B ⋄C)+(A⋄C)+(B ⋄C)+C+C
1+

(

iA,C

ηA
C

)

+

(

iB,C

ηB
C

)

e+

(

1C

1C

)

(A⋄B ⋄C)+(A♭C)+(B♭C)
(

jA,B,C

iA♭1C
iB♭1C

)

((A+B)⋄C)+C

(

i(A+B),C

ηA+B
C

)

(A+B)♭C
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from which we see that the vertical morphism on the right is a regular epimorphism.

2.4. The categories Pt(A) and Act(A)
In semi-abelian categories there is a concept of internal action, which via a semi-

direct product construction is equivalent to the concept of a point—a split epimor-
phism with a chosen splitting.

Definition 2.14. A point (p, s) in A is a split epimorphism p with a chosen splitting s,
that is p : A→ B and s : B → A such that p ◦ s = 1B . A morphism of points (p, s) →
(p′, s′) is given by a pair of vertical morphisms (f, g) such that the two squares formed
by parallel morphisms

A
f

p

B
s

g

A′
p′

B′

s′

commute. Pt(A) is the category of points in A and morphisms between them. Since
the codomain of p is B, the point (p, s) is also called a point over B.

Having described the category of points, we now shift to internal actions, whose
category is equivalent to the former whenever the base category A is semi-abelian [5].

Definition 2.15. An internal action of A on X (or simply A-action or action) in A

is a triple (A,X, ξ) with ξ : A♭X → X a morphism in A such that (X, ξ) is an algebra
for the monad A♭(−) : A → A. This means that the diagrams

X
ηA
X

A♭X

ξ

A♭(A♭X)

1A♭ξ

µA
X

A♭X

ξand

X A♭X
ξ

X

—notations as in Remark 2.5—commute. A morphism of actions from (A,X, ξ) to
(A′, X ′, ξ′) is given by a pair (f, g) of morphisms in A, with f : A→ A′ and g : X →
X ′, such that ξ′ ◦ (f♭g) = g ◦ ξ. The category of actions and morphisms between them
is denoted by Act(A).

Example 2.16. If we fix A = Grp we find that internal actions coincide with the usual
group actions. Indeed due to Example 2.4, in order to define such an internal action
ξ : A♭X → X it suffices to specify where the elements of the form axa−1 are sent, since
they generate the whole subgroup A♭X. Now an internal action ξ corresponds to the
group action ψ : A×X → X given by ψ(a, x) :− ξ(axa−1). Conversely, starting from
a group action ψ we define ξ : A♭X → X on the generators by ξ(axa−1) :− ψ(a, x). It
is easy to show that these are actions in the appropriate sense. (ξ being a morphism
and the axioms for it to be an internal action amount to the group action axioms for
the function ψ.) The correspondence just depicted determines an equivalence between
internal actions in Grp and group actions.

Remark 2.17. Whenever the base category A is semi-abelian we have an equivalence
Pt(A) ≃ Act(A). The functor Pt(A) → Act(A) sends a point (p : A→ B, s : B → A)
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to the action (B,Kp, ξ), where ξ is the unique morphism making the diagram

B♭Kp

ξ

kB,Kp

B +Kp

(

s

kp

)

(

1B

0

)

B

Kp

kp

A
p

B

commute. The functor Act(A) → Pt(A) sends an action (A,X, ξ) to the point

X ⋊ξ A
πξ

A,
iξ

where the semi-direct product X ⋊ξ A is defined as the coequaliser

A♭X
iX◦ξ

kA,X

A+X
σξ

X ⋊ξ A,

the morphism πξ is the unique morphism such that

A+X
σξ

πA,X

X ⋊ξ A

πξ

A

commutes, and, finally, iξ = σξ ◦ iA. We will sometimes write X ⋊ξ A as X ⋊A, when
there is no risk of confusion regarding the action involved. Notice that the morphism

k :− σξ ◦ iX : X → X ⋊ξ A

is the kernel of πξ: it is easy to see that πξ ◦ k = 0, whereas for the universal property
some work needs to be done—see, for instance, [29].

Example 2.18. The trivial action (A,X, τ) is given by

τ =
(

0

1X

)

◦ kA,X : A♭X → X.

Then we have that (X ⋊τ A, στ ) ∼= Coeq(iX ◦ (
(

0
1X

)

◦ kA,X), kA,X). Both
(

1A
0

)

and
(

0
1X

)

coequalise these two morphisms, so (following the example of the trivial action
in Grp) a first guess would be that

Coeq
(

iX ◦
(

0

1X

)

◦ kA,X , kA,X

)

∼=
(

A×X,
〈(

1A

0

)

,
(

0

1X

)〉)

.

In order to prove this, we may use the equivalence Pt(A) ≃ Act(A). In particular, we
claim that the desired point is given by (πA : A×X → A, 〈1A, 0〉 : A→ A×X) and
hence it suffices to show that τ =

(

0
1X

)

◦ kA,X makes the diagram

A♭X

τ

kA,X

A+X
(

〈1A,0〉

〈0,1X〉

)

X
〈0,1X〉

A×X

commute. This is done by direct and easy calculations.
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Example 2.19. The conjugation action (A,A, χA) is given by

χA =
(

1A

1A

)

◦ kA,A : A♭A→ A.

Then we have that (A⋊χA
A, σχA

) ∼= Coeq(i2 ◦ (
(

1A
1A

)

◦ kA,A), kA,A). Both
(

1A
0

)

and
(

1A
1A

)

coequalise these two morphisms, so a first guess (again following the example
of Grp) would be that

Coeq
(

i2 ◦
(

1A

1A

)

◦ kA,A, kA,A

)

∼=
(

A×A,
〈(

1A

0

)

,
(

1A

1A

)〉)

.

In order to prove this, we use the same strategy as in the previous example.

Remark 2.20. Notice that, by the definition of the semi-direct product, it is easy to
show that the diagram on the left

A♭X
kA,X

ξ

A+X
σξ

X
kπξ

X ⋊ξ A

A♭X
iξ♭kπξ

ξ
X

kπξ

(X ⋊ξ A)♭(X ⋊ξ A) χ(X⋊ξA)
X ⋊ξ A

is a pushout. Thanks to this commutativity we can show that also the square on the
right commutes, which means that “computing an action” is the same as “computing
the conjugation in the induced semi-direct product”.

Remark 2.21. Notice that, if (B,X, ξ : B♭X → X) is an action and f : A→ B is any
morphism, then also (A,X, ξ ◦ (f♭1X) : A♭X → X) is an action. Indeed the diagrams

X
ηA
X

A♭X

f♭1X

X
ηB
X

B♭X

ξ

X

A♭(A♭X)
µA
X

f♭(f♭1X)
1A♭(f♭1X)

A♭X

f♭1X

A♭(B♭X)
f♭1B♭X

1A♭ξ
f♭ξ

B♭(B♭X)

1B♭ξ

µB
X

B♭X

ξ

A♭X
f♭1X

B♭X
ξ

X

commute. The action ξ ◦ (f♭1X) is often called pullback action of ξ along f and the
reason is the following. Consider the diagram

X
kπ

ξ′

X ⋊ξ′ A

1X⋊f

πξ′

A

f
σξ′

X
kπξ

X ⋊ξ B
πξ

B
σξ

where the bottom row is the point associated to ξ, whereas the first row is obtained
taking the pullback of πξ along f . Then it is easy to see that the action ξ′ coincides
with ξ ◦ (f♭1X).

Remark 2.22. In order to recover a point over B, in general slightly less is needed
than a B♭(−)-algebra structure. Every time we have an action ξ : A♭X → X we
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can construct the corresponding action core ⋄ξ : A ⋄X → X as the composition of ξ
and iA,X : A ⋄X → A♭X. Action cores (morphisms A ⋄X → X that satisfy suitable
axioms) were defined and studied in [19, 18]. The main point is that, in the semi-
abelian context, from an action core ⋄ξ : A ⋄X → X we can recover the action ξ.
Furthermore, crossed module structures can be expressed in terms of action cores.

Example 2.23. Consider an action ξ : A♭X → X in Grp, sending a generator axa−1

of A♭X to ax ∈ X. In order to understand how the action core ⋄ξ : A ⋄X → X looks,
we first need to make explicit what the inclusion iA,X : A ⋄X → A♭X does. It is easy
to see that A ⋄X is the subgroup of A+X generated by the commutators, that is
the words of the form axa−1x−1 with a ∈ A and x ∈ X. The morphism iA,X sends a
generator axa−1x−1 to

(

axa−1
) (

1x−11−1
)

. This means that the action core ⋄ξ sends

an element of the form axa−1x−1 to ξ
((

axa−1
)(

1x−11−1
))

= axx−1.

Our last ingredient is the definition of an internal crossed module in a semi-abelian
category A. Internal crossed modules are equivalent to internal categories; the con-
ditions that make this happen were obtained in [24]. In order to have a description
which is as simple as possible, we require that A satisfies the so-called Smith is Huq
condition (SH), which means that the Smith/Pedicchio commutator [31] of two inter-
nal equivalence relations vanishes if and only if so does the Huq commutator of their
associated normal subobjects [1, 28]. Examples of semi-abelian categories that satisfy
(SH) include the categories of groups, (commutative) rings (not necessarily unitary),
Lie algebras over a commutative ring with unit, Poisson algebras and associative alge-
bras, as are all varieties of such algebras, and crossed modules over those. In fact, all
Orzech categories of interest [30, 10] are examples. On the other hand, the category
of loops is semi-abelian but does not satisfy (SH).

We now recall the description of internal crossed modules given in [24, 28] in the
context of a semi-abelian category satisfying (SH). Further details on this definition
(and on its general version which does not require (SH)) can be found in [24, 19, 28].
Let us just add here that the crossed module conditions may be expressed in terms
of action cores, and that when (SH) does not hold, this approach involves an extra
condition in terms of the ternary cosmash product.

Definition 2.24. In a semi-abelian category A with (SH), an internal crossed module

is a pair (X
∂
−→ A, ξ) where ∂ : X → A is a morphism in A and ξ : A♭X → X is an

internal action such that the diagram

X♭X
χX

∂♭1X

∗1

A♭X

∗2ξ

1A♭∂
A♭A

χA

X X
∂

A

commutes. ∗1 is the Peiffer condition, and ∗2 the precrossed module condition.

3. Compatible actions of groups

Definition 3.1. Consider two groups M and N acting on each other via

ξMN : M♭N → N and ξNM : N♭M →M
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and on themselves by conjugation. We are able to define induced actions ξM+N
M and

ξM+N
N of the coproduct M +N on M and on N , in such a way that the following
diagrams commute:

M♭N
iM ♭1N

ξMN

(M +N)♭N

ξM+N
N

N

N♭M
iN ♭1M

ξNM

(M +N)♭M

ξM+N
M

M

(2)

N♭N
iN ♭1N

χN

(M +N)♭N

ξM+N
N

N

M♭M
iM ♭1M

χM

(M +N)♭M

ξM+N
M

M

(3)

This is done by defining the action ξM+N
M : (M +N)♭M →M on the generators

sms−1 where m ∈M and s ∈M +N , inductively on the length of s:

ξM+N
M (sms−1) =











m if s is the empty word,

ξM+N
M (s′ξNM (nmn−1)s′−1) if s = s′n with n ∈ N ,

ξM+N
M (s′χM (mmm−1)s′−1) if s = s′m with m ∈M

(4)

and similarly for ξM+N
N .

Remark 3.2. In particular, we have that the equalities

(nm)m′ = (nm)m′(nm)
−1

= n(m(n
−1

m′)m−1) = nmn−1

m′, (5)

(mn)n′ = (mn)n′(mn)
−1

= m(n(m
−1

n′)n−1) = mnm−1

n′, (6)

where the right-hand sides are given by the induced action of the coproduct, always
hold. Diagrammatically this is expressed by the commutativity of

(N♭M)♭M
kN,M ♭1M

ξNM ♭1M

(M +N)♭M

ξM+N
M

M♭M
χM

M

(M♭N)♭N
kM,N ♭1N

ξMN ♭1N

(M +N)♭N

ξM+N
N

N♭N
χN

N

(7)

Definition 3.3. Two actions are said to be compatible if also the equalities

(mn)m′ = mnm−1

m′ and (nm)n′ = nmn−1

n′ (8)

hold for each m, m′ ∈M and n, n′ ∈ N . If once again we examine these equalities
from a diagrammatic point of view, then we see that they are equivalent to the
commutativity of the diagrams

(M♭N)♭M
kM,N ♭1M

ξMN ♭1M

(M +N)♭M

ξM+N
M

(N♭M)♭N
kN,M ♭1N

ξNM ♭1N

(M +N)♭N

ξM+N
N

N♭M
ξNM

M M♭N
ξMN

N

(9)

A second look at these four equalities leads us to the following remark.

Remark 3.4. The meaning of (5) and (6) is that for each m ∈M and n ∈ N
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• (nm)nm−1n−1 acts trivially on M ,

• (mn)mn−1m−1 acts trivially on N ;

whereas the meaning (8) is that for each m ∈M and n ∈ N

• (nm)nm−1n−1 acts trivially on N ;

• (mn)mn−1m−1 acts trivially on M .

If we define K 6M +N to be the normal closure of the subgroup generated by the
elements of the form (nm)nm−1n−1 or (mn)mn−1m−1, we have that K acts trivially
on both M and N if and only if the two actions are compatible.

The previous remark leads to the following definition given in [16].

Definition 3.5. Given a pair of compatible actions as above, we define their Peiffer
product M ⊲⊳ N of M and N as the quotient

K M +N
qK M+N

K
−:M ⊲⊳ N.

Remark 3.6. Notice that the morphism qK and the Peiffer productM ⊲⊳ N can equiv-
alently be defined as the coequaliser in the diagram

(N♭M) + (M♭N)

(

kN,M

kM,N

)

ξNM+ξMN

M +N
q

M ⊲⊳ N. (10)

In order to explain why this definition is equivalent to the previous one, consider the
morphism qK given by the first definition. It is easy to show that

{

qK ◦ iM ◦ ξNM = qK ◦ kN,M ,

qK ◦ iN ◦ ξMN = qK ◦ kM,N ,

since this is exactly what taking the quotient by K means. But this is the same as
saying

{

qK ◦ (ξNM + ξMN ) ◦ iN♭M = qK ◦ kN,M ,

qK ◦ (ξNM + ξMN ) ◦ iM♭N = qK ◦ kM,N ,

which in turn is qK ◦ (ξNM + ξMN ) = qK ◦
(

kN,M

kM,N

)

. The universal property of the co-

equaliser is given by the universal property of the quotient by K in a straightforward
manner.

Given a pair of compatible actions, let K 6M +N be the normal subgroup of
Remark 3.4. Since K acts trivially on both M and N we can define induced actions
ξM⊲⊳N
M and ξM⊲⊳N

N of M ⊲⊳ N on M and N . They are such that the diagrams

(M +N)♭M

ξM+N
M

q♭1M
(M ⊲⊳ N)♭M

ξM⊲⊳N
M

(M +N)♭N

ξM+N
N

q♭1N
(M ⊲⊳ N)♭N

ξM⊲⊳N
N

M M

(11)

commute. We can describe these actions of the Peiffer product through its universal
property, but in order to do so, we need a preliminary remark.
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Remark 3.7. The diagram

(N♭M) + (M♭N)

(

kN,M

kM,N

)

ξNM+ξMN

M +NηN
M+ηM

N

is a reflexive graph. Indeed, the composites
(

kN,M

kM,N

)

◦ (ηNM + ηMN ) and (ξNM + ξMN ) ◦

(ηNM + ηMN ) are equal to 1M+N : one is obvious and the other one is clear once we
draw the diagram involved.

Lemma 2.9 implies that q♭1M is the coequaliser of
(

kN,M

kM,N

)

♭1M and (ξNM + ξMN )♭1M

and that q♭1N is the coequaliser of
(

kN,M

kM,N

)

♭1N and (ξNM + ξMN )♭1N . We want to use

these universal properties to define induced actions ξM⊲⊳N
M and ξM⊲⊳N

N of M ⊲⊳ N on
M and N as in Figure 1. In order to do so, we need the next result.

((N♭M) + (M♭N))♭M

(kN,M

kM,N

)

♭1M

(ξNM+ξMN )♭1M
(M +N)♭M

ξM+N
M

q♭1M
(M ⊲⊳ N)♭M

ξM⊲⊳N
M

M

((N♭M) + (M♭N))♭N

(kN,M

kM,N

)

♭1N

(ξNM+ξMN )♭1N
(M +N)♭N

ξM+N
N

q♭1N
(M ⊲⊳ N)♭N

ξM⊲⊳N
N

N

Figure 1: Induced actions of the Peiffer product.

Proposition 3.8. The action ξM+N
M coequalises

(

kN,M

kM,N

)

♭1M and (ξNM + ξMN )♭1M .

Similarly, the action ξM+N
N coequalises

(

kN,M

kM,N

)

♭1N and (ξNM + ξMN )♭1N .

Proof. Consider a generator sms−1 of ((N♭M) + (M♭N))♭M and write s as juxta-
position of generators of N♭M and M♭N , that is s = s1 · · · sk with sj = njmjn

−1
j ∈

N♭M or sj = mjnjm
−1
j ∈M♭N . We are going to prove the equality

ξM+N
M

(((

kN,M

kM,N

)

♭1M

)

(sms−1)
)

= ξM+N
M

(((

ξNM + ξMN
)

♭1M
)

(sms−1)
)

by induction on k. First of all, notice that it is equivalent to the equality

ξM+N
M

(

sms−1
)

= ξM+N
M

(

ǫ(s)mǫ(s)−1
)

, (12)

where ǫ(s) :− (ξNM + ξMN )(s) ∈M +N . In order to prove it when s is the empty word,
it suffices to notice that also ǫ(s) is the empty word. Now suppose we proved (12) for
each word whose decomposition involves at most k − 1 generators of N♭M andM♭N ,
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consider s = s1 · · · sk and denote s′ = s1 · · · sk−1: we have the chain of equalities

ξM+N
M

(

sms−1
)

= ξM+N
M

(

s′skms
−1
k s′−1

)

= ξM+N
M

(

s′
(

skm
)

s′−1
)

= ξM+N
M

(

s′
(

ǫ(sk)m
)

s′−1
)

= ξM+N
M

(

ǫ(s′)
(

ǫ(sk)m
)

ǫ(s′)−1
)

= ξM+N
M

(

ǫ(s′)ǫ(sk)mǫ(sk)
−1ǫ(s′)−1

)

= ξM+N
M

(

ǫ(s)mǫ(s)−1
)

,

where

ǫ(sk) =

{

nkmk if sk = nkmkn
−1
k ∈ N♭M ,

mknk if sk = mknkm
−1
k ∈M♭N .

Finally, we apply the same reasoning to ξM+N
N .

Proposition 3.9. We have two crossed module structures

(M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M ), (N
lN−→M ⊲⊳ N, ξM⊲⊳N

N ),

where the actions of the Peiffer product are induced as above and the morphisms lM
and lN are defined through

M
iM

lM

N
iN

lN
M +N

q

M ⊲⊳ N

(13)

Proof. We will show the claim only for ξM⊲⊳N
M , since the proof in the other case uses

the same strategy. We need to show the commutativity of the following squares

M♭M
χM

lM ♭1M

M

(M ⊲⊳ N)♭M
ξM⊲⊳N
M

1M⊲⊳N ♭lM

M

lM

(M ⊲⊳ N)♭(M ⊲⊳ N)
χM⊲⊳N

(M ⊲⊳ N)

For the commutativity of the upper square we have the chain of equalities

ξM⊲⊳N
M ◦ (lM ♭1M ) = ξM⊲⊳N

M ◦ (q♭1M ) ◦ (iM ♭1M ) = ξM+N
M ◦ (iM ♭1M ) = χM

given by commutativity of diagrams (3) and (11).
For what concerns the lower square, it can be shown to be commutative by direct

calculations, using the explicit definition of the coproduct action given in (4). First
of all we can precompose with the regular epimorphism q♭1M : we find

lM ◦ ξM⊲⊳N
M ◦ (q♭1M ) = q ◦ iM ◦ ξM+N

M

by (13) and the top commutative triangle in Figure 1, while

χM⊲⊳N ◦ (1M⊲⊳N ♭lM ) ◦ (q♭1M ) = q ◦ χM+N ◦ (1M+N ♭iM )

follows from (13) and the equivariance of q with respect to the conjugation actions
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χM+N and χM⊲⊳N . Hence the required commutativity is equivalent to the equation

q ◦ χM+N ◦ (1M+N ♭iM ) = q ◦ iM ◦ ξM+N
M . (14)

Now we can take a word s ∈M +N , an element m ∈M . We observe that the two
morphisms in (14) send the general element sms−1 ∈ (M +N)♭M to q (sm) and
q(sms−1), respectively. We prove the equality

q (sm) = q(sms−1) (15)

by induction on the length of s. First let s have length 0, so that it is the empty word:
we have that sm = m = sms−1 and hence (15). For the induction step we are going to
use the equality q(nm) = q(nmn−1) coming from the definition of the Peiffer product.
Suppose that (15) holds for words s with length l(s) < k. Given s with length k we
can write it as s = xs′ with x = m ∈M or x = n ∈ N and l(s′) = k − 1: now we have
the chain of equalities

q
(

sm
)

= q
(

xs′m
)

= q
(

x
(

s′m
))

= q
(

x
(

s′m
)

x−1
)

= q(x)q
(

s′m
)

q
(

x−1
)

= q(x)q
(

s′ms′−1
)

q
(

x−1
)

= q
(

xs′ms′−1x−1
)

= q
(

sms−1
)

.

We conclude that (M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M ) and (N
lN−→M ⊲⊳ N, ξM⊲⊳N

N ) are crossed
modules.

Furthermore we know that the actions ξMN and ξNM are in turn induced by ξM⊲⊳N
M

and ξM⊲⊳N
N through the morphisms lM and lN , that is

M♭N
lM ♭1N

ξMN

(M ⊲⊳ N)♭N

ξM⊲⊳N
N

N

N♭M
lN ♭1M

ξNM

(M ⊲⊳ N)♭M

ξM⊲⊳N
M

M

commute. This can be proved by using diagrams (2), (3), (11) and (13).

Proposition 3.10 (Remark 2.16 in [6]). Two actions as above are compatible if and

only if there exists a group L and two crossed module structure (M
µ
−→ L, ξLM ) and

(N
ν
−→ L, ξLN ) such that the actions of M on N and the action of N on M are induced

from L and its actions.

Proof. (⇐) We first show that the actions ξMN :− ξLN ◦ (µ♭1N ) and ξNM :− ξLM ◦ (ν♭1M )
are compatible. To see that they are actually actions it suffices to use Remark 2.21.
In order to prove (8)—we will show only one of the two equalities, since the proof
of the other follows the same steps—we are going to use the commutative diagrams
induced from the crossed module structures involving L, that is

M♭M
χM

µ♭1M

M

L♭M
ξLM

1L♭µ

M
µ

L♭L
χL

L

N♭N
χN

ν♭1N

N

L♭N
ξLN

1L♭ν

N
ν

L♭L
χL

L
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This gives us the chain of equalities

(mn)m′ = ν(µ(m)n)m′ = µ(m)ν(n)µ(m−1)m′ = µ(m)ν(n)
(

µ(m−1)m′
)

= µ(m)ν(n)
(

m−1

m′
)

= µ(m)
(

ν(n)
(

m−1

m′
))

= µ(m)
(

n
(

m−1

m′
))

= µ(m)
(

nm−1

m′
)

= m
(

nm−1

m′
)

= mnm−1

m′.

(⇒) This implication is given by Proposition 3.9.

4. Compatible actions in semi-abelian categories

From now on we will consider A to be a semi-abelian category in which the condition
(SH) holds.

We are going to give a definition of compatible internal actions which is inspired
by Definitions 3.1 and 3.3, with some differences that we will explain here.

N♭M
iN ♭1M

ξNM

(M +N)♭M

ξM+N
M

M

M♭N
iM ♭1N

ξMN

(M +N)♭N

ξM+N
N

N

M♭M
iM ♭1M

χM

(M +N)♭M

ξM+N
M

M

N♭N
iN ♭1N

χN

(M +N)♭N

ξM+N
N

N

(CA.0)

M ⋄N ⋄M
jM,N,M

S
N,M
1,2

(M +N)♭M

ξM+N
M

N ⋄M
⋄ξNM

M

M ⋄N ⋄N
jM,N,N

S
M,N
1,2

(M +N)♭N

ξM+N
N

M ⋄N
⋄ξMN

N

Figure 2: The diagrams (CA.0).

Definition 4.1. Consider two objects M , N ∈ A which act on each other and on
themselves by conjugation and denote the actions as

χM : M♭M →M, χN : N♭N → N,

ξMN : M♭N → N, ξNM : N♭M →M.

We say that the actions ξMN and ξNM are compatible if there exist two actions

ξM+N
N : (M +N)♭N → N, ξM+N

M : (M +N)♭M →M

“induced” from ξMN , ξNM and the conjugations, that is such that the diagrams (CA.0)
in Figure 2 as well as the diagrams (CA.M) and (CA.N) in Figure 3 commute.

This definition obviously implies the one given in the case of groups, but we will
see later (Corollary 4.12) that in Grp the two definitions coincide. The difference
between these two definitions is twofold.
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((N♭M) + (M♭N))♭M
(ξNM+ξMN )♭1M

(kN,M

kM,N

)

♭1M

(M +N)♭M

ξM+N
M

(M +N)♭M
ξM+N
M

M

(CA.M)

((N♭M) + (M♭N))♭N
(ξNM+ξMN )♭1N

(kN,M

kM,N

)

♭1N

(M +N)♭N

ξM+N
N

(M +N)♭N
ξM+N
N

N

(CA.N)

Figure 3: The diagrams (CA.M) and (CA.N).

• First of all, the commutativity of the two squares in (CA.0) involving the ternary
cosmash products is for free in Grp (and in LieR as one can see from [13]).
Right now it is not clear to us what are the conditions the category A must
satisfy for the commutativity of these squares to be implied by the other four
triangles in (CA.0). Note that this is quite similar to the ternary cosmash prod-
uct conditions that appear in the description of internal crossed modules given
in [19].

• Likewise, note the difference between diagrams (CA.M) and (CA.N), and their
version for groups given by (9). The former two can be decomposed into the
latter, together with (7) and with additional conditions involving ♭ and higher-
order cosmash products. Also this aspect would benefit from further investiga-
tion.

Remark 4.2. Notice that in the situation of the previous definition, the coproduct
actions ξM+N

M and ξM+N
N are uniquely determined by the commutativities of (CA.0)

due to Lemma 2.13.

Proposition 4.3. Given a pair of coterminal crossed modules

(M
µ
−→ L, ξLM ), (N

ν
−→ L, ξLN )

we can define actions ξMN and ξNM through the diagrams

M♭N
ξMN

µ♭1N

N N♭M
ξNM

ν♭1M

M

L♭N
ξLN

L♭M
ξLM

These actions are then compatible in the sense of Definition 4.1.

Proof. First of all, notice that ξMN and ξNM are actually actions due to Remark 2.21.
Now, in order to show that they are compatible, we need to define the coproduct
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actions

ξM+N
N : (M +N)♭N → N, ξM+N

M : (M +N)♭M →M,

such that diagrams (CA.0), (CA.M) and (CA.N) commute. These are defined as the
compositions

(M +N)♭M
ξM+N
M

(µ

ν

)

♭1M

M

L♭M
ξLM

(M +N)♭N
ξM+N
N

(µ

ν

)

♭1N

N

L♭N
ξLN

Once again the fact that they are actions is given by Remark 2.21. In order to show
that the four triangles in (CA.0) commute, we simply calculate

ξM+N
M ◦ (iM ♭1M ) = ξLM ◦

((

µ
ν

)

♭1M
)

◦ (iM ♭1M ) = ξLM ◦ (µ♭1M ) = χM ,

ξM+N
M ◦ (iN ♭1M ) = ξLM ◦

((

µ
ν

)

♭1M
)

◦ (iN ♭1M ) = ξLM ◦ (ν♭1M ) = ξNM ,

ξM+N
N ◦ (iM ♭1N ) = ξLN ◦

((

µ
ν

)

♭1N
)

◦ (iM ♭1N ) = ξLN ◦ (µ♭1N ) = ξMN ,

ξM+N
N ◦ (iN ♭1N ) = ξLN ◦

((

µ
ν

)

♭1N
)

◦ (iN ♭1N ) = ξLN ◦ (ν♭1N ) = χN

using the crossed module conditions. For the first square in (CA.0), we use the dia-
grams

M ⋄N ⋄M

µ⋄ν⋄1M

jM,N,M

(M +N)♭M

(µ+ν)♭1M

M ⋄N ⋄M

1M⋄ν⋄1M

S
N,M
1,2

N ⋄M

ν⋄1M

⋄ξNM
M

L ⋄ L ⋄M

S
L,M
2,1

jL,L,M

(L+ L)♭M
(1L

1L

)

♭1M

M ⋄ L ⋄M

µ⋄1L⋄1M

S
L,M
1,2

L ⋄M
⋄ξLM

M

L ⋄M
iL,M

L♭M L ⋄ L ⋄M
S

L,M
2,1

L ⋄M
⋄ξLM

M

in order to obtain the chain of equalities

ξM+N
M ◦ jM,N,M = ξLM ◦

((

µ
ν

)

♭1M
)

◦ jM,N,M = ξLM ◦ iL,M ◦ SL,M
2,1 ◦ (µ ⋄ ν ⋄ 1M )

= ⋄ξNM ◦ SN,M
1,2 .

These diagrams are induced by naturality and by the crossed module conditions. For
the one on the right, we may use Theorem 5.6 in [19], which (modulo the notation

⊗ for ⋄, together with (⋄ξLM )1,2 for ⋄ξLM ◦ SL,M
1,2 and (⋄ξLM )2,1 for ⋄ξLM ◦ SL,M

2,1 ) tells us
that the diagram

M ⋄M ⋄ L

1M⋄µ⋄1L

S
L,M
1,2

L ⋄M
⋄ξLM

M

M ⋄ L ⋄ L
S

L,M
2,1

L ⋄M
⋄ξLM

M

commutes: this is precisely the bottom rectangle in the right hand side diagram above,
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composed with the canonical isomorphism induced by the symmetry in the co-smash
products.

Through a similar reasoning we may prove the commutativity of the other square
in (CA.0). Finally, we need to show (CA.M), that is the fact that ξM+N

M coequalises
the morphisms

((N♭M) + (M♭N))♭M

(kN,M

kM,N

)

♭1M

(ξNM+ξMN )♭1M

(M +N)♭M.

Here we have the chain of equalities

ξM+N
M ◦ (ξNM + ξMN )♭1M = ξLM ◦

(

µ
ν

)

♭1M ◦
(((

ξLM ◦ ν♭1M
)

+
(

ξLN ◦ µ♭1N
))

♭1M
)

= ξLM ◦
(((

µ
ν

)

◦
((

ξLM ◦ ν♭1M
)

+
(

ξLN ◦ µ♭1N
)))

♭1M
)

= ξLM ◦
(

µ◦ξLM◦ν♭1M

ν◦ξLN◦µ♭1N

)

♭1M

= ξLM ◦
(

χL◦ν♭µ

χL◦µ♭ν

)

♭1M

= ξLM ◦
(

(

µ
ν

)

◦kN,M
(

µ
ν

)

◦kM,N

)

♭1M

= ξLM ◦
((

µ
ν

)

♭1M
)

◦
(

kN,M

kM,N

)

♭1M

= ξM+N
M ◦

((

kN,M

kM,N

)

♭1M

)

.

Through a similar reasoning we can show that (CA.N) commutes.

We take the construction of the Peiffer product in (10) as a general definition.

Definition 4.4. Given two objects M and N acting on each other via ξNM and ξMN ,
we define their Peiffer product M ⊲⊳ N as the coequaliser

(N♭M) + (M♭N)

(kN,M

kM,N

)

ξNM+ξMN

M +N
q

M ⊲⊳ N. (16)

An equivalent definition of the Peiffer product of two actions can be given through
the following proposition, which characterises it as the pushout of the two semi-direct
products induced by the two actions.

Proposition 4.5. Given a pair of actions ξMN : M♭N → N and ξNM : N♭M →M we
can obtain the Peiffer product M ⊲⊳ N as the pushout

M +N
q

σ
ξN
M

σ
ξM
N

M ⋊N

qM⋊N

N ⋊M
qN⋊M

M ⊲⊳ N

(17)

of the two semi-direct products.
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Proof. Recall that the semi-direct products are defined as the coequalisers

N♭M
iM◦ξNM

kN,M

M +N
σ
ξN
M

M ⋊N,

M♭N
iN◦ξMN

kM,N

M +N
σ
ξM
N

N ⋊M.

By definition we know that q coequalises each of these pairs of morphisms, and thus
we obtain the unique regular epimorphisms qN⋊M and qM⋊N making the triangles

M +N
σ
ξN
M

q

M ⋊N
qM⋊N

M ⊲⊳ N

M +N
σ
ξM
N

q

N ⋊M
qN⋊M

M ⊲⊳ N

commute. To prove that (17) is a pushout, suppose there exist f : M ⋊N → Z
and g : N ⋊M → Z such that γ :− f ◦ σξNM = g ◦ σξMN . It suffices to prove that γ
coequalises the morphisms defining q:

γ◦
(

kN,M

kM,N

)

=
(

γ◦kN,M

γ◦kM,N

)

=
(

f◦σ
ξN
M

◦kN,M

g◦σ
ξM
N

◦kM,N

)

=
(

f◦σ
ξN
M

◦iM◦ξNM

g◦σ
ξM
N

◦iN◦ξMN

)

=
(

γ◦iM◦ξNM
γ◦iN◦ξMN

)

= γ◦(ξNM +ξMN ).

This gives us a unique morphism γ′ : M ⊲⊳ N → Z such that γ′ ◦ qM⋊N = f and
γ′ ◦ qN⋊M = g because σξNM and σξMN are epimorphisms.

The idea behind the Peiffer product M ⊲⊳ N is that it should be the universal
object acting on M and N with two crossed modules structures, as soon as these two
objects act on each other compatibly. This is meant to solve the following problem. If
we are in the situation of two compatible actions, we have induced coproduct actions
whose precrossed module conditions

(M +N)♭M

1M+N ♭iM

ξM+N
M

M

iM

(M +N)♭(M +N)
χM+N

M +N

(M +N)♭N

1M+N ♭iN

ξM+N
N

N

iN

(M +N)♭(M +N)
χM+N

M +N

(18)

are generally not satisfied. (However, the Peiffer conditions always hold.)
Hence we want to do two things: we want to define actions of the Peiffer product

on M and N induced from the coproduct actions, and then we want to show that the
postcomposition with the quotient defining the Peiffer product makes the previous
squares commute, so that we obtain two crossed module structures.

Again by using Lemma 2.9 and Remark 3.7 we deduce that in order to define the
actions ξM⊲⊳N

M and ξM⊲⊳N
N of the Peiffer product as in Figure 4 (compare with the

group case, Figure 1) it suffices to show that ξM+N
M coequalises the parallel morphisms

in (19) and that ξM+N
N coequalises the parallel morphisms in (20). These conditions

are equivalent to the commutativity of (CA.M) and (CA.N).
Now we have the desired actions of the Peiffer product, but in order to obtain the

crossed module structures we need to show that postcomposing with the quotient q
makes the diagrams (18) commute. In fact, we are going to prove more than this: the
Peiffer product is the coequaliser of those morphisms!
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((N♭M) + (M♭N))♭M

(kN,M

kM,N

)

♭1M

(ξNM+ξMN )♭1M
(M +N)♭M

ξM+N
M

q♭1M
(M ⊲⊳ N)♭M

ξM⊲⊳N
M

M

(19)

((N♭M) + (M♭N))♭N

(kN,M

kM,N

)

♭1N

(ξNM+ξMN )♭1N
(M +N)♭N

ξM+N
N

q♭1N
(M ⊲⊳ N)♭N

ξM⊲⊳N
N

N

(20)

Figure 4: Actions ξM⊲⊳N
M and ξM⊲⊳N

N of the Peiffer product.

Definition 4.6. Given a pair of compatible actions ξNM and ξMN , we define the strong
Peiffer product M ⊲⊳S N as the coequaliser in the diagram

((M +N)♭M) + ((M +N)♭N)

χM+N◦
(1M+N ♭iM

1M+N ♭iN

)

ξM+N
M +ξM+N

N

M +N
qS

M ⊲⊳S N. (21)

Remark 4.7. It is important to notice that in principle there is a huge difference
between the coequaliser in (16) and the one in (21):

• the latter makes sense only if the two actions are already compatible—otherwise
the existence of the coproduct actions is not guaranteed; by definition, the strong
Peiffer product coequalises the compositions in (18);

• the former makes sense even when the two actions are not compatible; it is
obtained following the ideas from the particular compatibility conditions in the
case of Grp through Remark 3.4 and Remark 3.6.

This means that by taking (16) as a definition of M ⊲⊳ N , we would not immediately
have that the Peiffer product is the universal way to coequalise the compositions
in (18). Obviously if we precompose the morphisms in (21) with (iN ♭1M ) + (iM ♭1N ),
we see that qS coequalises also the morphisms defining q

qS ◦ (ξNM + ξMN ) = qS ◦
(

kN,M

kM,N

)

but for the converse we need the following proposition.

Proposition 4.8. Consider two actions ξMN and ξNM which are compatible in the sense
of Definition 4.1. Then the Peiffer product M ⊲⊳ N as in (16) and the strong Peiffer
product M ⊲⊳S N as in (21) are isomorphic.

Proof. In order to obtain the needed isomorphism it suffices to show that q coequalises
the morphisms defining qS : since the converse already holds due to Remark 4.7, we
obtain the claim by the universal properties of the coequalisers. Recalling Lemma 2.13
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we just need to show that q coequalises the two compositions in

(M♭M) + (N♭M) + (M ⋄N ⋄M) + (M♭N) + (N♭N) + (M ⋄N ⋄N)














iM ♭1M
iN ♭1M
jM,N,M















+















iM ♭1N
iN ♭1N
jM,N,N















((M +N)♭M) + ((M +N)♭N)

χM+N◦
(1M+N ♭iM

1M+N ♭iN

)

ξM+N
M +ξM+N

N

M +N

By the universal property of the coproduct we can consider each component separately
and since the last three are similar to the first three—it suffices to exchange M
and N—we are going to examine only the first three.

• Precomposing with the inclusion of M♭M , we obtain

q ◦χM+N ◦
(

1M+N ♭iM

1M+N ♭iN

)

◦ i1 ◦ (iM ♭1M ) = q ◦ χM+N ◦ (iM ♭iM ) = q ◦ iM ◦ χM

= q ◦ iM ◦ ξM+N
M ◦ (iM ♭1M )

= q ◦
(

ξM+N
M + ξM+N

N

)

◦ i1 ◦ (iM ♭1M ).

• Precomposing with the inclusion ofN♭M , and using the definition of q we obtain

q ◦χM+N ◦
(

1M+N ♭iM

1M+N ♭iN

)

◦ i1 ◦ (iN ♭1M ) = q ◦ χM+N ◦ (iN ♭iM ) = q ◦ kN,M

= q ◦ iM ◦ ξNM = q ◦ iM ◦ ξM+N
M ◦ (iN ♭1M )

= q ◦
(

ξM+N
M + ξM+N

N

)

◦ i1 ◦ (iN ♭1M ).

• Precomposing with the inclusion of M ⋄N ⋄M , we obtain

q ◦χM+N ◦
(

1M+N ♭iM

1M+N ♭iN

)

◦ i1 ◦ jM,N,M = q ◦ χM+N ◦ (1M+N ♭iM ) ◦ jM,N,M

= q ◦hN,M ◦SN,M
1,2 = q ◦kN,M ◦ iN,M ◦SN,M

1,2

= q ◦ iM ◦ ξNM ◦ iN,M ◦ SN,M
1,2

= q ◦ iM ◦ ξM+N
M ◦ jM,N,M

= q ◦
(

ξM+N
M + ξM+N

N

)

◦ i1 ◦ jM,N,M .

This means that M ⊲⊳S N ∼=M ⊲⊳ N and that q is the universal morphism mak-
ing (18) commute through postcomposition.

Our aim now is to show that ξM⊲⊳N
M and ξM⊲⊳N

N are indeed actions, which moreover,
induce two crossed module structures.

Proposition 4.9. The morphisms ξM⊲⊳N
M and ξM⊲⊳N

N are internal actions. We have
crossed module structures

(M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M ) (N
lN−→M ⊲⊳ N, ξM⊲⊳N

N )

where the morphisms lM and lN are defined as in (13). Further, as in Proposition 4.3,
the compatible actions induced by these crossed module structures coincide with the
actions ξNM and ξMN .

Proof. We are going to prove the claim only for ξM⊲⊳N
M and lM , since the reasoning

can be repeated for ξM⊲⊳N
N and lN .
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In order to see that ξM⊲⊳N
M is automatically an action it suffices to follow these

steps:

• show that ηM⊲⊳N
M = (q♭1M ) ◦ ηM+N

M using the diagram

M
iM

ηM+N
M

(M +N)♭M
kM+N,M

q♭1M

(M +N) +M

q+1M

(M ⊲⊳ N)♭M
kM⊲⊳N,M

(M ⊲⊳ N) +M

• show the first axiom:

ξM⊲⊳N
M ◦ ηM⊲⊳N

M = ξM⊲⊳N
M ◦ (q♭1M ) ◦ ηM+N

M = ξM+N
M ◦ ηM+N

M = 1M ;

• q♭(q♭1M ) is a regular epimorphism due to Lemma 2.6;

• show the second axiom

ξM⊲⊳N
M ◦ µM⊲⊳N

M = ξM⊲⊳N
M ◦ (1M⊲⊳N ♭ξ

M⊲⊳N
M )

using the commutativity of the outer rectangle

(M +N)♭((M +N)♭M)
µM+N
M

q♭(q♭1M )

(M +N)♭M

q♭1M

(M ⊲⊳ N)♭((M ⊲⊳ N)♭M)
µM⊲⊳N
M

1M⊲⊳N ♭ξM⊲⊳N
M

(M ⊲⊳ N)♭M

ξM⊲⊳N
M

(M ⊲⊳ N)♭M
ξM⊲⊳N
M

M

which follows from one of the axioms for the action ξM+N
M (namely, the diagram

on the right in Definition 2.15).

It remains to be shown that (M
lM−−→M ⊲⊳ N, ξM⊲⊳N

M ) is indeed a crossed module. This
amounts to the commutativity of the squares

M♭M
χM

lM ♭1M

M

(M ⊲⊳ N)♭M
ξM⊲⊳N
M

1M⊲⊳N ♭lM

M

lM

(M ⊲⊳ N)♭(M ⊲⊳ N)
χM⊲⊳N

(M ⊲⊳ N)

For the upper square we have the chain of equalities

ξM⊲⊳N
M ◦ (lM ♭1M ) = ξM⊲⊳N

M ◦ (q♭1M ) ◦ (iM ♭1M ) = ξM+N
M ◦ (iM ♭1M ) = χM .
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In order to show that the lower square commutes, consider the diagram

(M +N)♭M

q♭1M

ξM+N
M

(M ⊲⊳ N)♭M
ξM⊲⊳N
M

1M⊲⊳N ♭lM

M

lM

(M ⊲⊳ N)♭(M ⊲⊳ N)
χM⊲⊳N

(M ⊲⊳ N)

Since q♭1M is a regular epimorphism, it suffices to prove that the outer diagram is
commutative. We decompose it as

(M +N)♭M
ξM+N
M

1M+N ♭iM

M

iM

(M +N)♭(M +N)

q♭q

χM+N

M +N

q

(M ⊲⊳ N)♭(M ⊲⊳ N)
χM⊲⊳N

M ⊲⊳ N

It is easy to check that the lower square commutes and thanks to this, by using
Proposition 4.8, we find that the whole rectangle commutes.

Finally, we know that the actions ξMN and ξNM are in turn induced by ξM⊲⊳N
M and

ξM⊲⊳N
N through the morphisms lM and lN , that is

M♭N
lM ♭1N

ξMN

(M ⊲⊳ N)♭N

ξM⊲⊳N
N

N♭M
lN ♭1M

ξNM

(M ⊲⊳ N)♭M

ξM⊲⊳N
Mand

N M

commute. This can be proved by using the definition of lM and lN and the commu-
tativity of diagrams (CA.0), (19) and (20).

Remark 4.10. Notice that in the previous proposition we are implicitly using the (SH)
condition: indeed we are using Definition 2.24, which requires (SH), as a definition
for internal crossed modules.

Combining Proposition 4.3 and Proposition 4.9 we obtain the following character-
isation of compatible actions, the main result of this article:

Theorem 4.11. In a semi-abelian category that satisfies (SH), two actions ξMN and
ξNM are compatible if and only if there exists an object L endowed with crossed module
structures

(M
µ
−→ L, ξLM ) (N

ν
−→ L, ξLN )

which, via the commutative triangles

M♭N
ξMN

µ♭1N

N N♭M
ξNM

ν♭1M

M

L♭N
ξLN

L♭M
ξLM

induce the given actions.
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As a consequence, our definition of compatible internal actions is indeed an exten-
sion of the particular definitions for groups and Lie algebras.

Corollary 4.12. In Grp Definition 4.1 coincides with Definition 3.3.

Proof. This is a combination of Theorem 4.11 with Proposition 3.10.

Corollary 4.13. The definition of compatible actions of Lie algebras given in [14]
coincides with Definition 4.1 restricted to the category LieR.

Proof. This is obtained through Theorem 4.11 by using Theorem 2.17 from [13].

5. Universal properties of the Peiffer product

The Peiffer product M ⊲⊳ N is the universal way to associate a coterminal pair of
crossed modules to a pair of compatible actions.

Proposition 5.1. Consider a pair of compatible actions ξMN and ξNM and the pairs of
coterminal crossed modules inducing them. The pair given by the Peiffer product is
the universal one, in the sense that it is initial: for any pair of crossed modules

(M
µ
−→ L, ξLM ) (N

ν
−→ L, ξLN )

inducing ξMN and ξNM there exists a unique morphism
∣

∣

µ
ν

∣

∣ : M ⊲⊳ N → L making the
diagram

M

lM

µ

N
lN

ν

M ⊲⊳ N
∣

∣

µ
ν

∣

∣

L

commute.

Proof. It suffices to show that
(

µ
ν

)

: M +N → L coequalises the two morphisms defin-

ing M ⊲⊳ N . Indeed that would give us a unique morphism
∣

∣

µ
ν

∣

∣ such that

M +N
q

(

µ
ν

)

M ⊲⊳ N
∣

∣

µ
ν

∣

∣

L

and then by precomposing with the inclusion we would get

µ =
(

µ
ν

)

◦ iM =
∣

∣

µ
ν

∣

∣ ◦ q ◦ iM =
∣

∣

µ
ν

∣

∣ ◦ lM , ν =
(

µ
ν

)

◦ iN =
∣

∣

µ
ν

∣

∣ ◦ q ◦ iN =
∣

∣

µ
ν

∣

∣ ◦ lN .

Therefore we have to show that the two compositions

(N♭M) + (M♭N)

(kN,M

kM,N

)

ξNM+ξMN

M +N

(

µ
ν

)

L
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are equal. This is done via the chain of equalities
(

µ
ν

)

◦ (ξNM + ξMN ) =
(

µ◦ξLM◦ν♭1M

ν◦ξLN◦µ♭1N

)

=
(

(

µ
ν

)

◦kN,M
(

µ
ν

)

◦kM,N

)

=
(

µ
ν

)

◦
(

kN,M

kM,N

)

Lemma 5.2. Consider two pairs of coterminal crossed modules

M
µ

M
µ′

N
ν

L N
ν′

L′

such that they induce the same actions between M and N , that is such that the
diagrams

N♭M
ξNM

ν♭1M

ν′♭1M

L♭M

ξLM

M♭N
ξMN

µ♭1N

µ′♭1N

L♭N

ξLN

L′♭M
ξL

′

M
M L′♭N

ξL
′

N
N

commute. Up to isomorphism, they induce the same Peiffer product M ⊲⊳ N .

Proof. The induced actions ξM+N
M and ξ′M+N

M (resp. ξM+N
N and ξ′M+N

N ) coincide
when restricted to M♭M , N♭M and M ⋄N ⋄M (resp. M♭N , N♭N and M ⋄N ⋄N),
therefore it suffices to use Remark 4.2 to obtain that ξM+N

M = ξ′M+N
M (resp. ξM+N

N =
ξ′M+N
N ). As a consequence they induce isomorphic Peiffer products and isomorphic
crossed module structures.

Finally, we use Proposition 4.5 to show the link between our definition of Peiffer
product and the one given in [11].

Remark 5.3. We know from Proposition 3.2 in [11] that, as soon as (M
µ
−→ L, ξLM )

and (N
ν
−→ L, ξLN ) are (pre)crossed modules, we have induced actions of L on M ⋊N

and N ⋊M with corresponding (pre)crossed module structures. In general this is not
true for M ⊲⊳ N , but if A is algebraically coherent, by Proposition 4.1 and Proposi-
tion 4.3 in [11], and by Proposition 4.5 we obtain that our definition of Peiffer product
coincides with the one given by Cigoli, Mantovani and Metere: consequently, M ⊲⊳ N
is endowed with a precrossed module structure (

∣

∣

µ
ν

∣

∣ : M ⊲⊳ N → L,ψM⊲⊳N ) as soon
as M and N are so. Finally, when A satisfies the condition (UA) as well (see [11]
for more on this condition), Theorem 5.2 in [11] tells us that the Peiffer product
precrossed module turns out to be a crossed module as soon as M and N are so.

Actually then it is the coproduct of (M
µ
−→ L, ξLM ) and (N

ν
−→ L, ξLN ) in the category

XModL(A) of L-crossed modules in A.

Remark 5.4. We do not know whether L acts on M ⊲⊳ N when A is not algebraically
coherent. And even if so, it is not clear to us whether this action defines a precrossed
module structure.
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