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EQUIVARIANT STEINBERG SUMMANDS

KRISHANU SANKAR

(communicated by Nicholas J. Kuhn)

Abstract
We construct Steinberg summands of G-equivariant spec-

tra with GLn(Fp)-action. We prove a lemma about their fixed
points when G is a p-group, and then use this lemma to compute
the fixed points of the Steinberg summand of the equivariant
classifying space of (Z/p)n. These results will be used in a com-
panion paper to study the layers in the mod p symmetric power
filtration for HFp.

1. Introduction

This paper establishes two results regarding Steinberg summands of equivariant
spectra. Namely, let G be a finite p-group and let GLn = GLn(Fp). Then,

1. (Theorem 3.3) For any pointed (G×GLn)-space Y , there is a natural homotopy
equivalence en(Y

G) → (enY )G from the Steinberg summand of the fixed points
to the fixed points of the Steinberg summand.

2. (Theorem 4.2) Let BG(Z/p)
n denote the equivariant classifying space of (Z/p)n.

Let C denote the set of normal subgroupsH ⊆ G such thatG/H is an elementary
abelian p-group. Then the fixed points of the Steinberg summand en(BG(Z/p)

n
+)

decompose into a wedge sum of spectra

(en(BG(Z/p)
n
+)

G ≃
∨

H∈C

En(H).

More explicitly, if G/H is elementary abelian of rank d, then the summand
En(H) is

En(H) ≃ en−dB(Z/p)n−d
+ ∧ Σ1−dB✸

d ∧B(Z/p)d+,

where B✸

d is the unreduced suspension of the flag complex of Fd
p (Definition 2.8).

Along the way we gather certain results about (non-equivariant) Steinberg sum-
mands that are scattered in the literature. We also prove a result relating Steinberg
summands and Stiefel varieties Vd(F

n
p ) (Proposition 4.4), which is an important step

in the proof of Proposition 4.7.
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1.1. Background and context

The Steinberg module [14] is an irreducible, unipotent representation which plays a
special role in the representation and character theory of a Chevalley group G over the
field Fp (see [7] for a survey). In this paper, we only consider the Steinberg module
for the group Γ = GLn(Fp), but more generally one has a Steinberg module when
G is any Chevalley or p-adic Lie group, and the Steinberg module can be realized
topologically using the Bruhat–Tits building of the group Γ (as we have done here).

Stable splittings of spectra have long been used in homotopy theory to construct
new classes of maps, particularly in the homotopy groups of the spheres. The Stein-
berg idempotent associated to GLn(Fp) was used by Mitchell–Priddy to split cer-
tain interesting summands M(n) off of the classifying spaces of elementary abelian
p-groups [11, 12]. The cohomology of the summands M(n) reflects the length fil-
tration in the mod p Steenrod algebra. These spectra were a crucial ingredient in
work of Kuhn, Mitchell, and Priddy on the Whitehead conjecture [9, 8], were used
by Mitchell to prove the Conner–Floyd conjecture [10], and have chromatic type n
[15]. More recently, Steinberg idempotents for the symplectic group Sp2n appear in
a conjectural bu-analogue of the Whitehead conjecture [2].

We adapt the Steinberg idempotent of GLn(Fp) to G-equivariant homotopy theory.
This paper is a companion to a larger work [13] in which the layers in the mod p
symmetric power filtration are calculated, with a view to understanding HFp ∧HFp.
In the larger paper, we observe that the genuine G-spectrum HFp is the infinite mod

p symmetric power of the equivariant sphere spectrum Σ∞GS0, and the layers of the
filtration

Σ∞GS0 = Sp1
Z/p(Σ

∞GS0) ⊂ Spp
Z/p(Σ

∞GS0) ⊂ Spp
2

Z/p(Σ
∞GS0) ⊂ · · ·

· · · ⊂ Sp∞
Z/p(Σ

∞GS0) = HFp

are the n-fold suspensions of the Steinberg summands enBG(Z/p)
n
+.

1.2. Conventions and notation

In this paper, all spaces are pointed CW complexes with finitely many cells in each
dimension. Thus, ‘homotopy equivalence’ and ‘weak equivalence’ are interchangeable.

All groups used are finite. When G is a group, the term ‘G-space’ is used to mean
a G-CW complex. A G-map f : X → Y of G-CW complexes is an equivalence if
fH : XH → Y H is an equivalence for every subgroup H ⊆ G.

We use the term spectrum to mean a sequence of pointed CW-complexes X0, X1,
X2, . . . with structure maps fi : ΣXi → Xi+1. Such an object is often called a prespec-
trum in the literature, while the term ‘spectrum’ is reserved for the special case where
Xi

∼= ΩXi+1. But all spectra considered in this paper are of the form S−n ∧ Σ∞X for
some integer n and pointed space X, so we do not worry about the distinction and
use the simpler term. All spectra considered are connective (colimi→∞(πn+iXi) ∼= 0
for n < 0) and of finite type (for fixed i and n variable, the number of (n+ i)-cells in
Xn is bounded). A map of spectra {Xi → Yi}i>0 is an equivalence if for every n > 0,
the map Xi → Yi is an isomorphism in homotopy groups up through dimension n+ i
for i ≫ n.

All G-spectra are näıve G-spectra, meaning they are spectrum objects in the cat-
egory of G-spaces. That is, we mean a sequence of G-CW complexes X0, X1, X2, . . .
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with G-maps fi : ΣXi → Xi+1. For any subgroup H ⊆ G, the H-fixed point spec-
trum XH has i-th space XH

i . A map f : X → Y of näıve G-spectra is an equivalence
if fH : XH → Y H is an equivalence of spectra for every subgroup H ⊆ G. We refer
the reader to [5], section 2 for an introduction to equivariant spectra.

2. Steinberg summands

In this section, we construct Steinberg summands and prove some of their basic
properties. The results of this section are not original work of the author, but they
are scattered throughout the literature so we collect and prove the results important
to us.

In subsection 2.1, we define the Steinberg idempotent and Steinberg representation.
In subsection 2.2 we define product maps relating these idempotents. The Steinberg
summand in topology does not appear until subsection 2.3. There, we give its def-
inition (Definition 2.8) in terms of the flag complex. Several properties of the flag
complex are proven, which will later be useful to us.

2.1. The Steinberg idempotent
Classical sources for the material of this subsection are [4, 14]. Fix a prime p,

and let Fp denote the field of p elements. Let n be a positive integer, and write
GLn = GLn(Fp) for brevity. Tensor products will be taken over Z(p) unless otherwise
specified.

Let Σn ⊂ GLn be the subgroup of permutation matrices, and let Bn ⊂ GLn be the
Borel subgroup of upper triangular matrices. Associated to these two subgroups are
elements Σn, Bn in the group algebra Z(p)[GLn] defined by

Σn :=
∑

σ∈Σn

(−1)σσ, Bn :=
∑

b∈Bn

b.

Lemma 2 of [14] states that ΣnBnΣnBn = cn · ΣnBn, where cn is the constant

cn =

n
∏

i=1

(pi − 1).

The number cn is invertible in Z(p) and therefore the element

en =
1

cn
· ΣnBn

is an idempotent in Z(p)[GLn].

Definition 2.1. The element en = 1
cn

· ΣnBn is called the Steinberg idempotent. For
any left Z(p)[GLn]-module M , the Z(p)-submodule

enM = {enm : m ∈ M} ⊂ M

is called the Steinberg summand of M . The construction M 7→ enM is a functor from
left Z(p)[GLn]-modules to Z(p)-modules.

Note that Z(p)[GLn] is both a left module and a right module over itself. Therefore,
Z(p)[GLn]en is a left Z(p)[GLn]-submodule of Z(p)[GLn].



206 KRISHANU SANKAR

Definition 2.2. The left Z(p)[GLn]-module Z(p)[GLn]en is denoted by Stn and is
called the Steinberg module. For any left Z(p)[GLn]-module M , there is a natural
isomorphism of Z(p)-modules

(Stn ⊗M)GLn

∼=
→ enM,

Aen ⊗m 7→ en(A
−1m).

The Steinberg module has dimension p(
n

2) over Z(p) – this fact is a direct corollary
of Propositions 2.6 and 2.7, proven in a later section.

Definition 2.3. The element ên = 1
cn

·BnΣn is called the conjugate Steinberg idem-
potent. For any left Z(p)[GLn]-module M , the Z(p)-submodule ênM is called the con-
jugate Steinberg summand of M .

The following two maps of Z(p)-modules are inverse isomorphisms

enM → ênM, ênM → enM,

ΣnBnm 7→ BnΣnBnm, BnΣnm 7→ ΣnBnΣnm.

because composing them in either order induces multiplication by the unit cn ∈ Z×
(p).

Therefore enM and ênM are isomorphic Z(p)-modules.

2.2. Products on Steinberg summands
Let i and j be positive integers. The block inclusion

GLi ×GLj → GLi+j ,

(A,B) 7→

(

A 0

0 B

)

,

gives a map Z(p)[GLi ×GLj ] → Z(p)[GLi+j ] of left Z(p)[GLi ×GLj ]-modules. We
denote by ei ⊠ ej the image under this map of the idempotent ei ⊗ ej . The idem-
potent ei ⊠ ej has the following relation to the idempotent ei+j . Let Ui,j denote the

group of (i+ j)× (i+ j) matrices of the form

(

Ii ∗
0 Ij

)

. Let Σshuf(i, j) denote the

set of
(

i+j
i

)

permutations σ with the property that

1 6 a < b 6 i =⇒ σ(a) < σ(b) and i+ 1 6 a < b 6 i+ j =⇒ σ(a) < σ(b).

Such permutations are known as (i, j)-shuffle permutations. Define

U i,j =
∑

u∈Ui,j

u, Σshuf(i, j) =
∑

σ∈Σshuf (i,j)

(−1)σσ.

Then the following identities in the group algebra Z(p)[GLi+j ] can be checked:

U i,j ·Bi ×Bj = Bi ×Bj · U i,j = Bi+j ,

Σshuf(i, j) · Σi × Σj = Σi × Σj · Σshuf(i, j) = Σi+j ,

U i,j · Σi × Σj = Σi × Σj · U i,j .

Therefore,

Σshuf(i, j) · U i,j(ei ⊠ ej) =
ci+j

cicj
· ei+j . (2.1)
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Definition 2.4. The homomorphism of left Z(p)[GLi ×GLj ]-modules

Sti ⊗Z(p)
Stj = Z(p)[GLi ×GLj ](ei ⊠ ej) → Z(p)[GLi+j ]ei+j = Sti+j ,

A(ei ⊠ ej) 7→ AΣshuf(i, j) · U i,j(ei ⊠ ej),

is called the Steinberg product. From the point of view that the Steinberg module
represents the functor (Stn ⊗ (−))GLn

∼= en(−), the Steinberg product represents the
natural transformation arising from the projection

(ei ⊠ ej)M → ei+jM,

x 7→ Σshuf(i, j) · U i,jx.

The following two properties can be checked, where all maps are Z(p)-module maps.

• (Associativity) The following diagram commutes.

(ei ⊠ ej ⊠ ek)M (ei+j ⊠ ek)M

(ei ⊠ ej+k)M ei+j+kM

• (Commutativity) Let σ ∈ Σi+j be the shuffle permutation that increases every
number by j modulo i+ j. Then ei ⊠ ej = σ−1(ej ⊠ ei)σ, and therefore we
have inverse isomorphisms σ : (ei ⊠ ej)M → (ej ⊠ ei)M and σ−1 : (ej ⊠ ei)M →
(ei ⊠ ej)M . The following diagram commutes.

(ei ⊠ ej)M
σ

(ej ⊠ ei)M
σ−1

(ei ⊠ ej)M

ei+jM

For any fixed n, one should think of the various idempotents { ei1 ⊠ · · ·
⊠ eik}i1+···+ik=n as functors from the category of left Rn-modules to the category
of Z(p)-modules. The Steinberg product defines natural transformations among these
functors, starting from the initial functor e1 ⊠ · · ·⊠ e1 and going to the final func-
tor en.

Proposition 2.5. Let f : ei+jM → (ei ⊠ ej)M be the Z(p)-linear map

f(ei+jm) =
cicj
ci+j

· (ei ⊠ ej)ei+jm.

Then the composition

ei+jM
f

(ei ⊠ ej)M ei+jM

of f with the Steinberg product is the identity map.

Proof. This proposition is a direct result of Equation 2.1 and the fact that e2i+j =
ei+j .
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2.3. The flag complex

Suppose that X is a pointed topological space with GLn-action. In this section, we
construct a spectrum enX in a way that mirrors the algebra of the previous section.
We will see that there is a splitting in the homotopy category of p-local spectra

Σ∞X ≃ enX ∨ (1− en)X,

where ∨ denotes the wedge sum. The reason we must pass to spectra is because our
construction involves desuspending spaces.

Fix a positive integer n, and let Fn
p denote a fixed n-dimensional vector space

over the field Fp. Let Bn denote the nerve of the poset of subspaces of Fn
p that do

not equal 0 or Fn
p . This poset, and therefore the associated nerve Bn, carries a left

action of GLn. The following properties are well known, but are proved for the sake
of completeness. All supporting proofs are deferred to the end of this section.

Proposition 2.6. The space Bn has the homotopy type of a wedge of p(
n

2) spheres of
dimension n− 2.

Proposition 2.7. There is an isomorphism of Z(p)[GLn]-modules Stn ∼= Hn−2(Bn;
Z(p)), given as follows. Let A ∈ GLn be an n× n matrix with columns v1, . . . , vn.
Then the element Aen ∈ Stn is identified with the simplicial chain (which is a cycle)

sA =
∑

σ∈Σn

(−1)σ(〈vσ(1)〉 ⊂ 〈vσ(1), vσ(2)〉 ⊂ · · · ).

As constructed,Bn is not a pointed space. LetB✸

n denote the unreduced suspension
of Bn. The space B✸

n is the geometric realization of a simplicial set where the k-
simplices are flags [W0 ⊆ · · · ⊆ Wk] of subspaces of F

n
p with the property that either

W0 = 0 or Wk = Fn
p but not both.

0

L0 L1 L2 L3

F2
3 For example, let p = 3. There are

four one-dimensional subspaces of F2
3,

which we denote by L0, L1, L2, and L3.
Pictured to the left is the topological
space B✸

2 . As a pointed space, it is
homotopy equivalent to

∨

3
S1. The gray

points alone are B2, which is homotopy
equivalent to

∨

3
S0.

Then B✸

n is a pointed space with the 0-simplex [0] as the basepoint. Its Z(p)-
homology is as follows

H̃∗(B
✸

n ;Z(p)) ≃

{

Stn ∗ = n− 1,
0 ∗ 6= n− 1.

If we smash the space B✸

n by the negative sphere S−(n−1), we obtain the spectrum
Σ1−nB✸

n whose homology is concentrated in degree 0. The spectrum Σ1−nB✸

n should
be thought of as a topological analogue to the Steinberg module.
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Definition 2.8. Let X be a spectrum with GLn-action. Then the Steinberg sum-
mand of X, denoted enX, is defined as

enX = (Σ1−nB✸

n ∧X) ∧GLn
(EGLn)+.

When Y is any pointed space or spectrum with GLn-action, we henceforth use
YhGLn

to denote the homotopy orbit space

YhGLn
:= Y ∧GLn

(EGLn)+.

As an example, let us compute the Fp-homology of enX, and show that it is equal to
the Steinberg summand of the Z(p)[GLn]-module H∗(X;Fp). The Hochschild–Serre
spectral sequence associated to the fiber sequence

(Σ1−nB✸

n ∧X) → (Σ1−nB✸

n ∧X)hGLn
→ BGLn

has E2-page

E2
i,j = Hi(BGLn;Hj(Σ

1−nB✸

n ∧X;Fp)) =⇒ Hi+j((Σ
1−nB✸

n ∧X)hGLn
;Fp).

The homology group H0(Σ
1−nB✸

n ;Fp) ∼= Stn is a projective Fp[GLn]-module, and
therefore flat. It follows by the Künneth formula that

Hj(Σ
1−nB✸

n ∧X;Fp) ∼= Stn ⊗Z(p)
Hj(X;Fp).

Provided that Hj(X;Fp) is finite-dimensional over Fp, the Fp[GLn]-module Stn ⊗Z(p)

Hj(X;Fp) is projective, and so it has no higher GLn-homology. Thus, our E2-page is

H0(BGLn; Stn ⊗Z(p)
H∗(X;Fp)) = Stn ⊗Z(p)[GLn] H∗(X;Fp),

which is by definition the Steinberg summand enH∗(X;Fp). The E2-page is concen-
trated on a single vertical line and therefore the spectral sequence collapses.

This argument is functorial in the pointed space X, and therefore implies the
following diagram of functors commutes up to natural isomorphism. Here, GLnSp
denotes the category of spectra of finite type with näıve GLn-action, and GrModFp[GLn]

denotes the category of graded left Fp[GLn]-modules.

GLnSp
en(−)

H∗(−;Fp)

Sp

H∗(−;Fp)

GrModFp[GLn]en(−)
GrModFp

As defined, we have no reason to believe the promise that enX is a summand of
Σ∞X. Proposition 2.9 below implies that there are natural transformations between
elements of Fun(GLnSp,Sp) (where Id denotes the functor which forgets the GLn-
action on a spectrum),

en(−) → Id, Id → en(−),

such that the composition enX→ Id(X)→ enX is an isomorphism on HFp-homology.
Given that we have assumed X is connective and of finite type, the composition
above is an equivalence on Z(p)-homology groups, and therefore a p-local equivalence.
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Therefore, if we define the spectrum (1− en)X as the homotopy fiber

(1− en)X := hofib(Σ∞X → enX)

then the cofiber sequence (1− en)X → Σ∞X → enX splits via the map described
above.

Proposition 2.9. Let X be a spectrum with GLn-action. There are maps of spectra
which are functorial in X

enX → X, X → enX,

such that in Fp-homology, the composition enX → X → enX is multiplication by a
unit in Fp.

There are product maps as well. For any finite dimensional Fp-vector space V ,
let BV denote the nerve of the poset of subspaces of V which do not equal 0 or V .
If dim(V ) = n, then BV ≃ Bn. Let B̃V denote the nerve of the poset of subspaces
of V , including 0 and V itself. The space B̃V is contractible, because the poset of
subspaces of V has an initial element 0. There is an obvious inclusion of simplicial
sets B✸

V ⊂ B̃V . If V ≃ V ′ ⊕ V ′′, then there is a product map

B̃V ′ × B̃V ′′ → B̃V ,

(W ′,W ′′) 7→ W ′ ⊕W ′′.

When the above map is restricted to either B̃V ′ ×B✸

V ′′ or B✸

V ′ × B̃V ′′ , it lands in the
subspace B✸

V . Therefore the product above restricts

(B̃V ′ ×B✸

V ′′) ∪(B✸

V ′
×B

✸

V ′′
) (B

✸

V ′ × B̃V ′′) → B✸

V .

But since B̃V ′ and B̃V ′′ are both contractible, the union above is homotopy equivalent
to the unreduced join B✸

V ′ ⋆B✸

V ′′ . We have constructed a product on flag complexes,
namely

ΣB✸

V ′ ∧ ΣB✸

V ′′ → ΣB✸

V .

If we choose isomorphisms V ′ ∼= Fi
p and V ′′ ∼= Fj

p, and the isomorphism V ′ ⊕ V ′′ ∼=
V is given by block inclusion, then it is easily checked when we take the top homology
of the above product on flag complexes, we recover the Steinberg product Sti ⊗ Stj →
Sti+j (Definition 2.4) under the Z(p)-module isomorphism Stn ∼= Hn(ΣB

✸

n ;Z(p)) of
Proposition 2.7.

Proposition 2.10. Let V be a finite dimensional Fp-vector space, and let W be a
subspace. Let PW ⊂ GL(V ) denote the parabolic subgroup of matrices preserving W .
Let SW denote the PW -set

SW = {W ′ ⊂ V : W +W ′ = V and W ∩W ′ = 0}.

Then the PW -equivariant product map

ΣB✸

W ∧
∨

W ′∈SW

ΣB✸

W ′ → ΣB✸

V

is a homotopy equivalence of pointed spaces.
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As promised, here are the proofs of the propositions in this section.

Proof of Proposition 2.6.1 We use induction on n. The case n = 1 is obvious. Sup-
pose that n > 2. Let H ⊂ Fn

p be a subspace of dimension n− 1, and let P ⊂ Bn be
the nerve of the poset of subspaces which intersect H nontrivially. The space P is
contractible, because it has a self map W 7→ H ∩W which is homotopic to both the
constant map at H and to the identity map. Therefore, Bn ≃ Bn/P. Note that any
subspace of Fn

p of dimension 2 or greater automatically intersects H nontrivially, and
so the only simplices which remain in Bn/P are those flags whose bottom space is a
line transverse to H. Thus, Bn/P decomposes as a wedge sum

Bn/P ≃
∨

L⊥H

(Bn)>L/(Bn)>L,

where (Bn)>L (resp. (Bn)>L) denotes the nerve of the poset of subspaces containing L
(resp. strictly containing L). The space (Bn)>L is contractible, and (Bn)>L ≃ Bn−1.
Thus, Bn/P ≃

∨

L⊥H

ΣBn−1. The induction is now complete by the observation that

there are pn−1 lines transverse to H.

Proof of Proposition 2.7. The group of simplicial chains Cn−2(Bn) is the free Z-
module over the set of maximal flags, which is Z[GLn/Bn] ∼= Z[GLn]Bn. For any
matrix A ∈ GLn, the chain sA as defined is equal to AΣnBn. Thus, the homomor-
phism Stn → Cn−2(B;Z(p)) defined by Aen 7→ sA is a monomorphism.

We claim that sA is a cycle, namely, ∂(sA) = 0. Let w1, . . . , wn be any permu-
tation of v1, . . . , vn. Then any (n− 3)-simplex of the form (· · · ⊂ 〈w1, . . . , wi−1〉 ⊂
〈w1, . . . , wi+1〉 ⊂ · · · ) is on the boundary of exactly the following two different (k − 2)-
simplices.

(· · · ⊂ 〈w1, . . . , wi−1〉 ⊂ 〈w1, . . . , wi−1, wi〉 ⊂ 〈w1, . . . , wi+1〉 ⊂ · · · ) and

(· · · ⊂ 〈w1, . . . , wi−1〉 ⊂ 〈w1, . . . , wi−1, wi+1〉 ⊂ 〈w1, . . . , wi+1〉 ⊂ · · · ),

and this implies that ∂(sA) = 0.

We next claim that the set {sA}A∈GLn
spans Hn−2(Bn). This will complete the

proof. Fix a complete flag F = (F1 ⊂ · · · ⊂ Fn−1). Suppose that (W1 ⊂ · · · ⊂ Wn−1)
is a complete flag which is transverse to F , i.e., Wi ∩ Fn−i = 0 for i = 1, . . . , n− 1.
For each i = 1, . . . , n, Wi ∩ Fn−i−1 is 1-dimensional, and so we may pick a sequence of
nonzero vectors w1, . . . , wn so that 〈wi〉 = Wi ∩ Fn−i−1. The wi’s have two important
properties.

• Observe that wi ∈ Fn−i−1 and therefore wi /∈ Wi−1. Thus, by induction on i,
〈w1, . . . , wi〉 = Wi for i = 1, 2, . . . , n− 1, and 〈w1, . . . , wk〉 = Fn

p .

• Suppose that σ ∈ Σn is a permutation such that σ(i) = j, where j > i. Then
wj ∈ Fn−(j−1) =⇒ wj ∈ Fn−i, and because wσ(i) = wj , we have 〈wσ(1), . . . ,
wσ(i)〉 ∩ Fn−i 6= 0. Thus, for any nontrivial permutation σ ∈ Σn, the flag
(〈wσ(1)〉 ⊂ 〈wσ(1), wσ(2)〉 ⊂ · · · ) is not transverse to F .

1An alternate proof is given as [3, Theorem 6.8.5].
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Let A be the matrix whose columns are w1, . . . , wn. The two properties above imply
that

sA = (W1 ⊂ · · · ⊂ Wn−1) +
∑

σ 6=id

(−1)σ(non-F-transverse flags).

It follows that dim(span{sA : A ∈ GLn}) is at least as large as the number of com-

plete flags transverse to F , which is p(
n

2). This is the dimension of the entire space
Hn−2(Bn), so the two are equal, as desired.

Proof of Proposition 2.9. For ease of notation, let us write B = B✸

n . Then B is a
pointed GLn-CW-complex whose i-cells are in bijection with the GLn-set of flags
(V1 ( · · · ( Vi), and it has a (GLn-equivariant) skeletal filtration

B(0) ⊆ B(1) ⊆ · · · ⊆ B(n−1) = B,

whereB(i) contains the cells of dimension i and lower. Then the quotientB(n−1)/B(n−2)

is a wedge of copies of Sn−1 indexed over maximal flags, i.e. B(n−1)/B(n−2) ∼=
(GLn/Bn)+ ∧ Sn−1. The inclusion enX →X of the Steinberg summand is constructed
by desuspending n− 1 times the composition

Σn−1enX = (B ∧X)hGLn
→ (B(n−1)/B(n−2) ∧X)hGLn

≃ Σn−1XhBn
→ Σn−1X,

where the last map is the Becker–Gottlieb transfer.
To construct the projection X → enX, consider the following diagram:

(B ∧X)hGLn

Σn−1X

f

Σn
Σn−1X Σn−1XhBn

≃ (B(n−1)/B(n−2) ∧X)hGLn

∂

(ΣB(n−2) ∧X)hGLn
,

We claim that the composition labeled f is nullhomotopic, and thus the dotted map
exists. To prove this claim, we observe that f arises by taking the composition f̃ of
GLn-maps below, and then applying the functor ((−) ∧X)hGLn

:

Σn−1(GLn)+

f̃

(−)·Σn

Σn−1(GLn)+ Σn−1(GLn/Bn)+ ≃ B(n−1)/B(n−2)

∂

ΣB(n−2).

It suffices to prove that f̃ is null on underlying points. Since both source and target
are a wedge sum of copies of Sn−1, it suffices to check that Hn−1(f̃) = 0. It was shown
in the proof of Proposition 2.7 that if A ∈ GLn is any matrix, then the horizontal
composition above sends A 7→ sA ∈ C̃n−1(B

(n−1)/B(n−2)), and ∂(sA) = 0.
The composition of the two maps we have constructed has the following effect in

Fp-homology

Stn ⊗GLn
H̃∗(X) Fp[GLn]⊗GLn

H̃∗(X) Stn ⊗GLn
H̃∗(X),

(AΣnBn ⊗ x) (AΣnBn ⊗ x) (AΣnBnΣnBn ⊗ x).
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Since ΣnBnΣnBn = cnΣnBn and cn ∈ Z×
(p), the proposition has been proved.

Proof of Proposition 2.10. Let V have dimension n. Both ΣB✸

W ∧
∨

W ′⊥W

ΣB✸

W ′ and

ΣB✸

V have underlying space equivalent to a wedge of copies of Sn, so it suffices to prove
that the map is an equivalence on n-th homology groups. Without loss of generality,
assume V ≃ Fn

p , and W ≃ Fi
p is spanned by the first i basis vectors. The PW -set of

subspaces W ′ which are transverse to W is equivalent to PW /(GLi ×GLn−i). This
set has size pi(n−i), and so by Proposition 2.6,

dim(Hn(ΣB
✸

W ∧
∨

W ′⊥W

ΣB✸

W ′)) = p(
i

2)+i(n−i)+(n−i

2 ) = p(
n

2) = dim(Hn(ΣB
✸

V )).

So, for dimension reasons, it suffices to show that the given map is a surjection
on homology. Recall that, for any j, the top Z(p)-homology group of B✸

j is

Z(p)[GLj ]ΣjBj . Therefore, by the Kunneth formula,

Hn(ΣB
✸

W ∧
∨

W ′⊥W

ΣB✸

W ′) ≃ IndPW

GLi×GLn−i
F(p)[GLi ×GLn−i](Σi ×Σn−i)(Bi ×Bn−i)

≃ Z(p)[PW ](Σi × Σn−i)(Bi ×Bn−i).

The map is given by the inclusion PW → GLn. Therefore, in order to show that the
map

Z(p)[PW ](Σi × Σn−i)(Bi ×Bn−i) Z(p)[GLn]ΣnBn

is surjective, it is sufficient to show that any invertible n× n matrix can be written in
the form aσb, where a, b ∈ Bn and σ ∈ Σn. This can be shown easily by row reduction.

3. Fixed points of a Steinberg summand

The Steinberg summand construction (Definition 2.3) may be carried into the
equivariant setting. Recall (or learn) the G-equivariant analogue of homotopy orbit
construction.

Definition 3.1. If Λ is any finite group, then EGΛ denotes the (G× Λ)-space whose
fixed points under any subgroup Γ ⊂ G× Λ are

(EGΛ)
Γ ≃

{

⋆ if Γ ∩ Λ = 1,

∅ if Γ ∩ Λ 6= 1,

and BGΛ is the quotient G-space (EGΛ)/Λ.

Note that the G-equivariant classifying spaces BGΛ fit into a theory of equivariant
principal Λ-bundles [6].

Definition 3.2. Let G be a finite group, and let X be a spectrum with (G×GLn)-
action. The Steinberg summand enX is the näıve G-spectrum

enX = (Σ1−nB✸

n ∧X) ∧GLn
(EGGLn)+.

When X is a pointed (G×GLn)-space, we write enX := en(Σ
∞X).



214 KRISHANU SANKAR

The näıve G-spectrum X contains enX as a summand – we prove this as Corol-
lary 3.6, but the argument is a minor modification of the proof of Proposition 2.9.
Taking G-fixed points of the (G× Λ)-space EGΛ, yields the Λ-space EΛ. Thus we
have an inclusion of Λ-spaces

EΛ ≃ (EGΛ)
G →֒ EGΛ.

This inclusion produces, for every subgroup H ⊆ G, a natural transformation from
the composite functor en((−)H) to the composite functor (en(−))H .

TopG×GLn

∗

(−)H

en(−)

TopGLn

∗

en(−)

Näıve G-spectra
(−)H

Spectra

In this section, we prove that the natural transformation above is a homotopy equiv-
alence when G is a p-group. That is, we prove the following theorem.

Theorem 3.3. Let G be a group, and let H ⊆ G be any subgroup. Let X be any
pointed (G×GLn)-space. The inclusion of fixed points EGLn ≃ (EGGLn)

G →֒EGGLn

induces a map

(B✸

n ∧XH) ∧GLn
(EGLn)+ → ((B✸

n ∧X) ∧GLn
(EGGLn)+)

H .

If G is a p-group, then the map above is an equivalence. It immediately follows that
the map en(X

H) → (enX)H is an equivalence of spectra.

To prove this theorem, we must first establish a well-known formula (Equation 3.1)
for the fixed points of the equivariant homotopy orbits of a space.

Definition 3.4. Let G and Λ be any finite groups, and let H ⊆ G be a subgroup.
For any homomorphism f : H → Λ, its graph is the subgroup of H × Λ

Γf := {(h, f(h)) : h ∈ H}.

The group Λ acts on the set Hom(H,Λ) by conjugation, i.e. f 7→ λfλ−1. For a homo-
morphism f : H → Λ, let CΛ(imf) ⊆ Λ denote the centralizer of the image of f .
Note that if f, f ′ ∈ Hom(H,Λ) are conjugate homomorphisms, then the centralizers
CΛ(imf) and CΛ(imf ′) are conjugate subgroups.

Notice that if f, f ′ ∈ Hom(H,Λ) are two different homomorphisms, then the sub-
group of H × Λ generated by 〈Γf ,Γf ′〉 is no longer a graph homomorphism. It follows
that (EGΛ)

Γf ∩ (EGΛ)
Γf′ = ∅. Therefore, for any (G× Λ)-space Y we have

(Y ×Λ EGΛ)
H =





∐

f∈Hom(H,Λ)

Y Γf × (EGΛ)
Γf



 /Λ

=





∐

f∈Hom(H,Λ)

Y Γf



×Λ EΛ

≃
∐

[f ]∈Hom(H,Λ)/Λ

(Y Γf )hCΛ(imf).

(3.1)
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(Note that the last is a weak equivalence of spaces because EΛ is defined only up to
homotopy.)

The map EΛ = (EGΛ)
G →֒ EGΛ of Λ-spaces yields an inclusion map

Y H ×Λ EΛ = (Y ×Λ EΛ)H →֒ (Y ×Λ EGΛ)
H .

Under the decomposition of Equation 3.1, the space Y H ×Λ EΛ is the summand
corresponding to the zero homomorphism H → Λ.

Proof of Theorem 3.3. Apply the pointed analogue of Equation 3.1 with Y = B✸

n ∧X
and Λ = GLn to obtain

((B✸

n ∧X) ∧GLn
(EGGLn)+)

H =
∨

[f ]∈Hom(H,GLn)/GLn

((B✸

n )
imf ∧XΓf )hCGLn (imf).

We must prove that for every nontrivial homomorphism f , up to conjugacy, the
summand ((B✸

n )
imf ∧XΓf )CGLn (imf) is contractible. It is sufficient to prove that the

pointed CGLn
(imf)-space (B✸

n )
imf is equivariantly contractible. This will follow from

a proof that the unpointed CGLn
(imf)-space (Bn)

imf is equivariantly contractible,
which follows from Lemma 3.5 below.

The map of spectra en(X
H) → (enX)H is the (n− 1)-th desuspension of the inclu-

sion ((B✸

n ∧X) ∧GLn
(EGLn)+)

H →֒ ((B✸

n ∧X) ∧GLn
(EGGLn)+)

H , and is therefore
an equivalence.

Lemma 3.5. Let V be a finite dimensional vector space over a finite field F of positive
characteristic p. Let U ⊂ GL(V ) be a nontrivial unipotent subgroup (i.e. order a power
of p). The fixed point space (BV )

U carries a residual action of the normalizer of U ,
which we denote by NGL(V )(U). Then (BV )

U is NGL(V )(U)-equivariantly contractible.

Proof. The action of the group U on the F-vector space V extends linearly to an
action of the group ring F[U ]. Let I denote the augmentation ideal of F[U ], defined
by generators

I := 〈u− 1〉u∈U .

Let V ′ ⊆ V be the subspace annihilated by I. Because U contains at least one non-
identity matrix, it must be that V ′ 6= V . The subspace V ′ is preserved by the action
of NGL(V )(U). We claim that V ′ 6= 0. To prove this, it suffices to show that there is

some k > 0 such that Ik annihilates V . In the case where U is a maximal unipotent
subgroup of GL(V ), the ideal Idim(V ) annihilates V , and therefore for any unipotent
subgroup U , Ik annihilates V for some k 6 dim(V ).

Let W ( V be a nonzero subspace that is preserved by U . Because U is unipotent,
W has a vector w such that uw = w for every u ∈ U . This is equivalent to saying
that Iw = 0, and so it follows that the intersection W ∩ V ′ is nonzero. Thus, there
is a well-defined NGL(V )(U)-equivariant poset map

f : (BV )
U → (BV )

U ,

W 7→ V ′ ∩W.

For every subgroup Γ ⊂ NGL(V )(U), the map f restricts to a map of fixed point
spaces fΓ : ((BV )

U )Γ → ((BV )
U )Γ. Because V ′ ∩W ⊂ W , the map fΓ is homotopic

to the identity map. Because V ′ ∩W ⊂ V ′, the map fΓ is homotopic to the constant
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map at V ′. Therefore, the fixed point space ((BV )
U )Γ is contractible for every Γ ⊂

NGL(V )(U), which completes the proof.

We finish this section with a short outline of the proof that the equivariant Stein-
berg summand of X is a summand of X, in a suitable sense.

Corollary 3.6. Let G be a p-group, and let X be a spectrum with (G×GLn)-action.
There are maps of spectra which are functorial in X

enX → X, X → enX,

such that for every subgroup H ⊆ G, the composition (enX)H → XH → (enX)H is
multiplication by a unit in Fp-homology.

Proof. The proof is nearly identical to that of Proposition 2.9 – we sketch the neces-
sary modifications here. To construct the inclusion enX → X, observe that there is
an equivalence of näıve G-spectra ((GLn)+ ∧X) ∧GLn

(EGGLn)+ ≃ X, and use the
composition

(B ∧X)hGGLn
→ (B(n−1)/B(n−2) ∧X)hGGLn

→ (Σn−1(GLn)+ ∧X)hGGLn
≃Σn−1X,

where the second arrow is the Becker–Gottlieb transfer The projection X → enX
is constructed in the same manner as in Proposition 2.9. The assertion that the
composition (enX)H → XH → (enX)H is multiplication by a unit in Fp-homology is
an immediate consequence of Proposition 2.9 combined with the formula (enX)H ≃
en(X

H) (Theorem 3.3).

4. Fixed points in equivariant classifying spaces

Let G be a p-group. The goal of this section is to compute the G-fixed points of
the Steinberg summand of BG(Z/p)

n
+. To state the result of this computation, we

must make a few definitions.

Definition 4.1. Let C denote the set of normal subgroups H ✂G such that G/H
is an elementary abelian p-group. It is easily seen that the set C is closed under
intersections, and thus C has a minimal element F . As a poset, C is isomorphic to the
poset of sub-Fp-vector spaces of G/F .

For each subgroup H ∈ C, let d(H) denote the rank of G/H as an Fp-vector space.
Two subgroups H and K are called transverse if d(H ∩K) = d(H) + d(K).

Theorem 4.2.

1. There is a decomposition of spectra

(enBG(Z/p)
n
+)

G ≃
∨

H∈C

En(H),

for spectra En(H) with a product structure Em(H) ∧ En(K) → Em+n(H ∩K)
arising from applying G-fixed points to the Steinberg product emBG(Z/p)

m
+ ∧

enBG(Z/p)
n
+ → em+nBG(Z/p)

m+n
+ .
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2. The spectra En(H) satisfy the formula

En(H) ≃ en−d(H)B(Z/p)
n−d(H)
+ ∧ Σ1−d(H)B✸

d(H) ∧B(G/H)+. (4.1)

If H and K are transverse, then the equivalence above respects the product struc-
ture on both sides. More explicitly, let m and n be any positive integers. The
product on the right side of Equation 4.1 is assembled from the Steinberg product

em−d(H)B(Z/p)
m−d(H)
+ ∧ en−d(K)B(Z/p)

n−d(K)
+

→ em+n−d(H∩K)B(Z/p)
m+n−d(H∩K)
+ ,

the product on flag complexes

Σ1−d(H)B✸

d(H) ∧ Σ1−d(K)B✸

d(K) → Σ1−d(H∩K)B✸

d(H∩K),

and the equivalence

B(Z/p)
m−d(H)
+ ∧B(Z/p)

n−d(K)
+ ≃ B(Z/p)

m+n−d(H∩K)
+ .

The spectra En(H) are defined in Definition 4.6. The formula

En(H) ≃ en−d(H)B(Z/p)
n−d(H)
+ ∧ Σ1−d(H)B✸

d(H) ∧B(G/H)+

is proven as Proposition 4.7.

4.1. The mod p Stiefel variety
Let n and d be nonnegative integers. Let Vd(F

n
p ) denote the set of n× d matrices

with entries in the field Fp, and with nullspace zero. Then Vd(F
n
p ) is a finite set

with an action of the group GLn(Fp). It is a mod p analogue of the Stiefel manifold
Vd(R

n) of orthonormal d-frames in Euclidean n-space. Note that there is an inclusion
of (GLm ×GLn)-sets,

Vc(F
m
p )× Vd(F

n
p ) →֒ Vc+d(F

m+n
p ),

given by block inclusion of matrices.
Let F be a functor from the category of finite dimensional mod p vector spaces

with isomorphisms, to the homotopy category HoTop∗, such that

• For any finite dimensional mod p vector spaces V and W , there is an equivalence
F(V ⊕W ) ≃ F(V ) ∧ F(W ) of (GL(V )×GL(W ))-spaces.

• There is an equivalence F(0) ≃ S0.

Example 4.3. One such functor is F(Fn
p ) = B(Z/p)n+. This is the specific application

of Lemma 4.4 which we will use in Proposition 4.7.

For every integer n > 0, the pointed space F(Fn
p ) carries an action of the group

GLn(Fp). One may then consider its Steinberg summand enF(Fn
p ) = (Σ1−nB✸

n ∧
F(Fn

p ))hGLn
, which is a spectrum. These spectra are related by product maps

ekF(Fk
p) ∧ eℓF(Fℓ

p) → ek+ℓF(Fk+ℓ
p ),

which are built using the product Σ1−kB✸

k ∧ Σ1−ℓB✸

ℓ → Σ1−(k+ℓ)B✸

k+ℓ and the block
inclusion GLk ×GLℓ ⊂ GLk+ℓ. In this section, we will prove the following lemma
which relates the mod p Stiefel variety Vd(F

n
p ) to Steinberg summands.
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Lemma 4.4. Let F be a functor as above. Let n, d be nonnegative integers such that
n > d. Then there is an equivalence of spectra

(Σ1−dB✸

d ∧ F(Fd
p)) ∧ en−dF(Fn−d

p ) → en(Vd(F
n
p )+ ∧ F(Fn

p )).

Denote the spectrum on the left by A(n, d) and the spectrum on the right by B(n, d).
There are obvious product maps A(n, d) ∧A(m, c) → A(m+ n, c+ d) and B(n, d) ∧
B(m, c) → B(m+ n, c+ d). Then the equivalence above respects these product maps.

Proof. Let Wd ⊂ Fn
p denote the subgroup spanned by the first d coordinates, and let

Wn−d ⊂ Fn
p denote the subgroup spanned by the last n− d coordinates. Let B✸

d :=
B✸

Wd
and B✸

n−d := B✸

Wn−d
. Let GL(Wd),GL(Wn−d),GL(Fn

p ,Wd) ⊂ GLn denote the
subgroups of matrices

GL(Wd) =

(

GLd 0
0 In−d

)

, GL(Wn−d) =

(

Id 0
0 GLn−d

)

, GL(Fn
p ,Wd) =

(

Id ∗
0 GLn−d

)

.

Then GL(Fn
p ,Wd) is the subgroup of matrices which act by the identity on Wd. Let

S denote the set of subspaces W ⊂ Fn
p of dimension (n− d) such that W ⊥ Wd. We

have the following two observations:

1. As a GL(Fn
p ,Wd)-torsor, S = GL(Fn

p ,Wd)/GL(Wn−d).

2. As a GLn-torsor, Vd(F
n
p ) = GLn/GL(Fn

p ,Wd).

Therefore,

(Σ1−dB✸

d ∧ F(Fd
p)) ∧ en−dF(Fn−d

p )

:= (Σ1−dB✸

d ∧ F(Wd) ∧ Σ1−n+dB✸

n−d ∧ F(Wn−d))hGL(Wn−d) (by definition))

≃ (Σ1−dB✸

d ∧ F(Wd) ∧
∨

W∈S

Σ1−n+dB✸

W ∧ F(W ))hGL(Fn
p ,Wd) (by (1) above)

≃
→ (Σ1−nB✸

n ∧ F(Fn
p ))hGL(Fn

p ,Wd) (by Proposition 2.10)

≃ (Σ1−nB✸

n ∧ Vd(F
n
p )+ ∧ F(Fn

p ))hGLn
(by (2) above).

The fact that this equivalence respects the product maps is a routine check.

4.2. The fixed points of the Steinberg summand of an equivariant classi-
fying space

Let G be a finite p-group, and let n be a positive integer. Any homomorphism
from G to (Z/p)n has kernel contained in C.

Definition 4.5. For each subgroup H ∈ C, let

Hom(G, (Z/p)n))[H] ⊂ Hom(G, (Z/p)n)

denote the set of homomorphisms with kernel H.

Then Hom(G, (Z/p)n)) =
⊔

H∈C

Hom(G, (Z/p)n))[H]. A homomorphism from G to

(Z/p)n with kernel H is the same as a monomorphism from G/H to (Z/p)n. Thus, the
GLn-torsor Hom(G, (Z/p)n))[H] is identified with the mod p Stiefel variety Vd(H)(F

n
p )

(see 4.4), and so

Hom(G, (Z/p)n) =
⊔

H∈C

Vd(H)(F
n
p ). (4.2)

Now let us study the Steinberg summand of the G-fixed points of the equivariant
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classifying space BG(Z/p)
n
+. Equation 3.1 tells us that

en((BG(Z/p)
n
+)

G) ≃ en





∨

Hom(G,(Z/p)n)

B(Z/p)n+





≃
∨

H∈C



en
∨

Hom(G,(Z/p)n))[H]

B(Z/p)n+



 .

Definition 4.6. Let n be a positive integer and H ∈ C be a subgroup of G. The
spectrum

en





∨

Hom(G,(Z/p)n))[H]

B(Z/p)n+





is called the H-summand of en((BG(Z/p)
n
+)

G). We denote it by En(H). For any two
positive integers m,n and subgroups H,K ∈ C, there is a product map

Em(H) ∧ En(K) → Em+n(H ∩K),

which is determined by the product maps

em((BG(Z/p)
m
+ )G) ∧ en((BG(Z/p)

n
+)

G) → em+n((BG(Z/p)
m+n
+ )G).

Let m,n be any two positive integers. There is an obvious isomorphism of (GLm ×
GLn)-sets

Hom(G, (Z/p)m)×Hom(G, (Z/p)n) ∼= Hom(G, (Z/p)m+n).

Under the identification of Equation 4.2, the isomorphism above yields product maps
on the components

Vd(H)(F
m
p )× Vd(K)(F

n
p ) → Vd(H∩K)(F

m+n
p ).

If H and K are transverse, this product is given by block inclusion of matrices, for
an appropriate choice of basis.

Proposition 4.7. There is an equivalence of spectra

En(H) ≃ en−d(H)B(Z/p)
n−d(H)
+ ∧ Σ1−d(H)B✸

d(H) ∧B(G/H)+.

If n,m are two positive integers and H,K ∈ C are transverse subgroups, then under
the equivalence above, the product map En(H) ∧ Em(K) → En+m(H ∩K) is identi-
fied with the product on the right hand term that is built using the following three
maps

en−d(H)B(Z/p)
n−d(H)
+ ∧em−d(K)B(Z/p)

m−d(K)
+ → em+n−d(H∩K)B(Z/p)

m+n−d(H∩K)
+ ,

Σ1−d(H)B✸

d(H) ∧ Σ1−d(K)B✸

d(K) → Σ1−d(H∩K)B✸

d(H∩K),

B(G/H)+ ∧B(G/K)+ ∼= B(G/(H ∩K))+.

Proof. This is immediate from applying Lemma 4.4 with the functor F((Z/p)n) =
B(Z/p)n+.
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