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AN ALGEBRAIC REPRESENTATION OF GLOBULAR SETS

ANIBAL M. MEDINA-MARDONES

(communicated by Ronald Brown)

Abstract
We describe a fully faithful embedding of the category of

(reflexive) globular sets into the category of counital cosymmet-
ric R-coalgebras when R is an integral domain. This embedding
is a lift of the usual functor of R-chains and the extra struc-
ture consists of a derived form of cup coproduct. Additionally,
we construct a functor from group-like counital cosymmetric
R-coalgebras to ω-categories and use it to connect two funda-
mental constructions associated to oriented simplices: Steen-
rod’s cup-i coproducts and Street’s orientals. The first defines
the square operations in the cohomology of spaces, the second,
the nerve of higher-dimensional categories.

1. Introduction

Globular sets are presheaves over a category G whose objects are non-negative
integers. They generalize directed graphs and constitute one of the major geometric
shapes for higher category theory, providing models for strict and non-strict higher-
dimensional categories when enriched with further structure.

We depict the representable globular set Gn for small values of n:

n = 0 n = 1

n = 2 n = 3

The globular set ∂Gn+1 obtained by removing the identity from Gn+1 models the
n-sphere together with its antipodal map. We are interested in the functor C• of
chains from globular sets to differential graded R-modules. Let W be defined as the
colimit of the diagram

C•(∂G0) −→ C•(∂G1) −→ · · ·

induced from a standard set of inclusions Gn → Gn+1. We notice that the antipodal
map makes W into a free differential graded R[Σ2]-module. For any globular set X
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we will construct a natural R[Σ2]-module chain map

∆: W ⊗ C•(X) −→ C•(X)⊗ C•(X)

together with a natural chain map ε : C•(X) → R satisfying appropriate counitality
relations. We can think of this structure as a lift to the chain level of the counital
cocommutative R-coalgebra on the homology of X (a structure pre-dual to the usual
cup product in cohomology).

We will show that when R is an integral domain, this lift of the functor of chains is
a fully faithful embedding of the category of globular sets into the category of counital
cosymmetric R-coalgebras. We can think of this result as a non-linear globular form of
the Dold-Kan Theorem. In more diagramatic language, our map fits into the following
commutative diagram

SetG
op

coAlgR

ModG
op

R ChR,

C•

where the lower triangle consists of a free functor followed by a fully faithful embed-
ding and the upper triangle consists of a fully faithful embedding followed by a for-
getful functor.

We will then focus on the full subcategory coAlgglR of group-like counital cosym-
metric R-coalgebras and on a model for strict higher-dimensional categories known
as ω-categories. We will describe a functor, similar to those used by Street, Brown,
and Steiner in their respective studies of parity complexes, linear ω-categories, and
augmented directed complexes, from coAlgglR to ωCat behaving like a free functor on
pasting diagrams. We will use our version to relate two fundamental constructions
on oriented simplices: Steenrod’s cup-i coproducts and Street’s orientals. The first
defines the square operations on the cohomology of spaces, the second, the nerve of
ω-categories.
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mous referee for their insights, questions, and comments about this project.

2. Globular sets and counital cosymmetric R-coalgebras

In this section we will describe how to represent, when R is an integral domain, the
category of globular sets algebraically as a full subcategory of the category of counital
cosymmetric R-coalgebras. These are models for counital R-coalgebras commutative
up to coherent homotopies (E∞-coalgebras are examples). We will also review an
important construction of Steenrod providing concrete examples of such R-coalgebra
when R = F2 and used to define his square operations.
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2.1. Globular sets

The globe category G has set of objects the non-negative integers and its mor-
phisms are generated by

σn, τn : n → n+ 1, ιn : n → n− 1

subject to the relations

τn τn−1 = σn τn−1,

ιn+1 τn = idn,

σn σn−1 = τn σn−1,

ιn+1 σn = idn.
(1)

Let Set be the category of small sets. We denote the category of contravariant
functors from G to Set by SetG

op

and refer to it as the category of globular sets.
For a globular set X we use the notation

Xn = X(n), tn = X(τn), sn = X(σn), in = X(ιn).

Furthermore, abusing notation, we let tn : X(k) → X(n) stand for any composition
of the form tnr where r : X(k) → X(n+ 1) is induced from an arbitrary morphism.
Thanks to (1) this map is independent of r and determined by the integer k. We
follow a similar convention for sn.

2.2. Augmented differential graded R-modules

Let R be a commutative and unital ring. The category of differential (homologi-
cally) graded R-modules concentrated in non-negative degrees is denoted ChR. We
reserve the word chain complex for when R equals Z.

Let C be a differential graded R-module and n a non-negative integer; we denote

C6n = C0 ⊕ C1 ⊕ · · · ⊕ Cn.

A pair (C, ε) with C and ε : C → R in ChR is called an augmented differential
graded R-module and a morphism between two of them is a morphism of underlying
differential graded R-modules making the diagram

C ′ C

R
ε′ ε

commutative.

The functor C• : Set
G

op

→ ChR is defined for X ∈ SetG
op

by

Cn(X) = R{Xn}
/
R{in(Xn−1)}, ∂n = tn−1 − sn−1 .

It admits a natural lift to the category of augmented differential graded R-modules
by defining for x ∈ Xn

ε(x) =

{
1 n = 0,

0 n 6= 0.
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2.3. Counital cosymmetric R-coalgebras

Let Σ2 be the group with one non-identity element T . Let us consider the following
resolution of R by free R[Σ2]-modules:

W = R[Σ2] R[Σ2] R[Σ2] · · ·
1−T 1+T 1−T

and let εW : W → R be the unique R[Σ2]-linear map extending the identity R → R.

Given any differential graded R-module C we make C ⊗ C into a differential graded
R[Σ2]-module using the transposition of factors T (x⊗ y) = (−1)rsy ⊗ x where r and
s are the degrees of x and y.

A counital cosymmetric R-coalgebra is an augmented differential graded
R-module (C, ε) together with

∆: W ⊗ C → C ⊗ C

an R[Σ2]-linear chain map making the following diagrams commute:

W ⊗ C C ⊗ C

C,
εW⊗id

∆

1⊗ε

W ⊗ C C ⊗ C

C .
εW⊗id

∆

ε⊗1

A coalgebra map between counital cosymmetric R-coalgebras is a map f of
underlying augmented differential graded R-modules making the following diagram
commute:

W ⊗ C ′ W ⊗ C

C ′ ⊗ C ′ C ⊗ C .

∆′

id⊗f

∆

f⊗f

We denote the category of counital cosymmetric R-coalgebras with coalgebra maps
by coAlgR.

We use the adjunction isomorphism

HomR[Σ2](W ⊗ C,C ⊗ C) −→ HomR[Σ2]

(
W,Hom(C,C ⊗ C)

)

to represent ∆ by a collection of maps ∆k : C → C ⊗ C satisfying

∂∆k − (−1)k∆k∂ =
(
1 + (−1)kT

)
∆k−1 (2)

with the convention that ∆−1 = 0.

2.4. Steenrod cup-i coalgebras

Alexander-Whitney’s approximation to the diagonal map

∆0 : C• −→ C• ⊗ C•

defines a natural non-commutative coproduct on the integral chains of any simplicial
set whose linear dual descends to the commutative cup product on its cohomology.
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In [Ste47], Steenrod constructed a cosymmetric Z-coalgebra

∆: W ⊗ C• −→ C• ⊗ C•

extending the Alexander-Whitney coproduct, which when considered with F2-coeffi-
cients defines the square operations

Sqk : H•(−;F2) −→ H•+k(−;F2).

Since these operations are homological in nature, any pair of natural homotopy
equivalent cosymmetric F2-coalgebra structures give rise to isomorphic square oper-
ations. Yet, Steenrod’s original construction appears ubiquitously in the literature
in various equivalent forms. For example, in [MM18c], the author finds it in the
action of a finitely presented prop arising from just three maps: Alexander-Whitney’s
diagonal, the augmentation, and the join map. In [MM18b], it is induced from the
action of a cellular E∞-operad on the geometric realization of cubical sets. And in
[MS03] and [BF04], McClure-Smith and Berger-Fresse find it in the action of their
respective Sequence and Barratt-Eccles operads.

The universality of this cosymmetric F2-coalgebra is formalized via an axiomatic
characterization in [MM18a]. In this note, we provide further evidence for its funda-
mental nature by deriving from it in Theorem 3.12 another fundamental construction:
the nerve of higher-dimensional categories.

Let us review its description as presented in [MM18a]. Let P
(
n
k

)
be the set of all

U = {0 6 u1 < · · · < uk 6 n}. For any such U define the composition of face maps

dU = du1
· · · duk

and the pair

U− = {ui ∈ U : ui 6≡ i mod 2},

U+ = {ui ∈ U : ui ≡ i mod 2}.

Definition 2.1 ([MM18a]). For any simplicial set X its Steenrod cup-i coalge-
bra

(
C•(X;F2),∆, ε

)
is defined by

∆i(x) =
∑

U∈P( n

n−i)

dU− x⊗ dU+ x (3)

and

ε(x) =

{
1 n = 0,

0 n 6= 0,

where x ∈ Xn.

Remark 2.2. The cup product and Steenrod squares in cohomology are obtained from
the Steenrod cup-i coalgebra by defining

[α] ` [β] =
[
(α⊗ β)∆0

]

and

Sqk[α] =
[
(α⊗ α)∆|α|−k

]
.

These two cohomological structures are related via the Cartan Formula. In [MM19],
using the definitions above, the author gave an effective chain level proof of the Cartan
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Formula. In [MM18d], based on (2.1) and the definitions above, a novel algorithm
for the computation of Steenrod squares of finite simplicial complexes was developed
and added to the toolkit of topological data analysis.

2.5. Globular R-coalgebras
We now describe a counital cosymmetric R-coalgebra naturally associated to a

globular set and state our main theorem.

Definition 2.3. For any globular set X its globular R-coalgebra
(
C•(X;R),∆, ε

)

is defined by

∆k(x) =





0 n < k,

x⊗ x n = k,

tkx⊗ x + (−1)(n+1)k x⊗ skx k < n

and

ε(x) =

{
1 n = 0,

0 n > 0,

where x ∈ Xn.

Theorem 2.4. Let R be an integral domain. The assignment

X −→ (C•(X;R),∆, ε)

induces a full and faithful embedding of SetG
op

into coAlgR.

The proof of this theorem occupies Section 4.

Remark 2.5. We can think of this statement as a non-linear globular form of the
Dold-Kan Theorem. A conjecture, verified in the author’s thesis [Med15] for special
cases, is that including the higher arity parts of an E∞-coalgebra structure on the
chains of simplicial sets results in a similar non-linear (simplicial) Dold-Kan Theorem.

3. Group-like coalgebras and higher-dimensional categories

3.1. ω-categories and the functor µ

In this subsection we recall the definition of ω-categories, which are a globular
model of strict higher-dimensional categories. We also review a natural construction
associating an ω-category to any differential graded R-module.

Definition 3.1. An ω-category is a globular set X together with maps

◦m : Xn ×Xm
Xn −→ Xm,

where

Xn ×Xm
Xn =

{
(y, x) ∈ X ×X | s(y) = t(x)

}

satisfying relations of associativity, unitality and interchange. For the complete list of
relations we refer the reader to Definition 1.4.8 in [Lei04]. When tm(x) = sm(y) = z

we write y ◦z x for y ◦m x.
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The next definition appears in [Ste04] where it is credited to [BH03] and [Str91].

Definition 3.2 (Street, Brown-Higgins, Steiner). The functor

µ : ChR −→ ωCat

is defined as follows: for C a differential graded R-module let µ(C) be the R-submod-
ule of the infinite product of C with itself generated by all sequences

c = (c−0 , c
+
0 , c

−
1 , c

+
1 , . . . )

satisfying

i) c−n , c
+
n ∈ Cn,

ii) c−n , c
+
n = 0 for n >> 0,

iii) ∂c−n+1 = ∂c+n+1 = c+n − c−n .

We can make this R-module into a globular set by defining

µ(C)n = {c ∈ µ(C) : ∀k > n, c−k = c+k = 0}

and

sk(c) = (c−0 , c
+
0 , . . . , c

−
k−1, c

+
k−1, c

−
k , c

−
k , 0, 0, . . . ),

tk(c) = (c−0 , c
+
0 , . . . , c

−
k−1, c

+
k−1, c

+
k , c

+
k , 0, 0, . . . ),

ik(c) = c.

We can make this globular set into an ω-category by defining

b ◦c a = b+ a− c

=
(
b−0 + a−0 − c−0 , b+0 + a+0 − c+0 , . . .

)
.

3.2. Group-like coalgebras and the functor ξ

In this subsection we define group-like elements in counital cosymmetric R-coalge-
bras and consider coAlgglR , the full subcategory of counital cosymmetric R-coalgebras

admitting a basis of group-like elements. We then introduce a functor from coAlgglR
to ωCat using the notion of atom associated to a group-like element.

Definition 3.3. Let
(
C,∆, ε

)
be a counital cosymmetric coalgebra. We call c ∈ Cn

a group-like element if for any integer k we have

∆k(c) ∈ C6n ⊗ C6n,

∆n(c) = c⊗ c

and, when n = 0,

ε(c) = 1.

We say that C is group-like if it admits a basis of group-like elements and denote
the full subcategory of group-like counital cosymmetric R-coalgebras as coAlgglR .

A consequence of the following lemma applied to the identity map is that if a
counital cosymmetric coalgebra admits a basis of group-like elements, then that basis
is unique.
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Lemma 3.4. Let R be an integral domain. If f : R[A] → R[B] is a coalgebra map
between counital cosymmetric R-coalgebras with bases of group-like elements A and
B. Then, for any a ∈ A either f(a) = 0 or there exists b ∈ B such that f(a) = b.

Proof. For a ∈ An there is a collection of elements bi ∈ Bn and coefficients βi ∈ R

such that

f(a) =
∑

i

βi bi. (4)

Applying ∆n to (4) gives
∑

i

βi bi ⊗ bi = ∆nf(a) = (f ⊗ f)∆n(a) =
∑

i, j

βi βj bi ⊗ bj .

The equations 0 = βi βj for i 6= j together with βi = β2
i imply, since R is an integral

domain, that each coefficient βi equals 0 except possibly one of them that must
equal 1.

Example 3.5. Steenrod cup-i coalgebras as well as globular R-coalgebras are group-
like.

Definition 3.6. Let C be a differential graded R-module with a basis B. For b ∈ B

let πb : C → R be the R-linear map sending b to 1 and the other basis elements to 0.
Define the maps

π+
b , π

−
b : C ⊗ C −→ C

by

π+
b = id⊗ πb and π−

b = π+
b T,

where T is the transposition of factors.

We make a note of the following straightforward observation for later use:

Lemma 3.7. Let C be a differential graded R-module with a basis B. If b ∈ Bn and
η ∈ {+,−} then

∂π
η
b = π

η
b ∂

on C6n ⊗ C6n and

π
η
b = 0

on C6n−1 ⊗ C6n−1.

Definition 3.8. Let (C,∆, ε) be a counital cosymmetric coalgebra. For every group-
like element b ∈ C define its atom as

〈b〉 =
(
〈b〉−0 , 〈b〉

+
0 , 〈b〉

−
1 , 〈b〉

+
1 , . . .

)

with

〈b〉ηk =

{
(−1)k π−

b ∆kb η = −,

π+
b ∆kb η = +.

Lemma 3.9. Let C be a counital cosymmetric coalgebra. For any group-like element
b ∈ C the atom 〈b〉 is in µ(C).
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Proof. We need to prove that for any group-like element b of degree n the sequence
〈b〉 satisfies conditions i), ii), and iii) in Definition 3.2. Since the first two conditions
are immediate, we are left with showing that for any non-negative integer k

∂〈b〉+k+1 = ∂〈b〉−k+1 = 〈b〉+k − 〈b〉−k. (5)

For k > n and η ∈ {+,−} we have 〈b〉ηk = 0 so (5) holds. For k = n we notice that
〈b〉+k = 〈b〉−k = b and (5) follows. For k < n, using Lemma 3.7, we have

〈b〉+k − 〈b〉−k = π+
b ∆kb− (−1)kπ−

b ∆kb = π+
b

(
1 + (−1)k+1T

)
∆kb

= π+
b

(
∂∆k+1b− (−1)k∆k+1∂b

)
= ∂π+

b ∆k+1b

= ∂〈b〉+k+1

and

〈b〉+k − 〈b〉−k = π+
b ∆kb− (−1)kπ−

b ∆kb = π−
b

(
T + (−1)k+1

)
∆kb

= (−1)k+1π−
b

(
∂∆k+1b− (−1)k∆k+1∂b

)

= (−1)k+1∂π−
b (∆k+1b) = ∂〈b〉−k+1

as desired.

Lemma 3.10. Let R be an integral domain. The assignment sending a group-like
counital cosymmetric R-coalgebra C to the sub-ω-category of µ(C) generated by its
atoms is functorial.

Proof. The statement follows from the fact, proven in Lemma 3.4, that when R is an
integral domain a coalgebra map between group-like R-coalgebras sends group-like
elements to either group-like elements or to 0.

Definition 3.11. Let

ξ : coAlgglR −→ ωCat

be the functor described in Lemma 3.10.

3.3. Street’s orientals
In this subsection we state the second main result of this note: the functor ξ sends

the Steenrod coalgebra of a standard simplex to the free ω-category generated by
that simplex.

Historically, Roberts [Rob77] pioneered the idea of using higher-dimensional cate-
gories as the coefficient objects for non-abelian cohomology. A key ingredient for this
enterprise is the construction of a nerve functor from ω-categories to simplicial sets.
Such a functor N can be obtained from the construction of a natural cosimplicial
ω-category

O : ∆ −→ ωCat,

[n] 7→ On

by setting

N(C)n = HomωCat

(
On, C

)
.

This was accomplished by Street in [Str87] where he says the following about the
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ω-categories On : “[t]hese objects seem to be fundamental structures of nature so I
decided they should have a short descriptive name. I settled on oriental.”

We will not use the original definition of Street but an equivalent one given by
Steiner in [Ste04] and further explored in [Ste07]. It is presented as Definition 3.15
after a review of Steiner’s theory of augmented directed complexes.

We are ready to state the second main result of this work.

Theorem 3.12. Let
(
C•(∆

n;F2),∆, ε
)
be the Steenrod cup-i coalgebra associated to

the n-th representable simplicial set ∆n. Then,

ξ
(
C•(∆

n;F2),∆, ε
)
= On.

The proof of this theorem occupies Subsection 3.5.

3.4. Steiner’s augmented directed complexes
In this subsection we give an extremely abridged exposition of Steiner’s rich theory

of augmented directed complexes with the aim of proving Theorem 3.12. The original
source is [Ste04].

We refer to the objects of ChZ simply as chain complexes.
Let C be a chain complex together with a basis. We write C+ for the submonoid

containing all elements written as linear combinations of basis elements with only
non-negative coefficients. We use the following notation for the induced canonical
decomposition:

c = c+ − c−

with c+ and c− in C+.
Let (C, ε) be an augmented chain complex with a basis B. For b ∈ Bn define

recursively

b+i =





0 i > n,

b i = n,

(∂b+i+1)
+ i < n

and b−i =





0 i > n,

b i = n,

(∂b−i+1)
− i < n.

The basis is said to be unital if ε(b+0 ) = ε(b−0 ) = 1 for every b ∈ B.

Definition 3.13. A strong augmented directed complex or simply a SADC is
an augmented chain complex C with a unital basis such that the transitive closure of
the reflexive relation 6 defined by

c1 6 c2

if and only if

(∂c2)
−− c1 ∈ C+

or

(∂c1)
+− c2 ∈ C+

is anti-symmetric, i.e., it defines a partial order on C.
A morphism between two SADCs is an augmented chain map f : C1 → C2 such

that

f(C+
1 ) ⊂ f(C+

2 ).
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Definition 3.14. Let (C,B) be a SADC. For b ∈ B define its Steiner atom to be
(
b−0 , b

+
0 , b

−
1 , b

+
1 , . . .

)
∈ µ(C).

Steiner showed that assigning to a SADC, let us call it (C,B), the sub-ω-category
generated inside µ(C) by its Steiner atoms defines a full and faithful embedding

ν : SADC −→ ωCat.

We refer the reader to Sections 5.6, 6.1, and 6.2 in [Ste04] for these statements.
Additionally, Steiner gives the following definition of Street’s orientals in Section

3.8 loc. cit.:

Definition 3.15 ([Ste04]). Let ∆n denote the n-th representable simplicial set. The
chain complex C•(∆

n;Z) together with the canonical basis

B =
{
[m] → [n] : injective

}

define a SADC and

On = ν
(
C•(∆

n;Z), B
)
.

3.5. Proof of Theorem 3.12
We will exhibit a bijection between the set of atoms of ξ

(
C•(∆

n;F2),∆, ε
)
and

of Steiner atoms of ν
(
C•(∆

n;Z), B
)
which, since these are generators, will establish

the theorem.
We will verify that for every non-degenerate simplex σ : [m] → [n] and η ∈ {−,+}

we have

σ
η
i = πη

σ∆iσ, (6)

where this equality holds with Z-coefficients using the canonical set lift F2 → Z with
0 7→ 0 and 1 7→ 1.

For i > m, both sides of (6) are equal to 0.
For i 6 m, let r = m− i. Then, by (3), we have

π−
σ ∆iσ =

∑

U∈P(mr )
U−= ∅

dU+σ and π+
σ ∆iσ =

∑

U∈P(mr )
U+= ∅

dU−σ.

Then, in the case r = 0, (6) holds because π−
σ ∆iσ = σ and π+

σ ∆iσ = σ, so π−
σ ∆iσ =

σ−
i and π+

σ ∆iσ = σ+
i . Assuming the identity for r we compute

∂σ−
i =

∑

j

(−1)jdjσ
−
i =

∑

j

(−1)j
∑

U∈P(mr )
U−= ∅

djdU+σ.

We will prove the identity for r + 1 by rewriting the above identity as

∂σ−
i =

∑

U∈P( m

r+1)
U−= ∅

dU+σ −
∑

U∈P( m

r+1)
U+= ∅

dU−σ.

For U = {u1 < · · · < ur} ∈ P
(
n
r

)
with U− = ∅ and 0 6 j 6 i we can use the sim-

plicial identities to write

djdU+ = djdu1
. . . dur

= du1
. . . dul

dj+l dul+1 . . . dur
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with ul < j + l < ul+1. Notice that if j ≡ 1 mod 2 and l < r then

V = {u1 < · · · < ul < j + l < ûl+1 < · · · < ur} ∈ P
(
m
r

)

with V − = ∅ and, calling k = ul+1 − l − 1,

(−1)jdjdU + (−1)kdkdV = 0.

If j ≡ 0 mod 2 and 1 < l then

W = {u1 < · · · < ûl < j + l < ul+1 < · · · < ur} ∈ P
(
m
r

)

with W− = ∅ and, calling k = ul − l,

(−1)jdjdU + (−1)kdkdW = 0.

This implies that the only non-zero terms are of the form
{
du1

. . . dur
dj+r j odd,

djdu1
. . . dur

j even

for U = {u1 < · · · < ur} ∈ P
(
n
r

)
with U− = ∅. Therefore,

∂σi =
∑

U∈P( m

r+1)
U−= ∅

dU+σ −
∑

U∈P( m

r+1)
U+= ∅

dU−σ

as claimed.

4. Proof of Theorem 2.4

We will prove Theorem 2.4 by establishing a sequence of lemmas. Unless stated
otherwise, all algebraic constructions are taken over a general commutative and unital
ring R.

Lemma 4.1. For any globular set X the triple
(
C•(X),∆, ε

)
is a counital cosym-

metric R-coalgebras.

Proof. Showing that ∆: W ⊗ C•(X) → C•(X)⊗ C•(X) is a R[Σ2]-linear chain map
is equivalent to establishing (2) for all k > 0. We will split the verification into six
cases. For the remainder of this proof let us consider x ∈ Xn.

If k = n = 0:

∂∆kx− (−1)k∆k∂x = ∂(x⊗ x)

= 0.

If k = 0 < n:

∂∆kx− (−1)k∆k∂x = t0x⊗ (tn−1 − sn−1)x + (tn−1 − sn−1)x⊗ s0x

−t0tn−1x⊗ tn−1x − tn−1x⊗ s0tn−1x

+t0sn−1x⊗ sn−1x + tn−1x⊗ s0sn−1x

= 0.
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If 0 < k = n+ 1:

∂∆kx− (−1)k∆k∂x = 0

= x⊗ x− x⊗ x

=
(
1 + (−1)n+1T

)
(x⊗ x)

=
(
1 + (−1)kT

)
∆k−1(x).

If 0 < k = n:

∂∆kx− (−1)k∆k∂x = (tn−1 − sn−1)x⊗ x+ (−1)nx⊗ (tn−1 − sn−1)x

=
(
tk−1x⊗ x− (−1)nx⊗ sk−1x

)

+(−1)n
(
x⊗ tk−1x− (−1)nsk−1x⊗ x

)

=
(
1 + (−1)nT

)(
tk−1x⊗ x− (−1)nx⊗ sk−1x

)

=
(
1 + (−1)nT

)(
tk−1x⊗ x+ (−1)(n+1)(k−1)x⊗ sk−1x

)

=
(
1 + (−1)nT

)
∆k−1(x).

If 0 < k = n− 1:

∂∆kx− (−1)k∆k∂x = (tk−1 − sk−1)tkx⊗ x+ (−1)(n−1)tkx⊗ (tn−1 − sn−1)x

+(−1)n+1(tn−1 − sn−1)x⊗ skx− x⊗ (tk−1 − sk−1)skx

+(−1)k+1
(
tkx⊗ tkx− skx⊗ skx

)

=
(
tk−1x⊗ x+ x⊗ sk−1x

)
−
(
x⊗ tk−1x+ sk−1x⊗ x

)

= (1 + (−1)kT )
(
tk−1x⊗ x+ x⊗ sk−1x

)

= (1 + (−1)kT )∆k−1(x).

If 0 < k < n− 1:

∂∆kx− (−1)k∆k∂x = (tk−1 − sk−1)tkx⊗ x+ (−1)ktkx⊗ (tn−1 − sn−1)x

+(−1)(n+1)k
(
(tn−1 − sn−1)x⊗ skx

+(−1)nx⊗ (tk−1 − sk−1)skx
)

+(−1)k+1
(
tktn−1x⊗ tn−1x+ (−1)nktn−1x⊗ sktn−1x

)

+(−1)k
(
tksn−1x⊗ sn−1x+ (−1)nksn−1x⊗ sksn−1x

)

=
(
tk−1x⊗ x+ (−1)(n+1)(k+1)x⊗ sk−1x

)

+
(
(−1)(n(k+1)+k)x⊗ tk−1x− sk−1x⊗ x

)

= (1 + (−1)kT )
(
tk−1x⊗ x+ (−1)(n+1)(k−1)x⊗ sk−1x

)

= (1 + (−1)kT )∆k−1(x).

Showing that ε is a counit for ∆ follows from the fact that for any x ∈ Xn

∆0x =

{
t0x⊗ x+ x⊗ s0x n 6= 0,

x⊗ x n = 0

and ε(x′) = 1 for any x′ ∈ X0.
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Lemma 4.2. For any morphism F : X → Y of globular sets, the chain map

C•(F ) : C•(X) −→ C•(Y )

is a coalgebra map.

Proof. Denote C•(F ) by f . Since F (Xn) ⊆ Yn we have εf = fε and since Ftn = tnF

and Fsn = snF we have
(
f ⊗ f

)
∆k(x) = F (tkx)⊗ F (x) + (−1)(n+1)kF (x)⊗ F (skx)

= tkF (x)⊗ F (x) + (−1)(n+1)kF (x)⊗ skF (x)

= ∆kf(x)

for any x ∈ X and k > 0.

Lemma 4.3. If R is an integral domain, the function

SetG
op

(X,Y ) −→ coAlgR
(
C•(X),C•(Y )

)

is a bijection.

Proof. Injectivity is immediate. For establishing surjectivity, let us consider f ∈
coAlgR

(
C•(X),C•(Y )

)
. We will construct F ∈ SetG

op

(X,Y ) such that C•(F ) = f .
From Lemma 3.4 we know that for any x ∈ X either f(x) = y for some y ∈ Y or
f(x) = 0. Let x ∈ Xn not in the image of in. Define

F (x) =

{
f(x) f(x) 6= 0

in
(
F (tn−1x)

)
f(x) = 0.

This recursive definition is well defined because of the augmentation preserving prop-
erty of f . For x = in(y) we recursively define F (x) = inF (y). We will prove next that
F : X → Y is a map of globular sets.

Let x ∈ Xn and without loss of generality assume it is not in the image of in. Let
us first assume f(x) = 0, then

tn−1F (x) = tn−1inF (tn−1x) = F (tn−1x)

and

sn−1F (x) = sn−1inF (tn−1x) = F (tn−1x)
?
= F (sn−1x).

We claim that F (tn−1x) must equal F (sn−1x). Observe that since f is a chain map

f(x) = 0 =⇒ f(tn−1x) = f(sn−1x) (7)

If f(tn−1x) 6= 0 or f(sn−1x) 6= 0 implication (7) establishes the claims. If f(tn−1x) =
f(sn−1x) = 0 we have

F (tn−1x) = in−1F (tn−2tn−1x) = in−1F (tn−2sn−1x) = F (sn−1x).

Let us now assume f(x) 6= 0. For any 0 < k 6 n the identity

∆n−kf(x) = (f ⊗ f)∆n−k(x)

reads

tn−kF (x)⊗ F (x) + (−1)(n+1)kF (x)⊗ sn−kF (x)

= f(tn−kx)⊗ F (x) + (−1)(n+1)kF (x)⊗ f(sn−kx).
(8)
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Therefore, for 0 < k 6 n

f(tn−kx) 6= 0 =⇒ tn−kF (x) = F (tn−kx)

f(sn−kx) 6= 0 =⇒ sn−kF (x) = F (sn−kx)
(9)

Therefore, if both f(tn−1x) 6= 0 and f(sn−1x) 6= 0 we are done.
Let us assume f(tn−1x) = 0 and notice that n− 1 must be greater than 0. It

follows from (8) that tn−1F (x) is in the image of in−1. Writing tn−1F (x) = in−1y

and applying tn−2 to this identity gives tn−2F (x) = y. Hence,

F (tn−1x)
def
= in−1F (tn−2tn−1x)= in−1F (tn−2x)

?
= in−1tn−2F (x)= in−1y= tn−1F (x).

Similarly, when f(sn−1x) = 0 we have

F (sn−1x)
def
= in−1F (tn−2sn−1x) = in−1F (tn−2x)

?
= in−1tn−2F (x) = sn−1F (x).

Therefore, we have reduced both claims: F (tn−1x) = tn−1F (x) when f(tn−1x) = 0
and sn−1F (x) = F (sn−1x) when f(sn−1x) = 0 to showing F (tn−2x) = tn−2F (x). If
f(tn−2x) 6= 0 then (9) finishes the proof. If not, we repeat the argument and reduce it
to F (tn−3x) = tn−3F (x). Because of the augmentation preserving property of f this
regression has to end.
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