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KOENRAAD VAN WOERDEN

(communicated by J.P.C. Greenlees)

Abstract
Let G be a finite group with 2-Sylow subgroup of order less

than or equal to 16. For such a G, we prove a quantified version of
Quillen’s uniform Fp-isomorphism theorem, which holds uniformly
for all G-spaces.

We do this by bounding from above the exponent of Borel
equivariant F2-cohomology, as introduced by Mathew–Naumann–
Noel, with respect to the family of elementary abelian 2-subgroups.

1. Introduction

For a finite group G, consider a cohomology class u ∈ H∗(BG;Fp) that restricts to
zero on all elementary abelian p-subgroups (i.e., groups of the form (Z/p)×l for some
integer l ⩾ 0). It is a theorem of Quillen that u is nilpotent. In fact, Quillen showed

Theorem 1.1 ([17, Thm. 6.2]). For X any paracompact G-space of finite cohomo-
logical dimension, the map

r̃es : H∗
G(X;Fp) → lim

E⊂G el. ab. p-gp.
H∗
E(X;Fp), (1)

where the maps in the indexing category for the limit are given by restricting along
subgroups and conjugation, is a uniform Fp-isomorphism, which means that there is
an integer n ⩾ 0 such that

1. Every u ∈ ker(r̃es) satisfies un = 0.

2. Every v ∈ limE H∗
E(X;Fp) \ Im(r̃es) satisfies vp

n ∈ Im(r̃es).

Here H∗
G(X;Fp) denotes the mod-p Borel equivariant cohomology of a G-space X.

These results led to many structural results in group cohomology. Quillen himself
immediately deduced:

Corollary 1.2 ([17, Cor. 7.8]). The Krull dimension of H∗(BG;Fp) equals the rank
of the maximal elementary abelian p-subgroup of G.

Results directly building on Theorem 1.1 include a theorem of Duflot on the depth

The author was partly supported by the SFB 1085 – Higher Invariants, Regensburg.
Received January 6, 2018, revised December 12, 2018, October 3, 2019; published on March 25,
2020.
2010 Mathematics Subject Classification: 20J06, 55N91, 55P42, 55P91, 18G40.
Key words and phrases: group cohomology, Quillen’s F-isomorphism theorem, equivariant homotopy
theory, spectral sequence.
Article available at http://dx.doi.org/10.4310/HHA.2020.v22.n2.a4
Copyright © 2020, International Press. Permission to copy for private use granted.



74 KOENRAAD VAN WOERDEN

of H∗
G(X;Fp) [8, Thm. 1], a theorem on the complexity of kG-modules by Alperin–

Evens [2], Benson’s description of the image of the transfer map [3, Thm. 1.1], and
a theorem on the depth of group cohomology rings by Carlson [5, Thm. 2.3]. These
results, and Quillen’s original result all indicate the importance of the elementary
abelian p-subgroups in Borel equivariant Fp-cohomology in general, and group coho-
mology with Fp-coefficients in particular.

It is natural to ask what one can say about the n in Theorem 1.1. One approach
to this question is to apply the work of Kuhn [12,13], which builds on work of Henn–
Lannes–Schwartz [9]. In particular, for p = 2, this gives explicit upper bounds on the
nilpotence degree of the kernel of (1), for X = pt. Alternatively, for the case X = pt,
one can explicitly compute both sides of (1) to determine a feasible n.

The case X ̸= pt is not covered by these bounds however. We will consider all
X, not necessarily X = pt, by using the approach introduced by Mathew–Naumann–
Noel in [15], where the map (1) is realized as the edge homomorphism of a homotopy
limit spectral sequence, called the F -homotopy limit spectral sequence

Es,t
2 = lims

O(G)opF

Ht
H(X;Fp) ⇒ H∗

G(X;Fp)

converging strongly to the target [15, Prop. 2.24], where X can be any G-space (or
more generally, a G-spectrum), and F any family of subgroups of G which contains
at least the family E(p) of elementary abelian p-subgroups. The indexing category is
the subcategory of the orbit category O(G) spanned by the orbits G/H with H in
the family F . The key property of the F -homotopy limit spectral sequence is that
it collapses at a finite page with a horizontal vanishing line [15, Thm. 2.25].

This implies that every computation with the F -homotopy limit spectral sequence
is a finite one. Moreover, in many concrete situations we can establish a bound on the
height of the horizontal vanishing line, and a bound on which page it appears. Besides
implying when the F -homotopy limit spectral sequence will have collapsed, it can
also be used to deduce differentials. This was illustrated in the computation of the
cohomology of the quaternion group of order 8 in [15, Ex. 5.18]. The computational
utility of the F -homotopy limit spectral sequence will be illustrated in a forthcoming
paper, by using it to compute the cohomology of all 2-groups up to order 16.

Varying X over all G-spectra, this horizontal vanishing line turns out to have a
uniform upper bound in height [15, Prop. 2.26]. The minimal upper bound of this
height is one of the definitions of the E(p)-exponent expE(p)

HFp
G
. An equivalent

definition is the following.

Definition 1.3 ([15, Prop. 2.26]). The E(p)-exponent of HFp is the minimal integer
n ⩾ 0 such that there exists an n-dimensional CW-complex X with isotropy in E(p)

such that the canonical map HFp → F (X+, HFp) admits a retraction

HFp → F (X+, HFp) → HFp.

In practice one can often determine this E(p)-exponent, and this leads to a quan-
tified version of Theorem 1.1, because one has n ⩽ expE(p)

HFp
G

[15, Thm. 3.20,

Rem. 3.22]. The identification of E(2)-exponents for 2-groups is the principal goal of
this paper, and leads to the main theorem:
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Theorem 1.4. Let G be a finite group with a 2-Sylow subgroup of order ⩽ 16, X any
G-space, and let I be the kernel of

r̃es : H∗
G(X;F2) → lim

E⊂G el. ab. 2-gp.
H∗
E(X;F2).

Then I4 = 0. Moreover, if u is any element in the codomain of r̃es, then u8 is in the
image of r̃es.

Theorem 1.4 follows from combining [15, Thm. 3.20] and Lemma 3.13 with the
upper bounds on the exponents from the following theorem:

Theorem 1.5. The exponents of Borel equivariant F2-cohomology for the groups of
order less than or equal to 16 are bounded above by the values in the following table:

G expE(2)
HF2G

Reference

e 1 Proposition 4.1
C2 1 Proposition 4.1

C2 × C2 1 Proposition 4.1
C4 2 Proposition 4.1
C×3

2 1 Proposition 4.1
C2 × C4 2 Proposition 4.1

C8 2 Proposition 4.1
D8 2 Corollary 4.3
Q8 4 [15, Ex. 5.18]

C×4
2 1 Proposition 4.1

C×2
2 × C4 2 Proposition 4.1
C4 × C4 3 Proposition 4.1
C8 × C2 2 Proposition 4.1
C16 2 Proposition 4.1
D16 2 Corollary 4.3
Q16 4 Proposition 4.4

SD16 = C8

3
⋊ C2 4 Proposition 4.6

M16 = C8

5
⋊ C2 4 Proposition 4.5

D8 ∗ C4 4 Proposition 4.7
C4 ⋊ C4 4 Proposition 4.8

(C4 × C2)
ψ5

⋊ C2 2 Proposition 4.8
Q8 × C2 4 Proposition 4.13
D8 × C2 2 Proposition 4.12

For a description of the groups appearing in Theorem 1.5 we refer to the sections
of the referred propositions. The first column lists the groups of order ⩽ 16, the
second column an upper bound on the exponent, and the last column gives a forward
reference for the claim.

Remark 1.6. All these upper bounds are in fact equalities, except possibly when G
equals SD16, M16 or C4 ⋊ C4, in which the exponent could be 3. These lower bounds
will be part of the content of the forthcoming paper mentioned above.
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For specific 2-Sylow subgroups of order less than or equal to 16, one can obtain an
improved version of Theorem 1.4 by using the upper bound on the relevant exponent
from Theorem 1.5.

1.1. Organization
The proofs of the main results are contained in Section 4. Section 2 summarizes

what we need from [14,15], and Section 3 contains lemmas that are used to prove
the main results.

1.2. Notation and conventions
Throughout G denotes a finite group. If a non-equivariant cohomology theory is

represented by a spectrum E, then we denote the spectrum representing the Borel
equivariant version of this cohomology theory by EG. In particular, we denote Borel-
equivariant F2-cohomology HF2G

. We may omit the G from the notation if the group
G is clear from the context. For a finite group G and a prime p, we denote the family
of elementary abelian p-subgroups of G by E (G)(p) or E(p) if the group is clear from
the context.
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2. F -nilpotence

We recall the notion of F -nilpotence from [15], for which we first need to recall
the following space.

Definition 2.1 ([20, Satz 1 and Beweis, Bemerkung 2]). Let F be a family of sub-
groups of G. Then the universal F -space EF is the G-space given by the homotopy
colimit

EF = hocolim
O(G)F

G/H.

The space EF is, up to G-equivalence, characterized by

EFH ≃

{
∅ if H ̸∈ F ,

pt if H ∈ F .

Using the space EF , we can give one of the equivalent definitions of F -nilpotence.

Definition 2.2 (Cf. [15, Def. 1.4]). LetM be a G-spectrum. ThenM is said to be F -
nilpotent if there is an n such that M is a retract of F (skn−1 EF+,M). The minimal
n ⩾ 0 for which this holds is called the F -exponent of M , and denoted expF M .
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Being F -nilpotent is a strong condition, it implies for example the following.

Proposition 2.3 ([15, Prop. 2.8]). Let M be F -nilpotent. Then M is F -complete
and F -colocal, that is, the F -completion map M → M(EF+,M) and the colocaliza-
tion map M ∧ EF+ → M are weak equivalences.

A trivial example is the following.

Example 2.4. Let A ℓℓ be the family of all subgroups of a group G. Every G-spectrum
M is A ℓℓ-nilpotent with expA ℓℓM ⩽ 1, and expA ℓℓM = 0 if and only if M is con-
tractible.

The following two propositions are immediate from the above definition.

Proposition 2.5 ([14, Prop. 6.39]). A G-spectrum M is F -nilpotent and G -nilpotent
if and only if M is F ∩ G -nilpotent.

Proposition 2.6 ([15, Def. 1.4]). If M is F -nilpotent and G ⊃ F , then M is G -
nilpotent.

Combining Example 2.4, Proposition 2.5 and Proposition 2.6 shows that every
G-spectrum M has a minimal family F such that M is F -nilpotent (cf. the remark
after [15, Def. 1.4]).

Definition 2.7 ([15, remark after Def. 1.4]). The minimal family F such that a
G-spectrum M is F -nilpotent is called the derived defect base of M .

The following is the main case of interest for us.

Proposition 2.8 ([15, Prop. 5.16]). For G any finite group, the derived defect base
of HF2G

is E(2).

We can now state the uniform upper bound on the height of the horizontal vanish-
ing line of the F -homotopy limit spectral sequence and the page on which it appears.

Proposition 2.9 ([15, Prop. 2.26, Rem. 2.27]). Let G be a finite group, F a family
of subgroups, and M an F -nilpotent G-spectrum. Then the following integers are
equal:

1. The F -exponent of M .

2. The minimal N such that for all G-spectra X, the F -homotopy limit spec-
tral sequence E∗,∗

∗ (X) admits a vanishing line of height N on the EN+1-page:
Es,∗
N+1 = Es,∗

∞ = 0 for all s ⩾ N .

3. The minimal n such that the canonical map F (EF+,M)≃M → F (skn−1 EF+,
M) admits a retraction.

4. The minimal n′ such that there is an (n′ − 1)-dimensional CW-complex X with
isotropy in F such that M is a retract of F (X+,M).

5. The minimal m such that the canonical map skm−1 EF ∧M → M admits a
section.

6. The minimal m′ such that there is an (m′ − 1)-dimensional CW-complex X with
isotropy in F such that M is a retract of X+ ∧M .
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Moreover, if M ′ is any G-spectrum, then the existence of an integer for M ′ as in any
one of the items from (2) to (6) implies that M ′ is F -nilpotent.

We end this section by recalling from [15] some properties of exponents that will
be used in the next chapter to prove lemmas about exponents.

Proposition 2.10. Let H ∈ F . Then G/H+ is F -nilpotent with expF G/H+ = 1.

Proposition 2.11 ([14, Cor. 4.15]). If M is an F -nilpotent spectrum and X is any
G-spectrum, then F (X,M) is F -nilpotent with expF F (X,M) ⩽ expF M .

Proposition 2.12. If N is an F -nilpotent G-spectrum and M is any G-spectrum,
then M ∧N is F -nilpotent with expF M ∧N ⩽ expF N .

Proposition 2.13 ([14, Prop. 4.9]).

1. If M is a retract of an F -nilpotent spectrum N , then M is F -nilpotent and
expF M ⩽ expF N .

2. If M ′ and M ′′ are F -nilpotent and M ′ → M → M ′′ is a cofiber sequence, then
M is F -nilpotent and expF M ⩽ expF M ′ + expF M ′′.

Proposition 2.14. Let Mα be a set of F -nilpotent spectra with F -exponents bounded
uniformly by n. Then

∨
αMα is F -nilpotent with F -exponent ⩽ n.

Proposition 2.15. Let X be an (n− 1)-dimensional G-CW-spectrum with isotropy
in F . Then X is F -nilpotent and expF X ⩽ n.

Proof. Use induction and the previous propositions.

Proposition 2.16. Let X be a finite dimensional G-CW-spectrum with isotropy
in F . Then the equivariant Spanier–Whitehead dual D(X) of X is F -nilpotent, and
expF D(X) = expF X.

Proof. Write n = expF X. Let Y+ be an (n− 1)-dimensional G-CW complex with
isotropy in F such that there is a retraction

X → F (Y+, X) ≃ D(Y+) ∧X → X.

Applying D(−) to this retraction exhibits D(X) as a retraction of Y+ ∧ D(X), which
has exponent ⩽ n by Proposition 2.15 and Proposition 2.12. Therefore, expF D(X) ⩽
expF X, and replacing X by D(X) in this inequality shows equality.

3. Exponent lemmas

We discuss some lemmas that will be of use in determining exponents. Some of
these statements appear as exercises in [14, Sec. 4].
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3.1. Lemmas for F -exponents
We now give various lemmas which describe how F -exponents can change as the

family F varies. We have the following two basic product and restriction formulas.

Remark 3.1. Let F1, F2 be two families of subgroups. Then E(F1 ∩ F2)+ ≃ EF1+ ∧
EF2+ .

Notation 3.2. For F a family of subgroups of G, and H a subgroup of G, denote by
FH the family of subgroups of H consisting of those groups in F that are contained
in H.

If F is a family that makes sense for all groups G, such as the family of all
subgroups, the family of elementary abelian p-groups, etc., we write F (G) for this
family of subgroups of G. For instance, we write E(2)(D8) for the elementary abelian
subgroups of the dihedral group of order 8.

Remark 3.3. If F is a family of subgroups of G, and H is a subgroup of G, then
ResGH EF ≃ EFH .

Lemma 3.4. Let M be an F -nilpotent G-spectrum, and let H ⊂ G be a subgroup.
Then ResGH M is FH-nilpotent, and expFH

ResGH M ⩽ expF M .

Proof. This follows from [14, Cor. 4.13] and Remark 3.3.

For a group G, we denote the spectrum representing Borel G-equivariant Fp-
cohomology by HFp

G
.

Corollary 3.5. Let G be a group and let H ⊂ G be a subgroup. Then

expE(p)(H) HFp
H

⩽ expE(p)(G) HFp
G
.

Lemma 3.6. Let F1, F2 be two families of subgroups, and let M be a G-spectrum
which is both F1- and F2-nilpotent, with exponents m, n respectively. Then M is
F1 ∩ F2-nilpotent, and

expF1∩F2
M ⩽ m+ n− 1.

Proof. The fact that M is F1 ∩ F2-nilpotent is part of [14, Prop. 6.39]. The assump-
tion on the exponents implies that both maps in

skm−1 EF1+ ∧ skn−1 EF2+ ∧M → skm−1 EF1+ ∧ EF2+ ∧M (2)

→ EF1+ ∧ EF2+ ∧M (3)

have a retraction, hence the composite has a retraction. The composite of (2) and (3)
factors as

skm−1 EF1+ ∧ skn−1 EF2+

(∗) //

(∗∗)
��

EF1+ ∧ EF2+ ∧M

skm+n−2

(
EF1+ ∧ EF2+

)
∧M

(∗∗∗)

44

Composing the retraction of (∗) with (∗∗) gives a retraction of (∗ ∗ ∗). Since EF1+ ∧
EF2+ ≃ E(F1 ∩ F2)+ by Remark 3.1, we obtain the desired bound.
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Notation 3.7. For a G-space X, we denote by I (X) the minimal family containing
the isotropy groups of X.

Example 3.8. For an orthogonal G-representation V , the unit sphere S(V ) in V inher-
its a G-action. Then I (S(V )) is the smallest family containing the isotropy groups
of S(V ).

Lemma 3.9 (Cf. Proof of [15, Thm. 2.3]). Let R be a ring G-spectrum with multi-
plicative Thom classes (e.g., HF2, see [15, Def. 5.1]). Let V be a G-representation
with corresponding oriented Euler class

(χ(V ) : S−|V | → R) ∈ R∗.

Suppose χ(V ) is nilpotent with χ(V )n = 0. Then R is I (S(V ))-nilpotent and

expI (V ) R ⩽ ndimR V.

Proof. The fact that χ(V )n = 0 is equivalent to the oriented Euler class

R
enV−−→ SnV ∧R

being nullhomotopic (see [15, Lem. 5.3] and [15, Rem. 2.4]). Hence the left map in
the fiber sequence

S(nV )+ ∧R → R → SnV ∧R

has a section: R is a retract of S(nV )+ ∧R. But S(nV ) is an (ndimR V − 1)-
dimensional G-CW complex, thus by Proposition 2.16, expF S(nV )+ ⩽ ndimR V ,
and hence the same bound holds for R by Proposition 2.13.

Lemma 3.10. Let f : G → C2
∼= O(1) be a 1-dimensional real representation with

oriented Euler class e ∈ H1(BG;F2). Suppose e is nilpotent with n the minimal inte-
ger ⩾ 0 such that en = 0. Then HF2 is nilpotent for the family A ℓℓker f of subgroups
of ker f with expA ℓℓker f

HF2 = n.

Proof. The upper bound for the exponent follows immediately from Lemma 3.9.

For the lower bound on the exponent, denote a class detecting e on the E∞-page of
the A ℓℓker f -limit spectral sequence converging to H∗(BG;F2) by ẽ. Since e restricts
to 0 on ker f , hence on all subgroups in A ℓℓker f , we know that ẽ lives in filtration
degree ⩾ 1 on E∞. By assumption, en−1 ̸= 0. Together with the upper bound, this
implies ẽn−1 ̸= 0, hence expA ℓℓker f

R ⩾ n.

We now recall the following well-known fact.

Lemma 3.11. For a G-space X, H ⊂ G a subgroup, the composite of maps of Borel
cohomology rings

H∗
G(X;Fp)

ResGH−−−→ H∗
H(X;Fp)

IndG
H−−−→ H∗

G(X;Fp)

is multiplication by [G : H].
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Corollary 3.12. Let G be a group and P ⊂ G a p-Sylow subgroup. Then the maps
of G-spectra

HFp
G
→ G/P+ ∧HFp

G
→ HFp

G
(4)

representing the natural transformations ResGP and IndGP exhibit HFp
G

as a retract

of G/P+ ∧HFp
G
.

Proof. We need to show that for all subgroups G′ ⊂ G, applying πG
′

∗ to (4) yields
an isomorphism. This composite is given precisely by Lemma 3.11 for X = G/G′ and
H = P . But multiplication by [G : P ] is an isomorphism because p ∤ [G : P ], whence
[G : P ] ∈ F×

p .

Lemma 3.13. Let G be a group, and write P for a p-Sylow subgroup of G. Then

expE(p)(G) HFp
G
= expE(p)(P ) HFp

P
.

Proof. First, we have

ResGP HFp
G
= HFp

P
, (5)

and

ResGP EE(p)(G) = EE(p)(P ). (6)

Hence by Corollary 3.5 (cf. [14, Cor. 4.13]),

expE(p)(P ) HFp
P
⩽ expE(p)(G) HFp

G
.

For the upper bound, write n = expE(p)(P ) HFp
P
. We then have that

skn−1 EE(p)(P ) ∧HFp
P
→ HFp

P
(7)

admits a section. Note that for every X ∈ SpG, we have IndGH ResGH X = G/H+ ∧X.
Furthermore, if we use the model for EE(p)(P ) from (6), we have

skn−1 EE(p)(P ) = ResGP skn−1 EE(p)(G).

Applying this, the fact that ResGP is monoidal, and (5) to (7) yields a section of

G/P+ ∧ skn−1 EE(p)(G) ∧HFp
G
→ G/P+ ∧HFp

G
.

Hence

expE(p)(G) G/P+ ∧HFp
G
⩽ n.

Applying Corollary 3.12 and Proposition 2.13 yields

expE(p)
HFp

G
⩽ n.

Lemma 3.14. Let F and G be families of subgroups, and let M be both F - and
G -nilpotent. Then for every K ∈ F , ResGK M is GK-nilpotent by Lemma 3.4. Write
n = expF M , mK = expGK

ResGK M for all K ∈ F , and m = maxK mK . Then

expG M ⩽ mn.
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Proof. The GK-nilpotence of ResGK M implies that, for all K ∈ F ,

skmK−1 EGK ∧ ResGK M → ResGK M

admits a section. By inducing both sides from K to G, we see that expG (G/K+ ∧
M) ⩽ mK . By taking the coproduct over all K ∈ F , we obtain that expG sk0 EF ∧
M ⩽ m. We now argue by induction that

expG skd−1 EF ∧M ⩽ md, (8)

for all d ⩾ 1. Hence assume (8) has been established for some d ⩾ 1, and consider the
cofiber sequence

skd−1 EF ∧M → skdEF ∧M →
∨

(Sd ∧G/K+) ∧M

that ends in a wedge of spheres with isotropy in F smashed with M . By the induction
hypothesis, the G -exponent of the left term is ⩽ md, and the G -exponent of the right
hand side is ⩽ m because we already saw that expG (G/K+ ∧M) ⩽ m for all K ∈ F .
Hence by [14, Prop. 4.9.2] the G -exponent of the middle term is ⩽ m(d+ 1), which
completes the induction.

We have by F -nilpotency ofM thatM is a retract of skn−1 EF ∧M , hence taking
d = n in (8) yields the result.

3.2. Representations and exponents
We will now present Theorem 3.17, which will be the main tool in establishing The-

orem 1.4 and Theorem 1.5. This theorem is based on the argument in [15, Ex. 5.18]
for giving upper bounds on the E(2)-exponent on HF2Q8

using the projective bun-

dle theorem. We will repeatedly use Theorem 3.17 to prove upper bounds on the F
exponent of HF2G

for various 2-groups G and families F ⊃ E(2). We will also discuss
a complex analogue of Theorem 3.17, which is given by Theorem 3.18.

Definition 3.15. Let V be a real or complex vector space. Then the projectivation
P(V ) of V is the space of all respectively real or complex lines in V .

Remark 3.16. Note that if V comes equipped with a linear G-action (i.e., is a G-
representation), then P(V ) inherits a natural G-action.

The goal of this subsection is to prove:

Theorem 3.17. Let G be a finite group, and let n ⩾ 0 be an integer. Suppose G has
a real n-dimensional representation V such that the projectivation P(V ) has isotropy
groups contained in some family F , that is, for every real line L ⊂ V the isotropy
group GL ⩽ G of elements of G fixing L satisfies GL ∈ F . Then HF2 is F -nilpotent
and the exponent satisfies expF HF2 ⩽ n.

For complex bundles we have an analogous result for cohomology with Z-coeffi-
cients:

Theorem 3.18. Let G be a finite group, and let n ⩾ 0 be an integer. Suppose G
has a complex n-dimensional representation V such that the projectivation P(V ) has
isotropy groups contained in some family F , that is, for every complex line L ⊂ V
the isotropy group GL ⩽ G of elements of G fixing L satisfies GL ∈ F . Then HZ is
F -nilpotent, and the exponent satisfies expF HZ ⩽ 2n− 1.
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3.2.1. The projective bundle theorem
To prove Theorem 3.17 and Theorem 3.18, we will use the projective bundle theorem,
which can be used to develop the theory of Stiefel–Whitney classes and Chern classes.
This is carried out, for instance, in [10, Ch. 17]. We will follow the treatment and
notation of [10, §17.2], but only discuss what we need.

As in [10, Ch. 17], we consider real and complex vector bundles at the same time.
For the case of real vector bundles, we write c = 1, we consider cohomology with
coefficients in Kc = Z/2, and we let F be the field R of real numbers. For the case
of complex vector bundles, we write c = 2, we consider cohomology with coefficients
in Kc = Z, and we let F be the field C of complex numbers.

We will write E(η) (resp. B(η)) for the total (resp. base) space, of a fiber (not

necessarily vector) bundle η. Let ξ : E
p−→ B be an n-dimensional vector bundle. Let

E0 be the non-zero vectors in E. Let P(E) be the quotient of E0 where we identify
non-zero vectors in the same line. This yields a factorization

E0
// P(E)

q // B

and P(E)
q−→ B is a fiber bundle with fiber FPn−1, called the projectivation of ξ

and denoted P(ξ). This space admits a canonical line bundle, classified by a map
f : P(E(ξ)) → FP∞. Pulling back a polynomial generator z ∈ H∗(FP∞;Kc) with
|z| = c along f gives a class aξ := f∗(z) ∈ H∗(P(E);Kc).

Theorem 3.19 (Projective bundle theorem, see [10, Thm. 17.2.5]). For an n-dimen-
sional vector bundle ξ, the classes 1, aξ,. . .,a

n−1
ξ form a basis of the free H∗(B(ξ);Kc)-

module H∗(P(E(ξ));Kc). In particular,

q∗ : H∗(B(ξ);Kc) → H∗(P(E(ξ));Kc)

is the inclusion of a summand.

3.2.2. From representations to exponents
We are now ready to prove Theorem 3.17 and Theorem 3.18.

Proof of Theorem 3.17 and Theorem 3.18. Consider the Borel construction on V for
an arbitrary subgroup H ⩽ G, and call the resulting bundle ξH :

ξH : V → V ×H EG → BH.

Note that this is natural with respect to inclusions of subgroups. The associated
projective bundle is

P(ξH) : P(V ) → P(V ×H EG) → BH.

Observe that P(V ×H EG) = P(V )×H EG. Hence by Theorem 3.19,

F ((P(V )×H EG)+, HKc) ∼= F (P(V )+, HKc)
H

is a free F (BH,Kc) = HKc
H -module. Recall that the real dimension of V is cn.

A basis is given by the proof of [10, Prop. 17.3.3], which shows that there are classes
1, aξH , . . . , an−1

ξH
that form a basis of πH∗ F (P(V ), HKc) as a πH∗ HKc-module. More-

over, the element aξH is natural with respect to restriction to subgroups, because
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the canonical line bundle on P(V ×G EG) pulls back to the canonical line bundle on
P(V ×H EG). In particular,

ResGH aξG = aξH ,

for all H ⩽ G. It follows that all basis elements, being powers of aξH , are natural
with respect to restriction to subgroups. Hence F (P(V ), HKc) is a free HKc-module,
because freeness of modules is an algebraic condition. Therefore, a suspension of HKc

is a retract of F (P(V ), HKc). But by Proposition 2.9 (6), the F -exponent is invariant
under suspension. Therefore, by [14, Prop. 4.9],

expF HKc ⩽ expF F (P(V ), HKc).

Furthermore, V is cn-dimensional, hence P(V ) admits the structure of an (cn− c)-
dimensional G-CW-complex [11, Cor. 7.2] with isotropy contained in F by assump-
tion, which implies by Proposition 2.9 (1) and (4) that

expF HKc ⩽ cn− c+ 1 =

{
n if c = 1,

2n− 1 if c = 2.

3.3. Proper subgroups

Let G be a finite non-abelian 2-group of order 2k. The goal of this subsection is to
prove

expP HF2G
⩽ 2⌊

√
|G| − 1⌋ − 1,

see Corollary 3.21 below. This result will not be used for establishing the main results
of this paper.

The argument is an adaption of the ones found in [16, Lem. 4.3] and [19].

Lemma 3.20. Let G be a finite non-abelian p-group of order pk. Then G has an
irreducible complex representation V with dimC V ⩾ 2, and moreover, all such V
satisfy

dimC V ⩽ ⌊
√
|G| − 1⌋.

Proof. Denote by n1, . . . , nh the C-dimensions of the irreducible C-representations
of G. We have

n2
1 + n2

2 + · · ·+ n2
h = |G|

(see, e.g., [18, Cor. 2.4.2]). Since G is non-abelian, there exist i, j such that ni ⩾ 2
[18, Thm. 3.1.9] and nj = 1, corresponding to the trivial representation. Assume
without loss of generality that they are respectively n1 and n2. Then

|G| = n2
1 + n2

2 + · · ·+ n2
h ⩾ n2

1 + 1,

hence

n1 ⩽
√
|G| − 1,

where this upper bound is in general far from optimal. Applying the floor function on
both sides preserves the inequality and does not change the integer on the left hand
side. This yields the result.
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Corollary 3.21. Let G be a finite non-abelian 2-group of order 2k, and let P be the
family of proper subgroups of G. Then

expP HF2G
⩽ 2⌊

√
|G| − 1⌋ − 1.

Proof. Let V be an irreducible complex representation of G satisfying

2 ⩽ dimC V ⩽ ⌊
√
|G| − 1⌋,

as furnished by Lemma 3.20. Then the complex projectivation P(V ) has isotropy in
P the family of proper subgroups of G, for if L ∈ P(V ) were fixed by all of G, V
would not be irreducible, since dimC V ⩾ 2. An application of Theorem 3.18 yields
the result.

4. Exponents of small 2-groups

We now prove Theorem 1.5 from the introduction, by proving the claimed upper
bounds of the E(2)-exponents. We first treat the class of abelian groups, dihedral
groups, and the generalized quaternion groups. The remaining groups of order 16 are
treated using a case-by-case analysis.

4.1. Abelian 2-groups
We determine an upper bound on the E(2)-exponent of HF2A

for A a finite abelian
group.

Proposition 4.1. Let A be a group isomorphic to∏
j∈J

C2nj ×
∏
k∈K

C2

with nj ⩾ 2. Then

expE(2)
HF2A

⩽ #J + 1.

Proof. For j ∈ J , consider the projection of A onto the C2 in the j-th factor:

pj : A → C2
∼= O(1).

The corresponding Euler class is aj ∈ H1(BA;F2). Since a2j = 0, we obtain

expA ℓℓker pj
HF2 = 2.

Now
⋂
j∈J ker pj = E(2), and hence by Lemma 3.6, we obtain expE(2)

HF2 ⩽ #J + 1.

4.2. Dihedral groups
Let D2n be the dihedral group of order 2n (n ⩾ 3) with presentation

D2n = ⟨σ, ρ |σ2 = ρ2
n−1

= e, σρσ−1 = ρ−1⟩.

Denote by T the matrix representing reflection in the x-axis. In the remainder of this
section, for an angle θ, denote byRθ the matrix representing counterclockwise rotation
in R2 by θ about the origin. Then σ 7→ T , ρ 7→ R2π/2n−1 , yields a linear 2-dimensional
real orthogonal representation of D2n , which we call V . We apply Theorem 3.17 to
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compute an upper bound on the exponent with respect to the family E(2) of elementary
abelian 2-subgroups. In the following lemma we establish that the isotropy of P(V )
is contained in E(2).

Lemma 4.2. The isotropy groups of the projectivation P(V ) are contained in the
family E(2) of elementary abelian 2-groups in D2n .

Proof. The proof is by elementary linear algebra. Since V is an orthogonal represen-
tation, a linear subspace L spanned by a vector v is fixed by an element g of D2n if
and only if g has eigenvalue 1 or −1. A finite group is an elementary abelian 2-group
if and only if all of its elements have order dividing 2. Therefore, we can reduce to
proving that all elements of order 4 do not fix any lines, which we can reduce further
to proving that all elements of order 4, up to inverses and conjugation, do not fix any
lines. This means it suffices to check that the element ρ2

n−3

does not fix any lines.
But this element has characteristic polynomial λ2 + 1, which has no real zeroes, and
thus the result follows.

Corollary 4.3. The E(2)-exponent of HF2D2n
satisfies

expE(2)
HF2D2n

⩽ 2.

Proof. Immediate from Theorem 3.17 and Lemma 4.2 and the fact that V is 2-
dimensional.

4.3. Quaternion groups

The generalized quaternion group Q2n of order 2n is the finite subgroup of quater-
nionic spaceH generated multiplicatively by the elements of unit length {e2πi/2n−1

, j}
(see, e.g., [7, XII.§7]). Denoting these generators by r and s, respectively, one obtains
the presentation

Q2n = ⟨r, s | r2
n−2

= s2, rsr = s⟩,

for all n ⩾ 3. The subgroup generated by ⟨s2⟩ is central and of order 2, which gives
rise to a central extension [1, IV.2]

C2 → Q2n → D2n−1 .

In this subsection we will prove the following upper bound on the E(2)-exponent.

Proposition 4.4. The E(2)-exponent satisfies

expE(2)
HF2Q2n

⩽ 4.

Proof. The proof is a straightforward adaption of the argument in [15, Ex. 5.18].

Let H ∼= R4 be the 4-dimensional real representation coming from the embedding
Q2n ↪→ H. This is a free action, and restricts to a free action on S3. The subgroup
⟨±1⟩ is central, and therefore Q2n/⟨±1⟩ acts on S3/⟨±1⟩ = P(R4) with isotropy in
⟨±1⟩. The result now follows from Theorem 3.17.
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4.4. The modular group of order 16

Let

M16 = ⟨r, f | r8 = f2 = e, frf−1 = r5⟩

be the modular group of order 16. The group has this name because its lattice of
subgroups is modular (see, e.g., [4, I.§7]).

In this subsection we prove the following upper bound on the E(2)-exponent.

Proposition 4.5. The E(2)-exponent satisfies

expE(2)
HF2M16

⩽ 4.

Proof. For an angle θ, let Rθ be the rotation matrix. Let T be the matrix which inter-
changes the summands of R2 ⊕R2. Write α = 2π/8. Let V be the 4-dimensional real
orthogonal M16-representation given by f 7→ T , r 7→ Rα ⊕R5α. This is the represen-
tation from [21, Lem. 13.3].

We will now show that the isotropy groups of the projectivation P(V ) are contained
in E(2). As in the proof of Lemma 4.2, we only need to consider all the elements of
order 4, up to taking inverses and conjugation, of which there are two: r2 and fr2.
Both have characteristic polynomial (λ2 + 1)2, which has no real roots. Therefore,
they do not fix any lines. Applying Theorem 3.17 gives the desired result.

4.5. The semi-dihedral group of order 16

Let

SD16 = ⟨s, r | s2 = r8 = e, srs−1 = r3⟩

be the semidihedral group of order 16.

Proposition 4.6. The E(2)-exponent satisfies

expE(2)
HF2SD16

⩽ 4.

Proof. We will use the notation Rθ and T from the proof of Proposition 4.5. Write
α = 2π/8 and let V be the real orthogonal SD16-representation given by s 7→ T ,
r 7→ Rα ⊕Rα from [21, Lem. 13.4].

Again, it reduces to considering two elements: r2 and sr. The element r2 has
characteristic polynomial (λ2 + 1)2, and the element sr has characteristic polyno-
mial λ4 + 1. Neither of these has real roots, so these elements do not fix any lines.
Applying Theorem 3.17 gives the desired result.

4.6. The central product of D8 and C4

Let D8 = ⟨σ, ρ⟩ be the dihedral group of order 8, and let C4 = ⟨γ⟩ be the cyclic
group of order 4. Both these groups have central cyclic subgroups of order 2: for D8

this is ⟨ρ2⟩ and for C4 this is ⟨γ2⟩. The central product of D8 and C4 is defined to be
the direct product with these central subgroups identified:

D8 ∗ C4 := D8 × C4/⟨ρ2γ−2⟩.

Proposition 4.7. The E(2)-exponent satisfies expE(2)
HF2D8∗C4

⩽ 4.
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Proof. Let Rπ/2 be the rotation matrix with θ = π/2, and let T be the matrix
interchanging the summands of R2 ⊕R2. Consider the representation given by σ 7→
Id⊕(− Id), ρ 7→ T ((− Id)⊕ Id), γ 7→ Rπ/2 ⊕Rπ/2, which is the underlying 4-dimen-
sional real representation from [21, Lem. 13.5].

Again, it suffices to study the elements ρ, γ, and ρ2γ. The element ρ has char-
acteristic polynomial λ4 + 1, the element γ has characteristic polynomial (λ2 + 1)2.
Neither of these polynomials has real roots, so neither ρ nor γ fixes any lines. Since
ρ2 acts by − Id it follows that also ρ2γ does not fix any lines. The result follows
from Theorem 3.17.

4.7. The group (C4 × C2)⋊ C2

Let C4
∼= ⟨a⟩, C2

∼= ⟨b⟩, and let C2
∼= ⟨c⟩ act on C4 × C2

∼= ⟨a, b⟩ via a 7→ ab, b 7→ b.
We consider the group G which is defined to be the semidirect product of (C4 × C2)⋊
C2 under this action. This group hence admits the following presentation:

G = ⟨a, b, c | a4 = b2 = c2 = e, ab = ba, bc = cb, cac−1 = ab⟩.

We will establish an upper bound on the E(2)-exponent of G.

Proposition 4.8. The E(2)-exponent of G = (C4 × C2)⋊ C2 satisfies

expE(2)
HF2 ⩽ 2.

Proof. Let A be the subgroup ⟨a2, bc, c⟩, and let B be the subgroup of A given by
⟨bc, c⟩. Both A and B are normal subgroups of G. Furthermore, A is the unique
maximal elementary abelian 2-subgroup of G. Consider the composition of quotient
maps

G → G/B ∼= C4 → G/A ∼= C2.

Pulling back the sign representation of C2 to G gives a 1-dimensional real G-represen-
tation with Euler class e. Because of the factorization over C4, we have e2 = 0, by
naturality of the Euler class, and the fact that every class in H1(BC4;F2) squares
to 0. Hence by Lemma 3.10, expE(2)

HF2 ⩽ 2.

4.8. The group C4 ⋊ C4

Let r and s generate two copies of C4: ⟨r | r4 = e⟩, ⟨s | s4 = e⟩ ∼= C4. Let ⟨s⟩ act
on ⟨r⟩ by s · r = r−1. Then C4 ⋊ C4 is defined to be the corresponding semi-direct
product ⟨r⟩⋊ ⟨s⟩. A presentation is C4 ⋊ C4 = ⟨r, s | r4 = s4 = e, srs−1 = r3⟩. We will
determine an upper bound on the E(2)-exponent of HF2C4⋊C4

. In order to do so, we

will use the fact that H∗(BC4 ⋊ C4;F2) is isomorphic to [6, App. C, #10(16)]

F2[z, y, x, w]/(z
2 + y2, zy) (9)

with degrees |z| = |y| = 1, |x| = |w| = 2. We will determine an upper bound on
expE(2)

HF2 using the following lemmas.

Lemma 4.9. The Euler class e of the 1-dimensional real representation given by
pulling back the sign representation along the quotient map

C4 ⋊ C4 → C4 ⋊ C4/⟨r, s2⟩ ∼= C2 (10)

satisfies e2 = 0.
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Proof. The proof is the same as the proof of Proposition 4.8: the quotient map (10)
factors through the map C4 ⋊ C4 → C4 ⋊ C4/⟨r⟩ ∼= C4, hence e2 = 0 by naturality.

Lemma 4.10. The Euler class e of the 1-dimensional real representation given by
pulling back the sign representation along the quotient map

C4 ⋊ C4 → C4 ⋊ C4/⟨r2, s⟩ ∼= C2

satisfies e3 = 0.

Proof. This follows from the fact that that H∗(BC4 ⋊ C4;F2) is isomorphic to (9),
and that in that graded ring every element in degree 1 cubes to 0.

Combining these lemmas, we obtain

Proposition 4.11. The E(2)-exponent satisfies

HF2C4⋊C4
⩽ 4.

Proof. We remark that ⟨r2, s2⟩, which is the unique maximal elementary abelian 2-
subgroup of C4 ⋊ C4, is the intersection of ⟨r2, s⟩ and ⟨r, s2⟩, the groups we divided
out by in Lemma 4.9 and Lemma 4.10. Hence by Lemma 3.10 and Lemma 3.6,
expE(2)

HF2 ⩽ 2 + 3− 1 = 4.

4.9. The group D8 × C2

Proposition 4.12. For D8 × C2, the E(2)-exponent of HF2 satisfies

expE(2)
HF2 ⩽ 2.

Proof. Pulling back transitive D8-orbits with isotropy in elementary abelian groups
along the projection mapD8 × C2 → D8 gives transitiveD8 × C2-orbits with isotropy
in elementary abelian groups. Therefore, pulling back the representation of D8 con-
sidered in the proof of Corollary 4.3 along the projection map D8 × C2 → D8 gives
a 2-dimensional real representation of D8 × C2 with projectivation having isotropy
contained in E(2). Hence by Theorem 3.17, we have expE(2)

HF2D8×C2
⩽ 2.

4.10. The group Q8 × C2

Proposition 4.13. For Q8 × C2, the E(2)-exponent of HF2 is

expE(2)
HF2Q8×C2

⩽ 4.

Proof. Elementary abelian subgroups of Q8 pull back to elementary abelian sub-
groups of Q8 × C2 along the projection map Q8 × C2 → Q8. Therefore, pulling back
the 4-dimensional real representation of Q8 whose projectivation has isotropy in E(2)

considered in [15, Ex. 5.18] along the projection map gives a 4-dimensional real rep-
resentation of Q8 × C2 with projectivation with isotropy in E(2)(Q8 × C2). Hence,
by Theorem 3.17, the exponent satisfies expE(2)

HF2Q8×C2
⩽ 4.
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[16] J. Pakianathan and E. Yalçın, On nilpotent ideals in the cohomology ring of a finite group,

Topology 42 (2003), no. 5, 1155–1183. MR1978052
[17] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971),

549–572; ibid. (2) 94 (1971), 573–602. MR0298694
[18] J.P. Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977.

Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics,
Vol. 42. MR0450380

[19] P. Symonds, The complexity of a module and elementary abelian subgroups: a geometric
approach, Proc. Amer. Math. Soc. 113 (1991), no. 1, 27–29. MR1062838
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