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Abstract
Directed topology was introduced as a model of concurrent pro-

grams, where the flow of time is described by distinguishing certain
paths in the topological space representing such a program. Alge-
braic invariants which reflect this directedness have been introduced
to classify directed spaces. In this work we study the properties of
such invariants with respect to the reversal of the flow of time in di-
rected spaces. Known invariants, natural homotopy and homology,
have been shown to be unchanged under this time-reversal. We show
that these can be equipped with additional algebraic structure wit-
nessing this reversal. Specifically, when applied to a directed space
and to its reversal, we show that these enhanced invariants yield
dual objects. We further refine natural homotopy by introducing a
notion of relative directed homotopy and showing the existence of
a long exact sequence of natural homotopy systems.

1. Introduction

1.1. Time-reversal properties of concurrent systems
Directed topology was originally introduced as a model, and a tool, for studying

and classifying concurrent systems in computer science [18, 9]. In this approach,
the possible states of several processes running concurrently are modeled as points
in a topological space of configurations, in which executions are described by paths.
Restricted areas appear when these processes have to synchronize, to perform a joint
task, or to use a shared object that cannot be shared by more than a certain number
of processes. It is natural to study the homotopical properties of this configuration
space in order to deduce some interesting properties of the parallel programs involved,
for verification purposes, or for classifying synchronization primitives. A usual model
for concurrent processes is actually that of higher-dimensional automata, which are
based on (pre-)cubical sets, and are the most expressive known models in concurrency
theory [22]. But in contrast to ordinary algebraic topology, the invariants of interest
are invariants only under continuous deformations which have to respect the flow of
time. In short, the only relevant homotopies are the ones which never invert the flow
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of time. For mathematical developments and some applications we refer the reader
to the two books [11, 5].

Directed spaces and concurrent programs. Directed topological invariants,
most notably the computationally tractable ones such as homology, have been long
in the making (starting again with [9]). Most directed homology theories have proven
too weak to classify essential features of directed topology, until the proposal [4, 3].
Let us review quickly the main idea from [3]. Recall from [11] that a directed space,
or a dispace for short, is a pair X = (X, dX), where X is a topological space and dX
is a set of paths in X, i.e., continuous maps from [0, 1] to X, called directed paths,
of dipaths for short, such that every constant path is directed, and such that dX is
closed under monotonic reparametrization and concatenation.

Partially-ordered spaces, or pospaces, form particular dispaces: these are topo-
logical spaces X equipped with a partial order 6 on X which is closed under the
product topology. The directed structure is thus given by paths p : [0, 1] → X such
that p(s) 6 p(t), for all s 6 t in [0, 1]. Another useful class of dispaces is given by
the directed geometric realization of finite precubical sets, see, e.g., [6]. These are
made of gluings of cubical cells, on which the dispace structure is locally that of a
particular partially-ordered space: each n-dimensional cell is identified with [0, 1]n

ordered componentwise. This last class is in particular very useful in applications to
concurrency and distributed systems theory, see, e.g., [5].

As an example (see [3]), we have depicted two dispaces in Figure 1, which are built
as the gluing of squares (the white ones), each of which is equipped with the product
ordering of R2. They are the directed geometric realization of certain precubical sets as
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Figure 1: Examples of pospaces coming from non-equivalent concurrent programs.

we mentioned above, i.e. are higher-dimensional automata in the sense of [18]. They
are not dihomeomorphic spaces since they are already not homotopy equivalent: the
fundamental group of the leftmost one, that we call X, is the free group on three
generators, whereas the fundamental group of the rightmost one, that we call Y , is
the free group on four generators. Consider now the topological space of dipaths,
with the compact-open topology, from the lowest point of X (resp. Y ), which we
denote by αX (resp. αY ), to the highest point of X (resp. Y ), which we denote by βX

(resp. βY ). The topological space
−→
Di(X )(αX , βX) of directed paths from αX to βX ,

is homotopy equivalent to a six point space, corresponding to the six dihomotopy

classes of dipaths depicted in Figure 1. The topological space
−→
Di(Y)(αY , βY ) is also
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homotopy equivalent to a six point space, corresponding again to the six dihomotopy
classes of dipaths depicted in Figure 1. However, these two dispaces should not be
considered as equivalent, in the sense that they correspond to distinct concurrent
programs. Therefore comparing spaces of dipaths exclusively between two particular
points in each space is not sufficient for distinguishing these dispaces.

Natural homotopy. The main idea of [3] is to encode how the homotopy types of
the spaces of directed paths vary when we move the end points. With the possibility of
considering all the directed path spaces, we can distinguish the two former pospaces.
Indeed, the space of directed paths between αX and β′

X , as in Figure 2, has the
homotopy type of a discrete space with four points. Furthermore, we can show that

S

U
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U

S

•

•

αX

β′

X

Figure 2: Changing the base points to exhibit a particular space of directed paths.

in Y , there is no pair of points between which we have a directed path space with
that homotopy type. The algebraic structure which logs all of the homotopy types
of the directed path spaces between each pair of points is a functor called a natural
system, see Subsection 2.4.

Time reversal invariance. Now, let us consider the concurrent program seman-
tics, and its model as a directed space X = (X, dX), and invert the flow of time. If
we orient the time flow from left to right and from bottom to top, we must rotate
its representation as a dispace, as illustrated in Figure 3. As concurrent processes,

X = (X, dX)

S

U

U S

U

S

X ♯ = (X, dX♯)

S

U

US

U

S

Figure 3: The dispace of a concurrent program and its time-reversed dispace.

these two programs should not be considered as equivalent under any form of well
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accepted equivalence. These two concurrent programs actually have equivalent prime
event structure representations, see [10], that are not bisimulation equivalent [23]
under any kind of sensible bisimulation. Fajstrup and Hess noted that natural homo-
topy and homology theories do not distinguish between these two cases, but produce
isomorphic natural systems.

It is one purpose of this paper to show that natural homotopy and homology theo-
ries lack an algebraic ingredient, a form of composition, that will make the invariants
associated to these two dispaces non-isomorphic, but rather dual to each other. This
composition was introduced by Porter [17] in order to link natural systems seen as
coefficients of generalized cohomology theories [1] to coefficients for Quillen cohomol-
ogy theories [19]. This additional structure on natural systems allows us to interpret
natural homotopy not as a functor, but as a category. With this point of view, reversal
of time in a directed space is witnessed as an action of the opposite functor on the
associated category.

1.2. Main results and organisation of the article
In the following section we recall categorical preliminaries used in our construc-

tions. In Subsections 2.1 and 2.2, we recall the notion of internal group over a category
and the category Act of actions as introduced by Grandis in [12]. We also recall the
embeddings of the categories Gp of groups and Set∗ of pointed sets into the category
Act. These embeddings preserve exactness of sequences when Act is endowed with
the structure of a homological category presented in [12]. In Subsection 2.4, we recall
the notion of natural system, central in this work. These were introduced in [20] and
used as coefficients in the cohomology of small categories in [1] and monoids in [15],
as well as to define homological finiteness invariants for convergent rewriting systems
in [13, 14]. A natural system on a category C with values in a category V is a functor
D : FC → V, where FC is the category of factorizations of C, whose 0-cells are the
1-cells of C and the 1-cells correspond to factorizations of 1-cells in C. We denote by
opNat(V) the category of pairs (C, D) where C is a category and D is a natural system
on C with values in V. The category of natural systems on a category C with values
in the category Ab of Abelian groups is equivalent to the category of internal groups
in the category CatC0

/C of categories over C. In order to extend such an equivalence
to natural systems with values in the category Gp of groups, Porter in [17] consid-
ers natural systems enriched with composition pairings. Specifically, given a natural
system D : FC → V, a composition pairing associated to D consists of families

νf,g : Df ×Dg → Dfg νx : T → D1x ,

of morphisms of V indexed by composable 1-cells f, g resp. 0-cells x of C, satisfying
coherence conditions as recalled in Subsection 2.5. Porter showed that the category
of natural systems on a category C with values in the category of groups and with
composition pairings is equivalent to the category of internal groups in the category of
categories over C. We recall this equivalence in Subsection 2.7 and explain in Subsec-
tion 2.8 that such an equivalence can equally be established for natural systems with
values in the category Set∗ by considering split objects in the category of categories
over C.

The aim of Section 3 is to relate the notion of directed homotopy of directed spaces
to certain internal groups, refining this invariant of directed spaces. We recall notions
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from directed algebraic topology in Subsection 3.1. In particular, we define the functor
−→
P : dTop → Cat which associates to a dispace X the trace category of X , whose 0-
cells are points of X, 1-cells are traces of X , i.e. classes of dipaths of X modulo
reparametrization, in which composition is given by concatenation of traces. We are
interested in the properties of the natural homotopy and natural homology functors

as introduced in [4, 2], see Subsection 3.1.5. The functors
−→
Pn(X ) and

−→
Hn(X ), for a

dispace X , are natural systems extending the homotopy and homology functors on
topological spaces to directed spaces. They extend to functors

−→
Pn : dTop → opNat(Act), and

−→
Hn : dTop → opNat(Ab),

sending a dispace X to (
−→
P(X ),

−→
Pn(X )) and (

−→
P(X ),

−→
Hn(X )) respectively. In Subsec-

tion 3.2, we show that the natural systems
−→
Pn(X ) and

−→
Hn(X ) admit composition

pairings. This additional structure allows us to relate the natural systems
−→
Pn(X ) and

−→
Hn(X ) to internal groups or split objects in the category CatX/

−→
P(X ), giving the

main result of this section:

Theorem 3.5. Let X = (X, dX) be a dispace. For each n 6 1 (resp. n > 2) there

exists a split object Cn
X (resp. internal group Cn

X ) in CatX/
−→
P(X ) such that

−→
Pn(X )f = (Cn

X )f ,

for all traces f of X , and this assignment is functorial in X .

Using this result, we define a functor Cn
− : dTop → Cat. We explain in Subsection 3.2

that for all n > 1, the natural system
−→
Hn(X ) is automatically equipped with a com-

position pairing, and thus can be interpreted as an internal abelian group An
X in

the category CatX/
−→
P(X ). Moreover, the assignment An

− : dTop → Cat is functorial
for all n > 1. Finally, in Subsection 3.3 we recall the notion of fundamental category
from [11] and provide a result relating it to natural homotopy.

In Section 4 we study the behaviour of natural homology and natural homotopy
with respect to reversal of time in dispaces. First, we define the time-reversed, or
opposite, dispace of a dispace X as the dispace X ♯ = (X, dX♯), where dX♯ is the set of
paths t 7→ f(1− t) with f ∈ dX. For every n > 0, we describe an explicit isomorphism

In(X ) : Cn
X ♯ =⇒ (Cn

X )o,

which is natural in X , showing the main result of this paper:

Theorem 4.2. For any n > 0, the functor Cn
− : dTop → Cat is strongly time-reversal.

Finally, in Section 5, we introduce a notion of relative homotopy for dispaces, and
establish a long exact sequence, as in the case of ordinary topological spaces, using
the homological category structure on Act as introduced by Grandis in [12]:

Theorem 5.1. Let X be a dispace and A be a directed subspace of X . There is an

exact sequence in NatSys(
−→
P(A),Act):

· · · −→
−→
Pn(A) −→

−→
Pn(X ) −→

−→
Pn(X ,A)

∂n−→
−→
Pn−1(A) −→ · · ·

· · · →
−→
P2(A)

v
→

−→
P2(X )

f
→ (

−→
P2(X ,A),

−→
P2(X ))

g
→

−→
P1(A)

h
→

−→
P1(X ) →

−→
P1(X ,A) → 0.
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2. Categorical preliminaries

In this section we recall categorical constructions used in this article. First we recall
the notion of an internal group over a category. Then, in Subsection 2.2 we recall the
embeddings of the categories Gp of groups and Set∗ of pointed sets into the category
Act of actions, and their exactness properties as shown in [12]. In Subsection 2.5, we
recall the notion of natural system on a category as well as the notion of composition
pairing associated to a natural system, allowing the description of natural systems of
groups in terms of internal groups over a category [17].

2.1. Internal groups

We denote by Cat the category of (small) categories. For a category C, we will
denote by C0 its set of 0-cells (i.e. objects) and by C1 its set of 1-cells (i.e. arrows).
Given a setX, we denote by CatX the subcategory of Cat consisting of those categories
with X as their set of 0-cells, and in which we take only the functors which are the
identity on 0-cells. Given a category B, we denote by CatB0

/B the category whose
objects are pairs (C, p), with C in CatB0

, and where p : C → B is a functor which is
the identity on 0-cells. A morphism in CatB0

/B from (C, p) to (C′, p′) is a functor
f : C → C′ such that p = p′ ◦ f . Note that CatB0

/B has arbitrary limits, and that its
terminal object is the pair (B, idB). Given an object (C, p) in CatB0

/B and a 1-cell
f : x→ y of B, the fibre of f in C, denoted by Cf , is the pre-image of f in C by p,
that is

Cf = {c : x→ y in C1 | p(c) = f}.

Let A be a category with finite products and denote by T its terminal object.
Recall from [16, III.6] that an (internal) group in A is a tuple G = (G,µ, η, (−)−1),
where G is an object of A, and µ : G×G→ G, η : T → G, and (−)−1 : G→ G are
morphisms of A, respectively called the multiplication, identity, and inverse maps,
which must satisfy the group axioms. A morphism of internal groups from G to G′

is a morphism f : G→ G′ of A that commutes with the associated multiplication
and identity morphisms. The category of internal groups in A and their morphisms is
denoted by Gp(A). The groups which additionally satisfy the commutativity condition
µ = µ ◦ τ , where τ exchanges the factors of the product, constitute a full subcategory
of Gp(A) called the category of abelian groups in A, denoted by Ab(A).

We now turn to the case of groups in the category CatB0
/B. Since (B, idB) is its

terminal object, given a group ((C, p), µ, η, (−)−1) of CatB0
/B, we have idB = p ◦ η.

This implies that every fibre Cf is non-empty, and that η splits p in CatB0
. Therefore
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each hom-set C(x, y) is a coproduct of the fibres:

C(x, y) =
∐

f∈B(x,y)

Cf ,

whose elements are denoted by (c, f), with c ∈ Cf . The product in CatB0
/B of an

object (C, p) with itself is given by pullback over B in CatB0
, and is denoted by

(C ×B C, p̃), where the category C ×B C has B0 as its set of 0-cells and for x, y in B0,

(C ×B C)(x, y) = {(c, d) ∈ C(x, y)2 | p(c) = p(d)}.

The functor p̃ is the identity on 0-cells, and assigns to each pair (c, d) of 1-cells in
C ×B C their common image under p. The hom-sets of this product thus admit the
following decomposition:

(C ×B C)(x, y) =
∐

f∈B(x,y)

Cf × Cf .

Furthermore, by definition of µ, p̃ = p ◦ µ holds. Thus, for all c, d ∈ Cf , we have f =
p̃(c, d) = p(µ(c, d)), and therefore µ(c, d) ∈ Cf . As a consequence we obtain induced
maps µf : Cf × Cf → Cf for each 1-cell f of B. This endows each fibre with a group
structure.

The opposite group of an internal group ((C, p), µ, η, (−)−1) in CatB0
/B is the in-

ternal group (Co, po) in CatB0
/Bo, for which the multiplication, identity and inverse

maps, denoted respectively by µo, ηo and (−)−1
o , are the induced opposite maps of µ,

η and (−)−1. Note that the fibre group Cf in C associated to a 1-cell f of B is equal
to the fibre group Co

fo associated to its opposite f0.

2.2. The category of actions
In order to formulate results in Section 5 concerning long exact sequences induced

by relative directed homotopy functors, we recall from [12] the definition of the cate-
gory of actions of groups on pointed sets, denoted by Act. Objects of Act are actions,
defined as pairs (X,G) where X is a pointed set, whose base point we shall denote
by 0X , and G is a group with identity element 1G, equipped with a right action of
G on X. The base point of X is not assumed to be fixed by the action, and we will
write

G0 = FixG(0X) = {g ∈ G | 0X · g = 0X}

to denote the subgroup of G fixing the base point 0X . A morphism in Act is a pair
f = (f ′, f ′′) : (X,G) → (Y,H) where f ′ : X → Y is a morphism of pointed sets, and
f ′′ : G→ H is a morphism of groups compatible with the action, in the sense that
for all g ∈ G and all x ∈ X,

f ′(x · g) = f ′(x) · f ′′(g).

We consider Act as a homological category as introduced by Grandis in [12, Sec-
tion 6.4]. With this structure, the kernel of a morphism f : (X,G) → (Y,H) is the
inclusion

(Ker(f ′), f ′′
−1

(H0)) → (X,G),

where Ker(f ′) := f ′
−1

({0Y }). Observe that f ′′
−1

(H0) is the subset of G consisting
of elements g such that x = x′ · g for some x, x′ in Ker(f ′). Dually, the cokernel of a
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morphism f : (X,G) → (Y,H) is the projection

(Y,H) → (Y/R,H),

where R is an equivalence relation on Y defined by y ≡R y′ if and only if either y or
y′ is an element of f(X) and there exists some h in H with y = y′ · h.

2.3. Embeddings of Gp and Set∗ in Act

There are embeddings of the categories Gp and Set∗ into the category Act that
preserve exactness of sequences and morphisms. In the case of Set∗, there are adjoint
functors,

J : Set∗ → Act, V : Act → Set∗,

defined by J(X) = (X, {1}) and V (X,G) = X/G for all pointed sets X and groups
G with a right action on X, where (X, {1}) is the action of the trivial group on X,
and X/G is the quotient of X by the G-orbits of the action, pointed at the class
of 0X . The functor J induces an equivalence of categories between Set∗ and the full
homological subcategory of Act consisting of actions of the trivial group. This, along
with the fact that J preserves null morphisms, means that it preserves exactness of
sequences.

On the other hand, the category Gp can be realized as a retract of the category
Act, via the functors

K : Gp → Act, R : Act → Gp,

defined by K(G) = (|G|, G) and R(X,G) = G/G0, where (|G|, G) is the usual right
action of G on the underlying set |G|, pointed at 1G, and G0 is the normal closure in
G of G0. These show that Gp is a retract of Act in the sense that R ◦K = idGp since
the action of G on itself is transitive. As a consequence, a sequence of groups viewed
in Act is exact if and only if the sequence is exact in the usual sense.

2.4. Natural systems

The category of factorizations of a category C, denoted by FC, is the category
whose 0-cells are the 1-cells of C, and a 1-cell from f to f ′ is a pair (u, v) of 1-cells of
C such that ufv = f ′ holds in C. Composition is given by

(u, v)(u′, v′) = (u′u, vv′),

whenever u′ and v are composable with u and v′ respectively, and the identity on
f : x→ y is the pair (1x, 1y). A natural system on a category C with values in a
category V is a functor D : FC → V. We will denote by Df (resp. D(u, v)) the image
of a 0-cell f (resp. 1-cell (u, v)) of FC. In most cases, we will consider natural systems
with values in the category Set∗ of pointed sets, the category Gp of groups, the
subcategory Ab of abelian groups, or the category Act, then called natural systems of
pointed sets, of groups, of abelian groups, or of actions respectively.

We denote by NatSys(C,V) the category whose objects are natural systems on C
with values in V and in which morphisms are natural transformations between func-
tors. The category of natural systems with values in V, denoted by opNat(V), is
defined as follows:
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1. its objects are the pairs (C, D) where C is a category and D is a natural system
on C with values in V,

2. its morphisms are pairs

(Φ, τ) : (C, D) → (C′, D′)

consisting of a functor Φ: C → C′ and a natural transformation τ : D → Φ∗D′,
where the natural system Φ∗D′ : FC → V is defined by

(Φ∗D′)(f) = D′(Φf),

for every 1-cell f in C, and Φ∗D′(u, v) = D′(Φ(u),Φ(v)) for 1-cells u and v in C,

3. composition of morphisms (Ψ, σ) : (C′, D′) → (C′′, D′′) and (Φ, τ) : (C, D) →
(C′, D′) is defined by

(Ψ, σ) ◦ (Φ, τ) := (Ψ ◦ Φ, (Φ∗σ) ◦ τ),

where Ψ ◦ Φ denotes composition of functors and where the component of the
natural transformation (Φ∗σ) ◦ τ at a 1-cell f of C is τfσΦ(f).

2.5. Natural systems and composition pairings
LetV be a category with finite products. Given a natural systemD on a category C

with values in V, recall from [17] that a composition pairing associated to D consists
of two families of morphisms of V

(
νf,g : Df ×Dg → Dfg

)
f,g∈C1

and
(
νx : T → D1x

)
x∈C0

,

where T is the terminal object in V, the indexing 1-cells f and g are composable,
and such that the three following coherence conditions are satisfied:

1. naturality condition: the diagram

Df × Dg

νf,g

D(u,1)×D(1,v)

Dfg

D(u,v)

Duf ×Dgv νuf,gv
Dufgv

commutes in V for all 1-cells f, g, u, v in C1 such that the composites are defined.

2. The cocycle condition: the diagram

Df ×Dg ×Dh

νf,g×idDh

idDf
×νg,h

Dfg ×Dh

νfg,h

Df ×Dgh νf,gh
Dfgh

commutes for all 1-cells f, g and h of C such that the composite fgh is defined.

3. The unit conditions: the diagrams

Df Df ×D1y

νf,1y

Df × T

1Df
×νy∼=

D1x ×Df

ν1x,f

Df

T ×Df

νx×1Df ∼=

commute for every 1-cell f : x→ y of C.
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The category of natural systems on C with values in V which admit a composition
pairing is the category whose objects are pairs (D, ν), with D a natural system on C
and ν a composition pairing associated to D. The morphisms are natural transfor-
mations α : D → D′ compatible with the composition pairings ν and ν′, in the sense
that the following diagram commutes in V

Df × Dg

νf,g

αf×αg

Dfg

αfg

D′
f ×D′

g
ν′

f,g

D′
fg

for all composable 1-cells f and g in C. We will denote this category of natural systems
admitting a composition pairing by NatSysν(C,V). We denote by opNatν(V) the
subcategory of opNat(V) consisting of natural systems with values in V which admit
a composition pairing, in which we take only those morphisms (Φ, τ) : (C, (D, ν)) →
(C′, (D′, ν′)) such that τ is compatible with the composition pairings ν and Φ∗ν′.

2.6. Commutator condition

Consider a natural system of groups D : FB → Gp. For all composable 1-cells f
and g of B, define a homomorphism νf,g : Df ×Dg → Dfg, by setting

νf,g(d, d
′) = D(f, 1)(d′).D(1, g)(d),

for all d ∈ Df and d′ ∈ Dg, where the right hand side is a product in Dfg. Porter
proved in [17] that a natural system of groupsD on a category B admits a composition
pairing if, and only if, the condition

[D(f, 1)(d′), D(1, g)(d)] = 1,

holds for all d ∈ Df , and d
′ ∈ Dg, where the bracket denotes the commutator in Dfg.

In this case, the composition pairing is uniquely given by

νf,g(d, d
′) = D(f, 1)(d′).D(1, g)(d) = D(1, g)(d).D(f, 1)(d′),

for all 1-cells f, g and d ∈ Df and d′ ∈ Dg such that the composition fg is defined.
Note that as a consequence of this characterization, every natural system of abelian
groups admits a composition pairing [17].

Remark 2.1. The compatibility condition for natural transformations is always sat-
isfied in the case of natural systems of groups with composition pairings. Indeed, if
α : D → D′ is a transformation of natural systems, we have

D′(1, g)(αf (d)) = αfg(D(1, g)(d)) and D′(f, 1)(αg(d
′)) = αfg(D(f, 1)(d′))

for all d ∈ Df and d′ ∈ Dg. Thus

αfg(νf,g(d, d
′)) = ν′f,g(αf (d), αg(d

′)).

We thereby deduce that NatSysν(B,Gp) (resp. opNatν(Gp)) is a full subcategory
of NatSys(B,Gp) (resp. opNat(Gp)), and that the categories NatSys(B,Ab) and
NatSysν(B,Ab) are equal.
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2.7. Natural systems and internal groups

Given a natural system D : FB → Gp with composition pairing ν, we construct an
internal group in the category CatB0

/B. First, we construct a category C of CatB0
,

whose hom-sets are defined as

C(x, y) :=
∐

f∈B(x,y)

Df ,

for all x and y in B0. The 1-cells of C are denoted by pairs (c, f) where c ∈ Df . For
all 0-cells x, y, z of B, the 0-composition maps

⋆x,y,z0 : C(x, y)× C(y, z) → C(x, z)

are defined fibre by fibre using the decomposition

C(x, y)× C(y, z) =
∐

f∈B(x,y),g∈B(y,z)

Df ×Dg,

and the homomorphisms νf,g : Df ×Dg → Dfg, by setting

(c, f) ⋆0 (d, g) := (νf,g(c, d), fg),

for all c in Df and d in Dg. The associativity of composition ⋆0 is a consequence of
the cocycle condition, and the identity on a 0-cell x is the pair (1D1Bx

, 1Bx ), where 1Bx
denotes the identity on x in B.

Let p : C → B denote the functor which is the identity on 0-cells, and which maps
the pair (c, f) to f . Then the pair (C, p) is an object of CatB0

/B. Now let us see that it
is an internal group. The unit functor η : (B, idB) → (C, p) is induced by the functor
η : B → C defined by η(f) := (1Df

, f), for every 1-cell f in B. The multiplication
map µ : (C, p)× (C, p) → (C, p) is defined by µ((c, f), (d, f)) := (c.d, f), for all c, d in
Df and where c.d denotes the product of c and d in Df . The functoriality of µ is
a consequence of νf,g being a homomorphism of groups. Finally, the inverse map
(−)−1 : (C, p) → (C, p) is induced by the functor (−)−1 : C → C defined by (c, f)−1 =
(c−1, f), for all c in Df . This construction induces a functor

NatSysν(B,Gp) → Gp(CatB0
/B),

which assigns an internal group in CatB0
/B to each natural system of groups on B.

Porter proves in [17] that this functor induces an equivalence of categories

NatSysν(B,Gp) ≃ Gp(CatB0
/B).

2.8. Natural systems and split objects

Given a category B, we define the category of split objects in CatB0
/B, denoted by

Split(CatB0
/B), as the full subcategory of CatB0

/B whose objects are pairs ((C, p), ǫ),
where (C, p) is an object of CatB0

/B and ǫ is a morphism of CatB0
such that idB = p ◦ ǫ.

Note that internal groups are split objects. The equivalence of categories stated
in Subsection 2.7 from [17] can be adapted to show that there is an equivalence of
categories

NatSysν(B, Set∗) ≃ Split(CatB0
/B).
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3. Directed homotopy as an internal group

In Section 3.1 we recall the notion of dispace from [11] and the definition of natural
homotopy and natural homology as introduced in [4, 2]. These are natural systems
extending the classical algebraic invariants to dispaces. In Section 3.2, we show that
these natural systems have an associated composition pairing, and relate them to
certain internal groups or split objects. Finally, in Section 3.3 we recall the notion of
fundamental category from [11] and relate it to natural homotopy.

3.1. Directed homology and homotopy
In this subsection we recall the notion of dispaces from [11], and define algebraic

invariants for these spaces, natural homotopy and natural homology, as introduced
in [4, 2].

3.1.1. Directed spaces
Recall from [11] that a directed space, or dispace, is a pair X = (X, dX), where X is a
topological space and dX is a set of paths in X, i.e. continuous maps from [0, 1] to X,
called directed paths, or dipaths for short, satisfying the three following conditions:

1. Every constant path is directed,

2. dX is closed under monotonic reparametrization,

3. dX is closed under concatenation.

We will denote by f ⋆ g the concatenation of dipaths f and g, defined via monotonic
reparametrization. A morphism ϕ : (X, dX) → (Y, dY ) of dispaces is a continuous
function ϕ : X → Y that preserves directed paths, i.e., for every path p : [0, 1] → X
in dX, the path ϕ∗p : [0, 1] → Y belongs to dY . The category of dispaces is denoted
dTop. An isomorphism in dTop from (X, dX) to (Y, dY ) is a homeomorphism from
X to Y that induces a bijection between the sets dX and dY .

Note that the forgetful functor U : dTop → Top admits left and right adjoint func-
tors. The left adjoint functor sends a topological space X to the dispace (X,Xd),
where Xd is the set of constant directed paths. The right adjoint sends X to the
dispace (X,X [0,1]), where X [0,1] is the set of all paths in X.

For a dispace X = (X, dX) and x, y in X, we denote by
−→
Di(X )(x, y) the space of

dipaths f in X with source x = f(0) and target y = f(1), equipped with the compact-
open topology.

3.1.2. The trace category

The trace space of a dispace X from x to y, denoted by
−→
T (X )(x, y), is the quotient of

−→
Di(X )(x, y) by monotonic reparametrization, equipped with the quotient topology.
The trace of a dipath f in X , denoted by f or f if no confusion is possible, is the
equivalence class of f modulo monotonic reparametrization. The concatenation of
dipaths of X is compatible with this quotient, inducing a concatenation of traces
defined by f ⋆ g := f ⋆ g, for all dipaths f and g of X . We will denote by

−→
P : dTop → Cat

the functor which associates to a dispace X the trace category of X , whose 0-cells
are points of X, 1-cells are traces of X , and composition is given by concatenation of
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traces.

3.1.3. Dihomotopies
The directed unit interval, denoted by ↑I, is the dispace with underlying topological
space [0, 1] and in which dipaths are non-decreasing maps from [0, 1] to [0, 1]. The di-
rected cylinder of a dispace X , denoted by X×↑I, is the dispace (X ×[0, 1], d(X×↑I)),
where

d(X×↑I) = {c = (c1, c2) : [0, 1] → X ×[0, 1] | c1 ∈ dX and c2 monotonic}.

Recall from [11] that an elementary dihomotopy between morphisms ϕ,ψ : X → Y is a
morphism of dispaces h : X×↑I → Y, such that h(x, 0) = ϕ(x) and h(x, 1) = ψ(x) for
all x in X. Dihomotopy between morphisms is defined as the symmetric and transitive
closure of elementary dihomotopies. In particular, given a dispace X and dipaths
f and g of X , an elementary dihomotopy of dipaths is an elementary dihomotopy
between the morphisms f, g : ↑I → X . Two dipaths are thus dihomotopic if there
exists a zig-zag of elementary dihomotopies connecting them.

3.1.4. Trace diagrams
The pointed trace diagram in Top∗ of a dispace X is the functor

−→
T ∗(X ) : F

−→
P(X ) → Top∗

sending a trace f : x→ y to the pointed topological space (
−→
T (X )(x, y), f), and a

1-cell (u, v) of F
−→
P(X ) to the continuous map

u ⋆ ⋆ v :
−→
T (X )(x, y) →

−→
T (X )(x′, y′)

which sends a trace f to u ⋆ f ⋆ v. The functor
−→
T ∗(X ) extends to a functor

−→
T ∗ : dTop → opNat(Top∗)

whose codomain is the category of natural systems with values in Top∗, defined in Sec-

tion 2.4, and sends a dispace X to the pair (
−→
P(X ),

−→
T ∗(X )). Observe that a morphism

of dispaces ϕ : X → Y induces continuous maps

ϕx,y :
−→
T (X )(x, y) →

−→
T (Y)(ϕ(x), ϕ(y))

for all points x, y of X. Thus we obtain natural transformations between the corre-
sponding trace diagrams:

−→ϕ ∗ :
−→
T ∗(X ) ⇒

−→
T ∗(Y).

3.1.5. Natural homotopy and natural homology
Recall from [4, 2] that the 1st natural homotopy functor of X is the natural system

denoted by
−→
P1(X ) : F

−→
P(X ) → Set, and defined as the composite

F
−→
P(X )

−→
T ∗(X )
−→ Top∗

π0−→ Set∗,

where π0 is the 0th homotopy functor with values in Set∗. That is, for a trace f on
X from x to y,

−→
P1(X )f = (π0(

−→
T (X )(x, y)), [f ]),
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where [f ] denotes the path-connected component of f in
−→
T (X )(x, y). For n > 2, the

nth natural homotopy functor of X , denoted by
−→
Pn(X ) : F

−→
P(X ) → Gp, is defined as

the composite

F
−→
P(X )

−→
T ∗(X )
−→ Top∗

πn−1
−→ Gp,

where πn−1 is the (n− 1)th homotopy functor. Note that for n > 3, the functor
−→
Pn(X )

has values in Ab. Finally, for n = 0, we define
−→
P0(X ) : F

−→
P(X ) → Set∗ as the functor

sending a trace f to the pointed singleton ({f}, f).
Using the inclusion functors J : Set∗ → Act and K : Gp → Act defined in Subsec-

tion 2.3, the classical homotopy functors can be realized as functors πn : Top∗ → Act,
for all n > 0. With this interpretation, we define natural homotopy as functors

−→
Pn(X ) : F

−→
P(X ) → Act,

for all n > 0.
Recall from [4], that for n > 1, the nth natural homology functor of X is the functor

denoted by
−→
Hn(X ) : F

−→
P(X ) → Ab, and defined as the composite

F
−→
P(X )

−→
T (X )
−→ Top

Hn−1
−→ Ab,

where Hn−1 is the (n− 1)th singular homology functor.

The functors
−→
Pn(X ) and

−→
Hn(X ), for X in dTop, extend to functors

−→
Pn : dTop −→ opNat(Act), and

−→
Hn : dTop −→ opNat(Ab),

sending a dispace X to (
−→
P(X ),

−→
Pn(X )) and (

−→
P(X ),

−→
Hn(X )) respectively.

These definitions are coherent with the classical notions of homotopy and homology
as illustrated by the following two results.

Proposition 3.1. Given a topological space X, the dispace X = (X,X [0,1]) is such
that for every x in X,

−→
Pn(X )cx

∼= πn(X,x),

where cx denotes the trace of the constant dipath equal to x.

As a consequence, given a dispace X = (X,X [0,1]), if X is n-connected, then for

every x ∈ X, the space
−→
T (X )(x, x) is also (n− 1)-connected. Applying the Hurewicz

theorem, Proposition 3.1 yields the following result.

Corollary 3.2. For n > 1 an (n− 1)-connected topological space X, the dispace X =
(X,X [0,1]) is such that for every x in X

−→
H i(X )cx

∼= Hi(X),

for all i 6 n.

3.2. Directed homotopy as an internal group or a split object

In this subsection we show that for any dispace X , the natural systems
−→
Pn(X )

and
−→
Hn(X ) admit composition pairings. We treat the case

−→
P1(X ) in Lemma 3.3
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separately from the case
−→
Pn(X ) for n > 2 in Lemma 3.4. Finally, using the equivalence

of categories stated in Subsection 2.7, we describe the natural homotopy functor
−→
Pn(X ) as split objects, or internal group when n > 2, in the category CatX/

−→
P(X ).

We also treat the case of the natural homology functors
−→
Hn(X ), for n > 1, which we

describe as internal abelian groups in the category CatX/
−→
P(X ).

Lemma 3.3. The natural system of pointed sets
−→
P1(X ) admits a composition pairing

ν given, for all composable traces f : x→ y, g : y → z of X , by

νf,g([f
′], [g′]) = [f ′ ⋆ g′]

for any [f ′] in π0(
−→
T (X )(x, y), f) and [g′] in π0(

−→
T (X )(y, z), g).

Proof. Observe that the maps νx : {∗} →
−→
P1(X ) for x in X are uniquely determined

since the singleton is the initial object in Set∗. For composable traces f and g of X ,
the maps νf,g are well defined and are morphisms of Set∗. Thus, we only have to check
the cocycle, unit, and naturality conditions. The cocycle condition is a consequence
of the fact that the composition is associative. The right unit condition is verified,
since for f : x→ y, the following diagram

−→
P1(X )f

−→
P1(X )f ×

−→
P1(X )1y

νf,1y

−→
P1(X )f × {∗}

id−→
P1(X)f

×νy
∼=

commutes. Indeed, if cy denotes the constant path equal to y, we have [f ] = [f ⋆ cy] =

[f ◦ νy(∗)], since [cy] is the pointed element of
−→
P1(X )1y . The left unit condition is

similarly verified. Finally, the naturality condition follows from the associativity of
concatenation of traces. Indeed, the equality

[(u ⋆ f) ⋆ (g ⋆ v)] = [u ⋆ (f ⋆ g) ⋆ v]

holds for any traces u, v, f, g of X such that the composites are defined.

Lemma 3.4. For every n > 2, the natural system of groups
−→
Pn(X ) admits a compo-

sition pairing ν defined by

νf,g(σ, τ) = σ ⋆ τ,

for all composable traces f : x→ y and g : y → z of X and homotopy classes σ in

πn−1(
−→
T (X )(x, y), f) and τ in πn−1(

−→
T (X )(y, z), g), where σ ⋆ τ denotes the homotopy

class in
−→
T (X )(x, z) of the map t 7→ σ(t) ⋆ τ(t).

Proof. First observe that the maps νx, for x in X, are uniquely determined since

the trivial group is the initial object in Gp. Let us prove that
−→
Pn(X ) verifies the

commutator condition recalled in Subsection 2.6. Given composable 1-cells f and g

of
−→
P(X ), the 1-cell (1, g) of F

−→
P(X ) induces a map

−→
Pn(X )(1, g) : πn−1(

−→
T (X )(x, y), f) → πn−1(

−→
T (X )(x, z), f ⋆ g)

sending a class σ in πn−1(
−→
T (X )(x, y), f) to the homotopy class of the map t 7→

σ(t) ⋆ g, denoted by σ ⋆ g. We obtain a similar homomorphism from the 1-cell (f, 1),
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sending τ in πn−1(
−→
T (X )(y, z), g) to the homotopy class of the map t 7→ f ⋆ τ(t),

denoted by f ⋆ τ .

Let σ, σ′ in πn−1(
−→
T (X )(x, y), f) and τ, τ ′ in πn−1(

−→
T (X )(y, z), g). The following

relation

(σ ⋆ τ) · (σ′ ⋆ τ ′) = (σ · σ′) ⋆ (τ · τ ′),

where · denotes the product in homotopy groups, holds in πn−1(
−→
T (X )(x, z), f ⋆ g).

Indeed, unscrewing the definitions for concatenation of traces and for maps Sn−1 →
−→
T (X )(x, z) this equality holds even before quotienting by the homotopy relation.
Using this relation, we have

(σ ⋆ g) · (f ⋆ τ) = (σ · f) ⋆ (g · τ) = σ ⋆ τ = (f · σ) ⋆ (τ · g) = (f ⋆ τ) · (σ ⋆ g)

for all σ in πn−1(
−→
T (X )(x, y), f) and τ in πn−1(

−→
T (X )(y, z), g). We conclude via the

commutator condition from Section 2.6 that
−→
Pn(X ) admits a composition pairing,

given by νf,g(σ, τ) = σ ⋆ τ .

Theorem 3.5. Let X = (X, dX) be a dispace. For each n 6 1 (resp. n > 2) there

exists a split object Cn
X (resp. internal group Cn

X ) in CatX/
−→
P(X ) such that

−→
Pn(X )f = (Cn

X )f ,

for all traces f of X , and this assignment is functorial in X .

Proof. Using the equivalences of categories recalled in Subsection 2.8 (resp. in Sub-
section 2.7), and Lemma 3.3 (resp. Lemma 3.5) we obtain a split object C1

X (resp. an

internal group Cn
X ) in CatX/

−→
P(X ) associated to

−→
P1(X ) (resp.

−→
Pn(X ) for n > 2). Let

us prove that this assignment defines a functor

Cn
− : dTop → Cat.

Any morphism ϕ : X → Y of dispaces induces continuous maps ϕx,y :
−→
T (X )(x, y) →

−→
T (Y)(ϕ(x), ϕ(y)) for all points x, y in X such that

−→
T (X )(x, y) 6= ∅. We define a

functor Cn
ϕ : Cn

X → Cn
Y on a 0-cell x and a 1-cell (σ, f) of Cn

X by setting Cn
ϕ(x) = ϕ(x),

and

Cn
ϕ(σ, f) = (πn−1(ϕx,y)(σ),

−→
P(ϕ)(f)).

Functoriality follows from that of πn−1 and
−→
P .

Let us describe the categories Cn
X for n > 0. The 0-cells of Cn

X are the points of X,
and the set of 1-cells of Cn

X with source x and target y is given by

Cn
X (x, y) =

∐

f∈
−→
P(X )(x,y)

−→
Pn(X )f .

The projection p onto the second factor extends the category Cn
X into an object of

CatX/
−→
P(X ).

For 0 6 n 6 1, the functor p is split by ǫn :
−→
P(X) → Cn

X defined on any trace f on X

by ǫn(f) = ([f ], f). Note that for any trace f ,
−→
P0(X )f = { [f ] }, hence ǫ0(

−→
P(X)) = C0

X .
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The composition is defined, for 0 6 n 6 1, by

([f ′], f)([g′], g) = ([f ′ ⋆ g′], f ⋆ g),

for all [f ′] ∈
−→
Pn(X )f and [g′] ∈

−→
Pn(X )g. Note that C0

X is isomorphic to
−→
P(X ).

For n > 2, the functor p is split by the identity map η :
−→
P(X) → Cn

X defined
by η(f) = (1Df

, f), where 1Df
is the homotopy class of the constant loop equal

to f . The inverse map is given by the inverse in each homotopy group, that is

(σ, f)−1 = (σ−1, f). Recall that the product in CatX/
−→
P(X ) is the fibred product over

−→
P(X ), so we can use the internal multiplication in each homotopy group to define
the multiplication map µ by setting µ((σ, f), (σ′, f)) = (σ · σ′, f). The composition of
(σ, f) and (τ, g), for homotopy classes σ and τ above f and g respectively, is given by

(σ, f) ⋆0 (τ, g) = (νf,g(σ, τ), f ⋆ g) = (σ ⋆ τ, f ⋆ g).

Recall from Remark 2.1 that as a consequence of the commutation condition and
the triviality of the compatibility criterion for natural transformations, the categories

NatSys(
−→
P(X ),Ab) and NatSysν(

−→
P(X ),Ab) coincide. For all n > 1, the natural sys-

tem
−→
Hn(X ) is thus equipped with a composition pairing, and via the equivalence

Ab(CatX/
−→
P(X )) ∼= NatSysν(

−→
P(X ),Ab)

we obtain an internal abelian group An
X in the category CatX/

−→
P(X ). Moreover, using

similar arguments as in the proof of Proposition 3.5, one proves that the assignment
An

− : dTop → Cat is functorial for all n > 1.

3.3. Fundamental category of a dispace

The fundamental category of a dispace X , denoted by
−→
Π(X ), is the homotopy

category of
−→
P(X ) when interpreted as a 2-category. Explicitly, the trace category

−→
P(X ) can be extended into a (2, 1)-category by adding a 2-cell corresponding to every
dihomotopy h : ↑ I× ↑ I → X between traces f and g such that f(0) = h(0, s) = g(0)
and f(1) = h(1, s) = g(1) for all s ∈↑ I. The fundamental category is the quotient of
this (2, 1)-category by the congruence generated by these 2-cells. We refer the reader
to [7, 11] for a fuller treatment of fundamental categories of dispaces. The operation
described above defines a functor

−→
Π : dTop → Cat

sending a dispace to its fundamental category.

Given a dispace X , consider the quotient functor π :
−→
P(X ) →

−→
Π(X ), which is

the identity on 0-cells and which associates a trace f to its class [f ] modulo path-
connectedness. Similarly to [8, Theorem 1], we have the following result.

Proposition 3.6. Given a dispace X , suppose that there exists a functorial section

σ of the functor π :
−→
P(X ) →

−→
Π(X ). Then the natural system

−→
Pn(X ) is trivial for all

n > 2.

Proof. We show that each trace space is contractible. Let
−→
t (X ) (resp.

−→
t (X )×[0, 1])

denote the natural system of topological spaces on
−→
Π(X ) which maps a class [f ] : x→



48 CAMERON CALK, ERIC GOUBAULT and PHILIPPE MALBOS

y to the space [f ] (resp. [f ]× [0, 1]), where [f ] is viewed as a subspace of
−→
T (X )(x, y).

For a dipath g in [f ], denote by g|[s,r] the restriction of g to the interval [s, r] ⊆ [0, 1].

Now we define a natural transformation H :
−→
t (X )× [0, 1] ⇒

−→
t (X ) such that the

component H[f ] sends a pair (g, s) ∈ [f ]× [0, 1] to the dipath

H[f ](g, s)(t) =





g(t) t ∈ [0, s2 ],

σ([g|[ s2 ,1−
s
2 ]
]) t ∈ [ s2 , 1−

s
2 ],

g(t) t ∈ [1− t
2 , 1].

Then H[f ](g,−) is a homotopy from g to σ([f ]) for every g in [f ]. Indeed, when s = 0,

we have σ([g]) = σ([f ]) and when s = 1 we have that σ([g|[ s2 ,1−
s
2 ]
]) is the point g( 12 )

because the map σ is the identity on points. Thus every connected component of
every trace space of X is contractible.

Remark 3.7. Recall that the homotopy groups πn(X,x) and πn(X, y) of a topological
space X are isomorphic for any path-connected points x and y of X. In the definition

of natural homotopy we consider the homotopy groups of trace spaces
−→
T (X )(x, y)

based at each trace f . However, for natural homotopy, choosing a single base-point
in each connected component of each trace space of a dispace X requires a section as
described above, and for such a section to define a natural system of groups on the
fundamental category, it must be functorial. By the proposition, in this case the only

non-trivial homotopy functor is
−→
P1(X ). In the case of natural homotopy, choosing a

base point in each path-connected component is thus not possible in non-trivial cases.

Finally, note that natural homology decomposes, for any trace f : x→ y on X , into

−→
Hn(X )f ∼=

⊕

[f ]∈
−→
Π(X )(x,y)

Hn−1([f ]),

where Hn−1([f ]) is the (n− 1)th singular homology of the connected space [f ] ⊂
−→
T (X )(x, y).

4. Time-reversal invariance

In this section we study the effect of reversal of time on homotopical and ho-
mological invariants of dispaces. We show that the natural homotopy and homology
functors are time-symmetric, that is do not capture the reversal of time. We then show
that using composition pairings, the categorical interpretations Cn

− : dTop → Cat and
An

− : dTop → Cat of natural homotopy and homology capture the reversal of time via
duality of categories, and are thus said to be time-reversal. First, in Subsection 4.1
we define the notion of time-reversed dispace and show that natural homotopy and
homology are time-symmetric. We then prove the main result of this section in Sub-
section 4.2, which states that the functors Cn

− and An
− are time-reversal.

4.1. Time-reversal in dispaces

Given a dispace X = (X, dX), for any dipath f in dX, we denote by f ♯ the dipath
defined by f ♯(t) = f(1− t), for all t in [0, 1]. We define its time-reversed dispace,
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or opposite dispace, as the dispace X ♯ = (X, dX♯) where dX♯ is defined by dX♯ =
{f ♯ | f ∈ dX}.

Note that dX♯ is easily verified to be a set of directed paths according to the
conditions listed in Section 3.1.1. This defines a functor (−)♯ : dTop → dTop, sending
a dispace X to its opposite. Notice that if φ : X → Y is a morphism of dispaces, this
functor leaves the continuous map φ : X → Y unchanged, since (φ∗f)

♯ = φ∗(f
♯).

4.1.1. Time-reversal properties

A dispace X is called time-symmetric if the dispaces X and X ♯ are isomorphic. In

that case, by functoriality of
−→
P and Cn

−, there exist covariant isomorphisms

−→
P(X )

∼
−→

−→
P(X ♯),

−→
Pn(X )

∼
−→

−→
Pn(X

♯), and Cn
X

∼
−→ Cn

X ♯ .

A dispace X = (X, dX) is called time-contractible when dX = dX♯. In that case
any dipath is reversible, that is f ∈ dX implies f ♯ ∈ dX. Note that for a dispace
X = (X, dX), dX = X [0,1] implies that X is time-contractible but the converse is not
true in general (for example, any directed space in which only the constant paths
are directed is time-contractible). Thus the directed homotopy of a time-contractible
dispace X does not necessarily coincide with the homotopy of its underlying space X
in the sense of Proposition 3.1.

A functor F : dTop → V is time-symmetric with respect to a category V if the
following diagram

dTop
F

(−)♯

V

=

dTop
F

V

commutes up to isomorphism. Such a functor is strongly time-symmetric with respect
to V if there exists a natural isomorphism F ((−)♯) ⇒ F . A functor F : dTop → Cat

is time-reversal if the following diagram

dTop
F

(−)♯

Cat

(−)o

dTop
F

Cat

commutes up to isomorphism. Such a functor is strongly time-reversal if there exists
a natural isomorphism F ((−)♯) ⇒ F (−)o.

4.1.2. Time-symmetry of directed homology and homotopy

For any dispace X the equalities

−→
P(X ♯) =

−→
P(X )o and

−→
Π(X ♯) =

−→
Π(X )o

hold in Cat, and hence the functors
−→
P and

−→
Π are strongly time-reversal. The functor

which sends a dispace X to F
−→
P(X ) is strongly time-symmetric with respect to Cat.
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Indeed, the isomorphism of categories

F ♯ : F
−→
P(X ) → F (

−→
P(X ♯))

sending a trace f to its opposite f ♯ and a 1-cell of (u, v) in F
−→
P(X ) to the 1-cell (v♯, u♯),

is the component at X of a natural isomorphism. Note that the functors
−→
Pn and

−→
Hn

are not strongly time-symmetric with respect to opNat(Act). However, consider the
category Diag(Act), whose objects are the pairs (C, F ), where C is a category and
F : C → Act is a functor, and whose morphisms are pairs (Φ, τ) : (C, F ) → (C′, F ′),
where Φ: C → C′ is a functor and τ : F → F ′Φ is a natural transformation, with nat-

ural composition. By definition, the functors
−→
Pn and

−→
Hn are strongly time-symmetric

with respect to Diag(Act).

For n > 0, we compare the functors
−→
Pn(X ) and

−→
Pn(X

♯) in NatSys(
−→
P(X ),Act) by

precomposing the latter with the isomorphism F ♯. Observe that, for all points x, y in
X, we have homeomorphisms

αx,y :
−→
T (X )(x, y) →

−→
T (X ♯)(y, x)

sending a trace f to its opposite f ♯. These induce group isomorphisms
−→
Pn(X )f

∼
−→

−→
Pn(X

♯)f♯ for all n > 2. By definition, (F ♯)∗
−→
Pn(X

♯)f =
−→
Pn(X

♯)f♯ , so we get compo-
nents of a natural isomorphism

αf :
−→
Pn(X )f −→ (F ♯)∗

−→
Pn(X

♯)f ,

[σ] = [(s, t) 7→ σs(t)] 7−→ [(s, t) 7→ σs(1− t)] =: [σ♯],

where s is the parameter for the map S
n−1 →

−→
T (X )(x, y), and t is the parameter for

the dipath σs. Thus the pair (F
♯, α) is an isomorphism in the category Diag(Gp). Such

an isomorphism can similarly be established in the category Diag(Set∗) for natural
homotopy in the case n = 1. The functor F ♯ and the isomorphisms are components

at X of natural isomorphisms, hence
−→
Pn is strongly time-symmetric with respect to

Diag(Act) for all n > 1.

A corresponding isomorphism for natural homology,
−→
Hn(X ) ∼=

−→
Hn(X

♯), can be
similarly established in Diag(Ab) using the functor F ♯ and the homeomorphisms αx,y,

showing that
−→
Hn is strongly time-symmetric with respect to Diag(Ab) for all n > 1.

4.2. Time-reversibility of natural homotopy

Following Theorem 3.5, the category Cn
X with the projection p : Cn

X →
−→
P(X ) onto

the second factor is an internal group in CatX/
−→
P(X ). On the other hand, the category

Cn
X ♯ obtained from the natural system

−→
Pn(X

♯) via the construction given in Section 3.2

has 0-cells x ∈ X, while 1-cells are of the form (σ♯, f ♯) : y → x where σ♯ ∈
−→
Pn(X

♯)f♯

and f ♯ : y → x is a trace in X ♯. Composition is given by

(τ ♯, g♯) ⋆
Cn

X♯

0 (σ♯, f ♯) = (τ ♯ ⋆ σ♯, g♯ ⋆ f ♯).

We denote the associated projection by p♯. We define for n > 2

In(X ) : Cn
X ♯ → (Cn

X )o,



TIME-REVERSAL HOMOTOPICAL PROPERTIES OF CONCURRENT SYSTEMS 51

the isomorphism of categories which is the identity on 0-cells, and which sends a 1-cell
(σ♯, f ♯) of Cn

X ♯ to (σ, f)o. The functoriality of In(X ) follows from the equality

(τ ♯, g♯) ⋆
Cn

X♯

0 (σ♯, f ♯) = (τ ♯ ⋆ σ♯, g♯ ⋆ f ♯) = ((σ ⋆ τ)♯, (f ⋆ g)♯).

The opposite group (Cn
X )o can be interpreted as an internal group in CatX/

−→
P(X ♯)

by composing the projection po : (Cn
X )o →

−→
P(X )o with the canonical isomorphism

−→
P(X )o ≃

−→
P(X ♯). We denote by p̃o this composition. Then the following diagram

commutes

Cn
X ♯

In(X )

p♯

(Cn
X )o

p̃o

−→
P(X ♯).

We thereby deduce that In(X ) is a morphism of CatX/
−→
P(X ♯). Furthermore, it is a

group isomorphism, since the fibre groups above a 1-cell f ♯ of
−→
P(X ♯) are isomorphic:

(Cn
X )of♯ = (Cn

X )f =
−→
Pn(X )f ∼=

−→
Pn(X

♯)f♯ = (Cn
X ♯)f♯ .

An isomorphism C1
X ♯

∼= (C1
X)o can similarly be established in the category

Split(CatX/
−→
P(X ♯)). We have thus proved the following result.

Proposition 4.1. Given a dispace X = (X, dX), Cn
X ♯ and (Cn

X )o are isomorphic in

Gp(CatX/
−→
P(X ♯)) for all n > 2, and in Split(CatX/

−→
P(X ♯)) for n = 1. In particular,

the functors Cn
− are time-reversal for all n > 1.

For any n > 0, the functors In(X ) give components of a natural transformation.
Indeed, by precomposing (resp. composing) the functor Cn

− with (·)♯ (resp. (·)o), any
morphism φ : X → Y of dispaces yields a commuting diagram

Cn
X ♯

Cn

φ♯

In(X )
(Cn

X )o

(Cn
φ )o

Cn
Y♯

In(Y)
(Cn

Y)
o

in Cat. Furthermore, as shown above, these components are all isomorphisms, that is
there exists a natural isomorphism

In : C
n
(−)♯ =⇒ (Cn

−)
o.

We have thus proved the following result.

Theorem 4.2. For any n > 0, the functor Cn
− : dTop → Cat is strongly time-reversal.

A consequence of Theorem 4.2 is that for any dispace X , the category Cn
X is dual

to the category Cn
X ♯ . It can similarly be shown that the functor An

− : dTop → Cat

associated to natural homology is strongly time-reversal for all n > 1. In the particular
case of a time-symmetric space X , the category Cn

X is self-dual, i.e. there exists a
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covariant isomorphism of categories

Cn
X

∼= (Cn
X )o.

The time-reversibility of a functor with values in Cat is expressed via duality of
categories. However, given some category V, we can define a notion of time-reversal
with respect to opNat(V) which is compatible with the interpretation of natural
systems with composition pairings as categories when V = Act. Consider the functor

(−)♭ : opNat(V) → opNat(V)

which sends a pair (C, D) to the pair (Co, (F o)∗D), where F o : F (Co) → FC is the
covariant functor sending a 0-cell fo of FCo to f , and a 1-cell (vo, uo) to (u, v). To a
morphism

(Φ, α) : (C, D) → (C′, D′)

of opNat(V), the functor (−)♭ associates the morphism (Φo, αo), where Φo is the
opposite functor Co → (C′)o, and where the component αo

fo at fo a 1-cell of Co is the
component αf of α at f .

Then for F a functor dTop → opNat(V), we say that F is time-reversal with respect
to opNat(V) if the following diagram

dTop
F

(−)♯

opNat(V)

(−)♭

dTop
F

opNat(V)

commutes up to isomorphisms of the form (id, α). Explicitly, this means that if
F (X ) = (C, D), then F (X ♯) = (Co, D′) with (F o)∗D naturally isomorphic to D′.

Given F a functor dTop → opNatν(Act), we can extend to the following diagram

dTop
F

(−)♯

opNatν(Act)

(−)♭

E
Cat

(−)o

dTop
F

opNatν(Act) E
Cat,

(1)

where the functor E : opNat(Act) → Cat sends a pair (C, D, ν) to the category in
CatC0

/C defined using the construction described in Subsection 2.7 and Subsection 2.8.
The rightmost square commutes strictly. Indeed, denoting by E(C,D,ν) the category
obtained from the natural system (D, ν) on the category C, we have that E(C,D,ν)♭

is the category with the same 0-cells as Co and in which 1-cells are defined via the
hom-sets

E(y, x) =
∐

fo∈Co(y,x)

Df ,

since by definition, D♭
fo = Df . On the other hand, E(C,D,ν) has the same 0-cells as C

and 1-cells are defined via the hom-sets

E(x, y) =
∐

f∈C(x,y)

Df .

Thus E(C,D,ν)♭ coincides with Eo
(C,D,ν). Hence, if the leftmost square in diagram (1)
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commutes up to isomorphism, then the outer square commutes up to isomorphism.
This proves the following result.

Proposition 4.3. Any functor F : dTop → opNatν(Act) which is time-reversal with
respect to opNat(Act) can be extended into a time-reversal functor E ◦ F : dTop → Cat.

5. Relative directed homotopy

In this section, we introduce a notion of relative homotopy for dispaces, and es-
tablish a long exact sequence, as in the case of regular topological spaces, using the
homological category structure on Act as introduced by Grandis in [12].

Given a pointed pair of topological spaces (X,A), i.e. a space X and a subspace
A ⊆ X pointed at x ∈ A, for n > 1, we denote πn(X,A) the n

th relative homotopy of
(X,A). Note that π1(X,A) is considered as a pointed set, the pointed element being
the class of paths f such that f is homotopic to a path g with its image contained in A.
The assignment of relative homotopy groups to a pointed pair of spaces is functorial.
Its domain is the category of pointed pairs of topological spaces, denoted by Top∗2,
in which a morphism f : (X,A, x) → (Y,B, y) is a continuous map f : X → Y such
that f(A) ⊆ f(B) and f(x) = y, and its codomain is Set∗ for n = 1, Gp for n = 2 and
Ab for n > 3. We will therefore consider these as functors with values in Act for all
n > 1.

5.1. Natural relative homotopy sequence
Let us extend relative homotopy to dispaces. A directed subspace of a dispace X =

(X, dX) is a dispace A = (A, dA) such that A ⊆ X is a subspace and dA ⊆ dX. We
define the category of pairs of dispaces, denoted dTop2, as the category having objects
(X ,A) with A a directed subspace of X , and in which a morphism ϕ : (X ,A) → (Y ,B)
is a morphism ϕ : X → Y of dispaces such that ϕ(A) ⊆ B and ϕ∗(dA) ⊆ dB.

For n > 2, the nth natural system of relative directed homotopy associated to the

pair (X ,A) is the natural system on
−→
P(A), denoted by

−→
Pn(X ,A), sending a di-

path f : x→ y in dA to the (n− 1)th relative homotopy group of the pointed pair

(
−→
T (X )(x, y),

−→
T (A)(x, y), f), and whose group homomorphisms induced by extensions

(u, v) are defined by concatenation of paths as in Section 3.1.4. Using a notion of rel-
ative trace diagrams dTop2 → Top∗2 and similar arguments as those in Section 3, it

can be shown that, for each n > 2,
−→
Pn(X ,A) extends to functors

−→
Pn : dTop2 → opNat(Act).

Grandis shows in [12, Theorem 6.4.9] that given a pointed pair of topological
spaces (X,A), there is a long exact sequence in Act:

· · · −→ πn(A) −→ πn(X) −→ πn(X,A)
∂n−→ πn−1(A) −→ · · ·

· · ·
v

−→ π1(X)
f

−→ (π1(X,A), π1(X))
g

−→ π0(A)
h

−→ π0(X) −→ π0(X,A) −→ 0.

Note that this assignment is functorial from Top∗2 to the category of long exact
sequences in Act. All of the morphisms of this sequence are induced by inclusions,
except the last non-trivial homomorphism and the homomorphisms ∂n, which are
given by restriction to the distinguished face: ∂n([σ]) = [σ]|In−1 . Also recall that we
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have not defined a relative homotopy group for n = 0; the object π0(X,A) is defined
to be Cok(h). It is thus the quotient of the set of path-connected components of X
obtained by identifying the components which intersect A.

All the terms above π1(X) are groups, and the existence of this long exact se-
quence in Gp is well known. Since exactness is carried into Act, this induces that
the sequence is exact in Act up to this object. As observed above, π1(X,A) is not
a group, but a pointed set. There is a right action of the group π1(X) on this
pointed set given by concatenation; the elements of π1(X,A) have ending point 0X ,
and so we can concatenate with elements of π1(X) on the right. The sequence is
exact at π1(X) = (|π1(X)|, π1(X)) since the image of v is precisely Ker(f ′); in-
deed, Fixπ1(X)(0π1(X,A)) = π1(A). The map g sends (τ, σ) ∈ (π1(X,A), π1(X)) to
the path-connected component of τ(0) ∈ A. We therefore view it is a pointed set
map from π1(X,A) to π0(A). The sequence is exact at (π1(X,A), π1(X)) because
the antecedents under g of the pointed element of π0(A), namely the component
containing the base point x, are elements of the orbit of the pointed element 0 of
π1(X,A), i.e. 0 · π1(X). This coincides with the image of f since it is defined by
sending σ ∈ π1(X) to (0 · σ, σ). Lastly, exactness at π0(A) is a consequence of the
inverse image under h of the pointed element [x] in π0(X) being exactly {[x]}, the
pointed element in π0(A), since h is induced by the inclusion A →֒ X. Furthermore,
for τ ∈ π1(X,A), g(τ) is necessarily in the same path connected component as x.
Thus, the image of g coincides with the kernel of h.

We endow the category NatSys(
−→
P(A),Act) with the structure of a homological

category by letting null morphisms be those natural transformations which are null
component-wise in Act. A sequence of natural systems of actions is then exact when
it is point-wise exact in Act. As a consequence we obtain the following long exact
sequence of natural homotopy systems:

Theorem 5.1. Let X be a dispace and A be a directed subspace of X . There is an

exact sequence in NatSys(
−→
P(A),Act):

· · · −→
−→
Pn(A) −→

−→
Pn(X ) −→

−→
Pn(X ,A)

∂n→
−→
Pn−1(A) −→ · · ·

· · · →
−→
P2(A)

v
→

−→
P2(X )

f
→ (

−→
P2(X ,A),

−→
P2(X ))

g
→

−→
P1(A)

h
→

−→
P1(X ) →

−→
P1(X ,A) → 0.

A dispace X is called dicontractible if all its natural homotopy functors
−→
Pn(X )

are trivial, e.g. are constant functors into a singleton for n = 1 or a trivial group
for n > 2. Following Theorem 5.1, if A is a dicontractible directed subspace of X ,
then we have an isomorphism

−→
Pn(X ) ≃

−→
Pn(X ,A),

in NatSys(
−→
P(A),Gp) for all n > 3. Note that when (X, dX) is the geometric realiza-

tion of a non-self-linked precubical set (a large class of precubical sets, in which e.g.
the semantics of concurrent systems can be expressed, see [6] for more details), the
dicontractibility condition is equivalent to asking that all path spaces are contractible,
since, by Proposition 3.14 of [21], all its trace spaces have the homotopy type of a
CW-complex.
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5.2. A long exact fibration sequence in directed topology
Recall that a morphism ϕ : X → Y of dispaces induces a natural transformation

−→ϕ :
−→
T ∗(X ) ⇒

−→
T ∗(Y). We consider morphisms p : E → B of dispaces such that each

component −→p e of the induced natural transformation is a fibration
−→
T (E)(x, y) →

−→
T (B)(p(x), p(y)), for every e a dipath of E . We define the associated natural system

of fibres, denoted
−→
T ∗(F), as the natural system of pointed topological spaces on

−→
P(E)

which sends a dipath e to
−→
T (F)e =

(−→p −1
e (p(e)) , e

)
.

Now for each 1-cell e of
−→
P(E), denote by

−→
Pn(F)e (resp.

−→
Pn(E ,F)e) the homotopy

group (resp. relative homotopy group)

πn−1

(−→
T (F)e

)
(resp. πn−1

(−→
T (E)e,

−→
T (F)e

)
).

These are natural systems on
−→
P(E). Furthermore, for each e dipath of E , the sequence

−→
T (F)e →

−→
T (E)e →

−→
T (B)p(e)

of topological spaces induces a long exact sequence of homotopy groups. Extend-
ing this to lower-dimensional homotopy groups via [12, Theorem 6.4.9] yields the
following result.

Theorem 5.2. Let p : E→B be a morphism of dispaces inducing (Serre) fibrations −→pe

for every 1-cell e of
−→
P(E). Then we obtain a long exact sequence in NatSys(

−→
P(E),Act):

· · · →
−→
Pn(F) →

−→
Pn(E) →

−→
Pn(E ,F) →

−→
Pn−1(F) → · · ·

· · · →
−→
P2(F) →

−→
P2(E) →

(−→
P2(E ,F) ,

−→
P2(E)

)
→

−→
P1(F) →

−→
P1(E) →

−→
P1(E ,F) → 0.

Furthermore,
−→
Pn(E ,F) ∼= p∗(

−→
Pn(B)) for all n > 2. In particular, when

−→
T ∗(B)p(e)

is path connected for all dipaths e of E, the isomorphism holds for all n > 1.

Example 5.3. Given a dispace B and a fibration p : E → B, we obtain a morphism
of dispaces from E to B inducing fibrations on trace spaces by setting E = (E, dE)
where dE = {e ∈ E[0,1] | p ◦ e ∈ dB}. In particular, any morphism of dispaces from
E ′ to B′ such that the underlying map from E′ to B′ is a fibration induces fibrations
on trace spaces.
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