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Abstract
Persistence diagrams are common objects in the field of

Topological Data Analysis. They are topological summaries that
capture both topological and geometric structure within data.
Recently there has been a surge of interest in developing tools to
statistically analyze populations of persistence diagrams, a pro-
cess hampered by the complicated geometry of the space of
persistence diagrams. In this paper we study the median of a
set of diagrams, defined as the minimizer of an appropriate cost
function analogous to the sum of distances used for samples of
real numbers. We then characterize the local minima of this cost
function and in doing so characterize the median. We also do
some comparative analysis of the properties of the median and
the mean.

1. Introduction

Topological data analysis (TDA) is a rapidly growing field that uses multi-scale
topological features to find and analyze structure in data. An important use of TDA is
as a preprocessing tool, providing topological summaries that may be more tractable
than the raw information, and perhaps highlight geometric and topological features
that are of particular interest. Examples of applications include the analysis of the
shape of human jaws [14], plant root systems [3], shapes of calcanei bones of various
primates [29] and retrieval of trademark symbols [8].

Persistence diagrams are a common topological summary statistic. Each diagram
is a discrete summary of how the homology evolves over a nested sequence of topo-
logical spaces parameterized by some tuning parameter. Homology computes features
such as the number of connected components, loops, tunnels, and void. Although per-
sistent homology is defined via homology, the tuning parameter captures geometric
information.

As part of the growing field of object oriented data analysis we wish to consider the
structure of the space of persistence diagrams when performing statistical analysis.
This is complicated by the geometry of the space of persistence diagrams — it is
infinite in dimension and with no upper bound on curvature. At no point does it locally
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look Euclidean. The papers [22, 28] study the geometric and analytic properties
of the space of persistence diagrams equipped with the metric analogous to the 2-
Wasserstein distances of probability measures and to the L2 distances of functions on
a discrete set. We denote this space (D, d2). In [22] it was shown that it is possible to
define the mean and variance of “nice” distributions via the Fréchet function. In [28]
it was shown that (D, d2) was a non-negatively curved Alexandrov space and used
this structure to characterize the mean of a population of persistence diagrams and
to provide an algorithm to compute it.

After the mean, the median is next most common statistic to describe the center of
a distribution. Furthermore, the median is often more robust than the mean. The pur-
pose of this paper is to provide an analogous analysis for the space of the persistence
diagrams under the corresponding metric for p = 1 (instead of p = 2) and to charac-
terize the median of a population of persistence diagrams. We also are interested in
comparing the properties of the mean and the median of populations of persistence
diagrams.

In section 2 we establish geometric properties of the space of persistence diagrams,
such as curvature and connected components, for a natural family of metrics {(D, dp)}
that are analogous to the p-Wasserstein distances on the space of probability measures
and to the Lp distances on the space of functions on a discrete set. Just as spaces of
functions equipped with an L2 metric has nicer properties to those with an Lp metric
with p �= 2, we see that although (D, d2) is a non-negatively curved Alexandrov space,
this does not hold for (D, dp) when p �= 2.

The median of a population is the location that minimizes the average distance
to each of the members of the population. In section 3 we study the median of a
population of persistence diagrams. Unfortunately the proofs in [28] for characterizing
and computing the mean require the extra Alexandrov space structure available in
the case when p = 2 (rather than p = 1 which is the scenario for the median). This
implies that we needed to develop new methods in order to characterize the median
of a population of persistence diagrams. In the appendix we summarize how these
new methods provide a new proof for previous results about the mean. Another
aspect where the analysis here differs from that in [28] is that we consider persistence
diagrams containing points with infinite persistence.

We can define the mean as the location that minimizes the average distance to
the sample set. Unlike the mean, the median of a population of even size is not
unique. For N odd, the median of a set of real numbers a1, a2, . . . , aN , written in
non-decreasing order, is a(N+1)/2. If N is even, then every number in the interval
[aN/2, a(N+2)/2] minimizes the average distance to the sample set and hence would be
a valid choice as a median. To overcome this lack of uniqueness the general convention
is to declare the median to be the midpoint of [aN/2, a(N+2)/2]. Analogous conventions
could be applied for medians of an even number of persistence diagrams. However,
the statements of theory and the clarity of exposition quickly becomes less clear.
For this reason we will be restricting our attention to the case when the size of the
populations is odd.

In section 4 we compare various properties of the median to the mean. We bound
the number of off-diagonal points in the median compared to the mean, show the
median is more robust than the mean, and prove that the mean is generically unique
while the median is not.
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1.1. Related work
Statistical analysis of persistence diagrams is an example of object oriented data

analysis. This is an emerging area of statistics where the goal is to develop and
apply statistical methods to objects such as functions, images, graphs or trees (e.g.,
[19, 21, 20, 25, 27, 30]) while respecting the structure of these objects.

There has been a growing movement of developing statistical methods to under-
stand populations of persistence diagrams. This includes a significant body of work
(for example, see [4, 7, 9, 10, 13]) which studies statistical methodology using the
bottleneck distance, which is effectively the L∞ distance within the space of persis-
tence diagrams.

There has also been a parallel movement of statistical analysis in TDA by con-
verting persistence diagrams into other functional summaries. These new topological
summaries lie in spaces where it is easier to modify traditional statistical methods
such as computing means or performing t-tests. However, this can be at the expense
of making it harder to provide topological interpretations of the results. Examples of
such functional summaries includes persistence landscapes [6] and persistent homol-
ogy rank functions [26].

Other related work investigates the homology or persistent homology of random
topological objects (for example, [1, 5, 15, 16, 32, 31]) including limit theorems
and analysis of simulations.

2. Geometry of the space of persistence diagrams

2.1. Background theory on persistent homology and persistence
diagrams

Here we will provide a very brief introduction to persistent homology. A more
complete coverage can be found in [12]. Although homology can be computed over
any ring, to compute persistent homology we need a field. This is usually F2 for
computational purposes.

To define persistent homology, we start with a nested sequence of topological
spaces,

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn = X. (2.1)

Often this sequence arises from the sublevel sets of a function, f : X → R, with Xi =
f−1(−∞, ti] for a sequence −∞ � t0 � t1 � · · · � tn � ∞. The sequence induces lin-
ear maps on homology for any dimension r:

Hr(X0) → Hr(X1) → · · · → Hr(Xn).

We are interested in when homology classes appear and disappear in this sequence.
Let φj

i : Hr(Xi) → Hr(Xj) be the linear map on homology induced by the inclu-

sion Xi → Xj . Observe that if i < j < k then φk
j ◦ φj

i = φk
i . The homology class

γ ∈ Hr(Xi) is said to be born at Xi if it is not in the image of φi
i−1. This same

class is said to die at Xj if its image in Hr(Xj−1) is not in the image of φj−1
i−1 , but

its image in Hr(Xj) is in the image of φj
i−1. In the case that the spaces arose from

the level sets of a function f as defined above, we define say that γ is born at time
ti, dies at time tj , and its lifetime is tj − ti.
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A discrete description of the persistent homology of (2.1) is the multiset of points
in the extended plane where we include (ti, tj) with multiplicity the dimension of the
set of homology classes born at ti and dying at tj . This is the information recorded
as the (rth dimensional) persistence diagram.

Although we have here restricted our definition of persistent homology to that of
a finite nested sequence, it can be defined more generally for nested parameterized
families of topological spaces {Xt : t ∈ R} with the condition that Xs ⊆ Xt whenever
s � t (alongside some technical finiteness conditions). We can think of this as a filtered
space with filtration parameter t. For “nice” filtered spaces the persistence diagram
can be defined analogously to the finite case. For details see [11].

It is worth observing that although we are computing homology we are often
capturing geometric information through the filtration parameter. For example, if we
are considering a filtration of R2 by the distance from a circle of radius R then the
1st dimensional persistent homology will have exactly one class born at 0 (the time
the circle first appears) and dying at R (the time when the circle is filled in).

Before giving a technical definition of a persistence diagram we will need to intro-
duce some notation. Let R

2+ = {(a, b) ∈ R
2 : a < b}. This is the part of the plane

above the diagonal. Let Δ denote an abstract element representing the diagonal
{(x, x) : x ∈ R}.

Since we wish to also want to consider persistent homology classes of infinite
duration we will also want to include lines at infinity. Let L−∞ := {(−∞, b) : b ∈
R} and L∞ := {(a,∞) : a ∈ R}. Persistence diagrams will be multiset of points in
L∞ ∪ L−∞ ∪ R

2+ ∪Δ. For tractability we will impose some finiteness conditions,
namely that only finitely many classes have infinite lifetimes and that the sum of
all the finite lifetimes is finite. This restriction is not onerous in applications where
generally we have finite sized data as input.

Definition 2.1. A persistence diagram X is a multiset of L∞ ∪ L−∞ ∪ R
2+ ∪Δ such

that

• the number of elements in X|L∞ and X|L−∞ are finite

• ∑
(xi,yi)∈X|R2+

(yi − xi) < ∞
• there are countably infinite copies of Δ

2.2. Metrics on the space of persistence diagrams

In this paper we differ slightly from the historical definition of a persistence dia-
gram. Instead of including every point along the diagonal of R2 with infinite multiplic-
ity we include countably many copies of the diagonal. This alternative description still
has the same distances between different persistence diagrams but simplifies state-
ments, arguments and calculations. This is because we do not need to specify which
point on the diagonal is being used.

Let D denote the space of all persistence diagrams. We will consider a family of
metrics which are analogous to the p-Wasserstein distances on the space of probability
measures and to the Lp distances on the space of functions on a discrete set. R2+

inherits natural Lp distances from R
2. For p ∈ [1,∞) we have ‖(a1, b1)− (a2, b2)‖pp =

|a1 − a2|p + |b1 − b2|p and ‖(a1, b1)− (a2, b2)‖∞ = max{|a1 − a2|, |b1, b2|}.
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Recall that Δ represents the diagonal in R
2. With a slight abuse of notation we

write ‖(a, b)−Δ‖p to denote the shortest Lp distance from (a, b) in to a point in the
diagonal set in R

2. Thus

‖(a, b)−Δ‖p = inf
t∈R

‖(a, b)− (t, t)‖p = 2
1
p
−1|b− a|

for p < ∞, and ‖(a, b)−Δ‖∞ = inft∈R ‖(a, b)− (t, t)‖∞ = |y − x|/2. Both L−∞ and
L∞ inherit natural Lp distances from the Lp metric on R; ‖(−∞, b1)− (−∞, b2)‖p =
|b1 − b2| and ‖(a1,∞)− (a,∞)‖p = |a1 − a2|. We should also think of L−∞, L−∞ and
R

2+ ∪Δ as three separate disjoint parts of a larger space.
Given persistence diagrams X and Y we can consider all the bijections from the

set of off-diagonal points and copies of Δ in X, to the set of off-diagonal points and
copies of Δ in Y . This set is non-empty as it contains the bijection which matches
everything to a copy of Δ in the other diagram. Each bijection provides a transport
plan from X to Y . Analogous to the definition of Wasserstein distances, we will define
our family of metrics in terms of the cost of most efficient transport plan.

For each p ∈ [1,∞) define

dp(X,Y ) =

(
inf

bijections φ : X→Y

∑
x∈X

‖x− φ(x)‖pp
)1/p

,

and d∞(X,Y ) = infbijections φ : X→Y supx∈X ‖x− φ(x)‖∞.
These distances may be infinite — for example if X and Y contain a different

number of points in L∞ then dp(X,Y ) = ∞ for all p.
We will call a bijection between diagrams optimal for dp if it achieves the infimum

in the definition of dp and this distance is finite. Figure 1 illustrates an example of
an optimal bijection.

Figure 1: The dashed lines indicate an optimal bijection from the persistence diagram
containing the square points (and copies of Δ) to the persistence diagram containing
the triangle points (and copies of Δ).

Given the same pair of diagrams but different values of p, different bijections may
be optimal. Furthermore, optimal bijections for a given p are not necessarily unique.
For example, let X and Y to be diagrams containing pairs of opposite corners of
a square located far from the diagonal. Because of symmetry, bijection the points
vertically or horizontally involves the same cost. This example works for every p ∈
[1,∞]. Other examples of non-uniqueness can involve Δ; it may be equally efficient
to match two points to each other as it is to match both with a copy of Δ.
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In theory, for every pair p, q ∈ [1,∞] one could construct a distance function of the
form

inf
φ : X→Y

(∑
x∈X

‖x− φ(x)‖pq
)1/p

,

with p and q different. Some of the computational topology literature uses a family
of metrics dWp

where p varies but q = ∞ is fixed. The families {dp} and {dWp
} share

many properties. The metrics dp and dWp
are bi-Lipschitz equivalent as for any x, y ∈

R
2 we have ‖x− y‖∞ � ‖x− y‖p � 2‖x− y‖∞, implying dWp

(X,Y ) � dp(X,Y ) �
2dWp

(X,Y ). Any stability results for {dp} or {dWp
} would extend (with minor changes

in constant) to stability results for the other.
We feel that the choice of setting q = p is cleaner in theory and in practice. The

coordinates of the points within a persistence diagram have particular meanings; one
is the birth time and one is the death time. They are often infinitesimally independent
(even though not globally so). For example, if we have generated our persistence
diagram from the distance function to a point cloud then each persistence class has
its birth and death time (infinitesimally) determined by the location of two pairs
of points which are often distinct. Whenever these pairs are distinct, moving any
of these four points will change either the birth or the death but not both. The
distinctness of the treatment of birth and death times as separate qualities may seem
more philosophically pleasing to the reader in the setting of barcodes.

Another argument in favor of using p = q is computational power. The mean and
the median are defined to be the minimizers of cost functions involving d2 and d1
respectively. Computationally the mean and median have far nicer characterizations,
with easy algorithms to find them, when they are defined using the metrics where
p = q. This is discussed later in section 3.

2.3. Geometry of the space of persistence diagrams
In this section we will describe the connected components of D and show D is a

geodesic space, but first we need to introduce some notation. For each p < ∞ we can
define the distance between finite multisets A,B of points in L∞ as

dL∞p (A,B)p = inf
bijections φ : A→B

∑
a∈A

‖a− φ(a)‖pp,

when |A| = |B| and infinity otherwise. We also set

dL∞∞ (A,B) = inf
bijections φ : A→B

sup
a∈A

‖a− φ(a)‖∞,

whenever |A| = |B| and infinity otherwise. We define d
L−∞
p similarly. Let D(k,l) denote

the space of persistence diagrams containing exactly k points in L−∞, and exactly l
points in L∞.

Lemma 2.2. Let p ∈ [1,∞]. The connected components of (D, dp) are D(k,l), with
k, l non-negative integers. Let X,Y ∈ D(k,l). For p < ∞,

dp(X,Y )p = dp(X|R2+∪Δ, Y |R2+∪Δ)
p + dL∞p (X|L∞ , Y |L∞)p

+ dL−∞p (X|L−∞ , Y |L−∞)p
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and

d∞(X,Y ) =max{d∞(X|R2+∪Δ, Y |R2+∪Δ), d
L∞
∞ (X|L∞, Y |L∞), dL−∞∞ (X|L−∞, Y |L−∞)}.

The proof of this lemma follows from the observations that the connected com-
ponents of L∞ ∪ L−∞ ∪ R

2+ ∪Δ are L∞, L−∞ and R
2+ ∪Δ, and that dp(X|R2+∪Δ,

Y |R2+∪Δ) is always finite.
Let (X, d) be a metric space. A curve λ : [0, 1] → X is called a geodesic if there

exists constant C > 0 such that d(λ(t1), λ(t2)) = C|t1 − t2| for all t1, t2 ∈ [0, 1] with
|t1 − t2| sufficiently small. (X, d) is called a geodesic space if for every x, y ∈ X there
exists a geodesic λ : [0, 1] → X such that λ(0) = x and λ(1) = y.

Proposition 2.3. (D, dp) is a geodesic space for all p ∈ [1,∞].

Proof. Fix p ∈ [1,∞) and X,Y ∈ D with dp(X,Y ) < ∞. We want to find a bijection
φ such that dp(X,Y )p =

∑
x∈X ‖x− φ(x)‖pp and from this bijection to construct a

geodesic from X to Y .
Let {φi} be a sequence of bijections such that limi→∞

∑
x∈X ‖x− φi(x)‖pp =

dp(X,Y )p. Fix some off-diagonal point x̂ ∈ X. The sequence {φi(x̂)} must have a
convergent subsequence {φij (x̂)} which converges either to an off-diagonal point or
to Δ. This limit point must be in Y and we set φ(x̂) to be this limit point. Observe
our subsequence also satisfies limj→∞

∑
x∈X ‖x− φij (x)‖pp = dp(X,Y )p.

We now replace our original sequence of bijections {φi} with the subsequence
{φij}. In this manner we can determine a choice φ(x) for each off-diagonal point
x ∈ X. Similarly we can determine φ−1(y) for all the off-diagonal points y ∈ Y . Since
we are always considering subsequences of previous subsequences we have consistency
in our choices.

Since there are only countably many points off-the diagonal in the diagrams X and
Y combined we can find an optimal bijection φ : X → Y Let Xt be the diagram with
off-diagonal points {(1− t)x+ tφ(x) : x ∈ X} and set define the path λ : [0, 1] → D
by λ(t) = Xt. By observation X0 = X, X1 = Y , and λ is a geodesic.

The p = ∞ case is similar. Let {φi} be a sequence of bijections such that

lim
i→∞

max
x∈X

‖x− φi(x)‖∞ = d∞(X,Y )

and proceed as in the case p ∈ [1,∞) to produce a bijection φ, by assigning the
values of φ(x) and restricting to appropriate subsequences, such that d∞(X,Y ) =
maxx∈X ‖x− φ(x)‖∞. This bijection will determine a geodesic by the same reasoning
in the p ∈ [1,∞) case.

2.4. Curvature bounds on the space of persistence diagrams
In order to understand the space of persistence diagrams it is useful to analyze its

curvature. Alexandrov spaces are geodesic spaces with curvature bounds. They come
in two different forms; either their curvature is bounded from above (also known as
CAT spaces) or their curvature is bounded from below. A bound on curvature in
geodesic space (X, d) is defined using comparison triangles. For each κ ∈ R there is a
model space Mκ with constant curvature κ. We compare triangles in X to triangles in
Mκ. Take three points x, y, z. If κ > 0 we require d(x, y) + d(y, z) + d(z, x) �

√
2π/κ.

These define a triangle Δ(x, y, z) in X. We can build a comparison triangle Δ(x̃, ỹ, z̃)
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in the model spaceMκ whose sides have the same length as the sides of Δ(x, y, z). The
curvature of X is bounded from below (above) by κ if, for every triangle Δ(x, y, z) in
X, the distances between the points in Δ(x, y, z) are less than or equal (respectively
greater than or equal) the corresponding points in the comparison triangle Δ(x′, y′, z′)
in Mκ. For more details see [18].

A CAT (k) space is a geodesic space whose curvature is bounded from above by k.
CAT -spaces, in particular, CAT (0) spaces, have desirable properties. For example,
the barycenter of any measure in a CAT (0) space is unique and in a CAT (k) space
there is a length Dk such that balls of radius Dk are contractible. We first confirm
that (D, dp) is not a CAT -space.

Proposition 2.4. For all k > 0 and p ∈ [1,∞], (D, dp) is not in CAT(k).

Proof. If (D, dp) is a CAT(k) space then there is a constant K > 0 such that for all
pairs X,Y ∈ (D, dp) with dp(X,Y )2 < K there is a unique geodesic between them
[18]. However, we can find pairs of diagrams X and Y which are arbitrarily close
such that there are two distinct geodesics between them. One example is by taking
X to be a diagram with two diagonally opposite corners of a square set far from
the diagonal and Y the diagram with the other two corners. This is illustrated in
Figure 2. The horizontal and vertical paths are equally optimal and we may choose
the square to be as small as we wish.

Figure 2: Two different optimal bijections between the triangle and the square dia-
grams.

Alexandrov spaces have nice properties. For example, for Alexandrov spaces we
can define tangent cones (analogous to tangent planes), and exponential maps. From
[24] we know that a geodesic space (X, d) is an Alexandrov space with curvature
bounded from below by zero if, and only if, for every geodesic γ : [0, 1] → X from X
to Y , and every Z ∈ X we have

d(Z, γ(t))2 � td(Z, Y )2 + (1− t)d(Z,X)2 − t(1− t)d(X,Y )2. (2.2)

Using this characterization [28] showed that (D, d2) is an Alexandrov space with
curvature bounded below by zero.

In contrast, using different counterexamples for p ∈ [1, 2) and for p ∈ (2,∞] we can
show that this curvature bound does not hold when p �= 2. These counterexamples
are illustrated in Figure 3.

Let p ∈ [1, 2) and t = 1/2. Let X,Y and Z be a persistence diagram with only one
off-diagonal point each in them at x = (1, 4), y = (1, 6) and z = (0, 5) respectively. The
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midway point between X and Y (playing the role of γ(1/2)) is the diagram with the
point w = (1, 5). This set up is shown in Figure 3a. We can calculate dp(Z, γ(1/2))

p =
‖z − w‖pp = 1, dp(Z,X)p = ‖z − x‖pp = 2, dp(Z, Y )p = ‖z − y‖pp = 2 and dp(X,Y )p =
‖x− y‖pp = 2p. Together they imply

1

2
dp(Z, Y )2 +

1

2
dp(Z,X)2 − 1

4
dp(X,Y )2 = 22/p − 1.

But 22/p − 1 > 1 = dp(Z, γ(1/2))
2 when 1 � p < 2. This contradicts equation (2.2)

and hence (D, dp) is not an Alexandrov space with curvature bounded below by zero.

x=(1,4)

y=(1,6)

z=(0,5) w=(1,5)

(a) Counterexample for p ∈ [1, 2)

y=(2,6)

x=(0,4)

z=(0,6)

w=(1,5)

(b) Counterexample for p ∈ (2,∞]

Figure 3: In both (a) and (b) the geodesic γ from X = {x} to Y = {y} has midpoint
γ(1/2) = {w}. We consider the distances to Z = {z}. Here we are describing each per-
sistence diagram by its list of off-diagonal points. In both examples dp(Z, γ(1/2))

2 <
1
2dp(Z, Y )2 + 1

2dp(Z,X)2 − 1
4dp(X,Y )2 contradicting (2.2). Thus (D, dp) is not an

Alexandrov space with curvature bounded below by zero when p ∈ [1, 2) ∪ (2,∞].

Now let p ∈ (2,∞) and t = 1/2. Let X,Y and Z be a persistence diagram with
only one off-diagonal point each in them at x = (0, 4), y = (2, 6) and z = (0, 6) respec-
tively. The midway point between X and Y (playing the role of γ(1/2)) is the diagram
with the point w = (1, 5). This set up is shown in Figure 3b. Here dp(Z, γ(1/2))

p =
‖z−w‖pp = 2, dp(Z,X)p = ‖z− x‖pp = 2p, dp(Z, Y )p = ‖z− y‖pp = 2p, and dp(X,Y )p =
‖x− y‖pp = 2p+1.

Together they imply

1

2
dp(Z, Y )2 +

1

2
dp(Z,X)2 − 1

4
dp(X,Y )2 = 22 − 22/p.

But 22 − 22/p > 22/p = dp(Z, γ(1/2))
2 when p > 2. This contradicts equation (2.2)

and hence (D, dp) is not an Alexandrov space with curvature bounded below by zero.

With this same set up we can calculate d∞(Z, γ(1/2)) = ‖z−w‖∞ = 1, d∞(Z,X) =
‖z − x‖∞ = 2, d∞(Z, Y ) = ‖z − y‖∞ = 2, and d∞(X,Y ) = ‖x− y‖∞ = 2. Hence

1

2
d∞(Z, Y )2 +

1

2
d∞(Z,X)2 − 1

4
d∞(X,Y )2 = 3 > 1 = d∞(Z, γ(1/2))2.

This contradicts equation (2.2) and hence (D, d∞) is not an Alexandrov space with
curvature bounded below by zero.
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3. The median of a population of persistence diagrams

Measures of central tendency (such as the mean and the median), or their cor-
responding measures of variability or dispersion (the variance and the average cost
respectively) are common statistics used to describe distributions. Central tendencies
are solutions for optimizing different cost functions which are based on p-Wasserstein
metrics. The median corresponds to the case where p = 1.

The median of a set of real numbers a1, a2, . . . , aN , written in non-decreasing order,
is the number m which minimizes the mean absolute deviation function FR

1 (x) =
1
N

∑N
i=1 |ai − x|. The average cost of moving a point in the sample data to the median

is F1(m). For N odd the median is unique and equals aN+1/2. If N even then every

number in the interval [aN/2, a(N+2)/2] will minimize FR

1 and would be a valid choice
as a median. To overcome this lack of uniqueness the general convention is to declare
the median to be the midpoint of [aN/2, a(N+2)/2].

More generally the median of a population {x1, x2, . . . , xN} within a connected

metric space X is the minimizer of the function F1(y) =
1
N

∑N
i=1 d(xi, y) where d is

an appropriate metric on X.
To define the median of a population of persistence diagrams we need to fix a

metric on the space of persistence diagrams. Unlike on the real line there are multiple
reasonable options as explored in section 2.2. In this paper we argue that a well-
motivated metric is d1. This is for two main reasons. Firstly, the coordinates each
have separate meanings and are infinitesimally independent. Thus for taking the
median the birth should be the median of the relevant births, the deaths the median
of the relevant deaths. Secondly, the computations become significantly easier. If we
were to use d2 from section 2.2 then would need to compute, at some stage, the
geometric median of a set of points in the plane. This is a problem as it was shown
in [2] that in general there is no exact algorithm to find the geometric median of a
set of k points in the plane.

The median is the persistence diagram m which minimizes the cost function
F1(Y ) = 1

N

∑N
i=1 d1(Xi, Y ). The total cost is NF1(m) and the average cost is F1(m).

It is worth observing that the median is only defined for populations {X1, . . . , XN}
that lie within the same connected component of D as otherwise for every Y there is
some Xi such that d1(Xi, Y ) = ∞.

Proposition 3.1. Fix k, l non-negative integers. Let X = {X1, X2, . . . , XN} be a

population of persistence diagrams in D(k,l). For each i let XR
2+

i denote Xi|R2+∪Δ,
X∞

i denote Xi|L∞ and X−∞
i denote Xi|L−∞.

The diagram Y is a median of X if and only if Y = Y R
2+ ∪ Y∞ ∪ Y −∞ where Y R

2+

is a median of {XR
2+

1 , XR
2+

2 , . . . , XR
2+

N }, Y∞ is a median of {X∞
1 , X∞

2 , . . . , X∞
N } and

Y −∞ is a median of {X−∞
1 , X−∞

2 , . . . , X−∞
N }.

Proof. Let Z ∈ D(k,l). From Lemma 2.2 we know that

d1(Z,Xi) = d1(Z|R2+ , XR
2+

i ) + dL∞1 (Z|L∞ , X∞
i ) + d

L−∞
1 (Z|L−∞ , X−∞

i )

and hence we can write F1 as a sum of three independent sums

F1(Z) =
1

N

N∑
i=1

d1(Z|R2+ , XR
2+

i )+
1

N

N∑
i=1

dL∞1 (Z|L∞ , X∞
i )+

1

N

N∑
i=1

d
L−∞
1 (Z|L−∞ , X−∞

i ).
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If Y is a median then it must minimize each of these sums.

In the remainder of this section we will characterize the median of a population
of multisets in L∞ or in L−∞. The next section will address the more complicated
characterization of medians of populations in D(0,0).

Lemma 3.2. Fix N odd. Let A1, A2, . . . , AN be each multisets of exactly k real num-
bers. Label the elements of each Ai so that Ai = {ai,1, ai,2, . . . , ai,k} with ai,1 � ai,2 �

· · · � ai,k. Set B = {b1, b2, . . . , bk} where bj is the median of {a1,j , . . . aN,j}. Then B
is the unique multiset of k real numbers that minimizes

f1 : Y 
→
N∑
i=1

(
inf

φ : Ai→Y,φ bijection

∑
a∈Ai

|a− φ(a)|
)
.

Proof. The key to this proof is that for X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}
(each written in non-decreasing order) we have

inf
φ : X→Y, φ bijection

m∑
j=1

|xi − φ(xi)| =
m∑
j=1

|xj − yj |.

We are not claiming that φ : xi 
→ yi is the unique optimal transport from X to Y
(this is not always true) but just that it achieves this optimality.

Suppose the multiset Y = {y1, y2, . . . , yk} (written in non-decreasing order) mini-
mizes f1. The observation above implies

f1(Y ) =

N∑
i=1

k∑
j=1

|ai,j − yj | =
k∑

j=1

(
N∑
i=1

|ai,j − yj |
)
.

For each j let bj be the median of {ai,j}. Since N is odd,
∑N

i=1 |ai,j − bj | �∑N
i=1 |ai,j − yj | with equality if and only if bj = yj . Since B minimizes f1 we conclude

that yj is the median of {ai,j}
If N is even, then the median is not unique, even if we use the midpoint con-

vention for populations of real values. For example if A1 = {0, 2} and A2 = {6, 12},
the two medians would be {midpt[0, 6] = 3,midpt[2, 12] = 8} and {midpt[0, 12] =
6,midpt[2, 6] = 4}.

3.1. The mean and median of multisets of points in the plane and copies
of the diagonal

We are splitting up our analysis into the different regions R
2+ ∪Δ, L∞ or L−∞.

This is because these are the disconnected components and all geodesics will keep
the points in the persistence diagrams within these different regions separate. Thus
in this section we will focus on the points in R

2+ ∪Δ, that is those corresponding to
persistent homology classes with finite lifetimes.

Before considering the problem of populations of multisets in R
2+ ∪Δ we will first

investigate the simpler problem of populations of singletons in R
2+ ∪Δ. Here we are

using the definition of median as the minimizer of the sum of d1 distances. Given a
population S set fS : R

2+ → R by fS(z) =
1
N

∑
w∈S ||z − w||1. Thus y is a median of

S implies it is a minimizer of fS .
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Within the proposition the candidate minimizer is the point whose x- and y-
coordinates are each the median of sets of numbers constructed from the x- and
y-coordinates of the points in S, and from copies of the diagonal. The idea is that
whenever a point (x, y) is matched with the diagonal it is effectively matching it with
a point (t, t) with x � t � y. For calculating a median of the x coordinates with |S|
larger than the number of the copies of the diagonal, a contribution of t ∈ [x, y] and
a contribution of ∞ will have the same effect. Similarly, for calculating the median
of the y-coordinates, a contribution of t ∈ [x, y] will have the same effect as that of
−∞. This means that from the purposes of calculation, we can use ±∞ in our lists
of coordinates in the proposition below.

Proposition 3.3. Fix N odd and suppose k > N/2. Let S = {(a1, b1), (a2, b2), . . . ,
(ak, bk)} and N − k copies of Δ (where the (ai, bi) ∈ R

2+). Define f = fS |R2+ , that is

f((x, y)) =

k∑
i=1

‖(x, y)− (ai, bi)‖1 +
N∑

i=k+1

‖(x, y)−Δ‖1.

Let (x̃, ỹ) be the point in R
2 where x̃ is the median of {a1, a2, . . . , ak} with N − k

copies of ∞ and ỹ is the median of {b1, b2, . . . , bk} with N − k copies of −∞. If
x̃ < ỹ then (x̃, ỹ) is the point in R

2+ which minimizes f . If x̃ � ỹ then f((x, y)) >∑k
i=1 ‖Δ− (ai, bi)‖1 for all (x, y) ∈ R

2+.

Proof. Since k > N/2 we know that x̃ and ỹ are finite. Suppose that x̃ < ỹ. We want
to show (x̃, ỹ) is the minimum of f . Since f is a convex function over R

2+ it is
sufficient to show (x̃, ỹ) is a local minimum.

Consider pairs (u, v) such that |u| < minai �=x̃|x̃− ai|, |v| < minbi �=ỹ|ỹ − bi|, and
|u|+ |v| < ‖(x̃, ỹ)−Δ‖1. This is true for sufficiently small u and v. For such (u, v)
we have

k∑
i=1

‖(x̃+ u, ỹ + v)− (ai, bi)‖1 −
k∑

i=1

‖(x̃, ỹ)− (ai, bi)‖1

= |{i : ai < x̃}|u+ |{i : ai > x̃}|(−u) + |{i : ai = x̃}||u|
+ |{i : bi < ỹ}|v + |{i : bi > ỹ}|(−v) + |{i : bi = ỹ}||v|

and

‖(x̃+ u, ỹ + v)−Δ‖1 − ‖(x̃, ỹ)−Δ‖1 = ((ỹ + v)− (x̃+ u))− (ỹ − x̃) = v − u.

Together these imply that

f((x̃+ u, ỹ + v))− f((x̃, ỹ))

= |{i : ai < x̃}|u+ |{i : ai > x̃}|(−u) + |{i : ai = x̃}||u|+ (N − k)(−u)

+ |{i : bi < ỹ}|v + |{i : bi > ỹ}|(−v) + |{i : bi = ỹ}||v|+ (N − k)v.

Since x̃ is the median of {a1, a2, . . . , ak} with N − k copies of ∞ we know that∣∣∣∣(|{i : ai > x̃}|+ (N − k))− |{i : ai < x̃}|
∣∣∣∣ < |{i : ai = x̃}|.

This implies that if u �= 0 then

|{i : ai < x̃}|u+ |{i : ai > x̃}|(−u) + |{i : ai = x̃}||u|+ (N − k)(−u) > 0.
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Similarly if v �= 0 then

|{i : bi < ỹ}|v + |{i : bi > ỹ}|(−v) + |{i : bi = ỹ}||v|+ (N − k)v > 0.

Thus f((x̃+ u, ỹ + v)) > f((x̃, ỹ)) for (x̃+ u, ỹ + v) sufficiently near, but not equal
to, (x̃, ỹ), and that (x̃, ỹ) is a local minimum. The convexity of f further implies
that (x̃, ỹ) is the global minimum of f over the domain R

2+. Remember we are not
including the diagonal as a candidate of locations for the minimum here as f is a
function over R2+.

Now suppose that (x̃, ỹ) lies on or below the diagonal. Let (x, y) ∈ R
2+. Then

either x < x̃ or y > ỹ. Suppose that x < x̃. Let x′ ∈ (x, x̃) with (x′, y) ∈ R
2+. Then

f((x, y))− f((x′, y)) =

k∑
i=1

(|x− ai| − |x′ − ai|) +
N∑

i=k+1

(x′ − x) > 0

as |x− ai| − |x′ − ai| = x′ − x whenever ai � x̃ and

|{i : ai � x̃}|+ (N − k) > |{i : ai < x̃}|
as x̃ is the median of the ai and N − k copies of ∞.

A similar argument shows that if y > ỹ and y′ ∈ (ỹ, y) with (x, y′) ∈ R
2+ then

f((x, y)) > f((x, y′)). Thus f decreases as (x, y) travels towards (x̃, ỹ) while staying
within R

2+. By considering limits there is some t such that

f((x, y)) >
k∑

i=1

‖(t, t)− (ai, bi)‖1 + (N − k)‖(t, t)−Δ‖1.

The observation that ‖(t, t)− (ai, bi)‖1 � ‖Δ− (ai, bi)‖1 for all i, t completes the
proof.

Lemma 3.4. If k < N/2 then

k∑
i=1

‖(x, y)− (ai, bi)‖1 +
N∑

i=k+1

‖(x, y)−Δ‖1 >
k∑

i=1

‖Δ− (ai, bi)‖1

for every point (x, y) ∈ R
2+.

Proof.
∑N

i=k+1 ‖(x, y)−Δ‖1 >
∑k

i=1 ‖(x, y)−Δ‖1 as k < N/2. Then use the trian-
gle inequality; ‖(x, y)− (ai, bi)‖1 + ‖(x, y)−Δ‖1 � ‖Δ− (ai, bi)‖1.

Using Proposition 3.3 and Lemma 3.4 we can characterize the median of a odd
sized population of points in R

2+ ∪Δ.

Corollary 3.5. Let N be odd and S the population {(a1, b1), . . . , (ak, bk),Δ, . . . ,Δ}
containing N − k copies of Δ. Let x̃ be the median of {a1, a2, . . . , ak} with N − k
copies of ∞ and let ỹ be the median of {b1, b2, . . . , bk} with N − k copies of −∞. If
(x̃, ỹ) lies above the diagonal then the median of S is either (x̃, ỹ) or Δ (depending
on whether f((x̃, ỹ)) or f(Δ) is smaller). If (x̃, ỹ) lies on or below the diagonal (or
is (∞,−∞) which philosophically lies below the diagonal) then Δ is the median of S.

The median of S is at most two locations as the median of an odd number of
(extended) real numbers is unique. In contrast, if N is even then we would have
the same uniqueness issues as for sets of real numbers. For example, given the set
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(a) The median of the square, triangle and
diamond, circle and pentagon points. The
order of the x coordinates are {pentagon,
square, diamond, triangle, circle} and hence
the median is that of the diamond. The
order of the y coordinates are {pentagon,
diamond, square, circle, triangle} and hence
the y coordinates of the median is that of
the square.

(b) The median of the square, triangle and
diamond points alongside two copies of the
diagonal. The order of the x coordinates
are {square, diamond, triangle, ∞,∞} and
hence the median is that of the triangle. The
order of the y coordinates are {−∞,−∞,
diamond, square, triangle} and hence the y

coordinates of the median is that of the dia-
mond.

(c) The median of the square and diamond
points alongside three copies of the diag-
onal. The order of the x coordinates are
{square, diamond, ∞,∞,∞} and hence the
median is “∞”. The order of the y coordi-
nates are {−∞,−∞,−∞, diamond, square}
and hence the median is −∞. This implies
that the median is a copy of the diagonal.

(d) The median of the square and dia-
mond points alongside three copies of the
diagonal. The order of the x coordinates
are {square, diamond, triangle ∞,∞} and
hence the candidate median has x coordi-
nate of the triangle. The order of the y coor-
dinates are {−∞,−∞, diamond, square, tri-
angle } and hence the candidate median has
y coordinate of the diamond. However, this
candidate lies below the diagonal and hence
the median is a copy of the diagonal.

X = {2, 3, 4, 10} every point in the interval [3, 4] will minimize the sums distances
of points to X. However, by convention, we generally say that 3.5 is the median
of X. When considering the median of an even number of points in R

2+ ∪Δ, instead
of a unique point in R

2+ ∪Δ we have a rectangle of options, in which every point
would minimize fS . We could in theory adopt an analogous convention by using
the barycenter of this rectangle. This may be application dependent. However, for
clarity of exposition, and to make the statements of theorems much cleaner, we will
be restricting our attention to N odd.
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3.2. Characterizing the median(s) of sets of diagrams
In [28] there is a complete characterization of the local minima of F2 when the

observations are finitely many persistence diagrams each with only finitely many off-
diagonal points. However, the proof used the Alexandrov space structure of (D, d2)
and hence we cannot adapt it to characterize the local minima of F1. Here we use
an alternative approach to prove analogous necessary and sufficient conditions for a
persistence diagram to be a local minimum of F1.

This characterization of local minima of F2 was rephrased in [23] in terms of
selections, groupings and optimal pairings. Here we will characterize the local minima
of F1 with this same terminology. Given a set of diagrams X1, . . . , XN , a selection is
a choice of one point from each diagram (where that point can be Δ). A grouping is a
set of selections so that every off-diagonal point of every diagram is part of exactly one
selection. Our notation will be as follows. If S is a selection then let mS be the median
of that selection (chosen to be the off-diagonal point if not unique). A grouping G of
X1, . . . , XN is the set of selections G = {Sj}. Let m(G) be the persistence diagram
which contains {mSj

: Sj ∈ G}. Each grouping G produces a candidate m(G) for
the median. We will show that any median of X1, . . . , XN must be m(G) for some
grouping G of X1, . . . , XN .

We will consider two groupings as equivalent if they only differ by selections con-
taining only copies of the diagonal. Note that equivalent groupings produce the same
persistence diagram as their median candidate. This implies that in theorems and
algorithms we can restrict to groupings where each selection contains at least one
off-diagonal point.

Since any minimum is also a local minimum, we will focus now on characterizing
the local minima of F1. We will first show that if Y is the median of {X1, . . . , XN}
then Y = m(G) whenever G is an appropriate grouping constructed using optimal
bijections φi : Y → Xi.

Theorem 3.6. Let X1, . . . , XN be persistence diagrams in D(0,0). Let Y = {yj} ∈
D(0,0). For each i let φi : Y → Xi be an optimal bijection between Y and Xi using the
distance function d1. For each y ∈ Y we have a selection {φi(y)} (to make this well
defined we think of the copies of Δ when φ−1

i (xj) = Δ as each disjoint). Let G be the
grouping {{φi(y)} : y ∈ Y }.

If Y is a local minimum of F1 : Z 
→ 1
N

∑N
i=1 d1(Xi, Z) then Y = m(G).

Proof. Suppose that Y �= m(G) and thus y �= m{φi(y)} for some y ∈ Y . We need to
split into cases depending on whether or not m{φi(y)} is the diagonal.

If y = Δ then {φi(y)} contains at most one off-diagonal point. By Lemma 3.4 we
know that m{φi(y)} = Δ.

Suppose now that y �= Δ and that more than half of {φi(y)} are copies of the diag-
onal. As z moves from y to the closest point on the diagonal

∑
{i:φi(y) �=Δ} ‖z − φi(y)‖1

increases less than
∑
{i:φi(y)=Δ} ‖z −Δ‖1 decreases and hence

∑
i ‖z − φi(y)‖1 must

be decreasing. Let Z = {z} ∪ Y \y. F1(Z) decreases as z moves from y towards the
diagonal. Thus Y cannot be a local minimum.

Finally, suppose that y �= Δ and more than half the points of {φi(y)} are off-the
diagonal. Consider the point (x̃, ỹ) ∈ R

2 introduced in Proposition 3.3. If (x̃, ỹ) lies
above the diagonal then by Proposition 3.3 we know that

∑
i ‖z − φi(y)‖1 decreases

as z travels along a straight line from y to m{φi(y)}.
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If (x̃, ỹ) lies on or below the diagonal then the proof of Proposition 3.3 shows
that

∑
i ‖z − φi(y)‖1 decreases as z moves from y to Δ = m{φi(y)}. In both cases this

implies that F1 would also be decreasing as z travels from y towards m{φi(y)}. Having
now exhausted all the possibilities we conclude Y is not a local minimum.

In the above theorem we made no assumption about the uniqueness of the optimal
bijections φi : Y → Xi. Instead this necessary condition holds for any set of optimal
bijections. This is slightly different to the scenario of the mean. In [28] it was shown
that if Y was a local minimum of F2 the φi were essentially unique, up to relabeling
points in the persistent diagrams at the same location in R

2+. However, this unique-
ness does not hold for the local minima of F1. This is because shifting an observation
ai within a population {a1, . . . , aN} of real numbers does not affect the median unless
sgn(ai −median{a1, . . . , aN}) changes. Figure 5 provides an explicit example.

φ2(y1)

φ2(y2)

φ1(y2)

φ1(y1)

φ3(y1)

φ3(y2)

y1

y2

(a) A grouping where the y2 is the
median of the selection containing the
diamond on the left.

φ2(y1)

φ2(y2)

φ1(y2)

φ1(y1)

φ3(y2)

φ3(y1)

y1

y2

(b) A grouping where the y2 is the
median of the selection containing the
diamond on the right.

Figure 5: Y (black) is a local minimum of F1. It is the unique median of the “triangle”,
“square” and “diamond” diagrams. There are two optimal bijections φ3 from Y to the
“diamond” diagram, creating two groupings G1 and G2. Here Y = m(G1) = m(G2).

The following is a sufficient condition for a persistence diagram to be a local mini-
mum of the function F1 : Z 
→ 1

N

∑N
i=1 d1(Xi, Z) when we restrict to input diagrams

Xi containing only finitely many off-diagonal points.

Theorem 3.7. Let X1, . . . , XN ∈ D(0,0) be persistence diagrams with only finitely
many off-diagonal points. Let Y = {yj} ∈ D. Suppose that whenever φi : Y → Xi are
optimal bijections:

1. y = m{φi(y)} whenever y ∈ Y is off-diagonal, and

2. for any selection S = {x1, x2, . . . , xN} such that xi ∈ Xi and φ−1
i (xi) = Δ, we

have mS = Δ.

Then Y is a local minimum of F1 : Z 
→ 1
N

∑N
i=1 d1(Xi, Z).

Proof. Let φi : Y →Xi be optimal bijections. Assume that y=m{φi(y)} whenever y ∈ Y
is off-diagonal. Since each of the Xi contain only finitely many off-diagonal points
there can only be finitely many selections of the {X1, X2, . . . , XN} containing some
off-diagonal point. Thus there can only be finitely many off-diagonal points in Y .

Suppose that Y is not a local minimum. Then there exists a sequence Yn that
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converges to Y such that F1(Yn) < Y for all n. For each Yn fix optimal bijections
ψn : Y → Yn. Fix an off-diagonal point y ∈ Y . Since ‖y −Δ‖ > 0 and d1(Y, Yn) → 0
we know ψn(y) �= Δ for large enough n.

For each i choose optimal bijections φn
i : Yn → Xi. Consider the sequence (φn

i ◦
ψn)(y) ∈ Xi. Since Xi has only finitely many off-diagonal points this sequence has
a constant subsequence (here we think of the sequence containing only copies of the
diagonal as constant). By taking subsequences of subsequences we can find a subse-
quence Ŷl of Yn such that (φl

i ◦ ψl)(y) is constant for all off-diagonal y ∈ Y and all i.

Construct βi : Y → Xi by βi(y) = φl
i ◦ ψl(y) and βi(x) = Δ for any remaining

unmatched points x ∈ Xi We will show these βi : Y → Xi are optimal bijections.

For each bijection τ : A → B let C(τ) =
∑

a∈A ‖a− τ(a)‖1 denote the 1-Wasser-
stein transportation cost via the bijection τ . Thus τ : A → B is an optimal bijection
if and only if d1(A,B) = C(τ).

Suppose that βi : Y → Xi is not optimal. This implies there is some bijection
α : Y → Xi and ε > 0 with the C(α) < C(βi)− ε.

Since liml→∞ Ŷl = Y there is some l and some bijection ψl : Ŷl → Y such that
C(ψl) < ε/3. Let β̂i : Ŷl → Xi be the transportation plan by first transporting Yl via

ψl to Y and then transporting via α to Xi. By construction C(β̂i) � C(α) + C(ψl) <
C(βi)− 2ε/3. But at the same time, by considering βi as the composition of the

transportation plans of β̂i and ψl, we know C(βi) � C(β̂i) + C(ψl) < C(β̂i) + ε/3.

Together these inequalities imply that C(βi) < C(βi)− ε/3 which is impossible.
Thus the βi = φl

i ◦ ψl : Y → Xi are optimal bijections for all i.

Now

F1(Y ) =
1

N

N∑
i=1

⎛
⎝ ∑
{y∈Y : y �=Δ}

‖y − βi(y)‖1 +
∑

{x∈Xi : β
−1

i
(x)=Δ}

‖x−Δ‖1
⎞
⎠

and

F1(Yl) =
1

N

N∑
i=1

⎛
⎝ ∑
{ŷ∈Y : ψl(ŷ) �=Δ}

‖ψl(ŷ)− φl
i(y)‖1 +

∑
{ŷ∈Yl : ψl(ŷ)=Δ}

‖ŷ − φl
i(ŷ)‖1

⎞
⎠

=
1

N

N∑
i=1

⎛
⎝ ∑
{y∈Y : y �=Δ}

‖ψ−1
l (y)− βi(y)‖1 +

∑
{ŷ∈Yl : ψl(ŷ)=Δ}

‖ŷ − φl
i(ŷ)‖1

⎞
⎠ .

By assumption y = m{βi(y)} and hence

N∑
i=1

∑
{y∈Y : y �=Δ}

‖y − βi(y)‖1 �

N∑
i=1

∑
{y∈Y : y �=Δ}

‖ψ−1
l (y)− βi(y)‖1.

Thus for F1(Yl) < F1(Y ) to hold it must be true that

N∑
i=1

∑
{x∈Xi : β

−1

i
(x)=Δ}

‖x−Δ‖1 >

N∑
i=1

∑
{ŷ∈Yl : ψl(ŷ)=Δ}

‖ŷ − φl
i(ŷ)‖1.
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Since {ŷ ∈ Yl : ψl(ŷ) = Δ} ⊂ {ŷ ∈ Yl : (β
−1
i ◦ φl

i)(ŷ) = Δ} we further know

N∑
i=1

∑
{x∈Xi : β

−1

i
(x)=Δ}

‖x−Δ‖1 >
N∑
i=1

∑
{x∈Xi : β

−1

i
(x)=Δ}

‖x− (φl
i)
−1(x)‖1.

This implies that there is a selection S = {x1, x2, . . . , xN} such that xi ∈ Xi,
β−1
i (xi) = Δ and mS �= Δ, contradicting our second condition.

Theorem 3.6 provides us with an (admittedly very slow) algorithm to find the
median. We can consider the set of all groupings G up to equivalence, and their
corresponding candidates m(G). The median is one of these m(G) so we only need
to compare the F1(m(G)) over all groupings G. We only have to use the necessary
condition as it is always allowable to check (finitely many) extra options when looking
for global minima as long as we know we have all the local minima in our list to check.

Alternatively we could use a gradient descent algorithm analogous to that used in
[28]. The only modifications needed are replacing the optimal pairing using d2 with
optimal pairings using d1 and replacing the means of the selections with the medians
of the selections. This algorithm will terminate in finite time as at each iteration
the cost function F1 decreases and uses a new grouping (of which there are only
finitely many). This would not guarantee finding the global minimum but rather will
terminate at a local minimum. Running multiple times from different initial locations
can improve the estimate.

4. Comparing the median and the mean

4.1. Robustness of the median

For real numbers, the median is a robust measure of central tendency, while the
mean is not. One measure of robustness is the breakdown point, which is of a bound
on the proportion of incorrect observations (e.g. arbitrarily large observations) that
an estimator can handle before giving an incorrect (e.g. arbitrarily large) result. The
median has a breakdown point of 50%, while the mean has a breakdown point of
0% (a single large observation can throw it off). In this section we will prove that
the breakdown points for medians and mean of persistence diagrams are the same as
those of real numbers. For persistence diagrams we replace “arbitrarily large” with
“arbitrarily far finite distance away.”

Lemma 4.1. The breakdown point for the mean of a population of persistence dia-
grams lying in D(0,0) is 0%.

Proof. Let X1, X2, . . . , XN ∈ D(0,0) with mean Y . There is some M > 0 such that
every point in Y is at most distance M from the diagonal. Let X̃ be a diagram
with a single off-diagonal point p = (0,

√
2(KN +MN)). Observe that p is distance

KN +MN from the diagonal.

Let Z be a mean of {X̃,X2, . . . , XN}. Using the characterization of the mean, Z
must contain a point at least distance (KN +MN)/N = K +M from the diagonal.
This implies that d2(Z, Y ) � K. By choosing K arbitrarily large we can ensure Y
and Z are arbitrarily far away.
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The breakdown point for the median of a population of persistence diagrams lying
in D(0,0) is 50%. Let ∅ denote the persistence diagram only containing copies of the
diagonal.

Theorem 4.2. Let X1, X2, . . . , Xn+1 ∈ D(0,0) each with only finitely many off-diag-
onal points. Then exists a constant M (dependent on X1, X2, . . . , Xn) such that for
any Xn+2, . . . , X2n+1 ∈ D(0,0), any median of {X1, X2, . . . , Xn+1, Xn+2, . . . , X2n+1}
is of distance at most M from the persistence diagram only containing copies of the
diagonal.

Proof. Set our bound M as

max
Groupings G of X1,X2,...,Xn+1

∑
selections s∈G

max{y-coords in s} −min{x-coords in s}

which only depends on the diagrams {X1, X2, . . . , Xn+1}.
Let Y = {(aj , bj)} be a median of {X1, X2, . . . , Xn+1, Xn+2, . . . , X2n+1}. From

optimal bijections φi : Y → Xi denote the coordinates of φi((aj , bj)) as (xi,j , yi,j)
(writing (∞,−∞) when φi((aj , bj)) = Δ). Since aj is the median of {x1,j , x2,j , . . . ,
x2n+1,j} we know that aj � min{x1,j , x2,j , . . . , xn+1,j}. Similarly bj � max{y1,j , y2,j ,
. . . , yn+1,j}. This implies that for each j, we have the bound bj − aj � max{y1,j , y2,j ,
. . . , yn+1,j} −min{x1,j , x2,j , . . . , xn+1,j}. Thus
d1(Y, ∅) =

∑
j

bj − aj �
∑
j

max{y1,j , y2,j , . . . , yn+1,j} −min{x1,j , x2,j , . . . , xn+1,j}.

From our characterization of the median of a set of persistence diagrams we know
Y = m(Ĝ) for some grouping Ĝ of {X1, X2, . . . , X2n+1}. Let Ĝres be the restriction
of Ĝ to the subset of diagrams {X1, X2, . . . , Xn+1}.

By construction

M �
∑

selections s∈Ĝres

max{y-coordinates in s} −min{x-coordinates in s}

=
∑
j

max{y1,j , y2,j , . . . , yn+1,j} −min{x1,j , x2,j , . . . , xn+1,j}

� d1(Y, ∅)

4.2. Number of points in the mean compared to the median
One qualitative difference between the mean and the median is the presence or

absence of points with small persistence. In some applications, such as when we have
point cloud samples of an underlying shape of interest, these are heuristically the
result of noise. The mean of a selection containing at least one point off the diagonal
is a point off the diagonal. It is possible for the mean of N diagrams each with K
points to contain NK off-diagonal points. In comparison the median of any selection
with more than half copies of the diagonal will always be a copy of the diagonal. In
the big picture this can add up to lots of extra points off the diagonal in the mean
persistence diagram when compared to the median.

Lemma 4.3. Let X1, . . . , XN be persistence diagrams such that the average number
of off-diagonal points in the Xi is K. If Y is a median of the Xi then Y has less than
2K points off the diagonal.
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Proof. Let y1, y2, . . . , yn be the off-diagonal points in Y . Let φi be optimal bijections
between Y and the Xi. By Theorem 3.6 we know that yj is the median of {φi(yj)}
for each j. By Lemma 3.4 we know that for each j the sets {φi(yj)} must contain
at least (N + 1)/2 off-diagonal points. This implies that ∪j{φi(yj)} must contain at
least (N + 1)n/2 points.

Since the combined of total of all the off-diagonal points in the Xi is NK we can
conclude that (N + 1)n/2 � NK and hence n < 2K.

We illustrate this significant advantage of the median with a simulated geometric
example. We generated point clouds of the unit circle by drawing 25 points from the
uniform measure on the unit circle convoluted with Gaussian noise with variance σ2.
We then build the H1 persistence diagrams from the corresponding Rips filtration of
this point cloud (described in the appendix). For the 5 persistence diagrams thus pro-
duced we then computed the mean and the median. These are illustrated in Figure 6.

(a) σ = 0 (b) σ = 0.05 (c) σ = 0.1

(d) σ = 0.15 (e) σ = 0.2 (f) σ = 0.25

Figure 6: For each standard deviation σ we randomly generated five noisy point clouds
of the circle each 25 points drawn i.i.d. from the convolution of the uniform measure
on the unit circle convolved with Gaussian noise with standard deviation σ. From
these five point clouds we constructed five Rips filtrations and their H1 persistence
diagrams. The corresponding median diagram is then depicted using circles and the
mean diagram using triangles.

Since the underlying shape of interest is a circle there should be one point in each
persistence diagram far from the diagonal corresponding to the H1 class of the circle,
alongside extra “noisy” points near the diagonal (with more as the noise parameter
in the sampling process increases). In the simulated data the mean and median each
have one point far from the diagonal (and these are close to each other) but with
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larger noise the mean diagram has more extra points near the diagonal than the
median diagram.

4.3. Discontinuities and non-uniqueness of the mean and the median
Unfortunately both the mean and median are neither continuous nor always

unique. There can be discontinuities when the grouping G which provides us with
the optimal candidate for the mean or the median switches. This is illustrated in the
Figures 7 and 8.

In these examples we have three diagrams, one consists only of copies of the diag-
onal, one containing off-diagonal points denoted by squares, and the other denoted
by triangles. In this example as z increases in the squares diagram travels across the
optimal grouping changes from {{x1, (1, z),Δ}, {x2,Δ,Δ}} to {{x1,Δ,Δ}, {x2, (1, z),
Δ}} leading to a discontinuity to both the mean and the median (note that the value
of z where the switch occurs is different for the mean and median). At the time it
switches both groupings are equally optimal and hence we have non-uniqueness.

(0,2)

(3,5)

(1,z)
(4,4)

( 11
3
, 13

3
)

( z+3

4
, z+3

4
)

( z+7

12
, 11+5z

12
)

(a) The mean for z � 3.99071

(0,2)

(3,5)
(1,z)

( 2
3
, 4
3
)

( 9+z
4

, 9+z
4

)

( 25+z
12

, 29+5z
12

)

(b) The mean for z � 3.99071

Figure 7: We have three diagrams, one consists only of copies of the diagonal,
one containing off-diagonal points denoted by squares, and the other contain-

ing off-diagonal points denoted by triangles. In (a) F2(circles) =
8639−3995z+1268z2

6534

and in (b) F2(circles) =
191−58z+7z2

36 . When z < 3.99070 the optimal grouping is
{(0, 2), (1, z),Δ} and {(3, 5),Δ,Δ} (used in (a)). When z > 3.99072 then the opti-
mal grouping is {(0, 2),Δ,Δ} and {(3, 5), (1, z),Δ} (used in (b)). Both groupings are
optimal when z � 3.99071 and as a result we do not have a unique mean.

The mean is generically unique but the median is not. To show this rigorously we
shall restrict ourselves to the case where we have N diagrams each with only finitely
many off-diagonal points. Let k1, k2, . . . , kN be non-negative integers. Let U(k1, k2, . . .
. . . , kN ) denote the space of sets of diagrams X = {X1, X2, . . . , XN} such that Xi

has ki off-diagonal points. U(k1, k2, . . . , kN ) is the quotient of (R2+)k1+k2+···+kN by
a finite group of symmetries Γ. There is a quotient map

q : (R2+)k1+k2+···+kN → U(k1, k2, . . . , kN ) = (R2+)k1+k2+···+kN /Γ.

Let λ be Lebesgue measure on (R2+)k1+k2+···+kN and let ρ = q∗(λ) be the push
forward of Lebesgue measure onto U(k1, k2, . . . , kN ).
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(0,2)

(3,5)

(1,z)

(1,2)

(a) The median for z � 4

(0,2)

(3,5)
(1,z)

(3,z)

(b) The median for z � 4

Figure 8: We have three diagrams, one consists only of copies of the diagonal, one con-
taining off-diagonal points denoted by squares, and the other containing off-diagonal
points denoted by triangles. When z < 4 the optimal grouping is {(0, 2), (1, z),Δ}
and {(3, 5),Δ,Δ} (the grouping used in (a)). When z > 4 then the optimal grouping
is {(0, 2),Δ,Δ} and {(3, 5), (1, z),Δ} (the grouping used in (b)). Both are optimal
when z = 4 and as a result we do not have a unique median.

Proposition 4.4. The sets of diagrams in U(k1, k2, . . . , kN ) which do not have a
unique mean has measure zero.

Proof. Let Ã be the set of sets of diagrams in U(k1, k2, . . . , kN ) which do not have a
unique mean. Then A = q−1(Ã) is the set of vectors of labeled diagrams (in
(R2+)k1+k2+···+kN ) which do not have a unique mean. Since ρ(Ã) = λ(q−1(Ã)) it
is sufficient to show λ(A) = 0.

Let S be a selection containing the points {(a1, b1), (a2, b2), . . . , (ak, bk)} withN−k
copies of the diagonal. In the appendix we define the mean of the selection S as the
minimizer of fS(y) =

∑
x∈S ‖x− y‖22. which occurs at

μS =

(
1

N

(
kx̂+ (N − k)

x̂+ ŷ

2

)
,
1

N

(
kŷ + (N − k)

x̂+ ŷ

2

))

where x̂ and ŷ are the means of a1, a2, . . . , ak and b1, b2, . . . , bk respectively.
For each pair of distinct groupings, G1 and G2, of the labeled diagrams let

A(G1, G2) =
{
X = (X1, X2, . . . , XN ) :

∑
S∈G1

fS(μS) =
∑

S∈G2
fS(μS)

}
. Any X ∈

A(G1, G2) must satisfy a quadratic equation so either A(G1, G2) = (R2+)k1+k2+···+kN

or λ(A(G1, G2)) = 0. It is clear that there exists a vector of labeled persistence dia-
grams X = (X1, X2, . . . , XN ) ∈ (R2+)k1+k2+···+kN such that X /∈ A(G1, G2) we con-
clude that λ(A(G1, G2)) = 0.

If X has more than one mean then by Proposition B.2 there must be groupings
G1, G2 such that μG1

�=μG2
but

∑
S∈G1

fS(μS) =F2(μG1
) =F2(μG2

) =
∑

S∈G2
fS(μS).

This implies A ⊆ ⋃
G1 �=G2 groupings A(G1, G2). There are only finitely many groupings

so λ(A) = 0.

This proof of generic uniqueness contrasts sharply to the case of the median which
is not generically unique.
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Proposition 4.5. Let N � 3 be an odd number. Let k1, k2, . . . , k(N+1)/2 � 2. The
sets of diagrams in U(k1, k2, . . . , kN ) which do not have a unique median has positive
measure.

Proof. We will first illustrate this with the case U(2, 2, 0) which shows the idea of
the general case. Suppose X1 and X2 each contain two off-diagonal points {(a1, a2),
(a2, b2)}, and {(c1, d1), (c2, d2)} respectively, and X3 has no off-diagonal points. Fur-
ther suppose that a1, a2 < c1, c2 � b1, b2 < d1, d2.

First consider the groupingG1 = {S(1,2), S(2,1)} where S(1,2) := {(a1, b1), (c2, d2),Δ}
and S(2,1) := {(a2, b2), (c1, d1),Δ}. The median of the selection S(1,2) is (c2, b1) and
the median of the selection S(2,1) is (c1, b2). This implies that mG1

has off-diagonal
points {(c2, b1), (c1, b2)}. Also consider the grouping G1 = {S(1,2), S(2,1)} where
S(1,2) := {(a1, b1), (c2, d2),Δ} and S(2,1) := {(a2, b2), (c1, d1),Δ}. Analogous calcula-
tions show the off-diagonal points of mG2

are {(c1, b1), (c2, b2)}. These groupings are
illustrated in Figures 9a and 9b.

(a1,b1)

(c1,d1)

(a2,b2)

(c2,d2)

(c1,b2)

(c2,b1)

(a) mG1

(a1,b1)

(c1,d1)

(a2,b2)

(c2,d2)

(c1,b1)

(c2,b2)

(b) mG2

1
2

3

(c) The different regions of R2+ for constructing sets of populations of persistence diagrams
with non unique medians.

Figure 9

Now F1(mG1
) = −a1 + d1 − a2 + d2 = F1(mG2

) and that F1(mG) � −a1 + d1 −
a2 + d2 for all other groupings G. This implies that mG1

and mG2
are both medians

of X. If b1 �= b2 and c1 �= c2 these medians are distinct and thus we do not have
a unique median. The measure of such sets of diagrams {X1, X2, X3} has non-zero
measure in U(2, 2, 0).



278 KATHARINE TURNER

The extension of this example to when k1, k2, . . . , k(N+1)/2 > 2 is illustrated in Fig-
ure 9c. We need to find an example of a non-zero measure set of (X1, X2, . . . , XN ) ∈
(R2+)k1+k2+···+kN with k1, k2, . . . , k(N+1)/2 > 2 with non unique medians.

We will require that:

• X1 has two points (a1, b1) and (a2, b2) in region 1,

• X2 has two points (c1, d1) and (c2, d2) in region 2,

• X3, X4, . . . , X(N−3)/2 each contains two points in region 3, and

• every other off-diagonal point in the Xi lies in the region patterned by cross-
hatch.

Note that this set of populations of persistence diagrams is of non-zero measure in
U(k1, k2, . . . , kN ).

Every median of {Xi} can be written as mG where each selection in G contains
either points in the cross-hatch region (and potentially copies of the diagonal) or
they contain one point each from regions 1 and 2, (N − 3)/2 points from region 3,
and (N − 1)/2 copies of the diagonal. There is a median m with off-diagonal points
{(c1, b1), (c2, b2)} alongside other points determined by the points in the cross-hatched
region. Another median m̃ is the same as m but switching {(c1, b1), (c2, b2)} for
{(c2, b1), (c1, b2)}.

5. Discussion and further directions

There are many parallels between the mean and median of populations of persis-
tence diagrams. This suggests some future directions could involve extending work
that has been done on the mean to the corresponding results for the median. For
example, in [23] they explore an alternative probabilistic definition of the mean which
combines the tradition mean used with the notion of a shaking hand equilibrium in
game theory. This alternate definition is unique and continuous. We believe a similar
idea would work to create a probabilistic definition of the median.

Another future direction is to combine the median with sampling theorems to
find conditions to infer the correct homology with high probability. For example, the
homology of a set can be inferred from the persistence diagram corresponding to a
point cloud with small Hausdorff distance to the original set. Under certain sampling
conditions we can ensure that this Hausdorff distance is small with high probability.
Perhaps with higher probability the median of independently obtained persistence
diagrams under such samplings conditions will provide the correct homology.

There is scope for further developments in algorithms, both in design and imple-
mentation. In this paper we have discussed very referred to some of the computa-
tional aspects, including mentioning a brute force algorithm and a gradient descent
approach. Perhaps there could be significant improvements by using geometry anal-
ogous to the work in [17] where they show that by exploiting the inherit geometry of
the points in persistence diagrams lying in a plane we can approximate the Wasser-
stein distances much faster.
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Appendix A. Rips filtration

The Rips filtration R is the filtration of the flag complex on 25 vertices where at
time t, Rt contains all the vertices [v], the edges [v0, v1] whenever ‖v0 − v1‖ < t, the
2-simplicies [v0, v1, v2] whenever [v0, v1], [v1, v2] and [v2, v0] are all included in Rt,
and so on including higher dimensional simplicies whenever all their boundary faces
are in Rt.

In other words Rt is the flag complex (also known as the clique complex) on the
graph containing all edges of length at most t.

Appendix B. Mean diagram

The methods here provide a proof for the necessary condition for a persistence
diagram to be a local minimum of the Fréchet function which is far simpler than that
in [28]. We also extend the results to persistence diagrams containing points in L∞
and L−∞. Due to the similarities to the earlier material we omit many of the details.

For the mean we also split our analysis into the restrictions to R
2+ ∪Δ, L∞

and L−∞. If X1, X2, . . . , XN ∈ D(k,l) then Y is a mean of the Xi if and only if
Y |R2+∪Δ, Y |L∞ , and Y |L−∞ are means of the Xi each restricted to the appropriate
domain.

As L∞ and L−∞ are effectively copies of R we can easily characterize the means
of populations of multisets in them. Suppose A1, A2, . . . , AN are each multisets of
exactly k real numbers and we label the elements of each Ai so that Ai = {ai,1, ai,2, . . . ,
ai,k} with ai,1 � ai,2 � · · · � ai,k. Set B = {b1, b2, . . . , bk} where bj is the mean of
{a1,j , . . . , aN,j}. Then B is the unique multiset of k real numbers that minimizes

f2 : Y 
→
N∑
i=1

(
inf

φ : Ai→Y,φ bijection

∑
a∈Ai

|a− φ(a)|2
)

and hence B is the mean.

Characterizing the means of populations of persistence diagrams in D(0,0) is anal-
ogously achieved through the means of selections.

Lemma B.1. Let (a1, b1), (a2, b2), . . . , (ak, bk) be points in the plane. Let x̂ be the
mean of a1, a2, . . . , ak and ŷ be the mean of b1, b2, . . . , bk. Then

(x̃, ỹ) : =

(
1

N

(
kx̂+ (N − k)

x̂+ ŷ

2

)
,
1

N

(
kŷ + (N − k)

x̂+ ŷ

2

))

is the unique point in R
2+ which minimizes

f(x, y) =

k∑
i=1

‖(x, y)− (ai, bi)‖22 +
N∑

i=k+1

‖(x, y)−Δ‖22.

Let S be a multiset in R
2+ ∪Δ containing (a1, b1), (a2, b2), . . . , (ak, bk) and N − k

copies of the diagonal and let (x, y) be the point in R
2+ found in Lemma B.1. We call

this (x, y) the mean of S and denote it by μS . An example is illustrated in Figure 10.
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Figure 10: We want the mean of the three points marked by circles alongside two
copies of the diagonal. The gray square is the arithmetic mean of the three points
marked by circles. The diamond is the point on the diagonal closest to the square.
The triangle is the mean of the circles and 2 copies of the diamond. It is the weighted
average of the square and the diamond.

Let μ(G) be the persistence diagram which contains {μSj
: Sj ∈ G}. Each grouping

G produces a candidate μ(G) for the mean. We will show that any mean must be
μ(G) for some grouping G.

Theorem B.2. Let X1, . . . , XN , Y ∈ D(0,0) be persistence diagrams each with finitely
many off-diagonal points. Let F2 : Z 
→ 1

N

∑N
i=1 d2(Xi, Z)2. For each i fix an optimal

bijection φi : Y → Xi (for d2). For each y ∈ Y we have a selection {φi(y)}. Let GY

be the grouping {{φi(y)} : y ∈ Y }. If Y is a local minimum of F2 then Y = μGY
.

Proof. Suppose that Y �= μGY
and thus y0 �= μ{φi(y0)} for some y0 ∈ Y . Set Yt to be

the diagram which agrees with Y except the point y0 is replaced with (1− t)y0 +
tμ{φi(y0)},

F2(Yt) =
1

N

N∑
i=1

inf
φt
i
: Yt→Xi

∑
yt∈Yt

‖yt − φt
i(yt)‖2

�
1

N

N∑
i=1

∑
y∈Y,y �=y0

‖y − φi(y)‖2 + (((1− t)y0 + tμ{φi(y0)})− φi(y0))
2.

We thus can conclude that for all t ∈ (0, 1)

F2(Yt)− F2(Y0) �
1

N

N∑
i=1

(y0 − φi(y0))
2 − (((1− t)y0 + tμ{φi(y0)})− φi(y0))

2,

which we know is negative from the proof of Lemma B.1. This implies that Y0 = Y
can not be a local minimum.
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