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THE 3× 3 LEMMA IN THE Σ-MAL’TSEV
AND Σ-PROTOMODULAR SETTINGS.

APPLICATIONS TO MONOIDS AND QUANDLES

DOMINIQUE BOURN and ANDREA MONTOLI

(communicated by George Janelidze)

Abstract
We investigate what is remaining of the 3× 3 lemma and of

the denormalized 3× 3 lemma, valid in a pointed protomodular
and in a Mal’tsev category, respectively, in the context of partial
pointed protomodular and partial Mal’tsev categories, relatively
to a class Σ of points (i.e. of split epimorphisms with a fixed
section). The results apply, among other structures, to monoids,
semirings, and quandles.

1. Introduction

The 3× 3 lemma is a classical tool in homological algebra, with several applica-
tions. It holds for many algebraic structures, including groups. As shown in [3], the
lemma is valid in any pointed regular protomodular [1] category: given any commu-
tative diagram as the one on the left-hand side here below, where the three columns
and the middle row are exact sequences, the upper row is exact if and only if the
lower one is.

K[φ] ��K(kx) ��
��

kφ

��

K[f ]
K(x) ��

��
kf

��

K[f ′]
��
kf′

��

R[φ]

dφ
0

��
dφ
1

��

R(dx
1 )
��

R(dx
0 ) ��

R[f ]

df
0

��
df
1

��

�� R(x) �� R[f ′]

df′
0

��
df′
1

��
K[x]

φ
����

�� kx �� X
x �� ��

f
����

X ′

f ′
����

R[x]

φ
����

��

dx
0

��

dx
1 ��

X

f
����

��

�� x �� �� X ′

f ′
����

��

U
u

�� Y
y

�� �� Y ′ W
y0

��
y1 ��

Y��
y

�� �� Y ′

(1)

A denormalized version of the 3× 3 lemma was proved in [4] to be valid in any (not
necessarily pointed) regular Mal’tsev category: given any commutative diagram as
the one on the right-hand side, where the three columns and the middle row are
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exact forks, the upper row is exact if and only if the lower one is. We recall that an
exact fork is a diagram

R[x]
dx
0

��

dx
1 ��

X�� x �� �� X ′

in which x is a regular epimorphism and (R[x], dx0 , d
x
1) is its kernel pair.

Later, the denormalized 3× 3 lemma was extended to the context of regular Gour-
sat categories in [20]. A common generalization of the normalized and the denormal-
ized versions of the 3× 3 lemma was described in [15].

In the recent paper [25] it was shown that a particular version of the 3× 3 lemma
holds also in the category Mon of monoids, which is neither protomodular nor
Mal’tsev: the 3× 3 lemma holds for monoids when we replace exact sequences by
special Schreier exact sequences. This notion, introduced in [11], originated from the
notion of Schreier split epimorphism [27, 22]: these are the split epimorphisms that
correspond to classical monoid actions. An action of a monoid B on a monoid X is
a monoid homomorphism B → End(X). The 3× 3 lemma for special Schreier exact
sequences allowed to give in [25] a description of a Baer sum construction of spe-
cial Schreier exact extensions with abelian kernel, obtained thanks to a push forward
construction, analogous to the classical one for group extensions.

In order to understand and to describe categorically the (co)homological features
of Schreier monoid extensions, the notions of pointed Σ-protomodular [13] and Σ-
Mal’tsev category [8] have been introduced, with respect to a class Σ of points, i.e.
split epimorphisms with a fixed section. The main examples of the first notion are: the
categories of monoids and of semirings (see [13]), and, more generally, any Jónsson-
Tarski variety [21]. An interesting example of a Σ-Mal’tsev category (which is not
Σ-protomodular) is the category of quandles [7]. As for the case of monoids, in all
these contexts the class Σl of Σ-special maps (see Definition 2.2) appeared to be very
discriminating.

The aim of the present paper is to investigate what is remaining of the normal-
ized and of the denormalized 3× 3 lemma, respectively, in the abstract context of
pointed Σ-protomodular and of Σ-Mal’tsev categories. Namely, we are interested in
the description of the conditions under which, given any (normalized or denormal-
ized) diagram as (1) above, where the three columns and the middle row are exact (or
Σ-special), the upper row is exact (or Σ-special) when the lower one is (the so-called
upper 3× 3 lemma), and conversely (the so-called lower 3× 3 lemma).

In these relative contexts, a curious phenomenon appears, in contrast to the “abso-
lute” case of protomodular and Mal’tsev categories (that are Σ-protomodular and Σ-
Mal’tsev, respectively, for the class Σ of all points). In fact, in the absolute contexts,
the upper and the lower 3× 3 lemmas are equivalent, both in the normalized and in
the denormalized case (see [18] and [16]). In the relative contexts, this equivalence
is no longer true (see Theorem 4.10, Proposition 6.2, and Theorem 6.7 below). This
shows an unexpected asymmetry between the two parts of the 3× 3 lemma.

The paper is organized as follows. In Section 2 we recall the notion of Σ-Mal’tsev
category and give several examples. In Section 3 we obtain some properties of regular
Σ-Mal’tsev categories that are used in Section 4, where we describe the versions of the
denormalized 3× 3 lemma that are valid in regular Σ-Mal’tsev categories. In Section 5
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we recall the definition and the main properties of Σ-protomodular categories. In
Section 6 we describe the versions of the (normalized) 3× 3 lemma that hold in a
regular Σ-protomodular category. In Section 7 we give an interpretation of the Baer
sum construction in Barr-exact Σ-Mal’tsev categories.

2. Σ-Mal’tsev categories

2.1. The fibration of points
Throughout the paper, all the categories we consider will be finitely complete.

A (generalized) point in a category E is a pair (f, s) of morphisms such that fs = 1;
in other terms, f is a split epimorphism with a fixed section s. The category PtE is
the category whose objects are the points in E and whose morphisms are the pairs
(y, x) of morphisms which make a square as below commutative, both downward and
upward:

X ′

f ′

��

x �� X

f

��
Y ′

s′

��

y
�� Y.

s

��

The codomain functor ¶E : PtE → E is a fibration whose cartesian maps are the
pullbacks of split epimorphisms; it is called the fibration of points [1].

Let Σ be a pullback stable class of points in a category E. We denote by ΣPtE
the full subcategory of PtE whose objects are the points in Σ; the restriction of ¶E

to the class Σ determines a subfibration of the fibration of points:

ΣPtE �� j ��

¶Σ
E

��

PtE

¶E

��
E E.

Recall from [13] the following:

Definition 2.2. A reflexive relation on an object X:

R

dR
1

��

dR
0 ��

XsR0
��

such that the pair (dR0 , s
R
0 ) is a point in Σ is called a Σ-relation. A morphism

f : X → Y is said to be Σ-special when its kernel equivalence relation R[f ] is a Σ-
equivalence relation.

We denote by Σl the class of Σ-special morphisms. An object X is said to be
Σ-special when the terminal map τX : X → 1 is Σ-special. Observe that, if a point
(f, s) is in Σ, the morphism f is not necessarily Σ-special. However, when a Σ-special
morphism f is split by s, the pair (f, s) is in Σ (see [13] for more details). As usual, we
denote by E

2 the category whose objects are the arrows in E and whose morphisms
are the commutative squares. Finally, we denote by ΣlE2 the full subcategory of



308 DOMINIQUE BOURN and ANDREA MONTOLI

E
2 whose objects are the Σ-special morphisms, and by ΣlY E its subcategory whose

morphisms have 1Y as lower horizontal map.

2.3. Σ-Mal’tsev categories
Recall from [8] the following:

Definition 2.4. A finitely complete category E is said to be a Σ-Mal’tsev category
when, given any pullback of points with (f, s) ∈ Σ:

X ′ ḡ ��

f ′

��

X
t̄

��

f

��
Y ′ g ��

s′

��

Y,
t

��

s

��

the pair (s′, t̄) is jointly extremal epimorphic.

The previous definition is equivalent to the following one: given any commutative
square of points, with (f, s) ∈ Σ:

X ′′ ǧ ��

f ′′

��

X
ť

��

f

��
Y ′ g ��

s′′

��

Y,
t

��

s

��

the unique induced morphism φ : X ′′ → X ′ to the pullback of f and g is an extremal
epimorphism.

Examples 2.5. 1. In the category Mon of monoids, a point (f, s) : A � B is weakly
Schreier [8] if, for any b ∈ B, the map μb : Ker(f) → f−1(b) defined by μb(x) =
x · s(b) is surjective. The point (f, s) is a Schreier point [27, 22, 12] if, for
any b ∈ B, the map μb is bijective. It was observed in [12] that a point (f, s)
is a Schreier point if and only if there exists a unique set-theoretical map
qf : A → Ker(f) such that a = qf (a) · sf(a) for all a ∈ A. The map qf is called
the Schreier retraction of (f, s). As shown in [11, 8], Mon is a Σ-protomodular
category, and consequently, a Σ-Mal’tsev one (see Definition 5.3 and Theo-
rem 5.4 below) for Σ either the class of Schreier or weakly Schreier points.

2. More generally, let C be a Jónsson-Tarski variety, i.e. a variety (in the sense of
universal algebra) whose corresponding theory has a unique constant 0 and a
binary term + satisfying the following axiom:

x+ 0 = 0 + x = x.

The notion of a (weakly) Schreier point, given as above for monoids, actually
makes sense in every Jónsson-Tarski variety. As shown in [21], every Jónsson-
Tarski variety C is a Σ-protomodular (and hence Σ-Mal’tsev) category for the
class Σ of Schreier points. Analogously, it is easy to see that C is Σ-protomodular
for the class Σ of weakly Schreier points, too. In particular, the category SRng
of semirings is Σ-protomodular for both classes.
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3. Both the definition of a Schreier point of monoids and the proof that Mon is
a Σ-protomodular category, when Σ is the class of Schreier points, only make
use of finite limits. Hence they are invariant under the Yoneda embedding. This
means that it makes sense to consider internal Schreier points in every category
MonE of internal monoids in any category E, and thatMonE is Σ-protomodular
w.r.t. the class of such points. The same is true if we replace Mon with every
Jónsson-Tarski variety.

4. A quandle [19, 26] is a set A equipped with two binary operations � and �−1

such that the following identities hold (for all a, b, c ∈ A):

(A1) a� a = a = a�−1 a (idempotency);
(A2) (a� b)�−1 b = a = (a�−1 b)� b (right invertibility);
(A3) (a� b)� c = (a� c)� (b� c) and

(a�−1 b)�−1 c = (a�−1 c)�−1 (b�−1 c) (self-distributivity).

The structure of quandle is of interest in knot theory, since the three axioms
above correspond to the Reidemeister moves on oriented link diagrams. A quan-
dle homomorphism is a map which preserves both � and �−1. In the category
Qnd of quandles and quandle homomorphisms, a point (f, s) : A � B is called
puncturing (resp. acupuncturing) if, for every b ∈ B, the map μb : f

−1(b) →
f−1(b), defined by μb(a) = s(b)� a, is surjective (resp. bijective). In [7] it was
shown that Qnd is a Σ-Mal’tsev category (which is not a Σ-protomodular one)
with respect to both classes of puncturing and acupuncturing points.

5. Let CatB be the fiber above a set B of the fibration ( )0 : Cat → Set which
associates with every category its set of objects. A point (F, S) in CatB has
fibrant splittings [6] if, for every arrow ϕ in the codomain of F , the arrow S(ϕ)
is cartesian. CatB is Σ-protomodular (and hence Σ-Mal’tsev) for the class Σ
of points with fibrant splittings. We observe that Mon is Cat1, where 1 is the
one-element set, and that in this case the notion of point with fibrant splittings
reduces to the notion of Schreier point.

We say that the class Σ is point-congruous when ΣPtE is closed under finite limits
in PtE (which implies that it contains all the isomorphisms); in this case ΣlE2 is
closed under finite limits in E

2. If C is a Jónsson-Tarski variety, and Σ is the class
of Schreier points, then Σ is a point-congruous class. This is the case, in particular,
for the categories Mon of monoids and SRng of semirings. Similarly, if C = CatB ,
the class of points with fibrant splitting is point-congruous. If C = Qnd, the class of
acupuncturing points is point-congruous. Recall from [8] the following remarkable:

Theorem 2.6. Suppose Σ is point-congruous and E is a Σ-Mal’tsev category, then:

1. when gf and g are Σ-special, so is f ;

2. for any object Y , the subcategory Σl/Y of the slice category E/Y is a Mal’tsev
category.

In particular, if we denote by ΣE� = Σl1E the full subcategory of E whose objects
are the Σ-special objects, it is a Mal’tsev category [13, 8], called the Mal’tsev core
of the point-congruous Σ-Mal’tsev category E; any of its morphisms is Σ-special. If
C = Mon, ΣC� is the category Gp of groups; if C = SRng, ΣC� is the category Rng
of (not necessarily unitary) rings (in both cases, we are considering the class Σ of



310 DOMINIQUE BOURN and ANDREA MONTOLI

Schreier points). If C = Qnd, and Σ is the class of acupuncturing points, ΣC� is the
category of Latin quandles, i.e. those quandles whose Cayley table for the operation
� is a Latin square.

3. The regular context

In this section we suppose that the ground category E is regular. Then the cate-
gories E2 and PtE are regular as well, and their regular epimorphisms are the levelwise
ones.

We recall from [4] the following definition (see also [17], where the notion was first
considered, under the name of double extension, in the category of groups):

Definition 3.1. Let E be a regular category. Consider the following commutative
square of regular epimorphisms:

X

f
����

x �� �� X ′

f ′
����

Y
y

�� �� Y ′.

It is said to be a regular pushout if the induced morphism (f, x) : X → Y ×Y ′ X ′ into
the pullback of y and f ′ is a regular epimorphism.

Any regular pushout is, in particular, a pushout. Moreover, if we consider the
commutative diagram

R[f ]

df
1

��
df
0

��

R(x)�� �� R[f ′]

df′
1

��
df′
0

��
R[x]

R(f)
����

dx
0 ��

dx
1

�� X

��

��

f
����

x �� �� X ′

��

f ′
����

R[y]
dy
0 ��

dy
1

�� Y y
�� ���� Y ′,

where we denote by R[x] the kernel pair of x, and by R(f) the morphism between
the kernel pairs induced by f , we have that the induced arrows R(f) and R(x) are
regular epimorphisms.

Proposition 3.2. Let E be a regular Σ-Mal’tsev category. Consider any regular epi-
morphism of points as on the right-hand side of the following diagram:

R[x]

R(f)

��

dx
0 ��

dx
1

�� X��

f

��

x �� �� X ′

f ′

��
R[y]

R(s)

��

dy
0 ��

dy
1

�� Y y
�� ����

s

��

Y ′.

s′

��

When its domain (f, s) is in Σ, or when the regular epimorphism y is Σ-special, the
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downward square on the right is a regular pushout, and the arrow R(x) : R[f ] → R[f ′]
is a regular epimorphism.

Proof. Consider the diagram

R[x]

R(f)

��

ψ �� X̄

f̄

��

d̄y
0 �� X

f

��

φ �� X̄ ′

f̄ ′

��

ȳ �� X ′

f ′

��
R[y]

R(s)

��

R[y]

s̄

��

dy
0

�� Y

s

��

Y

s̄′

��

y
�� Y ′,

s′

��

where (f̄ ′, s̄′) is the pullback of (f ′, s′) along y, (f̄ , s̄) is the pullback of (f, s) along
dy0, and ψ and φ are induced by the universal property of the pullback. Since E is a
Σ-Mal’tsev category, ψ is a regular epimorphism whenever (f, s) is in Σ, or whenever
(dy0, s

y
0) is in Σ, namely when y is Σ-special. Denote by δ1 = (xd̄y0, d

y
1 f̄) : X̄ → X̄ ′ the

induced morphism into the pullback. The morphism δ1 is the pullback of x along ȳ,
and so it is a regular epimorphism. Moreover, we get φdx1 = δ1 ψ, which is a regular
epimorphism, being the composite of two regular epimorphisms. Accordingly, φ itself
is a regular epimorphism, and the square in question is a regular pushout.

Whence an important consequence about the direct images of equivalence relations
along regular epimorphisms; in general they are no longer equivalence relations, but
only reflexive and symmetric ones. However, we get:

Corollary 3.3. Let E be a regular Σ-Mal’tsev category, f : X � Y a regular epimor-
phism, and R an equivalence relation on X. When R is a Σ-equivalence relation, or
when f is Σ-special, the direct image f(R) is itself an equivalence relation on Y .

Proof. Consider the following diagram, where f(R) is given by the canonical decom-
position R � f(R) � Y × Y of the map (f dR0 , f dR1 ) : R → Y × Y :

R

dR
0

��

f̌ �� ��

dR
1

��

f(R)

d0

��
d1

��
X

f
�� ��

sR0

��

Y.

s0

��

According to the previous proposition, under the assumption thatR is a Σ-equivalence
relation or that f is Σ-special, the split vertical square indexed by 0 is a regular
pushout. Accordingly, the induced arrow R(f̌) : R[dR0 ] → R[d0] is a regular epimor-
phism. Thanks to Proposition 1.14 in [9], we obtain that f(R) is an equivalence
relation.

Proposition 3.4. Let E be a regular Σ-Mal’tsev category. Consider a commutative
square of regular epimorphisms as below, where f is Σ-special:

X

f
����

x �� �� X ′

f ′
����

Y
y

�� �� Y ′.

(2)
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Suppose, moreover, that the induced arrow R(x) : R[f ] → R[f ′] is a regular epimor-
phism. Then the square (2) is a regular pushout and the arrow R(f) : R[x] → R[y] is
a regular epimorphism. In other words, (2) is a regular pushout if and only if R(x) is
a regular epimorphism.

Proof. Complete Diagram (2) by the kernel equivalence relations of the vertical maps:

R[f ]

df
0

��

R(x)�� ��

df
1

��

R[f ′]

df′
0

��
df′
1

��
X

x
�� ��

f
����

sf0

��

X ′

f ′
����

sf
′

0

��

Y
y

�� �� Y ′.

The previous proposition shows that the non-dotted upper part of this diagram is a
regular pushout, and consequently, that the induced arrow ψ : R[f ] → R[f ′], where
R[f ′] is the pullback of df

′
0 and x, is a regular epimorphism. The same method as in

the previous proposition allows us to show that the induced arrow φ : X → X̄ ′, where
X̄ ′ is the pullback of f ′ and y, is a regular epimorphism, and consequently, that the
square (2) is a regular pushout.

4. The denormalized 3× 3 lemma

4.1. Preliminary observations
A diagram

G
d0

��
d1 ��

Xs0�� f �� Y, (3)

where the left-hand side part is a reflexive graph and f coequalizes the pair (d0, d1),
is said to be left exact when G is the kernel equivalence relation R[f ] of f , while it is
right exact when f is the coequalizer of the pair (d0, d1). It is said to be exact when
it is both left and right exact.

A commutative diagram

R[φ]

dφ
0

��
dφ
1

��

R(dx
1 )
��

R(dx
0 ) ��

R[f ]

df
0

��
df
1

��

�� R(x) �� R[f ′]

df′
0

��
df′
1

��
R[x]

φ
����

��

dx
0

��

dx
1 ��

X

f
����

��

�� x �� �� X ′

f ′
����

��

W
y0

��
y1 ��

Y��
y

�� �� Y ′

(4)

is said to be a weakly 3× 3 diagram when the middle row and the three columns are
exact, and a 3× 3 diagram when all the rows and columns are exact. In a weakly
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3× 3 diagram, the pair (R(dx0), R(dx1)) is necessarily jointly monomorphic, and the
map y is necessarily an extremal epimorphism. Since φ is an epimorphism, the lower
row is right exact if and only if the lower right-hand side square is a pushout. Now
suppose E is regular.

Proposition 4.2 ([4]). Let E be a regular category. In a weakly 3× 3 diagram, the
upper row is left exact if and only if the pair (y0, y1) is jointly monomorphic.

We recall from [4] the “denormalized 3× 3 lemma” for regular Mal’tsev categories:

Proposition 4.3. Let E be a regular Mal’tsev category. Given any weakly 3× 3 dia-
gram (4), the following conditions are equivalent:

(i) the upper row is exact;

(ii) the lower row is exact;

(iii) (4) is a 3× 3 diagram.

In any category E, we shall say that a weakly 3× 3 diagram (4) satisfies the
denormalized 3× 3 lemma if the three previous conditions are equivalent for the
diagram.

Proposition 4.4. Let E be a regular category. A weakly 3× 3 diagram (4), such that
the lower right-hand side square is a regular pushout, satisfies the 3× 3 lemma.

Proof. In such a diagram, the maps R(x) and R(f) are necessarily regular epimor-
phisms. Since the lower right-hand side square is a pushout, the lower row is right
exact. Suppose now that the lower row is left exact; then the upper row is left exact
by Proposition 4.2. Since R(x) is a regular epimorphism, the upper row is exact.
Conversely, when the upper row is exact, the pair (y0, y1) is jointly monomorphic,
and the induced arrow t : W → R[y] is a monomorphism such that t φ = R(f). Since
R(f) is a regular epimorphism, t is a regular epimorphism as well, and consequently,
an isomorphism. Accordingly the lower row is left exact and, since g is a regular
epimorphism, right exact.

4.5. The regular Σ-Mal’tsev context
We shall now investigate what is remaining of the denormalized 3× 3 lemma in a

regular Σ-Mal’tsev category E.

Theorem 4.6. Let E be a regular Σ-Mal’tsev category. Consider a weakly 3× 3 dia-
gram (4):

1. if the morphism x is Σ-special and the lower row is exact, then the upper row
is exact;

2. if the morphism f is Σ-special and the upper row is exact, then the lower row
is exact;

3. if both f and x are Σ-special, then the diagram (4) satisfies the denormalized
3× 3 lemma.

Proof. 1. If the lower row is exact, we have φ = R(f). According to Proposition 3.4,
the lower right-hand side square is a regular pushout, since x is Σ-special. Then
the upper row is exact by Proposition 4.4.
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2. When the upper row is exact, the map R(x) is a regular epimorphim. When
f is Σ-special, the lower right-hand side square is a regular pushout. Again by
Proposition 4.4, the lower row is exact.

3. It is an immediate consequence of (1) and (2).

We shall now investigate the conditions under which the rows are Σ-special. For
that, let us recall from [8] the following definition:

Definition 4.7. Let E be a regular category, and Σ a class of points. This class is
said to be 2-regular whenever, given any regular epimorphism of points as on the
right-hand side of the diagram

R[x]

R(f)

��

dx
0 ��

dx
1

�� X��

f

��

x �� �� X ′

f ′

��
R[y]

R(s)

��

dy
0 ��

dy
1

�� Y y
�� ����

s

��

Y ′,

s′

��

the point (f ′, s′) is in Σ as soon as both (f, s) and (R(f), R(s)) belong to Σ.

The reason why a class Σ satisfying the condition above is called 2-regular is that in
[8] three different levels of “regularity” (i.e. stability of Σ under regular epimorphisms)
were considered. Furthermore, if E is a regular category and Σ is a 2-regular class of
points in E, then the full subcategory Σl/Y of the slice category E/Y , whose objects
are the Σ-special morphisms, is a regular category (see Proposition 4.9 below).

Proposition 4.8. In the category Mon of monoids, the class Σ of Schreier points
is 2-regular (see [6], where it is asserted, but not proved). More generally, given
any finitely complete regular category E, the class of internal Schreier points in the
category MonE of internal monoids is 2-regular.

Proof. Consider a horizontal morphism of split epimorphisms, as in the lower right-
hand side part of the diagram

K[R(f)]
��

kR(f)

��

K(dx
0 ) ��

K(dx
1 )

�� K[f ]��
��

kf

��

K(x)�� �� K[f ′]
��

kf′
��

R[x]

qR

��

R(f)

��

dx
0 ��

dx
1

�� X

qf

��

��

f

��

x �� �� X ′

f ′

��

qf′

��

R[y]

R(s)

��

dy
0 ��

dy
1

�� Y y
�� ����

s

��

Y ′.

s′

��

Complete the diagram with the horizontal kernel pairs and the vertical kernels. Com-
mutation of limits makes the upper row left exact. Since y and x are regular epimor-
phisms, and since (f, s) is a Schreier point, then the lower right-hand side square is
a regular pushout by Proposition 3.2. Accordingly the map K(x) is a regular epi-
morphism and the upper row is right exact as well. The maps x and K(x) are still
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regular epimorphisms (= surjective maps) in the category Set of sets. Accordingly the
Schreier retractions qf and qR produce the desired retraction qf ′ . As for the internal
case, it is easy to check that the category MonE of internal monoids in E is regular
when E is regular. Then the proof is just an internal version of the one we did for
Mon.

The class of acupuncturing points in the category Qnd of quandles is 2-regular,
see [7].

Proposition 4.9. Let Σ be a point-congruous and 2-regular class of points in a regu-
lar category E. Then the full subcategory Σl/Y of the slice category E/Y is a regular
category. Moreover, if f and h are as in diagram (5) below, if h a regular epimorphism,
and there exists a morphism g such that f factors as f = g h, then g is Σ-special if
and only if f and φ are. In other words, a map h in E/Y is a regular epimorphism in
Σl/Y if and only if it is a regular epimorphism in E such that the kernel equivalence
relation R[f ] belongs to Σl/Y . Accordingly, when E is Barr-exact, the category Σl/Y
is Barr-exact as well.

Proof. Let us first show that Σl/Y admits quotients of effective equivalence relations.
Consider a morphism h in Σl/Y as in the lower right-hand side square in the diagram
below (which means that both f and f ′ are Σ-special):

R[φ]

dφ
0

��
dφ
1

��

R(dh
1 )

��

R(dh
0 ) ��

R[f ]

df
0

��
df
1

��

�� R(h) �� R[f ′]

df′
0

��
df′
1

��
R[h]

φ

��

��

dh
0

��

dh
1 ��

X

f

��

��

�� h �� X ′

f ′

��

��

Y Y Y.

(5)

By commutation of limits, the upper row is left exact, and so the left-hand side of
the two-level upper part of the diagram produces the kernel equivalence relation of
the right-hand side morphism (h,R(h)) in the category EqE of equivalence relations
in E. Since Σ is point-congruous and both R[f ] and R[f ′] are Σ-equivalence relations,
so is R[φ], and hence φ is Σ-special. Now let h = mx be the decomposition of h
with m a monomorphism and x a regular epimorphism, so that we have R[h] = R[x]
and R[φ] = R[R(x)]. In this way, we get the following regular epimorphism (x,R(x))
between equivalence relations on the right-hand side:

R[φ] = R[R(x)]

dφ
0

��
dφ
1

��

R(dh
1 )

��

R(dh
0 ) ��

R[f ]

df
0

��
df
1

��

�� R(x)�� �� R[f ′ m]

df′
0

��
df′
1

��
R[h] = R[x]

��

dh
0

��

dh
1 ��

X

��

��
x

�� �� X ′′,

��

because the morphism R(x) is a regular epimorphism: indeed, by (f ′ m)x = f , x
is a regular epimorphism in the regular category E/Y . Then so is the product
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x×Y x = R(x) in this same category. According to the 2-regularity of Σ, the right-
hand side equivalence relation is a Σ-equivalence relation, and x : f → f ′ m is a regular
epimorphism in Σl/Y . Since E is regular, it is clear that these regular epimorphisms in
Σl/Y are stable under pullbacks. Suppose now that E is Barr-exact and R is an equiv-
alence relation on the object f in Σl/Y , which means that the map φ = f dR0 = f dR1
is Σ-special. Since E is Barr-exact, there is some regular epimorphism h in E such
that R = R[h], whence the existence of a morphism f ′ as above, with f ′ Σ-special,
according to the first part of this proof. Hence the equivalence relation R is effective
in Σl/Y .

From now on, saying that an exact fork (3) is Σ-exact will mean that the morphism
f is Σ-special.

Theorem 4.10. Let E be a regular Σ-Mal’tsev category. Consider a weakly 3× 3
diagram (4). Then:

1. if Σ is point-congruous, the map x is Σ-special, and the lower row is Σ-exact,
then the upper row is Σ-exact;

2. if the class Σ is 2-regular, the maps f and x are in Σ, and the upper row is
Σ-exact, then the lower row is Σ-exact.

Proof. 1. We know, by Theorem 4.6, that the upper row is exact. Moreover, since Σ
is point-congruous, the category ΣlE is stable under finite limits in E

2. Accord-
ingly, since both x and y are Σ-special, so is R(x).

2. The map f being Σ-special and the upper row being exact, the lower row is
exact by Theorem 4.6. Since x and R(x) are Σ-special, R[x] and R[φ] = R[R[x]]
are Σ-equivalence relations. Since Σ is 2-regular, W = R[y] is a Σ-equivalence
relation, too. Consequently, the map y is Σ-special.

There is a last situation dealing with the denormalized 3× 3 lemma. We noticed
that Σl/Y is a finitely complete category when Σ is point-congruous, and a Mal’tsev
category when E is a Σ-Mal’tsev category. By Proposition 4.9, we know, moreover,
that Σl/Y is regular when Σ is 2-regular.

Proposition 4.11. Let E be a regular Σ-Mal’tsev category such that the class Σ is
point-congruous and 2-regular. Any weakly 3× 3 diagram (4) in E such that y, f ′,
and f ′ x = y f are Σ-special satisfies the denormalized 3× 3 lemma.

Proof. Let us think of diagram (4) as a diagram in the regular category E/Y ′. In
this diagram, from any object there is a unique map to Y ′, so that any object in
E/Y ′ can be identified with its domain. Here any object lies in Σl/Y ′ except R[φ]
and W . When the lower row is exact, W is in Σl/Y ′, and so is R[φ]. When the upper
row is exact, R[φ] belongs to Σl/Y ′, and according to Proposition 4.9 so does W . So,
under any of the conditions of the denormalized 3× 3 lemma, the whole diagram lies
in the regular Mal’tsev category Σl/Y ′, and the denormalized 3× 3 lemma holds by
Proposition 4.3.
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5. Σ-protomodular categories

5.1. Preliminary observations

We recall that a category E is said to be protomodular [1] when any change-of-base
functor with respect to the fibration of points is conservative. In the pointed context,
this condition implies that the category E shares with the category Gp of groups the
following well-known four properties:

(i) a morphism f is a monomorphism if and only if its kernel K[f ] is trivial; equiv-
alently, pulling back reflects monomorphisms;

(ii) any regular epimorphism is the cokernel of its kernel; in other words, any regular
epimorphism produces a short exact sequence;

(iii) there is a very specific class of monomorphisms m : U � X, the normal ones,
namely those such that there exists a (necessarily unique) equivalence relation
R on X such that m−1(R) is the indiscrete equivalence relation on U , and any
commutative square in the following induced diagram is a pullback:

U × U

dU
0

��

�� m̌ ��

dU
1

��

R

dR
0

��
dR
1

��
U ��

m
��

sU0

��

X;

sR0

��

(iv) any reflexive relation is an equivalence relation, i.e. the category E is a Mal’tsev
one.

We are now interested in seeing what remains of the properties above if we consider
categories that are protomodular relatively to a pullback stable class Σ of points. To
do that, let us first recall the following definition, see [5] and [23]:

Definition 5.2. A point (f, s) in E is called strong whenever, given any pullback

X̄
x ��

f̄
��

X

f

��
Ȳ

y
��

s̄

��

Y,

s

��

the pair (x, s) is jointly extremal epimorphic.

And also the following one, see [6], and [13] in the pointed case:

Definition 5.3. Let E be a category endowed with a pullback stable class Σ of points.
E is said to be Σ-protomodular when every point in Σ is strong.

A category E is protomodular if and only if every point is strong. Let us now review
the four previous properties with respect to this concept of partial protomodularity.
As for (iv), we have the following:

Theorem 5.4 ([6]). Let E be a category endowed with a pullback stable class Σ of
points. Then:
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1. when E is Σ-protomodular, it is a Σ-Mal’tsev category;

2. when, in addition, Σ is point-congruous, any change-of-base functor with respect
to the subfibration ¶Σ

E
of the fibration of points is conservative.

As for (i) we get:

Proposition 5.5. Let E be a Σ-protomodular category. Then:

1. the split epimorphic part of a point in Σ is an isomorphism if and only if any
of its pullbacks is an isomorphism;

2. pulling back Σ-special morphisms reflects monomorphisms.

In particular, when E is pointed, more classically we get:

1. the split epimorphic part of a point in Σ is an isomorphism if and only if its
kernel is trivial;

2. a Σ-special morphism is a monomorphism if and only if its kernel is trivial.

Proof. 1. Consider the following pullback, with (f, s) in Σ, and suppose f ′ is an
isomorphism:

X ′ ḡ ��

f ′

��

X

f

��
Y ′ g ��

s′

��

Y.

s

��

We get s′ f ′ = 1X′ . We can check that s f = 1X by composing with the jointly
extremal epimorphic pair (s, ḡ). The equality s f s = 1X s is straightforward.
Moreover, s f ḡ = ḡ s′ f ′ = ḡ = 1X ḡ.

2. Consider the following diagram, where f is Σ-special and the lower square is a
pullback:

R[f ′]

df′
0

��

R(ḡ) ��

df′
1

��

R[f ]

df
0

��
df
1

��
X ′

ḡ
��

f ′

��

sf
′

0

��

X

f

��

sf0

��

Y ′
g

�� Y.

Then the two upper commutative squares are pullbacks, and the pair (df0 , s
f
0 )

is in Σ. Suppose, moreover, that f ′ is a monomorphism; then df
′

0 is an iso-

morphism. According to (1), the map df0 is itself an isomorphism, and f is a
monomorphism.

As for (ii), we get:
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Proposition 5.6. Let E be a Σ-protomodular category. Then:

1. given any pullback of the point (f, s) in Σ:

X ′ ḡ ��

f ′

��

X

f

��
Y ′

g
��

s′

��

Y,

s

��

the downward square is a pushout;

2. consider any pullback of the form

X ′ ḡ ��

f ′

��

X

f

��
Y ′

g
�� Y.

If there exists a factorization f h = g and f is a Σ-special regular epimorphism,
the square is a pushout as well.

In particular, when E is pointed, more classically we get:

1. any split epimorphism in Σ is the cokernel of is kernel;

2. any Σ-special regular epimorphism is the cokernel of its kernel.

Proof. 1. Suppose we have a pair of morphisms α : X → Z, γ : Y ′ → Z such that
α ḡ = γ f ′. We have that α s f = α: this can be checked by composing with
the jointly extremal epimorphic pair (s, ḡ). Since f is an epimorphism, this
factorization is unique. It remains to check that α s g = β; this can be done by
composing with the epimorphism f ′.

2. Consider the same pullback without splittings, with f a Σ-special morphism,
and f h = g. Then the map h produces a splitting (1, h) : Y ′ → X ′ of f ’, which
is then an epimorphism. Now complete the diagram with the kernel equivalence
relations:

R[f ′]

df′
0

��

R(ḡ) ��

df′
1

��

R[f ]

df
0

��
df
1

��
X ′

f ′

��

ḡ
��

sf
′

0

��

X

f

��

sf0

��

Y ′
g

�� Y.

Any commutative square in the upper part is a pullback; moreover, the pair
(df0 , s

f
0 ) is in Σ, because f is Σ-special. Suppose we have a pair of morphisms

α : X → Z, γ : Y ′ → Z such that α ḡ = γ f ′. Let us show that α coequalizes
the pair (df0 , d

f
1 ). This can be checked by composing with the jointly extremal
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epimorphic pair (sf0 , R(ḡ)). We have

αdf0 s
f
0 = α = αdf1 s

f
0 ,

and

αdf0 R(ḡ) = α ḡ df
′

0 = γ f ′ df
′

0 = γ f ′ df
′

1 = α ḡ df
′

1 = αdf1 R(ḡ).

Since f is a regular epimorphism, there is a unique morphism ᾱ : Y → Z such
that f ᾱ = α. The equality ᾱ g = γ can be checked by composing with the epi-
morphism f ′.

In the regular context we can add the following precision:

Proposition 5.7. Let E be a pointed regular Σ-protomodular category and f a Σ-
special regular epimorphism. Let g : X → Y ′ be a Σ-special morphism such that kg =
kf , where kg and kf are the kernels of g and f , respectively. Then the unique arrow
t such that g = t f is a monomorphism.

Proof. We have 0 = g kg = g kf . Moreover, f , being Σ-special, is the cokernel of kf (by
Proposition 5.6). Hence we get the induced morphism t, and an inclusion i : R[f ] �
R[g] between two Σ-equivalence relations. Now consider the diagram

R[f ] ��
i

��

df
0 ��

K[f ] = K[g] �� (0,kg) ��
		

(0,kf )
		

f ′

��

R[g]

dg
0

��
1 �� ��

��

Y

sf0





Y.

sg0

��

The rectangle is a pullback and (dg0, s
g
0) is in Σ, so the pair (sg0, (0, kg)) is jointly

extremal epimorphic. Since the pair (sf0 , (0, kf )) factors through the monomorphism i,
i is an isomorphism. Hence we get R[f ] � R[g], which implies, in the regular category
E, that t is a monomorphism.

As for (iii), we recall from [6] the following:

Proposition 5.8. Let E be a Σ-Mal’tsev category. When m : U � X is a monomor-
phism which is normal to a Σ-equivalence relation S on X, the object U is Σ-
special. When E is Σ-protomodular, a monomorphism m is normal to at most one
Σ-equivalence relation.

As a first step toward the 3× 3 lemma, we get:

Proposition 5.9. Let E be a pointed Σ-protomodular category. Consider any mor-
phism between points, with codomain (f, s) in Σ:

X ′ ḡ ��

f ′

��

X

f

��
Y ′

g
��

s′

��

Y.

s

��

(6)

Suppose, moreover, that the induced arrow φ : X ′ → X̌, where X̌ is the pullback of
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(f, s) along g, is a monomorphism. Then the square (6) is a pullback if and only
if the map K(ḡ) : K[f ′] → K[f ] is an isomorphism. It is clear that the condition
on φ holds as soon as ḡ is a monomorphism (the splittings making then g itself a
monomorphism).

Proof. Clearly if (6) is a pullback, then K(ḡ) is an isomorphism. Conversely, consider
the following diagram with exact columns:

K[f ′]
K(ḡ) ��

��
kf′

��

K[f̌ ]
��

(0,kf )
��

K[f ]
��

kf

��
X ′

f ′
��

�� φ �� X̌
ǧ ��

f̌
��

X

f
��

Y ′
s′

��

Y ′ g ��

š

��

Y.

s

��

Since E is Σ-protomodular and (f, s) in Σ, (f̌ , š) is in Σ, too, and the pair (š, (0, kf )) is
jointly extremal epimorphic. Since s′ and kf ′ K(ḡ)−1 produce factorizations through
the monomorphism φ, φ is an isomorphism, and the square (6) is a pullback.

Corollary 5.10. Let E be a pointed regular Σ-protomodular category.

1. Let f ′ be a regular epimorphism such that f ′ = f m with m a monomorphism
and f a Σ-special morphism. If k(m) : K[f ′] → K[f ] is an isomorphism, then
m is an isomorphism, too.

2. Consider a commutative diagram

K[f ′]

K(ḡ) ����

��
kf′

�� X ′ f ′
�� ��

ḡ

��

Y ′

g
����

K[f ] ��
kf

�� X
f

�� �� Y,

(7)

where f is a Σ-special regular epimorphism and f ′ is a regular epimorphism.
Then ḡ is a regular epimorphism and the right-hand side square is a regular
pushout as soon as both g and K(ḡ) are regular epimorphisms. Accordingly the
map K(f ′) : K[ḡ] → K[g] is a regular epimorphism as well.

Proof. 1. Consider the diagram

K[f ′]
��

K(m) �
��

��
(0,kf′ )

�� R[f ′]
��

R(m)

��

df′
0 ��

df′
1

�� X ′
sf

′
0

��
��

m

��

f ′
�� �� Y

K[f ] ��
(0,kf )

�� R[f ]
df
0 ��

df
1

�� X
f

�� ��sf0
�� Y.

We can apply the previous proposition to the central square, because K(m) is

an isomorphism. The point (df0 , s
f
0 ) is in Σ, since f is Σ-special. Consequently,

the central square indexed by 0 is a pullback, and this central part of the dia-
gram becomes a discrete fibration between equivalence relations. According to
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the Barr-Kock Theorem valid in any regular category (see, for example, [10]),
the right-hand side square is a pullback as well, since f and f ′ are regular
epimorphisms. Accordingly m is an isomorphism.

2. Consider the diagram (7). Let ḡ = mǧ be the decomposition of ḡ with
m : U � X a monomorphism and ǧ a regular epimorphism. Then f m : U → Y
is a regular epimorphism, because g and f ′ are. Since K(ḡ) is a regular epimor-
phism, and hence a strong epimorphism, there is a unique arrow k : K[f ] → U
such that mk = kf , and this k is necessarily the kernel of the regular epimor-
phism f m. Whence K(m) = 1K[f ], so that, according to the first point, m is
an isomorphism and ḡ is a regular epimorphism.
Now take the pullback f̄ of f and g:

X̄
f̄ ��

ǧ
��

Y ′

g
��

X
f

�� Y.

f̄ is a Σ-special regular epimorphism, since f is. Let ḡ = ǧ ψ be the induced
decomposition through this pullback. Consider now the following commutative
diagram, where the lower row is a Σ-special exact sequence and f ′ is a regular
epimorphism:

K[f ′]

K(ḡ)=K(ψ)
����

��
kf′

�� X ′ f ′
�� ��

ψ

��

Y

K[f ] ��
(kf ,0)

�� X̄
f̄

�� �� Y.

The map ψ is a regular epimorphism, since K(ψ) = K(ḡ) is a regular epimor-
phism. Accordingly, the square g f ′ = f ḡ is a regular pushout.

6. Aspects of the 3× 3 lemma

In a pointed category, a short exact sequence is a sequence K[f ] �� kf �� X
f �� �� Y,

where kf is the kernel of f and f the cokernel of kf . In a pointed protomodular
category, a regular epimorphism f is the cokernel of its kernel, and so it gives rise
to an exact sequence. In a Σ-protomodular category, Proposition 5.6 shows that any
Σ-special regular epimorphism f determines an exact sequence, as well.

A commutative diagram

K[φ]
��

kφ

��

��K(kx) �� K[f ]
��
kf

��

K(x) �� K[f ′]
��
kf′
��

K[x]

φ ����

��
kx

�� X

f����

x
�� �� X ′

f ′
����

U
u

�� Y
y

�� �� Y ′

(8)
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in a pointed category E is said to be a weakly 3× 3 diagram when the three columns
and the middle row are exact, and a 3× 3 diagram when all the columns and rows
are exact. In a pointed regular protomodular category the 3× 3 lemma holds:

Proposition 6.1 ([3]). Given a weakly 3× 3 diagram (8) in a pointed regular pro-
tomodular category E, the following conditions are equivalent:

1. the upper row is exact;

2. the lower row is exact;

3. (8) is 3× 3 diagram.

Given a weakly 3× 3 diagram (8) in a pointed category, we say that it satisfies the
3× 3 lemma when the three previous conditions are equivalent for the diagram.

Suppose now that E is a pointed regular Σ-protomodular category. We shall be
interested in the weakly Σ-special 3× 3 diagrams, namely those diagrams whose three
columns and middle row are Σ-exact, i.e. where f , f ′, φ, and x are Σ-special regular
epimorphisms, and consequently, produce exact sequences.

The next proposition is a version for Σ-protomodular categories of the so-called
upper 3× 3 lemma (the terminology is borrowed from [18]):

Proposition 6.2. Let E be a pointed regular Σ-protomodular category and let (8)
be a weakly Σ-special 3× 3 diagram. Suppose, moreover, that Σ is point-congruous.
When the lower row is Σ-exact, so is the upper row.

Proof. By assumption, y is a Σ-special regular epimorphism, u is the kernel of y, and
φ = K(f). This last equality implies that the upper row is left exact by commutation
of limits, namely that K(kx) is the kernel of K(x).

According to Corollary 5.10, this implies that the lower right-hand side square
in (8) is a regular pushout, and hence K(x) is a regular epimorphism. When Σ is
point-congruous, the map K(x) is in Σ, because x and y are.

The converse implication, the so-called lower 3× 3 lemma, requires further infor-
mation, pointing out an asymmetric situation when compared to the upper 3× 3
lemma.

Definition 6.3. Let Σ be a pullback stable class of points in a pointed category E. We
say that this class is equi-consistent when, given any split epimorphism of equivalence
relations

R

dR
0

��
dR
1

��

ḡ
�� S

dS
0

��
dS
1

��

t̄��

X

��

g
�� Y,

��

t��

(9)

where R a Σ-equivalence relation and the split epimorphism (g, t) is in Σ, (ḡ, t̄) is in
Σ as soon as (K0(ḡ),K0(t̄)) is in Σ, where K0(ḡ) and K0(t̄) are the restrictions of ḡ
and t̄ to the kernels of dR0 and dS0 .

When Σ is point-congruous, the equivalence relation S is a Σ-one as well, since
the morphism (t, t̄) is an equalizer in PtE. Hence the previous condition becomes a
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characteristic one: namely, under the same assumptions of the previous proposition,
the point (ḡ, t̄) is in Σ if and only if the point (K0(ḡ),K0(t̄)) is in Σ. Indeed, being Σ
a point-congruous class, the kernel of a map in ΣPtE is still in ΣPtE.

Proposition 6.4. The class of Schreier points in Mon is equi-consistent. The same
holds for the class of internal Schreier points in MonE.

Proof. Consider a commutative diagram like (9) in Mon. Denote by q the Schreier
retraction of the Schreier point (g, t); thanks to Proposition 2.4 in [12], we know that
the map q satisfies the equalities x = q(x) · tg(x) for all x ∈ X, and q(k · t(y)) = k for
all (k, y) ∈ K[g]× Y . Proposition 2.1.5 in [11] tells us that the following two equalities
also hold:

1. q(x · x′) = q(x) · q(tg(x) · q(x′)) for all (x, x′) ∈ X ×X;

2. q(t(y) · k) · t(y) = t(y) · k for all (k, y) ∈ K[g]× Y .

Because of the uniqueness of q, it suffices to show that q(x)Rq(x′) whenever xRx′.
The equi-consistent assumption means that, when x = 1, we have 1Rq(x′). Since
R is a Schreier equivalence relation, there is a Schreier retraction χ : R → K[dR0 ]
satisfying the conditions 1Rχ(xRx′), x′ = χ(xRx′) · x, and χ(zR(u · z)) = u for all
z ∈ X, whenever we have 1Ru. Starting with xRx′, we get 1Rχ(xRx′) and x′ =
χ(xRx′) · x′. Hence we get from (1) that:

q(x′) = q(χ(x, x′)) · q(tgχ(x, x′) · q(x)).
So, from 1Rqχ(xRx′), we also get (q(tgχ(x, x′) · q(x)))Rq(x′). Now, from (2) we have:

q(tgχ(x, x′) · q(x)) · tgχ(x, x′) = tgχ(x, x′) · q(x).
So, from 1Rtgχ(x, x′), we get

q(x)Rtgχ(x, x′) · q(x) and q(tgχ(x, x′) · q(x))Rtgχ(x, x′) · q(x).
Whence the following situation:

q(x)
R ��

��

tgχ(x, x′) · q(x)

q(tgχ(x, x′) · q(x))
R

��

R

��

q(x′),

and q(x)Rq(x′) as desired. The second assertion is a straightforward consequence of
the Yoneda embedding.

Proposition 6.5. Let Σ be a pullback stable, 2-regular, equi-consistent class of points
in a pointed regular category E. Consider any regular epimorphism in PtE

X ′ ḡ �� ��

f ′

��

X

f

��
Y ′

g
�� ��

s′

��

Y

s

��

with domain (f ′, s′) in Σ and the morphisms g and ḡ Σ-special. Then (f, s) is in Σ
as soon as the restriction (K(f ′),K(s′)) to the kernels of g and ḡ is in Σ.
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Proof. Consider the following diagram:

K[ḡ]

K(f ′)
��

��(0,kḡ) �� R[ḡ]

R(f ′)
��

dḡ
0 ��

dḡ
1

�� X
′ ḡ �� ��

f ′

��

�� X

f

��
K[g]

K(s′)

��

��
(0,kg)

�� R[g]

R(s′)

��

dg
0 ��

dg
1

�� Y
′

g
�� ��

s′

��

�� Y.

s

��

Since R[g] and R[ḡ] are Σ-equivalence relations and the class Σ is equi-consistent, the
pair (R(f ′), R(s′)) is in Σ. Moreover, since Σ is 2-regular, the pair (f, s) is in Σ as
well.

Corollary 6.6. Let Σ be a pullback stable, point-congruous, 2-regular, equi-consistent
class of points in a pointed regular category E. Consider any regular pushout

X ′ x �� ��

f ′
����

X

f
����

Y ′
y

�� �� Y

such that the morphisms f ′, y, and x are Σ-special. Then the map f is Σ-special as
soon as the restriction K(f ′) : K[x] → K[y] is.

Proof. Consider the following diagram:

R[K(f ′)]

d
K(f′)
0

��
d
K(f′)
1

��

��R(kx) �� R[f ′]

df′
0

��
df′
1

��

R(x) �� �� R[f ]

df
0

��
df
1

��
K[x]

K(f ′)
����

��

�� kx �� X ′ x �� ��

��

f ′
����

X

f
����

��

K[y] ��
ky

�� Y ′
y

�� �� Y.

The maps R(x) and K(f ′) are regular epimorphisms, since the lower right-hand side
square is a regular pushout. The upper row is left exact by commutation of limits.
The map R(x) is Σ-special, because y and x are Σ-special and Σ is point-congruous.

Since f ′ and K(f ′) are Σ-special, the pairs (df
′

0 , sf
′

0 ) and (d
K(f ′)
0 , s

K(f ′)
0 ) are in Σ.

According to the previous proposition (df0 , s
f
0 ) is in Σ, and hence f is Σ-special.

Now we can state the version for Σ-protomodular categories of the so-called lower
3× 3 lemma:

Theorem 6.7. Let E be a pointed regular Σ-protomodular category for a point-congr-
uous, 2-regular, equi-consistent class Σ of points. Consider a weakly Σ-special 3× 3
diagram (8). When the upper row is Σ-exact, so is the lower one.

Proof. When Σ is point-congruous, the map K(f) : K[x] → K[y] is Σ-special, since f
and f ′ are. When the upper row is left exact, we get kφ = kK(f). By Proposition 5.7,
the morphism t such that K(f) = t φ is a monomorphism, and we get u = ky t.
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Since f ′ is Σ-special, and y and K(x) are regular epimorphisms, Corollary 5.10
implies that the lower right-hand side square is a regular pushout, so that K(f) is
a regular epimorphism. Accordingly t is a regular epimorphism and consequently, an
isomorphism, so that u is the kernel of y.

It remains to show that the regular epimorphism y is Σ-special. This is a conse-
quence of Corollary 6.6, since the lower right-hand side square is a regular pushout,
f and f ′ are Σ-special, and x and K(x) are Σ-special, this last point thanks to the
assumption that the upper row is Σ-exact.

There is a last situation dealing with the 3× 3 lemma. We observed that Σl/Y is
finitely complete when Σ is point-congruous, and regular when Σ is 2-regular. From
[8], we know, moreover, that Σl/Y is protomodular when E is Σ-protomodular. Recall
from [3] the following:

Definition 6.8. A category E is said to be quasi-pointed when it has an initial object
0 and the terminal map τ0 : 0 � 1 is a monomorphism. A category E is said to be
sequentiable when it is quasi-pointed, protomodular and regular.

Any fiber CatB (see Example 2.5 (5)) is quasi-pointed. The category GrdB of
groupoids with set of objects B is sequentiable. If a category E is pointed, regular
and Σ-protomodular with respect to a point-congruous and 2-regular class Σ, then
the category Σl/Y is sequentiable.

In a sequentiable category, the kernel of a map f is defined as the pullback of
f : X → Y along the monomorphic initial map αY : 0 � Y ; a sequence is said to be
exact when f is a regular epimorphism and the following pullback is a pushout as
well:

K[f ] �� kf ��

����

X

f

����
0 ��

αY

�� Y.

It was proved in [3] that, in a sequentiable category, any weakly 3× 3 diagram satisfies
the 3× 3 lemma with respect to this extended notion of exact sequence. Whence the
following:

Proposition 6.9. Let Σ be a point-congruous and 2-regular class of points in a
pointed regular Σ-protomodular category E. Any weakly 3× 3 diagram (8) in E such
that the morphisms y, f ′, and f ′ x = y f are Σ-special satisfies the 3× 3 lemma.

Proof. The proof is exactly on the same model as the one of Proposition 4.11. Let
us think of diagram (8) as a diagram in the regular category E/Y ′. In this diagram,
from any object there is a unique morphism to Y ′, so that any object in E/Y ′ can
be identified with its domain. In our case, any object lies in Σl/Y ′ except K[φ] and
U . When the lower row is exact, U is in Σl/Y ′, and so is K[φ]. When the upper row
is exact, the upper left-hand side square is a pullback, since kf ′ is a monomorphism.
Accordingly, kφ is also the kernel of f kx(= uφ), which is Σ-special, being in Σl/Y ′.
Hence the morphism u is a monomorphism by Proposition 5.7, and R[φ] = R[φu] =
R[f kx] is in Σl/Y ′; consequently, U is also in Σl/Y ′ by Proposition 4.9. In this
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way, under any of the conditions of the 3× 3 lemma, the whole diagram lies in the
sequentiable category Σl/Y ′, and the 3× 3 lemma holds.

6.10. The fibers CatY E

We recalled in Section 2 what is the class Σ of points with fibrant splittings in the
category CatY . As in Cat1 = Mon, there is a description of these points in terms of
Schreier retractions: they are those points (F, S) : A � B which are equipped with a
function q : A → K[F ] such that φ = q(φ)SF (φ) for all φ ∈ B, and q(k S(ψ)) = k for
all (k, ψ) ∈ K[F ]× B. q is called the internal Schreier retraction of the point (F, S)
(notice that, consequently, any split epimorphism above a groupoid has cofibrant
splittings: in this case we have q(φ) = φSF (φ−1)).

Given any category E, we denote by ( )0 : CatE → E the fibration associating its
object of objects with any internal category, and by CatY E the fiber above Y . When
E is a regular category, the category CatE of internal categories in E is no longer
regular, in general; however, so is any fiber CatY E, which is also quasi-pointed.

We say that an internal split epimorphic functor (F 1, S1) : X1 � Y 1 has cofibrant
splittings when there is a morphism q1 : X1 → K[F1] in the underlying category E such

that mX1
(kF1

q1, S1F1) = 1X1
and q1 mX1

(kF1
, S1) = p

K[F1]
0 , where mX1

denotes the
composition map of the internal category X1. Denote by ΣY the class of points with
cofibrant splittings. By the Yoneda embedding, we get (see [8]): 1) any split epimor-
phism above an internal groupoid has cofibrant splittings; 2) the class ΣY is stable
under pullbacks and point-congruous; and 3) any fiber CatY E is ΣY -protomodular,
and accordingly ΣY -Mal’tsev.

Proposition 6.11. Given any regular category E, any fiber CatY E is such that the
class of points having cofibrant splittings is 2-regular.

Proof. Thanks to the internal Schreier retractions, the same proof as in Proposi-
tion 4.8 holds.

Accordingly, Theorems 4.6 and 4.10, as well as Proposition 4.11, hold for the fibers
CatY E. As for the quasi-pointed version of the 3× 3 lemma, Propositions 6.2 and 6.9
hold as well. Let us conclude this section with the following observation:

Proposition 6.12. The class ΣY of points with fibrant splittings, in any fiber CatY ,
is equi-consistent. Given any category E, the same holds for any fiber CatY E.

Proof. The proof of the first assertion mimics the proof of Proposition 6.4. Starting
with a parallel pair (φ, φ′) : a ⇒ b such that φRφ′, we have to show that q(φ)Rq(φ′).
Since R is a ΣY -equivalence relation, there is an endo map χ(φ, φ′) : b → b such that
φ′ = χ(φ, φ′)φ and 1BRχ(φ, φ′); whence 1Rqχ(φ, φ′), since the point (K0F,K0S) has
fibrant splittings. As in the proof of Proposition 6.4, the identities

1. q(φ′) = qχ(φ, φ′) q(SFχ(φ, φ′) q(φ));

2. q(SFχ(φ, φ′) q(φ))SF (χ(φ, φ′)) = SFχ(φ, φ′)
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produce the diagram

q(φ)
R ��

��

SFχ(φ, φ′) q(φ)

q(SFχ(φ, φ′) q(φ))
R

��

R

��

q(φ′),

and so q(φ)Rq(φ′) as desired.
The proof of the second assertion is a consequence of the Yoneda embedding and

of the equations satisfied by the internal Schreier retractions.

Accordingly, Proposition 6.7 holds for any fiber CatY E, when E is regular.

7. A remark on Baer sums

In [25], given any Schreier exact sequence with abelian kernel in Mon

A �� kf �� X
f �� �� Y,

a monoid action φ : Y → End(A) of Y on A is produced, giving rise to an abelian
group Y �A � Y in the slice category Mon/Y . Then a Baer sum construction of
exact sequences giving rise to the same monoid action as above is described, together
with a so-called push forward construction of Baer sums.

In [7], a similar Baer sum construction is given for quandles, concerning Σ-special
exact sequences with abelian kernel equivalence relations, where Σ is the class
of acupuncturing points of quandles. Recall that a Σ-special map f : X → Y
has an abelian kernel equivalence relation when there is a Mal’tsev operation
p : R[f ]×X R[f ] → X in Σl/Y (see the proof of the lemma below for more details).

But, as proved in [21], a Schreier exact sequence in Mon has an abelian kernel if
and only if it has an abelian kernel equivalence relation. We can be even more precise
about this point:

Lemma 7.1. Given any Schreier equivalence relation R on X in Mon, the following
conditions are equivalent:

(i) K[dR0 ] is an abelian group;

(ii) for all 1Rt and xRx′, we get q(xR(x · t)) = q(x′R(x′ · t)), where q is the Schreier
retraction of the point (dR0 , s

R
0 );

(iii) the Schreier equivalence relation R is abelian.

Proof. We start by observing that the map q satisfies the following equalities (see
Corollary 2.8 in [24]):

(a) q(aRb) · b = q(bRa) · b = a;

(b) q((b · b′)R(a · a′)) = q(bRa) · q(bR(b · q(b′Ra′))).
Suppose (i). Thanks to the equality (a) above we get:

q(xR(x · t)) · x′ = q(xR(x · t)) · q(xRx′) · x = q(xRx′) · q(xR(x · t)) · x
= q(xRx′) · x · t = x′ · t.

Whence q(xR(x · t)) = q(x′R(x′ · t)) and (ii) holds.
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Now, assume that (ii) holds, and define the Mal’tsev operation by p(aRbRc) =
q(bRa) · c. First we have to show the Mal’tsev axioms, namely: p(aRaRc) = c =
p(cRaRa). We have:

q(aRa) · c = 1 · c = c = q(aRc) · a = p(cRaRa).

It remains to show that p is a monoid homomorphism, namely:

q(bRa) · c · q(b′Ra′) · c′ = q((b · b′)R(a · a′)) · c · c′.
Using the equality (b) above, it is enough to check the following equality:

q(bR(b · q(b′Ra′))) · c = c · q(b′Ra′).

We have bRc, so that, by (ii), it remains to check that:

q(cR(c · q(b′Ra′))) · c = c · q(b′Ra′).

This is true since the point (dR0 , s
R
0 ) is a Schreier point, so that (iii) holds.

The fact that condition (iii) implies (i) is true in any category.

As shown in [21], the fact that a Schreier exact sequence has an abelian kernel
if and only if it has an abelian kernel equivalence relation is actually true in every
category of monoids with operations in the sense of [22], in particular, in the category
SRng of semirings. An analogue of Lemma 7.1 can be proved in a very similar way
for all such algebraic structures.

According to Lemma 7.1, a Schreier exact sequence has an abelian kernel if and
only if it has an abelian kernel equivalence relation. This shows that both Baer sum
constructions in the categories Mon and Qnd appear to be of the same nature.

Actually they are both particular instances of a very general situation described
in [2] concerning Barr-exact Mal’tsev categories, which we are now going to recall.
First observe that the category Σl/Y , in both cases of Mon and Qnd is a Barr-
exact category by Proposition 4.9, since so are Mon and Qnd because they are both
varieties of universal algebras. Secondly Σl/Y , in both cases, is a Mal’tsev category,
since both Mon and Qnd are Σ-Mal’tsev ones.

Now, given any Mal’tsev category, we say that an object X is affine when it is
endowed with a (necessarily unique) Mal’tsev operation, namely a ternary opera-
tion p : X ×X ×X → X satisfying p(x, y, y) = x = p(y, y, x). Recall from [14] that a
Mal’tsev operation in any Mal’tsev category is necessarily associative and commuta-
tive. Denote by AffE the full subcategory of affine objects. An object X is abelian
when it is endowed with a (necessarily unique and abelian) internal group structure.
An abelian object is nothing but an affine objectX equipped with a point 0X : 1 � X;
in set-theoretical terms, the abelian group operation a+ b is just p(a, 0, b). Denote by
AbE the full subcategory of abelian objects, and by U : AbE → AffE the forgetful
functor. An object X has global support if the terminal map τX : X → 1 is a regular
epimorphism.

Definition 7.2 ([2]). Given a Barr-exact Mal’tsev category E and an affine object
X with global support, the direction d(X) of X is the abelian object defined by the
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diagram

X ×X ×X

p0

��
(p,p1p2)

��

(p0p0,p)
��

p2 ��
X ×X

p0

��
p1

��

�� qX �� �� d(X)

τd(X)

��
X ×X

p0

��
p1 ��

��

X

��

��
τX

�� �� 1,

oX

��

where p is the Mal’tsev operation and qX is the quotient of the upper horizontal
equivalence relation.

The two left-hand side vertical groupoid structures associated with the structure
of equivalence relation give rise (by passage to the quotient) to a vertical right-hand
side groupoid structure above the terminal object 1, namely to a group structure
in E. To make it short, we shall denote by the only symbol d(X) this whole group
structure. It is clear that, when X is an abelian object, we have d(U(X)) � X in a
natural way.

Take E = Σl/Y in Mon; the objects of E are the special Schreier homomorphisms
f : X → Y with codomain the monoid Y . The objects with global support are the
special Schreier surjective homomorphisms over Y . An object f is affine in E if and
only if it has an abelian kernel equivalence relation, i.e. if and only if it has an abelian
kernel. In this case, its direction is precisely the abelian group Y �A � Y described
at the beginning of this section.

Let us denote by Eg the full subcategory of E whose objects are the ones with
global support. We have the following:

Proposition 7.3 ([2], Proposition 6 and Theorem 7). Let E be a Barr-exact Mal’tsev
category. The construction of the direction gives rise to a finite products preserving
functor d : AffEg → AbE which is a cofibration whose morphisms in the fibers are
isomorphisms.

Suppose again that E is Σl/Y inMon. The fact that the morphisms in the fibers are
isomorphisms is nothing but the short five lemma for special Schreier exact sequences
(see Proposition 7.2.2 in [11] for a proof of this version of the short five lemma). More-
over, the construction of the cocartesian map above a morphism in AbE is precisely
what is called the push forward construction described in [25].

Proposition 7.4 ([2], Theorem 9). Let E be a Barr-exact Mal’tsev category. Given
any abelian object A in E, the groupoid d−1(A) is canonically endowed with a closed
symmetric monoidal structure, and any change-of-base functor of the cofibration d is
monoidal.

Proof. Given any pair of affine objects C and C ′, both with the abelian group A
as direction, we first observe that d(C × C ′) = A×A; then their Baer sum is the
codomain of the cocartesian map above the abelian group operation +: A×A → A,
namely the codomain of the quotient map of the equivalence relation on C × C ′
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determined by the following pullback in E:

R �� ��
��

��

A
��
(1A,−1A)

��
(C × C ′)× (C × C ′)

qC×C′
�� �� A×A.

When E is the category Σl/Y in Mon, the construction of this tensor product
on the fiber d−1(Y �A � Y ) coincides with the Baer sum, described in [24, 25], of
exact sequences whose associated monoid action corresponds to the split sequence
Y �A � Y . This is also the case of the construction of the Baer sum of special exact
sequences of quandles described in [7].
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