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INJECTIVE AND PROJECTIVE MODEL STRUCTURES ON

ENRICHED DIAGRAM CATEGORIES

LYNE MOSER

(communicated by Emily Riehl)

Abstract
In the enriched setting, the notions of injective and projective

model structures on a category of enriched diagrams also make
sense. In this paper, we prove the existence of these model struc-
tures on enriched diagram categories under local presentability,
accessibility, and “acyclicity” conditions, using the methods of
lifting model structures from an adjunction introduced by Gar-
ner, Hess, Ke֒dziorek, Riehl, and Shipley.

1. Introduction

Categories of diagrams in a model category might be endowed with two particularly
useful model structures: the injective and projective ones. In the non-enriched case,
the existence of such model structures on categories of diagrams in a combinatorial
model category is folklore. However, the breakthrough by Garner, Hess, Ke֒dziorek,
Riehl, and Shipley in [13], and then in [11], provides new tools which unify the proof of
existence of both injective and projective model structures under weaker assumptions,
namely for accessible model categories, i.e. locally presentable model categories with
accessible functorial factorizations. In this paper, we provide an enriched version of
this result using the methods of lifting model structures of [13] and [11]. We prove
the following main theorem. For (V,⊗, I) a closed symmetric monoidal category,
we write [D,A]0 for the category of V-functors from a small V-category D to a
V-category A.

Theorem 4.4. Let (V,⊗, I) be a locally presentable base (Definition 2.1). Suppose A
is a V-complete locally V-presentable V-category such that its underlying category A0

admits an accessible model structure, and let D be a small V-category.

(i) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations for all d, d′ ∈ D,
the injective model structure on the category [D,A]0 exists.

(ii) If the functors −⊗D(d, d′) : A0 → A0 preserve trivial cofibrations for all
d, d′ ∈ D, the projective model structure on the category [D,A]0 exists.
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Some results about the existence of injective and projective model structures on
categories of enriched diagrams can already be found in the literature. Lurie proves
the case of a combinatorial S-enriched model category in [20, Proposition A.3.3.2],
where S is an excellent model category, e.g. the category of simplicial sets with the
Quillen model structure. On the other hand, in [10, Theorem 4.2], Dundas, Röndigs,
and Østvær prove the existence of the projective model structure on categories of
V-diagrams in a symmetric monoidal model category V, which is weakly finitely gen-
erated, i.e. cofibrantly generated in a stronger sense, and which satisfies the monoid
axiom. They use this result to construct models for stable homotopy categories, which
give examples of applications of the homotopy theory of enriched diagrams to the
fields of equivariant stable homotopy theory and motivic homotopy theory.

Categories of enriched diagrams, in particular, the category of simplicial functors
sSetfin∗ → sSet∗, from finite pointed simplicial sets to pointed simplicial sets, also play
a prominent role in Goodwillie calculus. The projective model structure on this cate-
gory has been established in [6], and is used to develop a model theoretic framework
for Goodwillie calculus, where n-excisive approximations are seen as fibrant replace-
ments. The injective one is the key of the definition of homotopy nilpotent groups by
Biedermann and Dwyer [3]. These model structures are recovered by Theorem 4.4, as
explained in Example 5.6. The difficulty to find an explicit reference for the injective
case in subsequent study of homotopy nilpotency by Chorny, Costoya, Scherer, and
Viruel in [7] and [5] was actually the starting point of this project.

However, Theorem 4.4 does not apply in as many situations as we wish. Therefore,
we give other conditions in Theorem 6.5 for the existence of these injective and projec-
tive model structures, in the more special case where V admits a model structure and
the model structure on A is enriched over V. This result permits to recover, among
others, the injective and projective model structures on categories of dg modules over
a dg category given by Keller in [17, Theorem 3.2], and the injective model structure
on categories of modules over a symmetric ring spectrum of [13, Corollary 5.0.1].

All the examples given so far are combinatorial. Nevertheless, the Hurewicz model
structure on a category of chain complexes provides an example of an accessible model
structure which is not cofibrantly generated (see [13] and [8]). As discussed in Exam-
ple 6.8, the injective and projective model structures on a category of dg diagrams in
chain complexes endowed with the Hurewicz model structure exist. This illustrates
why the accessibility condition is more general than the combinatorial one in our
setting.

1.1. The non-enriched case
Before presenting an outline of our arguments in the enriched case, let us explain

how the proof of the existence of the injective and projective model structures in
the non-enriched case works, using the methods of lifting model structures of [13]
and [11]. This will help us to highlight the similarities, but also the key differences
between the two situations. Given a model structure (C,F ,W) on a category M and
two adjunctions

K M N ,

V

R

L

U

⊥ ⊥
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one could lift the model structure on M along the left or right adjoint to build model
structures on K and N respectively. In other words, the class of cofibrations and weak
equivalences in the left-lifted model structure on K are given by V −1C and V −1W
respectively. Dually, the class of fibrations and weak equivalences in the right-lifted
model structure on N are given by U−1F and U−1W respectively. However, these
lifted model structures do not always exist. Garner, Ke֒dziorek, and Riehl give a proof
of the Acyclicity Theorem in [11, Corollary 2.7], which states that these lifted model
structures exist, when K and N are locally presentable categories, M is an accessible
model category, and the Acyclicity conditions hold. This result was initially claimed
as [13, Corollary 3.3.4] using a differently-expressed but ultimately equivalent notion
of accessibility. The Acyclicity conditions correspond to the following conditions:

(i) the morphisms in K which have the right lifting property with respect to V −1C
are contained in V −1W, for the left-lifting case, and

(ii) the morphisms in N which have the left lifting property with respect to U−1F
are contained in U−1W, for the right-lifting case.

In [13, Theorem 3.4.1], this Acyclicity Theorem is used to prove the existence
of the injective and projective model structures on a category of diagrams MD,
where D is any small category and M is an accessible model category. The injective
and projective model structures can be seen as left- and right-lifted model structures
from the Kan extension adjunctions

MD MObD,i∗

i!

i∗

⊥

⊥

where ObD denotes the discrete category of objects of D, i : ObD → D is the canon-
ical inclusion functor, and MObD has the pointwise model structure coming from the
one on M. In particular, the diagram categories MD and MObD satisfy the condi-
tions of the Acyclicity Theorem. To see this, note that MD is locally presentable
since M is so, and that the pointwise model structure on MObD coming from the
accessible model structure onM is also accessible. Moreover, the Acyclicity conditions
are straightforward, since every injective trivial fibration is, in particular, a pointwise
trivial fibration, and dually every projective trivial cofibration is, in particular, a
pointwise trivial cofibration.

1.2. Outline
In this paper, we apply the same methods in order to prove the existence of the

injective and projective model structures on categories of enriched diagrams and
enriched natural transformations. In order to apply the Acyclicity Theorem, things
need to be formulated in an enriched setting. Suppose (V,⊗, I) is a closed symmetric
monoidal category. In Section 2, following [4] and [19], we introduce the notions of
a locally presentable base V, and of enriched local presentability for a V-category A,
which implies the local presentability (in the non-enriched sense) of the category of
enriched diagrams D → A, where D is a small V-category. In Section 3, we recall the
notion of an accessible model category, and state the Acyclicity Theorem from [11].
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In Section 4, we construct an enriched category of objects for a small V-category D,
which plays a similar role to the discrete category of objects above, but in the enriched
setting. Then, we prove Theorem 4.4, using the fact that the injective and projective
model structures on a category of enriched diagrams D → A can be seen as left- and
right-induced model structures from the enriched Kan extension adjunctions induced
by the inclusion V-functor ObD → D. The assumptions saying that tensoring with
the hom-objects of D preserves cofibrations or trivial cofibrations in A respectively,
imply the Acyclicity conditions. More precisely, they imply that injective trivial fibra-
tions are, in particular, pointwise trivial fibrations, and that projective trivial cofi-
brations are, in particular, pointwise trivial cofibrations respectively. In Section 5, we
introduce the notion of an enriched model category, and prove that the enrichment of
the model structure on A transfers to the injective and projective model structures
on a category of enriched diagrams D → A. In this case, the assumptions on the
hom-objects of D for the existence of these model structures are always true when all
hom-objects of D are cofibrant in V. In Section 6, we also state other conditions under
which the Acyclicity Theorem applies when the model structure on A is enriched, and
the proof follows from the Cylinder and Path Object arguments of [13]. In particular,
these conditions hold when all objects of A are cofibrant or fibrant respectively, and
the unit I is cofibrant or fibrant in V respectively. In Section 7, we apply our results
to categories of modules over an operad in V, using their characterization in terms of
V-functors as given by Arone and Turchin in [1]. This application was suggested by
Kathryn Hess. In a paper on configuration spaces with Ben Knudsen [12], they are
using these model structures on modules over simplicial operads. Finally, in Section 8,
we show that, if A is left- or right-proper, then so are the injective and projective
model structures on a category of enriched diagrams D → A, again under assump-
tions on the hom-objects of D. This time, these assumptions imply that injective
fibrations are, in particular, pointwise fibrations, and that projective cofibrations are,
in particular, pointwise cofibrations respectively.

1.3. Notations
Throughout the whole article, the following notations are used. Let (V,⊗, I) be

a closed symmetric monoidal category. There is a 2-functor (−)0 : V-CAT → CAT
sending a V-category A to its underlying category A0 which has the same objects
as A (see [22, Proposition 3.5.10]). Let A be a V-category. For A,B ∈ A, we denote by

• A(A,B), the hom-object in V from A to B, and

• A0(A,B) = {I → HomA(A,B)}, the underlying set of morphisms from A to B.

Note that, since V is closed, it is enriched over itself, and its underlying category is V
(see [22, Lemma 3.4.9]). If D is a small V-category, we denote by

• [D,A], the V-category of V-functors from D to A, and

• [D,A]0, the ordinary category of V-functors from D to A, and V-natural trans-
formations between them.
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2. Enriched local presentability

Let (V,⊗, I) be a closed symmetric monoidal category. Given a V-category A,
we want to find conditions on V and A under which the category [D,A]0 is locally
presentable, for every small V-category D. Based on [4], we define locally presentable
bases, which are locally presentable closed symmetric monoidal categories whose local
presentability is compatible with the monoidal structure. Then, we extend the notion
of local presentability to the enriched setting. In particular, if V is a locally presentable
base, every V-category [D,V], where D is a small V-category, is locally presentable
in the enriched sense. Moreover, since every enriched locally presentable V-category
can be seen as a full reflective V-subcategory of a V-category of the form [D,V] by
a result in [19], if A is locally presentable in the enriched sense, then so is every
V-category of enriched diagrams in A. The fact that the underlying category of an
enriched locally presentable V-category is locally presentable implies, finally, that the
category [D,A]0 is locally presentable, for every small V-category D.

Definition 2.1. Let α be a regular cardinal. A locally α-presentable base is a
cocomplete closed symmetric monoidal category (V,⊗, I) which admits a strongly
generating family of α-presentable objects containing the unit I and closed under
tensor products. We say that V is a locally presentable base if it is a locally
α-presentable base for some regular cardinal α.

Let (V,⊗, I) be a locally presentable base. We extend the notion of local pre-
sentability to the enriched setting with the help of enriched hom-functors and enriched
colimits.

Definition 2.2. Let A be a V-category, and α be a regular cardinal. An object A
of A is α-V-presentable if the representable V-functor A(A,−) : A → V preserves
α-filtered V-colimits.

Definition 2.3. Let α be a regular cardinal. A V-category A is locally
α-V-presentable if it is V-cocomplete and admits a strongly V-generating family
of α-V-presentable objects. We say that A is locally V-presentable if it is locally
α-V-presentable for some regular cardinal α.

Similarly to the non-enriched case, there is a characterization of locally V-pre-
sentable V-categories in terms of full reflective V-subcategories of some V-category of
enriched diagrams in V, where reflective here means that the inclusion V-functor has
a left adjoint, and together they form an enriched adjunction.
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Proposition 2.4 ([19, Corollary 7.3]). Let α be a regular cardinal. A V-category A
is locally α-V-presentable if and only if it is a full reflective V-subcategory of some
V-category [K,V], where K is a small V-category and the inclusion A → [K,V] pre-
serves α-filtered V-colimits.

Remark 2.5. In particular, for every small V-category D, the V-category [D,V] of
V-functors is locally V-presentable.

In the case of ordinary categories, a category of diagrams in a locally presentable
category is also locally presentable. Using the characterization above, we show that
it is also true in the enriched setting.

Proposition 2.6. Let A be a locally α-V-presentable V-category, for some regular
cardinal α, and let D be a small V-category. Then the V-category [D,A] is also locally
α-V-presentable.

Proof. Consider the 2-functor [D,−] : V-CAT → V-CAT sending a V-category B to
the V-category of V-functors [D,B]. In particular, this 2-functor preserves enriched
adjunctions. Hence, since A is a full reflective V-subcategory of some [K,V], where K
is a small V-category, by Proposition 2.4, it follows from applying [D,−] that [D,A] is
a full reflective V-subcategory of [D, [K,V]] ∼= [D ⊗K,V]. Note that D ⊗K is also a
small V-category. Moreover, since V-colimits are computed pointwise in [D,A] and in
[D, [K,V]] (see [18, Section 3.3]), the induced inclusion V-functor [D,A] → [D, [K,V]]
preserves α-filtered V-colimits, as the inclusion V-functor A → [K,V] does so by
Proposition 2.4. This shows that [D,A] is also locally α-V-presentable.

Finally, in order to show that [D,A]0 is locally presentable when the V-category A
is locally V-presentable, it remains to state a last result saying that the underlying
category of a locally V-presentable V-category is locally presentable in the ordinary
sense.

Proposition 2.7 ([4, Proposition 6.6]). Let A be a V-cocomplete V-category and
denote by A0 the underlying category of A. If A is locally α-V-presentable for some
regular cardinal α, then A0 is locally α-presentable in the ordinary sense.

Corollary 2.8. Let A be a locally V-presentable V-category, and let D be a small
V-category. Then the category [D,A]0 is locally presentable (in the ordinary sense).

Proof. This follows directly from Propositions 2.6 and 2.7.

3. Induced model structures

Given an adjunction between locally presentable categories

K M,

V

R

⊥

an accessible model structure (C,F ,W) on M can be lifted along the left adjoint U
to give rise to a model structure on K. This lifted model structure has U−1C as
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the class of cofibrations and U−1W as the class of weak equivalences, while the
fibrations are defined by their lifting property with respect to trivial cofibrations. In
particular, the injective model structure on a category of diagrams in an accessible
model category can be seen as such a lifted model structure, since its cofibrations
and weak equivalences are defined pointwise, and its fibrations are defined by their
lifting property. Of course, there is a dual version to this construction, where the
model structure is lifted along the right adjoint. The projective model structure on
a category of diagrams in an accessible model category is then an example of this
dual construction. For the enriched case, we want to apply the same methods. Hence,
we recall in this section the notions of accessible weak factorization systems and
accessible model categories, and state the results from [11] about the existence of
liftings of such weak factorization systems and model structures.

Notation 3.1. Let C denote a class of morphisms in a category M. The class C is
the class of morphisms in M which have the right lifting property with respect to all
morphisms in C, and the class C is the class of morphisms in M which have the left
lifting property with respect to all morphisms in C.

A weak factorization system (L,R) on a category M consists of two classes of
morphisms L and R in M such that

L = R and R = L ,

and every morphism in M factors as a morphism in L followed by a morphism in R.
In particular, if (C,F ,W) is a model structure onM, then (C ∩W,F) and (C,F ∩W)
form weak factorization systems on M. In particular, the notion of accessible weak
factorization systems induces the notion of accessibility for a model structure.

Definition 3.2. A weak factorization system (L,R) on a category M is accessible
if M is locally presentable and there is a functorial factorization

A
f

−→ B 7→ A
Lf
−→ Ef

Rf
−→ B,

with Lf ∈ L and Rf ∈ R such that the functor E : M2 → M is accessible, i.e. it
preserves α-filtered colimits for some regular cardinal α.

Definition 3.3. A model category (M, C,F ,W) is accessible if the weak factoriza-
tion systems (C ∩W,F) and (C,F ∩W) are accessible.

Remark 3.4. Given the definition of an accessible weak factorization system, an acces-
sible model category is, in particular, locally presentable.

By results in [11], a weak factorization system can be lifted along the left or right
adjoint of an adjunction when it is accessible.

Definition 3.5. Let (L,R) be a weak factorization system on M and suppose we
have the following adjunctions

K M N .

V

R

L

U

⊥ ⊥

The left-lifting of (L,R) along V , if it exists, is the weak factorization system on K
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given by

( ~L, ~R) = (V −1L, (V −1L) ).

The right-lifting of (L,R) along U , if it exists, is the weak factorization system
on N given by

( ~L, ~R) = ( (U−1R), U−1R).

Theorem 3.6 ([11, Theorem 2.6]). Let (L,R) be an accessible weak factorization
system on M, and let K and N be locally presentable categories. Suppose we have
adjunctions as in Definition 3.5. Then (L,R) admits a left-lifting along V and a
right-lifting along U .

Suppose we are given adjunctions as in Definition 3.5, and suppose, moreover,
that there is a model structure (C,F ,W) on M. The left-induced model structure
on K, if it exists, is given by (V −1C, (V −1(C ∩W)) , V −1W), and the right-induced
model structure on N , if it exists, is given by ( (U−1(F ∩W)), U−1F , U−1W). The
existence of these induced model structures in the case of an accessible model category
is given by the Acyclicity conditions.

Theorem 3.7 ([11, Corollary 2.7; 13, Corollary 3.3.4]). Let (M, C,F ,W) be an
accessible model category, and let K and N be two locally presentable categories.
Suppose we have the following adjunctions

K M N .

V

R

L

U

⊥ ⊥

(i) The left-induced model structure on K exists if and only if

(V −1C) ⊆ V −1W.

(ii) The right-induced model structure on N exists if and only if

(U−1F) ⊆ U−1W.

4. Injective and projective model structures

In this section, we prove the main theorem (Theorem 4.4) on the existence of injec-
tive and projective model structures for enriched diagram categories. Let (V,⊗, I) be
a locally presentable base. Suppose A is a locally V-presentable V-category with
an accessible model structure on its underlying category A0, and let D be a small
V-category. The injective and projective model structures on [D,A]0 can be seen
as left- and right-induced model structures from the one on a category of diagrams
[ObD,A]0, which admits a pointwise model structure coming from the one of A0.
The first step is to define this V-category ObD of objects of D in such a way that
it plays a similar role to the discrete category of objects in the non-enriched case.
Then it remains to find conditions which imply the Acyclicity conditions of Theo-
rem 3.7. In the non-enriched case, these conditions are straightforward since injective
trivial fibrations are, in particular, pointwise trivial fibrations, and dually projec-
tive trivial cofibrations are, in particular, pointwise trivial cofibrations. This follows
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among others from the fact that the coproduct over a set of a (trivial) cofibration is
also a (trivial) cofibration. But the coproduct by a set corresponds to a tensor over
the category of sets, for every ordinary category. Generalizing this to the enriched
setting, the Acyclicity conditions for [D,A]0 are satisfied whenever tensoring with
the hom-objects of D preserves cofibrations or trivial cofibrations respectively. Under
these mild conditions, we can prove that the injective and projective model structures
on [D,A]0 exist.

Notation 4.1. We denote by ∅ the initial object of V, which exists since V is cocom-
plete.

Definition 4.2. Let D be a small V-category. The enriched category of objects
of D is the V-category ObD with the same objects as D, in which the hom-objects
are given by

ObD(d, d′) = ∅, and ObD(d, d) = I,

for every d 6= d′ ∈ D, and the identity morphisms are given by

idd = idI : I −→ ObD(d, d) = I,

for every d ∈ D. There is an inclusion i : ObD → D given by the V-functor which is
the identity on objects, and where

id,d′ : ObD(d, d′) = ∅ −→ D(d, d′)

corresponds to the unique morphism in V from the initial object to D(d, d′), for every
d 6= d′ ∈ D, and

id,d : ObD(d, d) = I −→ D(d, d)

corresponds to the identity morphism idd in D, for every d ∈ D.

The following lemma motivates the definition of the enriched category of objects
by saying that the V-category ObD in the enriched case plays a role similar to the
one of the discrete category of objects in the non-enriched case.

Lemma 4.3. Let A be a V-category, and let D be a small V-category. Then

(i) a V-functor F : ObD → A corresponds to a family of objects {Fd}d∈D in A,
and

(ii) a V-natural transformation α : F ⇒ G in [ObD,A]0 corresponds to a family of
morphisms {αd : Fd→ Gd}d∈D in A0, without further conditions.

Proof. Let F : ObD → A be a V-functor. For every d 6= d′ ∈ D, the morphism

Fd,d′ : ObD(d, d′) = ∅ −→ A(Fd, Fd′)

corresponds to the unique morphism in V from the initial object to A(Fd, Fd′) and,
for every d ∈ D, the morphism

Fd,d : ObD(d, d) = I −→ A(Fd, Fd)
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is the identity morphism idFd in A, since the following diagram commutes

I

ObD(d, d) = I

A(Fd, Fd).

idd = idI
Fd,d

idFd

Since these morphisms between the hom-objects are uniquely determined, the
V-functor F corresponds to the family of objects {Fd}d∈D in A.

Let α : F ⇒ G be a V-natural transformation in [ObD,A]0. Recall that, for every
d ∈ D, a morphism I → A(Fd,Gd) in V corresponds to a morphism Fd→ Gd in A0,
by definition of the underlying category of A. Moreover, the following diagrams triv-
ially commute, for every d 6= d′ ∈ D.

ObD(d, d′) = ∅ A(Fd, Fd′)

A(Gd,Gd′) A(Fd,Gd′)

Fd,d′

Gd,d′ (αd′)∗

(αd)
∗

ObD(d, d) = I A(Fd, Fd)

A(Gd,Gd) A(Fd,Gd)

Fd,d = idFd

Gd,d = idGd (αd)∗

(αd)
∗

αd

This shows that α : F ⇒ G corresponds to a family of morphisms {αd : Fd→ Gd}d∈D

in A0, without further conditions.

Hence, if the underlying category A0 of A admits a model structure, there is a
model structure on [ObD,A]0 coming from the one of A0, in which cofibrations,
fibrations and weak equivalences are defined pointwise.

Moreover, if A is V-complete and V-cocomplete, we have the following adjunctions

[D,A]0 [ObD,A]0,i∗

i!

i∗

⊥

⊥

where i∗ : [D,A]0 → [ObD,A]0 is the precomposition functor by i : ObD → D, and

i!, i∗ : [ObD,A]0 −→ [D,A]0

are the underlying functors of the enriched left and right Kan extension functors.
Our aim is to lift the injective and projective model structures on [D,A]0 from the
pointwise model structure on [ObD,A]0 through these adjunctions.

The final step is to find conditions that imply the Acyclicity conditions. These con-
ditions are about tensoring with the hom-objects of D. Note that, if A is V-complete
and V-cocomplete, it is tensored and cotensored over V, since these are particular
enriched colimits and limits.

Theorem 4.4. Let (V,⊗, I) be a locally presentable base. Suppose A is a V-complete
locally V-presentable V-category such that its underlying category A0 admits an acces-
sible model structure, and let D be a small V-category.
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(i) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations for all d, d′ ∈ D,
the injective model structure on the category [D,A]0 exists.

(ii) If the functors −⊗D(d, d′) : A0 → A0 preserve trivial cofibrations for all
d, d′ ∈ D, the projective model structure on the category [D,A]0 exists.

Proof. We prove (i). The proof for (ii) is dual. Let ObD and i : ObD → D be as
in Definition 4.2. Let (C,F ,W) denote the accessible model structure on A0. The
weak factorization system (C,F ∩W) induces a pointwise weak factorization system
(CObD, (F ∩W)ObD) on [ObD,A]0. By Corollary 2.8, the category [D,A]0 is locally
presentable. Furthermore, note that the category [ObD,A]0 is also an accessible
model category with the pointwise model structure coming from the accessible model
structure of A0. Since A is V-complete, we have an adjunction

[D,A]0 [ObD,A]0,

i∗

i∗

⊥

where i∗ is the precomposition functor, and i∗ is the underlying functor of the
enriched right Kan extension functor. So we can apply Lemma 3.6, and obtain
from the weak factorization system (CObD, (F ∩W)ObD) on [ObD,A]0 a left-lifting
(Cinj, (F ∩W)inj) on [D,A]0. By Theorem 3.7, it remains to show the Acyclicity con-
dition

((i∗)−1C) ⊆ (i∗)−1W.

Let η : F ⇒ G ∈ ((i∗)−1C) . We show that η is, in particular, a pointwise trivial
fibration. To see this, for each d ∈ D, we show that ηd : Fd→ Gd has the right lifting
property with respect to every cofibration in A0. Let i : A→ B be a cofibration in A0,
and fix d ∈ D. By the enriched Yoneda lemma and since A is tensored over V,

A(A,Fd) ∼= [D,V](D(d,−),A(A,F−))
∼= [D,A](A⊗D(d,−), F ).

Hence ηd has the right lifting property with respect to i in A0 if and only if η has
the right lifting property with respect to i⊗D(d,−) in [D,A]0. By assumption, each
component of i⊗D(d,−) is a cofibration, as the functors −⊗D(d, d′) : A0 → A0

preserve cofibrations for all d′ ∈ D. Since η ∈ ((i∗)−1C) , it has the right lifting
property with respect to i⊗D(d,−), and thus η is a pointwise trivial fibration. In
particular, η is a pointwise weak equivalence, i.e. η ∈ (i∗)−1W.

Remark 4.5. Suppose V admits a model structure. Since V is locally presentable
in the enriched sense and it is V-complete (see [18, Section 3.2]), if the functors
−⊗D(d, d′) : V → V preserve cofibrations (resp. trivial cofibrations) for all d, d′ ∈ D,
then the category [D,V]0 admits an injective (resp. projective) model structure.

Remark 4.6. In Theorem 4.4, we need to assume that the V-category A is V-complete
for the existence of the enriched right Kan extension i∗ : [ObD,A] → [D,A], while
the V-cocompleteness (and hence the existence of the enriched left Kan extension)
comes from the local V-presentability of A.
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Remark 4.7. Since the functors −⊗X : A0 →A0 and (−)X : A0 →A0 form an ad-
junction for all X ∈ V, the conditions on the functors −⊗D(d, d′) : A0 → A0,
for d, d′ ∈ D, in Theorem 4.4 can equivalently be formulated as

(i) the functors (−)D(d,d′) : A0 → A0 preserve trivial fibrations for all d, d′ ∈ D, in
the injective case, and

(ii) the functors (−)D(d,d′) : A0 → A0 preserve fibrations for all d, d′ ∈ D, in the
projective case.

5. Enrichment of the model structure

Let (V,⊗, I) be a locally presentable base and a model category. Given a V-cat-
egory A, a model structure on its underlying category A0 may be enriched over the
model structure on V. This gives rise to the notion of a V-enriched model category,
which is a generalization of the notion of a simplicial model category (see [14, Defini-
tion 9.1.6]). In this section, we prove that, if A is a V-enriched model category and D
is a small V-category, then the injective and projective model structures on [D,A]0
are again V-enriched, when they exist.

Definition 5.1. A V-category A is a V-enriched model category if

[MC1-5] its underlying category A0 admits a model structure,

[MC6] it is tensored and cotensored over V, and

[MC7] if i : A→ B is a cofibration in A0 and p : X → Y is a fibration in A0, the
pullback corner map

(i∗, p∗) : A(B,X) → A(A,X)×A(A,Y ) A(B, Y )

is a fibration in V, which is trivial if either i or p is a weak equivalence.

We first check that the V-category [D,A] is tensored and cotensored over V when-
ever A is, for every small V-category D. This shows that, when A is a V-enriched
model category, then the V-category [D,A] satisfies, in particular, Axiom [MC6].

Lemma 5.2. Let A be a tensored and cotensored V-category, and let D be a small
V-category. The V-category [D,A] is tensored and cotensored over V, with tensor and
cotensor products defined pointwise.

Proof. Let F : D → A be a V-functor, and let K ∈ V. The aim is to define a tensor
product F (−)⊗K : D → A and a cotensor product F (−)K : D → A. Consider the
functor −⊗K : A → A sending an object A ∈ A to the tensor product A⊗K and
such that, for A,B ∈ A, the morphism

(−⊗K)A,B : A(A,B) −→ A(A⊗K,B ⊗K)

is the adjunct of the evaluation morphism ev⊗ idK : A(A,B)⊗A⊗K → B ⊗K.
Define the tensor product F (−)⊗K : D → A to be the composite

D
F
−→ A

−⊗K
−−−→ A.

Then, consider the functor (−)K : A → A sending an object A ∈ A to the cotensor
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product AK , and such that, for A,B ∈ A, the morphism

((−)K)A,B : A(A,B) −→ A(AK , BK)

is the adjunct to the morphism

A(A,B)⊗AK ⊗K
id⊗η
−−−→ A(A,B)⊗A

ev
−→ B,

where η : AK ⊗K → A is the adjunct to the identity morphism of AK . Define the
cotensor product F (−)K : D → A to be the composite

D
F
−→ A

(−)K

−→ A.

These constructions satisfy the expected adjunction properties. The proof is left to
the reader.

To prove that the injective and projective model structures on [D,A], if they
exist, are V-enriched whenever the one on A is, it remains to show that Axiom [MC7]
is satisfied. Since cofibrations and weak equivalences are defined pointwise in the
injective model structure on [D,A], and fibrations and weak equivalences are defined
pointwise in the projective one, it is convenient to have equivalent statements to axiom
[MC7], where only (trivial) cofibrations or only (trivial) fibrations of the enriched
model structure appear. This allows us to check pointwise that the category [D,A]
satisfies this last axiom. Next lemma is an adaptation of [14, Proposition 9.3.7] to
the general setting.

Lemma 5.3. Let A be a tensored and cotensored V-category, whose underlying cat-
egory A0 admits a model structure. Axiom [MC7] of Definition 5.1 is equivalent to
each of the following statements.

(i) If i : A→ B is a cofibration in A0 and j : K → L is a cofibration in V, the
pushout corner map

i ⋆ j : A⊗ L∐A⊗K B ⊗K → B ⊗ L

is a cofibration in A0, which is trivial if either i or j is a weak equivalence.

(ii) If p : X → Y is a fibration in A0 and j : K → L is a cofibration in V, the pullback
corner map

(j∗, p∗) : X
L → XK ×Y L Y K

is a fibration in A0, which is trivial if either j or p is a weak equivalence.

Proof. This follows immediately from the adjunctions

A0(K ⊗A,X) ∼= V(K,A(A,X)) ∼= A0(A,X
K),

where A,X ∈ A and K ∈ V.

If a V-category A admits all small conical limits and is cotensored over V, then A is
V-complete (see [18, Theorem 3.73]). Hence aV-enrichedmodel category isV-complete,
and the V-completeness assumption of Theorem 4.4 can be removed. We call A an
accessible V-enriched model category if A is a V-enriched model category and the
model structure on A0 is accessible.
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Theorem 5.4. Let (V,⊗, I) be a locally presentable base, and a model category. Sup-
pose A is a locally V-presentable V-category, which admits an accessible V-enriched
model structure, and let D be a small V-category.

(i) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations for all d, d′ ∈ D,
the injective model structure on [D,A]0 exists, and is again V-enriched.

(ii) If the functors −⊗D(d, d′) : A0 → A0 preserve trivial cofibrations for all
d, d′ ∈ D, the projective model structure on [D,A]0 exists, and is again V-en-
riched.

Proof. We show that the injective model structure on [D,A]0 satisfies condition (i) of
Lemma 5.3. Let α : F ⇒ G be a cofibration in [D,A]0, and j : K → L be a cofibration
in V. Since the model structure is injective, the morphism αd : Fd→ Gd is a cofibra-
tion in A0, for every d ∈ D. The morphism α ⋆ j : F ⊗ L∐F⊗K G⊗K ⇒ G⊗ L has
components (α ⋆ j)d = (αd) ⋆ j, for d ∈ D, since tensor products and colimits are
computed pointwise in [D,A]0. Every component (αd) ⋆ j, for d ∈ D, is a cofibration
in A0, since A is a V-enriched model category. Hence α ⋆ j is a cofibration in [D,A]0
with the injective model structure. Moreover, if either α or j is a weak equivalence,
the morphism (αd) ⋆ j is trivial, for every d ∈ D, and thus α ⋆ j is also trivial.

Similarly, one can show that the projective model structure satisfies condition (ii)
of Lemma 5.3.

Remark 5.5. In particular, if all hom-objectsD(d, d′), for d, d′ ∈ D, are cofibrant in V,
the functors −⊗D(d, d′) : A0 → A0 preserve all cofibrations and trivial cofibrations.
To see this, apply Lemma 5.3 (i) to every (trivial) cofibration i : A→ B in A0 and to
the cofibration ∅ → D(d, d′) in V, for d, d′ ∈ D. In particular, if all objects in V are
cofibrant, this condition is always satisfied.

This remark gives rise to our first example. Recall that every combinatorial model
category is, in particular, accessible (see [13, Corollary 3.1.7]).

Example 5.6 (Simplicial enrichment). Take (V,⊗, I) to be the closed symmetric mo-
noidal category (sSet,×,∆0) or (sSet∗,∧, S0) of (pointed) simplicial sets. These are
locally presentable bases. The Quillen model structure, introduced in [21], endows
sSet and sSet∗ with a simplicial, combinatorial model structure, in which every object
is cofibrant. Suppose A is an enriched locally presentable and accessible simplicial
model category. By Theorem 5.4 and Remark 5.5, for every small simplicial cat-
egory D, the injective and projective model structures on the category [D,A] of
simplicial diagrams exist and are simplicial. In particular, this applies to the folklore
case where A = sSet, sSet∗ with the Quillen model structure. This also applies to
A = SpΣ the category of symmetric spectra of simplicial sets enriched over simplicial
sets, with one of the simplicial model structures, e.g. the stable model structure or
the stable/level projective and injective model structures (see [24, III.3–4]).

6. The Cylinder and Path Object arguments

Let (V,⊗, I) be a locally presentable base, and a model category. If the unit I is
cofibrant in V, one can find other conditions on a V-enriched model category A under
which the injective model structure on [D,A]0 exists, for every small V-category D,
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e.g. if all objects of A are cofibrant, in contrast to Remark 5.5 where we assume that
the hom-objects of D are cofibrant in V. There is a dual statement for the projective
case. This gives more examples of categories of enriched diagrams which admit an
injective or projective model structure. The proof follows from the Cylinder and Path
Object arguments, which we first state here. These statements are inspired by the
original Quillen Path Object Argument of [21].

Theorem 6.1 ([13, Theorem 2.2.1]). Let (M, C,F ,W) be an accessible model cat-
egory, and let K be a locally presentable category. Suppose we have the following
adjunction

K M.

V

R

⊥

If the following hold:

(i) for every X ∈ K, there is a morphism φX : QX → X in K such that V (φX) is
a weak equivalence and V (QX) is cofibrant in M,

(ii) for every morphism α : X → Y in K, there exists a morphism Qα : QX → QY

in K such that α ◦ φX = φY ◦Qα, and

(iii) for every X ∈ K, there is a factorization

QX ⊔QX
i

−→ Cyl(QX)
w

−→ QX

of the fold map in K such that V (i) is a cofibration and V (w) is a weak equiv-
alence in M,

then the Acyclicity condition (V −1C) ⊆ V −1W holds. In particular, the left-induced
model structure on K exists.

Theorem 6.2. Let (M, C,F ,W) be an accessible model category, and let N be a
locally presentable category. Suppose we have the following adjunction

M N .

L

U

⊥

If the following hold:

(i) for every X ∈ N , there is a morphism ψX : X → RX in N such that U(ψX) is
a weak equivalence and U(RX) is fibrant in M,

(ii) for every morphism α : X → Y in N , there exists a morphism Rα : RX → RY

in N such that ψY ◦ α = Rα ◦ ψX , and

(iii) for every X ∈ N , there exists a factorization

RX
w

−→ Path(RX)
p

−→ RX ×RX

of the diagonal map in N such that U(p) is a fibration and U(w) is a weak
equivalence in M.
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then the Acyclicity condition (U−1F)⊆U−1W holds. In particular, the right-induced
model structure on N exists.

Given a V-enriched model category A and a small V-category D, we want to apply
Theorems 6.1 and 6.2 to the underlying enriched Kan extension adjunctions

[D,A]0 [ObD,A]0.i∗

i!

i∗

⊥

⊥

Conditions (iii) follow from the fact that the unit I is cofibrant, respectively fibrant
in V, as shown in Theorem 6.5. Hence, we introduce the notions of underlying cofibrant
and fibrant replacements for the category [D,A]0, which correspond to conditions (i)
and (ii) of Theorems 6.1 and 6.2 respectively, applied to this setting.

Definition 6.3. Let A be a V-enriched model category, and D be a small V-category.
The category [D,A]0 admits underlying cofibrant replacements if

(i) for every V-functor F : D → A, there is a V-natural transformation φF : QF ⇒F

in [D,A]0 such that, for every d ∈ D, φFd : QFd→ Fd is a weak equivalence
and QFd is cofibrant in A0, and

(ii) for every V-natural transformation α : F ⇒ G in [D,A]0, there exists a V-natural
transformation Qα : QF ⇒ QG in [D,A]0 such that α ◦ φF = φG ◦Qα.

The category [D,A]0 admits underlying fibrant replacements if

(i) for every V-functor F : D → A, there is a V-natural transformation ψF : F ⇒RF

in [D,A]0 such that, for every d ∈ D, ψFd : Fd→ RFd is a weak equivalence
and RFd is fibrant in A0,

(ii) for every V-natural transformation α : F ⇒ G in [D,A]0, there exists a V-natural
transformation Rα : RF ⇒ RG in [D,A]0 such that ψG ◦ α = Rα ◦ ψF .

Remark 6.4. In particular, if all objects of A are cofibrant, then [D,A]0 admits under-
lying cofibrant replacements, for every small V-category D. To see this, given a
V-functor F : D → A, take QF = F and φF = idF . Dually, if all objects of A are
fibrant, then [D,A]0 admits underlying fibrant replacements, for every small V-cate-
gory D.

If we suppose that the category of enriched diagrams [D,A]0 has underlying cofi-
brant or fibrant replacements, by the Cylinder and Path Object arguments, it remains
to show that the last condition holds when the unit I is cofibrant or fibrant in V
respectively.

Theorem 6.5. Let (V,⊗, I) be a locally presentable base, and a model category. Sup-
pose A is a locally V-presentable V-category, which admits an accessible V-enriched
model structure, and let D be a small V-category.

(i) If the unit I ∈ V is cofibrant, and the category [D,A]0 admits underlying cofi-
brant replacements, then the injective model structure on [D,A]0 exists, and is
again V-enriched.
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(ii) If the unit I ∈ V is fibrant, and the category [D,A]0 admits underlying fibrant
replacements, then the projective model structure on [D,A]0 exists, and is again
V-enriched.

Proof. We prove (i). The proof for (ii) is dual. By Theorem 6.1, it is enough to show
that, for every V-functor F : D → A such that Fd is cofibrant in A for every d ∈ D,
there exists a factorization

F ⊔ F =⇒ Cyl(F ) =⇒ F

of the fold map in [D,A]0 into a pointwise cofibration followed by a pointwise weak
equivalence. Let F : D → A be a V-functor such that Fd is cofibrant in A for
every d ∈ D. Choose a good cylinder object

I ⊔ I
i

−→ Cyl(I)
w

−→ I

for the unit I ∈ V, where i is a cofibration and w is a weak equivalence in V. Now
apply F ⊗− to the sequence above, and get

F ⊔ F ∼= F ⊗ (I ⊔ I)
F⊗i
==⇒ F ⊗ Cyl(I)

F⊗w
===⇒ F ⊗ I ∼= F.

For every d ∈ D, since Fd is cofibrant in A, by Axiom [MC7], Fd⊗− : V → A
preserves cofibrations and trivial cofibrations. It follows that F ⊗ i is a pointwise
cofibration, since the tensor product is defined pointwise in [D,A]0. Moreover, by
Ken Brown’s Lemma, Fd⊗− : V → A preserves weak equivalences between cofibrant
objects, for every d ∈ D. Since I is cofibrant in V, the coproduct I ⊔ I is also cofi-
brant, and hence Cyl(I) is cofibrant in V, as i is a cofibration. It follows from these
observations that F ⊗ w is a pointwise weak equivalence in [D,A]0. By Theorem 6.1,
the Acyclicity condition is satisfied, and thus the injective model structure on [D,A]0
exists. Moreover, it is V-enriched copying the proof of Theorem 5.4.

Theorem 6.5 together with Remark 6.4 yields examples of enriched model struc-
tures on symmetric spectra of simplicial sets and on chain complexes of modules
over a commutative ring for which the injective or projective model structure on all
categories of enriched diagrams exists.

Example 6.6 (Spectra). Take V = SpΣ, the category of symmetric spectra of simpli-
cial sets. This is a locally presentable base with the monoidal structure given by the
smash product ∧ for the tensor product and the sphere spectrum S for the unit. By
[24, III.4.13], the stable injective model structure on SpΣ is combinatorial, and every
object is cofibrant in this model structure. It is enriched over the projective model
structure on SpΣ, as shown in [16, Theorem 5.3.7, parts 3 and 5]. Moreover, the sphere
spectrum S is cofibrant in the projective model structure. Hence, by Theorem 6.5 (i),
the injective model structure on the category of spectral diagrams [D, (SpΣ)inj] exists
and is enriched over (SpΣ)proj, for every small spectral category D. Furthermore,
the projective stable model structure on SpΣ, given in [24, III.4.11], is also combi-
natorial, and is enriched over itself, by [16, Theorem 5.3.7, parts 1 and 5]. In this
model structure, all objects are fibrant. Hence, by Theorem 6.5 (ii), the projective
model structure on [D, (SpΣ)proj] exists and is enriched over (SpΣ)proj, for every small
spectral category D.
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Example 6.7 (Chain complexes). Given a commutative ring R, take V = ChR, the
category of chain complexes of R-modules. This is a locally presentable base with the
monoidal structure given by the tensor product ⊗R and the ring R concentrated in
degree 0 for the unit. The injective model structure on ChR, introduced by Hovey
in [15, Theorem 2.3.13], is combinatorial, and every object is cofibrant in this model
structure. By [25, Proposition 3.3], it is enriched over the projective model structure
on ChR. Moreover, the ring R is cofibrant in the projective model structure. Hence, by
Theorem 6.5 (i), the injective model structure on the category of dg functors [D,ChinjR ]

exists and is enriched over ChprojR , for every small dg category D. Furthermore, the
projective model structure on ChR, due to Quillen [21], is also combinatorial, by
[15, Theorem 2.3.11], and is enriched over itself, by [2, Theorem 1.4]. In this model
structure, all objects are fibrant. Hence, by Theorem 6.5 (ii), the projective model

structure on [D,ChprojR ] exists and is enriched over ChprojR , for every small dg cate-
gory D. Dg functors D → ChR actually corresponds to dg D-modules, and we recover
the projective and injective model structures on the category of dg D-modules estab-
lished in [17, Theorem 3.2] with these two examples.

Example 6.8 (Hurewicz model structure). For R a commutative ring, there is another
model structure on ChR: the Hurewicz model structure, due to Christensen and Hovey
in [8], Cole in [9], and Schwänzl and Vogt in [23]. Christensen and Hovey show that
this model structure is not cofibrantly generated in [8, Section 5.4]. It is anyway
accessible, by [2, Section 6.4] and [13, Theorem 4.2.1]. Moreover, [2, Theorem 1.15]
states that it is a model structure which is enriched over itself, and in which all
objects are cofibrant and fibrant. Hence, by Theorem 6.5, or also by Theorem 5.4 and
Remark 5.5, the injective and projective model structures on [D,ChHur

R ] exist and are
enriched over ChHur

R , for every small dg category D.

7. Application: modules over an operad

Let (V,⊗, I) be a locally presentable base and a model category. LetO be an operad
in V, and let A be a V-enriched model category. Adapting Theorems 5.4 and 6.5, we
can give criteria for the injective and projective model structures on ModA(O) to
exist, where ModA(O) denotes the category of right modules over the operad O with
values in A. This is a direct consequence of a result by Arone and Turchin in [1]
which characterizes such modules in terms of contravariant V-functors into A from a
small V-category F(O), which we first describe here.

Notation 7.1. Let S, T be two finite sets. We write F (S, T ) for the set of maps
from S to T .

Definition 7.2. Let O be an operad in V. The V-category F(O) has finite sets as
objects, and its hom-objects are defined to be

F(O)(S, T ) =
⋃

α∈F (S,T )

⊗

t∈T

O(α−1(t)) ∈ V,

for all finite sets S, T . See [1, Definition 3.1] for more details.

This gives rise to the following characterization of the right modules over O.
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Proposition 7.3 ([1, Lemma 3.3]). Let O be an operad in V, and let A be a tensored
and cotensored V-category. Then there is an equivalence of categories

ModA(O) ≃ [F(O)op,A]0.

We first adapt Theorem 5.4 to this setting.

Corollary 7.4. Let (V,⊗, I) be a locally presentable base and a model category, and
let O be an operad in V. Suppose A be a locally V-presentable accessible V-enriched
model category.

(i) If the functors O(S)⊗− : A0 → A0 preserve cofibrations for all S ∈ F(O), there
is an injective model structure on ModA(O), where the weak equivalences and
cofibrations are defined pointwise, and this model structure is enriched over V.

(ii) If the functors O(S)⊗− : A0 →A0 preserve trivial cofibrations for all S ∈ F(O),
there is a projective model structure on ModA(O), where the weak equivalences
and fibrations are defined pointwise, and this model structure is enriched over V.

Remark 7.5. In particular, if the operadO is pointwise cofibrant, i.e. if all objectsO(S),
for S ∈ F(O), are cofibrant in V, then the injective and projective model structures
on ModA(O) exist.

Example 7.6. As in Example 5.6, taking V = sSet(∗), the injective and projective
model structures on ModA(O) exist and are simplicial, for every simplicial operad O
and every enriched locally presentable simplicial accessible model category A,
e.g. A = sSet(∗), Sp

Σ.

We also give a version of Theorem 6.5 in this setting.

Corollary 7.7. Let (V,⊗, I) be a locally presentable base and a model category, and
let O be an operad in V. Suppose A be a locally V-presentable accessible V-enriched
model category.

(i) If the unit I ∈ V is cofibrant and the category ModA(O) admits underlying cofi-
brant replacements, e.g. if all objects of A are cofibrant, there is an injective
model structure on ModA(O), which is enriched over V.

(ii) If the unit I ∈ V is fibrant and the category ModA(O) admits underlying fibrant
replacements, e.g. if all objects of A are fibrant, there is a projective model
structure on ModA(O), which is enriched over V.

The examples at the end of Section 6 give rise to examples of categories of modules
over an operad, which admits injective and projective model structures.

Example 7.8. As in Example 6.6, let V = (SpΣ)proj be the category of symmetric
spectra of simplicial sets with the projective stable model structure. Suppose O is
a spectral operad. If A = (SpΣ)inj is endowed with the injective stable model struc-
ture, there is an injective model structure on ModSpΣ(O), which is enriched over

(SpΣ)proj, by Corollary 7.7 (i). On the other hand, if we take A = V = (SpΣ)proj,
there is a projective model structure on ModSpΣ(O), which is enriched over (SpΣ)proj,
by Corollary 7.7 (ii).
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Example 7.9. The same reasoning as above applies to the setting of Example 6.7.
Given a commutative ring R, let V = ChprojR be the category of chain complexes of
R-modules with the projective model structure. If O is a dg operad, then there exist
both injective and projective model structures on ModChR

(O), and these are enriched

over ChprojR .

Example 7.10. Given a commutative ring R, let V = A = ChHur
R be the category of

chain complexes of R-modules with the Hurewicz model structure. Using results of
Example 6.8, if O is a dg operad, then there exist both injective and projective model
structures on ModChHur

R

(O), and these are enriched over ChHur
R , by Corollary 7.4

or 7.7.

8. Properness

In this last section, we prove that the properness of the initial model structure
transfers to the injective and projective model structures on the category of enriched
diagrams under mild additional assumptions to the ones of Theorem 4.4. Recall that
a model category is left-proper if weak equivalences are preserved under pushouts
along cofibrations. Dually, it is right-proper if weak equivalences are preserved under
pullbacks along fibrations. We give the proofs for the injective case, while the proofs
for the projective one are dual.

Proposition 8.1. Let (V,⊗, I) be a locally presentable base. Suppose A is a locally
V-presentable V-category, whose underlying category A0 admits a left-proper accessi-
ble model structure. Let D be a small V-category.

(i) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations for all d, d′ ∈ D,
then the injective model structure on [D,A]0 exists, and is also left-proper.

(ii) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations and trivial cofibra-
tions for all d, d′ ∈ D, the projective model structure on [D,A]0 exists, and is
also left-proper.

Proof. Since colimits are computed pointwise in [D,A]0, (i) follows directly from
the fact that cofibrations and weak equivalences in the injective model structure are
defined pointwise.

Proposition 8.2. Let (V,⊗, I) be a locally presentable base. Suppose A is a locally
V-presentable V-category, whose underlying category A0 admits a right-proper acces-
sible model structure. Let D be a small V-category.

(i) If the functors −⊗D(d, d′) : A0 → A0 preserve cofibrations and trivial cofibra-
tions for all d, d′ ∈ D, the injective model structure on [D,A]0 exists, and is
also right-proper.

(ii) If the functors −⊗D(d, d′) : A0 → A0 preserve trivial cofibrations for all
d, d′ ∈ D, the projective model structure on [D,A]0 exists, and is also right-
proper.

Proof. Since limits are computed pointwise in [D,A]0, it is enough to see that injec-
tive fibrations are, in particular, pointwise fibrations. This follows from the fact that,
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for all d, d′ ∈ D, the functors −⊗D(d, d′) : A0 → A0 preserve trivial cofibrations. To
see this, one can use a similar argument to the one used in the proof of Theorem 4.4
to prove that injective trivial fibrations are, in particular, pointwise trivial fibrations
when these tensor functors preserve cofibrations.
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Appl. Categ. 4 (1998), no. 3, 47–72. MR1624638

[5] J. Cantarero, J. Scherer, and A. Viruel, Nilpotent p-local finite groups, Ark. Mat.
52 (2014), no. 2, 203–225. MR3255138

[6] B. Chorny and W.G. Dwyer, Homotopy theory of small diagrams over large
categories, Forum Math. 21 (2009), no. 2, 167–179. MR2503302

[7] B. Chorny and J. Scherer, Goodwillie calculus and Whitehead products, Forum
Math. 27 (2015), no. 1, 119–130. MR3334057

[8] J.D. Christensen and M. Hovey, Quillen model structures for relative homolog-
ical algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 261–293.
MR1912401

[9] M. Cole, The homotopy category of chain complexes is a homotopy category,
1999. Preprint.
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