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ON THE HOMOLOGY OF LIE ALGEBRAS LIKE gl(∞, R)

OLIVER BRAUNLING

(communicated by Jonathan M. Rosenberg)

Abstract
We revisit a recent paper of Fialowski and Iohara. They com-

pute the homology of the Lie algebra gl(∞, R) for R an associa-
tive unital algebra over a field of characteristic zero. We explain
how to obtain essentially the same results by a completely dif-
ferent method.

1. Introduction

This note is inspired by the recent paper [FI17] of Fialowski and Iohara. They
compute the Lie algebra homology of the infinite matrix algebra gl(∞, R). We shall
recall below how this Lie algebra is defined. Their paper takes up a thread of research
initiated by Feigin and Tsygan, and generalizes one of the main results of [FT83].

While gl(∞, R) naturally acts on Laurent polynomials R[t, t−1], in this note we
consider a very closely related variant, which acts in an analogous fashion on formal
Laurent series R((t)). This leads to a topologically completed variant of the same Lie
algebra, call it gltop(∞, R). However, this little change of perspective is only made
for convenience, it is really not the main point of this text. Instead, our focus is on
computing the homology of gltop(∞, R) in a completely different fashion than the
methods used by Fialowski and Iohara.

Nonetheless, a posteriori it will turn out that gl(∞, R) and gltop(∞, R) have the
same homology.

2. Statement of the results

Suppose k is a field of characteristic zero and R a unital associative k-algebra.
Define the algebra of generalized Jacobi matrices (following [FT83])

J(R) := {(ai,j)i,j∈Z with ai,j ∈ R | ∃N : ai,j = 0 for all i, j with |i− j| > N} .

This is again a unital associative k-algebra if we equip it with the usual matrix
multiplication. The finiteness condition on the width of the diagonal support ensures
that this multiplication is well-defined.
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Write gl(∞, R) to denote the Lie algebra of J(R). This Lie algebra arose in the
context of soliton theory, e.g., see [MJD00, Section 6.2], or [KR87, Lecture 4], for
a textbook account. We refer the reader to these accounts for background on the
use of this Lie algebra. Moreover, let gln(R) denote the usual Lie algebra of (n× n)-
matrices with entries in R, and gl∞(R) := colim

n−→∞
gln(R), where gln(R) is embedded

into gln+1(R) as the upper-left (n× n)-minor, and the remaining (n+ 1)-st row and
column being set to zero. Again, gl∞(R) is a Lie algebra. Despite the similar notation,
it is very different from gl(∞, R).

The main results of [FI17] are:

Theorem 2.1 (Fialowski–Iohara [FI17]). Let R be an associative unital k-algebra,
where k is a field of characteristic zero. There are canonical isomorphisms:

1. of graded k-vector spaces HC•(J(R)) ∼= HC•−1(R),

2. of graded k-vector spaces HH•(J(R)) ∼= HH•−1(R),

3. of the primitive parts PrimH•(gl(∞, R), k) ∼= PrimH•(gl∞(R), k)[−1].

By speaking of the primitive part, we refer to the fact that the Lie homology algebra
H•(g, k), for an arbitrary Lie algebra g over a field k, has a graded cocommutative
coalgebra structure with counit, induced from the comultiplication

△ : H•(g, k)
δ
−→ H•(g⊕ g, k)

σ
−→ H•(g, k)⊗k H•(g, k),

where δ : g→ g⊕ g is the diagonal g 7→ (g, g), and σ denotes the Künneth isomor-
phism for Lie homology. Thus, it has a notion of primitive elements, namely those x
satisfying △x = 1⊗ x+ x⊗ 1.

We define a variation of J(R): We may take

E(R) :=




ϕ ∈ EndR(R((t)) )

∣∣∣∣∣∣∣∣

(1) for every n ∈ Z there exists some n′ ∈ Z

such that ϕ(tnR[[t]]) ⊆ tn
′

R[[t]], and
(2) for every m ∈ Z there exists some m′ ∈ Z

such that ϕ(tm
′

R[[t]]) ⊆ tmR[[t]]





and let gltop(∞, R) be its Lie algebra.

Theorem 2.2 (Theorem 4.5). Let R be an associative unital k-algebra, where k is a
field of characteristic zero. There are canonical isomorphisms:

1. of graded k-vector spaces HC•(E(R)) ∼= HC•−1(R),

2. of graded k-vector spaces HH•(E(R)) ∼= HH•−1(R),

3. of the primitive parts PrimH•(gltop(∞, R), k) ∼= PrimH•(gl∞(R), k)[−1].

Of course this statement has exactly the same shape as the theorem of Fialowski–
Iohara. But even though this is a statement entirely about associative algebras and
Lie algebras, we shall prove it using a detour through some category-theoretic con-
cepts. The key input for the proof will be a localization theorem for categories. No
spectral sequences or auxiliary homology computations as in [FI17] will appear. So,
the method of proof is quite different. We will explain below how E and gltop(∞, R)
are just topologically completed variants of J and gl(∞, R); and note that since the
right-hand side terms in our theorem are precisely those as in the one of Fialowski–
Iohara, this topological completion curiously does not affect the homology at all.
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Mild variations of the same proof also give a variant for group homology. Write
GL∞(R) for colim

n−→∞
GLn(R), where GLn(R) is embedded into GLn+1(R) as the upper-

left (n× n)-minor, and the remaining (n+ 1)-st row and column being set to zero,
except for the (n+ 1, n+ 1) entry, which is set to the identity.

Although there does not exist an equally close connection between GL∞(R) and
gl∞(R) as in the world of real Lie groups and their Lie algebras, the analogous group
homology fact still holds true.

Theorem 2.3 (Theorem 4.7). Let R be an associative unital k-algebra, where k is a
field of any characteristic. Then there is a canonical isomorphism of primitive parts

PrimHn(GL∞(E(R)),Q) ∼= PrimHn−1(GL∞(R),Q)

for all n > 2.

We believe that the same statement is probably also true for J(R) instead of E(R),
but we have no proof.

3. The Lie algebras gl(∞, R) and gltop(∞, R)

We have recalled Feigin and Tsygan’s Lie algebra gl(∞, R) in the previous section.
Now let us define gltop(∞, R). We shall use a slightly more complicated approach
than we have used in Section 2 (we shall prove in Proposition 3.4 that the definition
in Section 2 is equivalent). Even though we only need a Lie algebra, let us take a quick
detour through a category-theoretic approach: For every exact category C, there is a
commutative diagram of exact functors

C Indaℵ0
C

Proaℵ0
C Tateelℵ0

C,

where Indaℵ0
(C), Proaℵ0

(C) refer to certain variations of the classical Ind- and Pro-
categories (the main difference is that we only allow defining Ind-diagrams whose
transition morphisms are admissible monics, resp. Pro-diagrams whose transition
morphisms are admissible epics with respect to the exact structure of C). The category
Tateelℵ0

(C) can be defined as the full subcategory of Indaℵ0
(Proaℵ0

(C)) consisting of those
objects which admit a Pro-subobject with an Ind-object quotient, i.e. which can be
presented as

L →֒ X ։ X/L,

where L ∈ Proaℵ0
(C) and X/L ∈ Indaℵ0

(C); such a subobject is known as a lattice. Here
we understand this Ind- and Pro-category as canonically embedded into the category
Indaℵ0

(Proaℵ0
(C)) by writing the Ind-diagram as an Ind-Pro diagram which is constant

in the Pro-direction, resp. a Pro-diagram as an Ind-Pro diagram which is constant in
the Ind-direction. We refer to [Pre11] or [BGW16b] for precise definitions. If C is a
k-linear exact category, then so is Tateelℵ0

(C), in a canonical fashion.
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If C = Pf (R) is the k-linear exact category of finitely generated projective R-

modules, there is a special object in Tateelℵ0
(C):

“R((t))” :=
∐

n∈N

R⊕
∏

n∈N

R (3.1)

or equivalently (isomorphically)

“R((t))” ∼= colim−−−→
n

lim←−
m

1

tn
R[t]

/
tmR[t], (3.2)

which might be a more suggestive way of defining an object which we can think of as
a formal incarnation of Laurent series. The former presentation makes it clear that
“R((t))” lies in Indaℵ0

(Proaℵ0
(C)), and since

∏
n∈N

R is visibly a lattice, “R((t))” lies

in Tateelℵ0
(C).

Despite the fact that these category-theoretic constructions might appear quite
fancy, perhaps even too fancy, we only need them in a very special situation where
all the categories boil down to be equivalent to categories of projective modules:

Let Tateℵ0
(C) denote the idempotent completion of the exact category Tateelℵ0

(C).

Lemma 3.1 (Key Lemma). If C = Pf (R) is the k-linear exact category of finitely
generated projective R-modules, then there is a k-linear exact equivalence of k-linear
exact categories Tateℵ0

(Pf (R)) ∼= Pf (E(R)), where

E(R) := EndTateℵ0
(Pf (R))(“R((t))”). (3.3)

Indeed, “R((t))” is a projective generator of Tateℵ0
(Pf (R)).

Proof. This is [BGW16a, Theorem 1], applied for C = Pf (R) and n = 1. Note that
the countable collection {Si} of the theorem loc. cit. can be taken to be the single
object R (as a module). The reference does not discuss the additional k-linear struc-
ture, but an inspection of the proof loc. cit. easily shows that this structure is also
compatible under the given equivalence.

We take the Lie algebra of the associative algebra underlying this projective module
category as our definition for a topologically completed analogue of gl(∞, R):

Definition 3.2. Let k be a field and R a unital associative k-algebra. Then we define
gltop(∞, R) as the Lie algebra of the unital associative k-algebra E(R).

We need to justify how gltop(∞, R) resembles the infinite matrix algebra gl(∞, R)
of Fialowski and Iohara.

Remark 3.3. Let us dwell on a bit more about the differences of R[t, t−1] (the situation
of Feigin–Tsygan [FT83] and Fialowski–Iohara [FI17]), in comparison to R((t)). For
simplicitly, let us focus on R := k. Then the big advantage of k[t, t−1] is that we can
specify an explicit k-vector space basis. This is not possible for k((t)). However, k((t))
has the advantage to be closed under dualization; noting that k((t)) ≃ tk[[t]]⊕ k[t−1]
as a k-vector space, and the two direct summands are dual to each other under taking
the continuous k-dual, and equipping k[[t]] with the natural t-adic linear topology,
and k[t−1] with the discrete topology.
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Let us give a more explicit description of the − quite abstract − definition in
Equation 3.3. After all, we prefer to be able to specify E(R) without having to rely
on a category-theoretic picture:

Proposition 3.4. There is a canonical isomorphism of unital associative k-algebras,

E(R)
∼
−→




ϕ ∈ EndR(R((t)) )

∣∣∣∣∣∣∣∣

(1) for every n ∈ Z there exists some n′ ∈ Z

such that ϕ(tnR[[t]]) ⊆ tn
′

R[[t]], and
(2) for every m ∈ Z there exists some m′ ∈ Z

such that ϕ(tm
′

R[[t]]) ⊆ tmR[[t]]





.

(3.4)
In particular, gltop(∞, R) is the Lie algebra of the right-hand side subalgebra of
EndR(R((t)) ) under the commutator bracket.

Proof. (Step 1) First of all, define an exact functor

G : Tateℵ0
(Pf (R)) −→ Mod(R), “R((t))” 7−→ R((t)).

As “R((t))” is a projective generator, for defining an exact functor it suffices to
prescribe the object this generator is sent to, and, moreover, make sure that every
endomorphism of the projective generator also defines an endomorphism in Mod(R).
To this end, we unravel the definition of morphisms in the category on the left: Recall
that Tateℵ0

(Pf (R)) is the idempotent completion of Tateelℵ0
(Pf (R)), and “R((t))” lies

in the latter, so it suffices to understand the Hom-sets in Tateelℵ0
(Pf (R)) itself. By

definition,

Tateelℵ0
(Pf (R)) ⊂ Indaℵ0

Proaℵ0
(Pf (R))

is a full subcategory, so this reduces to evaluating the Hom-sets of Ind- resp. Pro-
objects individually. For admissible Ind-objects of an arbitrary exact category C we
have

HomInda
ℵ0

(C)(X•, Y•) = lim←−
i

colim−−−→
j

HomC(Xi, Xj),

where X• : I → C is an admissible Ind-diagram (analogously for Y•) representing the
object, with I the countable index category. Since Proa(C) = Inda(Cop)op, this also
describes the Hom-sets of Pro-objects. In total, we find

HomTateel
ℵ0

(Pf (R))(X•,•, Y•,•) = lim←−
I

colim−−−→
J

lim←−
j

colim−−−→
i

HomR(XI,i, XJ,j). (3.5)

If we write

R((t)) = colim−−−→
n

lim←−
m

1

tn
R[t]

/
tmR[t]

in Mod(R), but not as an Ind-Pro object, but as a concrete colimit and limit in the bi-
complete category Mod(R), we see that an element of Equation 3.5 for the Tate object
X = Y = “R((t))” indeed defines an R-module endomorphism of R((t)). Moreover,
the colimits in Equation 3.5 are along (split) injections, and the limits along split
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surjections, so the map

HomTateel
ℵ0

(Pf (R))(X,Y ) −→ HomR(GX,GY )

is not just well-defined, it is also injective. Thus, G is an exact and faithful func-
tor. (Step 2) The faithfulness implies that we have an inclusion of unital associative
algebras E(R) ⊆ EndR(R((t)) ). It remains to show that the image agrees with the
description which we give in our claim. We note that for all n ∈ Z the subobject
“tn ·R[[t]]”, which is a Pro-object, is indeed a lattice in “R((t))”, because

“tn ·R[[t]]” →֒ “R((t))” ։ “R((t)) /tn ·R[[t]] ”

and the latter is isomorphic to “tn−1 ·R[t−1]”, which is an Ind-object in turn. So all
“tn ·R[[t]]” are lattices, and they are bi-final in the poset of lattices, meaning that
every lattice L admits some n, n′ ∈ Z with

“tn ·R[[t]]” →֒ L →֒ “tn
′

·R[[t]]”. (3.6)

Now suppose ϕ ∈ E(R) = EndTateℵ0
(Pf (R))(“R((t))”). Since “tn ·R[[t]]” is a lattice in

“R((t))”, [BGW16a, Lemma 1, (1)] implies that there exists a lattice L in “R((t))”
such that ϕ(“tn ·R[[t]]”) ⊆ L and since the lattices of the shape “tZ ·R[[t]]” are co-
final among all lattices, this L is contained in some “tn

′

·R[[t]]” for a suitable n′, as
in Equation 3.6. It follows that Condition (1) in Equation 3.4 is met. For Condition
(2) argue analogously, this time using [BGW16a, Lemma 1, (2)] instead. This proves
that under the inclusion E(R) ⊆ EndR(R((t)) ) the elements ϕ ∈ E(R) indeed meet
the Conditions (1), (2) of our claim. It remains to show that whenever we are given a
ϕ ∈ EndR(R((t)) ) meeting Conditions (1), (2), that this defines an endomorphism in
EndTateℵ0

(Pf (R))(“R((t))”). We verify this: Observing Equation 3.2, Conditions (1),
(2) just mean that, up to re-indexing n,m, ϕ induces a (possibly non-straight) mor-
phism in the underlying Ind- and Pro-category. This proves that Conditions (1), (2)
precisely determine the image of E(R) inside EndR(R((t)) ). Thus, for the isomor-
phism of unital associative algebras which we claim to exist in Equation 3.4, we may
just take the inclusion map. We already know that this is an algebra homomorphism,
Step 1 shows that it is injective, and Step 2 that it is surjective. The claim follows.

We may also compare J(R) and E(R) on a more structural level:
Firstly, the J(R) of [FI17] comes equipped with two-sided ideals;

I+(R) := {(ai,j) ∈ J(R) | ∃Ba : i < Ba ⇒ ai,j = 0},

I−(R) := {(ai,j) ∈ J(R) | ∃Ba : j > Ba ⇒ ai,j = 0}, (3.7)

I0(R) := I+(R) ∩ I−(R).

These have the following property:

I+(R) + I−(R) = J(R).

See [Bra14, §1.1] for more on this. Loc. cit. we write E(R) instead of J(R), but
for the present text we prefer to follow Feigin–Tsygan’s notation. The ideal I0(R)
consists precisely of those matrices with only finitely many non-zero entries, so the
usual definition of a matrix trace makes sense on it. We could call I0(R) the (non-
unital) subalgebra of trace-class elements. In fact, all this means that the generalized



ON THE HOMOLOGY OF LIE ALGEBRAS LIKE gl(∞, R) 137

Jacobi matrices are an example of a 1-fold Beilinson cubical algebra in the sense of
[BGW16a, Definition 1].

The algebra J(R) naturally acts on the Laurent polynomial ring R[t, t−1]. Write
polynomials as f =

∑
i∈Z

fit
i, also denoted f = (fi)i with fi ∈ R, and let a = (ai,j)

act by (a · f)i :=
∑

k∈Z
ai,kfk. This makes J(R) a submodule of EndR(R[t, t−1]).

Now, let us explain how this differs from E(R): Instead of Laurent polynomials,
we could also consider formal Laurent series, that is R((t)) := R[[t]][t−1]. Clearly,
R[t, t−1] ⊆ R((t)). As in Equation 3.3, we define E(R) to be the endomorphism alge-
bra of “R((t))” in the category Tateℵ0

(Pf (R)). Then,

I+(R) := {a ∈ End(“R((t))”) | the image of a is contained in a lattice},

I−(R) := {a ∈ End(“R((t))”) | a lattice is mapped to zero under a},

I0(R) := I+(R) ∩ I−(R)

are two-sided ideals, now inside of E(R) instead of J(R), and again

I+(R) + I−(R) = E(R)

holds. We chose to pick the same notation for the ideals to stress the analogy with
Equations 3.7. In particular, we again obtain an example of a 1-fold Beilinson cubical
algebra. All these properties are a special case of [BGW16a, Theorem 1], using that
the projective modules Pf (R) form an idempotent complete split exact category.

4. Proof

Fix a field k of arbitrary characteristic. Below, whenever we speak of cyclic or
Hochschild homology, we tacitly regard k as the base field, even if we do not repeat
mentioning k in the notation.

Cyclic homology is classically only defined for k-algebras, but thanks to the work of
Keller [Kel99], we also have a concept of cyclic homology for k-linear exact categories.
In the case of k-algebras, we have agreement in the sense that

HC(R) ∼= HC(Pf (R)),

where on the left-hand sideHC(R) denotes the ordinary definition of cyclic homology,
for example as in [Lod92], whereas on the right-hand side we use Keller’s definition.
For the proof of agreement see [Kel99, §1.5, Theorem, (a)].

Let us briefly recall the Eilenberg swindle, in a quite general format, using the
language of [BGT13]:

Lemma 4.1 (Eilenberg swindle). Suppose an exact category C is closed under count-
able products or coproducts and I : Catex∞ → Sp is any additive invariant with values
in spectra Sp (e.g., Hochschild homology or cyclic homology), then I(C) = 0.

We formulate this in terms of spectra here, but since we only care about Hochschild
or cyclic homology, simplicial abelian groups would suffice.

Proof. Write EC to denote the exact category of exact sequences in C. We assume
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that C has countable coproducts. Define

E : C −→ EC, X 7→ (X →֒
∐

i∈Z
X ։

∐
i∈Z

X).

The admissible epic on the right is the shift-one-to-the-left functor in the indexing
of the coproducts. We can project to the left, middle or right term of EC, write
pi : C → C with i = 0, 1, 2 for these functors. The additivity of the invariant I implies
that p1 = p0 + p2 holds for the morphisms functorially induced on I(C)→ I(C). Since
p1 = p2, we must have p0 = 0. Since p0 is induced from the identity functor, p0 must
also be the identity, and thus I(C) = 0. The argument in the case of C having countable
products is analogous.

That cyclic homology and Hochschild homology are additive invariants in the sense
of the above lemma, was proven by Keller [Kel99, §1.1.2, Theorem].

If C is an idempotent complete exact category and C →֒ D a right s-filtering inclu-
sion as a full subcategory of an exact category D, then

Db(C) →֒ Db(D) ։ Db(D/C) (4.1)

is an exact sequence of triangulated categories by work of Schlichting, see [Sch04,
Prop. 2.6]. From this one can deduce the following variant of a theorem of Keller:

Theorem 4.2 (Keller’s Localization Theorem). Let C be an exact category and C →֒
D a right s-filtering inclusion as a full subcategory of an exact category D. Then

HC(C) −→ HC(D) −→ HC(D/C)

is a fiber sequence in cyclic homology. The analogous statement for Hochschild homol-
ogy is also true.

Proof. Let us provide some details to translate this formulation into the one of Keller’s
paper. If C is idempotent complete, the claim literally follows from Schlichting’s result,
Equation 4.1, and Keller’s [Kel99, §1.5, Theorem]. If C is not idempotent complete,
we need to work a little harder, but the necessary tools are all available thanks to
[Sch04]: Instead of Equation 4.1, Schlichting also provides a slightly more general
variant: If C is not necessarily idempotent complete, he constructs an exact category
D̃C (cf. [Sch04, Lemma 1.20]) such that

D →֒ D̃C →֒ Dic,

with (1) D̃C →֒ Dic an extension-closed full subcategory, and (2) D →֒ D̃C co-final
(a.k.a. ‘factor-dense’ in Keller’s language [Kel99, §1.5]), (3) the right s-filtering
embedding C →֒ D, inducing Cic →֒ Dic by 2-functoriality, factors over a right s-
filtering embedding Cic →֒ D̃C and, finally, (4), there is an exact equivalence of exact

categories D/C
∼
−→ D̃C/Cic. See Schlichting’s paper [Sch04, Lemma 1.20]. We can

use this tool now and proceed as follows: From the assumptions of the theorem as
our input, we begin with Schlichting’s construct Cic →֒ D̃C ։ D̃C/Cic, so that Equa-

tion 4.1 yields the exact sequence of triangulated categories Db(Cic) →֒ Db(D̃C) ։

Db(D̃C/Cic). Keller’s original formulation in [Kel99] takes such a sequence as its
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input, giving the fiber sequence

HC(Cic) −→ HC(D̃C) −→ HC(D̃C/Cic).

But Keller’s cyclic homology is invariant up to exact equivalence up to factors/co-
finally (see [Kel99, §1.5, Theorem, (b)]), so

HC(D̃C) ∼= HC(D) and HC(D̃C/Cic) ∼= HC(D/C).

Finally, C →֒ Cic is co-final, and the idempotent completion of an exact category
commutes with the idempotent completion of its bounded derived category,Db(Cic) =
Db(C)ic, by Balmer and Schlichting [BS01, Corollary 2.12], so that Db(C)→ Db(Cic)
is also co-final and thus an equivalence up to factors itself.

Based on the Eilenberg swindle, we obtain the fundamental delooping property of
Tate categories. This transports an idea of Sho Saito from algebraic K-theory into
the setup of the present note:

Theorem 4.3. Let k be any field. Suppose C is an idempotent complete k-linear exact
category. Then there are canonical isomorphisms

HC•(Tateℵ0
(C)) ∼= HC•−1(C) and HH•(Tateℵ0

(C)) ∼= HH•−1(C).

Proof. The delooping property of (countably indexed) Tate categories for algebraic
K-theory was first conjectured by Kapranov in an unpublished letter to Brylinski,
later first steps to a proof were taken in Previdi’s thesis, and eventually proven in full
generality by Sho Saito [Sai15]. By inspecting Sho Saito’s proof, one quickly realizes
that it can be adapted to prove the same delooping property for cyclic homology and
Hochschild homology. Let us explain this: Using that C →֒ Proaℵ0

(C) is right s-filtering

(see loc. cit., or [BGW16b, Theorem 4.2]), and that Indaℵ0
(C) →֒ Tateelℵ0

(C) is right s-
filtering (loc. cit., or [BGW16b, Remark 5.3.5]), we get the homotopy commutative
diagram

HC(C) HC(Proaℵ0
(C)) HC(Proaℵ0

(C)/C)

HC(Indaℵ0
(C)) HC(Tateelℵ0

(C)) HC(Tateelℵ0
(C)/Indaℵ0

(C)),

where both rows are fiber sequences. This follows from Keller’s Localization Theo-
rem, in the special formulation we have given above as Theorem 4.2. The downward
arrows are induced from the natural exact functors between the respective categories.
Adapting Saito’s idea, the right-hand side downward map stems from an exact equiv-
alence,

Tateelℵ0
(C)/Indaℵ0

(C)
∼
−→ Proaℵ0

(C)/C .

(See Saito’s paper for a proof of the dual statement with the roles of Ind and Pro in
reverse, [Sai15, Lemma 3.3]. A detailed proof in precisely the format we use here is
given in [BGW16b, Proposition 5.34].) Thus, it is an equivalence in cyclic homology
and Hochschild homology. Thus, the square on the left is homotopy bi-cartesian. Next,
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note that

HC(Indaℵ0
(C)) = 0 and HC(Proaℵ0

(C)) = 0

by the Eilenberg swindle, Lemma 4.1. It is a rather easy exercise to show that the Ind-
category is closed under countable coproducts, and the Pro-category under countable
products. Thus, the homotopy bi-cartesian square turns into the classical loop space
square,

HC(C) ∗

∗ HC(Tateelℵ0
C).

We obtain the equivalence HC(C)
∼
→ ΩHC(Tateelℵ0

(C)), and analogously we obtain
this for Hochschild homology.1 It remains to go to the idempotent completion on the
right; we copy the same argument as in the end of the proof of Theorem 4.2: For every
exact category D the idempotent completion D →֒ Dic induces Db(Dic) →֒ Db(D)ic,
being co-final and an equivalence up to factors. Thus, applied to D := Tateelℵ0

(C), we

get HC(Tateelℵ0
(C)) ∼= HC(Tateℵ0

(C)).

Let us make the connection between this and the work of Fialowski and Iohara.

Corollary 4.4. Let k be a field and R a unital associative k-algebra. Then there are
canonical isomorphisms:

1. HC•(E(R)) ∼= HC•−1(R),

2. HH•(E(R)) ∼= HH•−1(R).

We observe that we have proven the analogue of the delooping result of Fialowski
and Iohara for E instead of J .

Proof. To this end, we use the category-level delooping theorem in the special case
of rings, i.e. C = Pf (R). Then

HC•(E(R)) ∼= HC•(Tateℵ0
(Pf (R))) ∼= HC•−1(Pf (R)) ∼= HC•−1(R).

Here the first isomorphism stems from Lemma 3.1, the second from the delooping
property of Tate categories, Theorem 4.3, and the last from the agreement of the
cyclic homology of the exact category of finitely generated projective modules with
the classical definition for k-algebras. The same computation holds for Hochschild
homology.

Let us stress how different this proof is from the one given in [FI17]. While loc.
cit. uses the degeneration of a Hochschild–Serre type spectral sequence, based on
some explicit computations of terms, the main technical point in our approach is
Keller’s Localization Theorem, along with a few category-theoretic properties. In an
at best vaguely precise comparison, the rôle of the homological vanishing statements
in [FI17] appears to be replaced by the Eilenberg swindle.

1The same argument works for non-connective K-theory, this is the original argument of Saito in
[Sai15], and, finally, all of this generalizes to any localizing invariant in the sense of Blumberg,
Gepner, Tabuada [BGT13].
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Finally, and for the first time in this note, let us restrict the characteristic of the
base field to zero. Then the Loday–Quillen–Tsygan (LQT) theorem applies, telling
us that for any unital associative k-algebra R, we have

PrimH•(gl∞(R)) ∼= HC•−1(R).

Theorem 4.5. Suppose k is a field of characteristic zero and R a unital associative
k-algebra. Then there is a canonical isomorphism of the primitive parts

PrimH•(gl(∞, R), k) ∼= PrimH•(gl∞(R), k)[−1].

Proof. Write Mn(R) to denote the (n× n)-matrix algebra over an associative algebra
R. Using Loday–Quillen–Tsygan twice, we obtain the isomorphisms

PrimH•(gl∞(E(R))) ∼=
(LQT)

HC•−1(E(R)) ∼= HC•−2(R) ∼=
(LQT)

PrimH•(gl∞(R))[−1],

where the middle isomorphism is Corollary 4.4. Moreover, if Lie denotes the functor
sending an associative k-algebra to its underlying Lie algebra, then

gln(E(R)) = Lie (Mn(E(R))) (4.2)

= Lie
(
Mn(EndTateℵ0

(Pf (R))(“R((t))”))
)

= Lie(EndTateℵ0
(Pf (R))(“R((t))”⊕n)).

However, when writing “R((t))” :=
∐

n∈N
R⊕

∏
n∈N

R as in Equation 3.1, we can
write down a system of isomorphisms

“R((t))” ∼= “R((t))”⊕2 ∼= “R((t))”⊕3 ∼= · · ·

induced from maps between the countable index sets of the product and coprod-
uct, as in [FI17, §1.3]. (That is, essentially we use that the disjoint union of n > 1
copies of N is in bijection to N itself.) Being isomorphic as objects in Tateℵ0

(Pf (R)),
their endomorphism algebras are also isomorphic, and thus their Lie algebras. Hence,
Equation 4.2 yields that the transition maps in

· · · −→ H•(gln(E(R))) −→ H•(gln+1(E(R))) −→ · · ·

are all isomorphisms, and thus H•(gl1(E(R))) ∼= H•(gl∞(E(R))) is an isomorphism.
But clearly gl1(E(R)) is just a different way to denote the Lie algebra of E(R), so
this is nothing but gltop(∞, R). This finishes the proof.

Note that this statement is precisely the same as was proven by Fialowski and
Iohara for gl(∞, R) in their paper. In particular, combining both results, we obtain
that the homology of the plain uncompleted Lie algebra gl(∞, R) acting on R[t, t−1],
and the topologically completed variant gltop(∞, R), acting on R((t)), does not differ
at all:

Corollary 4.6. H•(gl(∞, R), k) ∼= H•(gltop(∞, R), k).

One may speculate that this statement might also hold in positive characteristic,
but we have no proof.

The delooping property for Hochschild homology would allow us to prove state-
ments analogous to the Corollary for Leibniz homology; we leave this to the reader.
Finally, the same methods work for group homology:
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Theorem 4.7. Let R be an associative unital k-algebra, where k is a field of any
characteristic. There is a canonical isomorphism of primitive parts

PrimHn(GL∞(E(R)),Q) ∼= PrimHn−1(GL∞(R),Q)

for all n > 2.

Proof. The proof follows exactly the same pattern as the one of Theorem 4.5; we
only need to employ the picture (due to Feigin and Tsygan [FT87]) to view cyclic
homology as the additive analogue of K-theory. Then take the arguments for cyclic
homology and adapt them. In detail: The Loday–Quillen–Tsygan theorem is mod-
elled after the following fact, essentially belonging to the realm of rational homotopy
theory:

Kn(R)⊗Z Q ∼= PrimHn(GL∞(R),Q),

where the latter denotes the primitive part of the group homology of GL(R), equipped
with the discrete topology. Moreover, K•(−) denotes the usual Quillen (that is: con-
nective) K-theory. Now replace Theorem 4.3 by Saito’s original theorem for (non-
connective) K-theory [Sai15]. We get Kn+1(Tateℵ0

(Pf (R))) ∼= Kn(Pf (R)) for all
n > 1; because for n > 1 the connective and non-connective K-theories agree. Thus,

PrimHn+1(GL∞(E(R)),Q) ∼= Kn+1(E(R))⊗Q ∼= Kn+1(Tateℵ0
(Pf (R)))⊗Q

∼= Kn(Pf (R))⊗Q ∼= PrimHn(GL∞(R),Q).

This finishes the proof.
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[FT87] B. Fĕıgin and B. Tsygan, Additive K-theory, K-theory, arithmetic and
geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289,
Springer, Berlin, 1987, pp. 67–209. MR 923136

[Kel99] B. Keller, On the cyclic homology of exact categories, J. Pure Appl.
Algebra 136 (1999), no. 1, 1–56. MR 1667558 (99m:18012)

[KR87] V. Kac and A. Raina, Bombay lectures on highest weight representa-
tions of infinite-dimensional Lie algebras, Adv. Ser. Math. Phys., vol. 2,
World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1021978

[Lod92] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss. [Fundamental
Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin,
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