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TOPOLOGICAL COMPLEXITY OF A MAP
PETAR PAVESIC

(communicated by Donald M. Davis)

Abstract

We study certain topological problems that are inspired by
applications to autonomous robot manipulation. Consider a con-
tinuous map f: X — Y, where f can be a kinematic map from
the configuration space X to the working space Y of a robot arm
or a similar mechanism. Then one can associate to f a number
TC(f), which is, roughly speaking, the minimal number of contin-
uous rules that are necessary to construct a complete manipula-
tion algorithm for the device. Examples show that TC(f) is very
sensitive to small perturbations of f and that its value depends
heavily on the singularities of f. This fact considerably compli-
cates the computations, so we focus here on estimates of TC(f)
that can be expressed in terms of homotopy invariants of spaces X
and Y, or that are valid if f satisfies some additional assumptions
like, for example, being a fibration.

Some of the main results are the derivation of a general upper
bound for TC(f), invariance of TC(f) with respect to deforma-
tions of the domain and codomain, proof that TC(f) is a FHE-
invariant, and the description of a cohomological lower bound for
TC(f). Furthermore, if f is a fibration we derive more precise esti-
mates for TC(f) in terms of the Lusternik-Schnirelmann category
and the topological complexity of X and Y. We also obtain some
results for the important special case of covering projections.

1. Introduction

In 2003 Michael Farber [4] introduced the topological complexity of a space X,
denoted TC(X), as a homotopy-invariant measure of the difficulty to plan a contin-
uous motion of a robot in the space X. Over the years the interest for applications
of topological complexity and related concepts to problems in robotics grew into an
independent field of research. Topological complexity of a map is a natural extension
of TC(X) suggested by Alexander Dranishnikov during the conference on Applied
Algebraic Topology in Castro Urdiales (Spain, 2014). The new concept opens the
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possibility to build some new interesting models in topological robotics. For example,
the present author used the topological complexity of a map in in [10] as a measure
of manipulation complexity of a robotic device. That point of view was further devel-
oped in [11]. The main thrust of both papers was on applications to kinematic maps
that arise in commonly used robot configurations. As a consequence, many related
theoretical question were left aside. The purpose of the present paper is to fill that
gap.

Let f: X =Y be a continuous map: given z € X, y € Y, we look for a path
a = ar,y) in X starting at z and ending at a point that is mapped to y by f. We
normally assume that X is path-connected and that f is surjective, so that the above
problem always has a solution. However, we want the assignment (z,y) — «a(z,y) to
satisfy an additional condition, namely to be as continuous as possible. More formally,
we consider the space X' of all paths in X and the projection map

T XT = X xY, where ms(a) = (a(0), f(a(1))).

Then every solution to the above-mentioned problem can be interpreted as a section
s: X xY — X7 to the projection m¢. There are simple examples of maps f: X — Y
such that 7; does not admit a section that is continuous on entire X x Y. Therefore,
one may attempt to split X x Y into subspaces, each admitting a continuous section
to 7¢. The minimal number of elements in such a partition is the topological complezity
of the map f.

Topological complexity of a map can be viewed as a natural generalization of the
topological complexity of a single space, introduced by Farber [4]. However, compu-
tation of TC(f) requires the study of a host of new phenomena related to its domain,
codomain and singularities.

In this paper we will not be concerned with the applications of TC(f) to robotics.
Nevertheless to give a flavour of the maps which one may want to study, we just
mention a variety of situations that can be modelled by TC(f) (see [11, Section 5]
for more details).

e If X is the configuration space of a system and f: X — Y is a projection to the
configuration space of a part or a subsystem, then TC(f) measures the complexity
of manipulation of the components of a complex mechanism (e.g a moving plat-
form), where one is only interested in the positioning of some intermediate part of
the structure (e.g. an object on the platform);

e The complexity of manipulation of a robotic arm is modelled by letting X be a
joint space, Y the working space and f: X — Y the forward kinematic map of the
arm (see [10] for a detailed discussion);

e Let X be a configuration space of a robotic mechanism where different points of
X (i.e. positions of the mechanism) are functionally equivalent (e.g. for grasping,
pointing, ... ). If we express functional equivalence in terms of the action of some
symmetry group G, then the manipulation complexity of the device is modelled by
the topological complexity of the quotient map X — X/G.

We begin the paper with a discussion of the ‘correct’ definition of the complexity
of a map. In fact, a straightforward generalization of the standard definition of topo-
logical complexity of a space proposed by Dranishnikov turned out to be somewhat
inadequate for maps with singularities. We devised an alternative approach which is
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equivalent to Dranishnikov’s when applied to fibrations but yields more satisfactory
results for general maps.

The third section is dedicated to a various upper and lower estimates for the
topological complexity of a map. Some of these are valid for arbitrary maps, while
other hold for maps that have some additional properties, e.g. are fibrations or admit
a section (see Section 3.6 for a summary of main results).

In the final section we specialize to maps that are fibrations and express their
complexity in terms of other homotopy invariants. This allows computation of topo-
logical complexity of many standard fibrations. In particular we show that topological
complexities of covering projections can be viewed as approximations of topological
complexity of the base space.

2. Definition of TC(f)

We are going to define the topological complexity of a map in a way that will allow
a comparison with two other related concepts - cat(X), the Lusternik-Schnirelmann
category of X, and TC(X), the topological complezity of X. In fact all three concepts
can be expressed in terms of sectional numbers of certain maps.

Let p: E — B be a continuous surjection. A section of p is a right inverse of p
i.e., a map s: B — E, such that pos = 1g. Moreover, given a subspace A C B, a
partial section of p over A is a section of the restriction map p: p~1(A4) — A. If p
does not admit a continuous section, it may still happen that it admits sufficiently
many continuous partial sections so that their domains cover B.

We define sec(p), the sectional number of p to be the minimal integer n for which
there exists an increasing sequence of open subsets

(D:UoCUlCUQC"'CUk:B,

such that each difference U; — U;_1, i = 1,...,n admits a continuous partial section
to p. If there is no such integer n, then we let sec(p) = oo.

A word of warning is in order here, since the above is not the entirely standard
definition of sectional number. Indeed, sectional number is more commonly defined as
the minimal number of elements in an open cover of B, such that each element admits
a continuous partial section to p. Let us denote this second quantity as secqp(p).
Obviously sec(p) < secop(p). On the other hand, it is easy to see that if p is a fibration
and B is an ANR space, then sec(p) and secop(p) actually coincide. One should
also note the similarity between secop(p) and secat(p), the sectional category of X
(also called Schwarz genus of p, cf. [13], [1]). The latter counts the minimal number
of homotopy sections of p, therefore seco,(p) = secat(p) if p is a fibration, but in
general sec(p) can be much bigger than secat(p) (see [11, Section 5] for some specific
examples).

We are now ready to state the definition of the Lusternik-Schnirelmann category
and the definitions of the topological complexity of a space and of a map. For any
space X let X! be the space of all continuous paths in X (endowed with the compact-
open topology) and let PX be the subspace of all based paths in X starting at some
fixed base-point zp € X (which we omit from the notation). It is well known that for
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any point ¢ € [0, 1] the evaluation map
eve: XT = X, a— alc)
is a fibration (and similarly for PX in place of X, provided that ¢ € (0, 1]).
The Lusternik-Schnirelmann category of a space X is defined as
cat(X) = sec(evy: PX — X).

If X is an ANR, then our definition is equivalent to the standard one that uses open
coverings of X by categorical subsets. For the convenience of the reader we list in
the next proposition the most important properties of the Lusternik-Scnirelmann
category
Proposition 2.1.
1. cat(X) =1 if, and only if X is contractible;
2. Homotopy invariance: X ~Y = cat(X) = cat(Y);
3. Dimension-connectivity estimate: if X is d-dimensional and (¢ — 1)-connected,
then cat(X) < % +1;
4. Cohomological estimate: cat(X) > nil H*(X), where
H*(X) is the ideal of positive-dimensional cohomology classes in H*(X);
5. Product formula: cat(X xY) < cat(X) + cat(Y) — 1.

More recently M. Farber [4] introduced the concept of a topological complexity of
a space in order to provide a crude measure of the complexity of motion planning of
mechanical systems, e.g. robot arms. The topological complexity of a (path-connected)
space X is

TC(X) :=sec(n), where m= (evg,evi): X = X x X.

As before, if X is an ANR space, then the above coincides with the Farber’s original
definition (cf. [6] or [9]). It is not surprising that many properties of TC(X) resemble
those of cat(X) and that the two quantities are closely related. The main properties
of TC(X) are listed in the following proposition.
Proposition 2.2.
1. TC(X) =1 if, and only if X is contractible;
Homotopy invariance: X ~Y = TC(X) = TC(Y);
Category estimate: cat(X) < TC(X) < cat(X x X);
If X is a topological group, then TC(X) = cat(X);
Cohomological estimate: cat(X) > nil(Ker A*), where
A*: H*(X x X) — H*(X) is induced by the diagonal A: X — X x X;
6. Product formula: TC(X xY) < TC(X)+ TC(Y) — 1.

AN

We may finally turn to the definition of the topological complexity of a map. Let
f: X — Y be a continuous surjection between path-connected spaces, and let

T XI5 X xY
be defined as 7wy := (evg, foevy) = (1 x f) om. Then the topological complexity of
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the map f is defined as
TC(f) := sec(my).

Clearly TC(idx) = TC(X), so the topological complexity of a map is a generaliza-
tion of the topological complexity of a single space. We will see later (Example 4.10)
that cat(X) = TC(evy: PX — X), so the topological complexity of a map generalizes
the Lusternik-Schnirelmann category as well.

Most of Section 3 is dedicated to the appropriate extensions of Propositions 2.1
and 2.2 for the topological complexity of a map. In the rest of this section we will
relate TC(f) to (partial) sections of f, and explain why a definition of TC(f) based
on partial sections over open covers of X x Y does not work well in general.

Let A C X x Y, such that A admits a partial section of 77, say s: A — X’. For a
fixed g € X, let A = {y € Y|(zo,y) € A} and define §: A — X by 3(y) = s(z0,y)(1).
Clearly, § is a continuous partial section of f. Some of the consequences of this follow:
o If my: X' - X x Y admits a global continuous section, then so does f: X — Y,

i.e. f is essentially a retraction of X to Y. This immediately gives plenty of maps

whose complexity is bigger than 1. For example, the map f: [0, 3] — [0, 2] given by

t te[0,1]
f) =<1 tell,2]
t—1 tel2,3]

(see Figure 1) clearly does not admit a section, therefore its topological complexity
must be bigger than one. Compare [11, Section 5] for a general procedure for
constructing maps with contractible domain and codomain and with arbitrarily
high topological complexity.

0 2
Figure 1: Map whose complexity is bigger than one.

e If (x9,yo) is an interior point of A, then the above formula yields a partial section for
f defined on a neighborhood of yq. This raises the question of admissible domains
for partial sections of . In particular, if f is not locally sectionable at some point,
then we cannot insist that the domains of partial sections are open subsets (as it
is otherwise customary in the definition of TC(X) or cat(X) and as was originally
proposed by Dranishnikov), because the topological complexity of such a map
would be infinite. On the other hand, we are mostly interested in the topological
complexity of relatively tame maps, whose singular sets are usually closed, so that
our definition based on filtrations of X x Y by open sets works well (see also
Section 3.4 for some general finiteness estimates for TC(f)). Let us mention that
if f is a fibration, then we will show in Corollary 4.4 that the two approaches
are equivalent. Furthermore, if f is a fibration between compact ANR’s, then by



112 PETAR PAVESIC

Theorem 4.6 TC(f) can be defined using arbitrary subsets of X x Y as domains
for local sections to .

The following alternative description of TC(f) is often used in applications.

Proposition 2.3. Let f: X — Y be any map. Then TC(f) equals the minimal inte-
ger n such that there exists an increasing sequence of closed subsets

0=CoCCLCCC---CC,=XxY,

where C; — C;_1 admits a partial section of ¢ fori=1,...,n.

Furthermore, if X XY is locally compact, then TC(f) equals the minimal integer
n such that there exists a partition of X XY into disjoint locally compact subsets
G1,Ga, ... Gy where Gy admits a partial section of wp fori=1,...,n.

Proof. The equivalence of the open and closed definitions follows immediately from
De Morgan’s Laws and the fact that the complement of an open set is a closed set.

As for the second claim, recall that since X x Y is locally compact, then a subset G
is locally compact if and only if G = C; — C5 for some closed sets Cy, Cs. Therefore,
given an increasing sequence

l=ChCCiC---CCp,=X XY,

where C; — C;_1 admits a partial section of m¢, then the sets G; = C; — C;_1 are
disjoint, locally compact, and each G; admits a partial section of 7.

To prove the converse, take a disjoint partition X x Y =G, UG U --- UGy, where
G; are locally compact and admit a partial section to 7y and each G; as a difference
G; = A; — B; of two closed sets. We can then define the following increasing sequence
of closed sets:

ClzuBZ and Cz = i_luAi_l fori:?,...,n.

i=1

Note that C; can also be expressed as C; = J-_; (U?Zl Gin Bj). Since Uj_; Gi N

B; C G; C A;, we see that the sets U?:l(Gi N B;) are separated from one another
and so C; admits a partial section of 7.

Furthermore, since C; — C;_1 C A;_1 — B;_1, we conclude that C; — C;_1 admit
a partial section to 7y fori=1,...,n ]

Remark 2.4. Srinivasan [14] has recently proved that for X a compact metric ANR
one can equivalently define cat(X) by partitioning X into arbitrary categorical sub-
sets. The proof is based on extensions of maps from a subset of X to a suitably con-
structed open neighbourhood (cf. [14, Corollary 2.8]). Her approach can be extended
to the case of topological complexity of a space, but the above examples show that
even for very simple maps the choice of the domains for partial sections can greatly
affect the outcome. We will return to this question in Section 4.

3. Estimates of TC(f) for arbitrary maps

From this point on we will assume that all spaces under consideration are metric
absolute neighbourhood retracts (metric ANR’s). As explained before, this will allow
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a direct comparison between the TC(f) and the category or topological complexity
of its domain and codomain. The following simple lemma will be particularly useful
for the comparison of the topological complexity of related maps.

Lemma 3.1. Let f: X =Y and f': X' =Y’ be any maps, and suppose there exists
a map h: Y — Y’ with the following property: whenever f' admits a partial section
over some A CY', f admits a partial section over h=(A) as depicted in the following
diagram:

X X'

7
P fi if

Y/

Then sec(f) < sec(f').

Proof. Suppose that sec(f’) = k and that
UycU C---CcU,=X"xY'

is an increasing sequence of open subsets where f’ admits a partial section over U; —
U;_4 for every 1 < i < k. Then f admits a partial section over each h’l(Ui —Ui—1)
by hypothesis. Since h is continuous, all h=!(U;) are open and so

D=h"YUy)ch ' (Uy)C---Cch H(Up) =Y

is an increasing sequence of open subsets where for every 1 < < k the restriction
of f admits a continuous section over h=Y(U;) — h™1(U;—1) = h=1(U; — U;_1). We
conclude that sec(f) < k = sec(f). O

Proposition 3.2. For any map f: X — Y, we have
TC(f) = cat(Y).

Proof. Fix zg € X and consider the inclusion h: Y — X x Y, given as h(y) := (zo,y).
If AC X xY admits a partial section o: A — X' to 7y, then one can easily check
that

eviofioooh = 1j-104),
where fi.: Py, X — Pj,,)Y denotes the post-composition by f. Therefore
feoooh: h Y (A) = Y!

is a partial section to the map evy: PY — Y over h~1(A). By Lemma 3.1 we conclude
that

TC(f) = sec(ny) = sec(evy) = cat(Y). O
As an easy consequence we obtain the relation
TC(f) > cat(f),

where cat(f) denotes the Lusternik-Schnirelmann category of f (see [1, Section 1.7] for
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the definition and main properties of cat(f)). This immediately follows from Propo-
sition 3.2 and the fact that the category of a map is bounded above by the category
of its codomain.

Another lower bound for TC(f) is given by the number of partial continuous
sections of f.

Proposition 3.3. For any map f: X — Y, we have
TC(f) > sec(f).

In particular, if TC(f) = 1, then f admits a continuous section.

Proof. Fix 9 € X and define h: Y — X x Y as in the previous proof. If o: A — Y/
is a partial section to 7 then

foevl oooh = ]_h—l(A)’

therefore evi oo o h: h™1(A) — X is a partial section to f. By Lemma 3.1 TC(f) =
sec(my) = sec(f). O

Observe that if f is a fibration, then sec(f) < cat(Y'), because f admits a partial
section over every categorical subset of Y. Therefore, for fibrations Proposition 3.2
implies Proposition 3.3.

Before proceeding let us introduce the following notation. Given a homotopy
H: X x I — Y, we can use adjunction to define continuous functions ﬁ, X =Y,
by the formulas

H(z)(t) = H(z,t) and H(2)(t) = H(z,1 1),

Proposition 3.4. If there exists yo € Y such that the fibre f~'(yo) of the map
f: X =Y s categorical in X, then

TC(f) > cat(X).

Proof. Define h: X — X x Y by h(z) := (z,yo). By assumption, there exists a homo-
topy H: f~1(yo) x I — X which deforms f~!(yo) to a point. If 0: A — X7 is a partial
section to 7y, then it is easy to verify that the map

ﬁoevloUOh

determines a deformation of h=1(A) C X to a point in X. As before, by Lemma 3.1
we conclude that TC(f) > cat(X). O

3.1. Effect of pre-composition on the complexity
Our next objective is to study the effect that pre-composition by a map has on the
complexity of f.

Theorem 3.5. Consider the diagram XxuxLhy.

a) Ifv admits a right homotopy inverse (i.e., a map u: Y — X, such that vu ~ 1),
then TC(fv) = TC(f)

b) If v admits a left homotopy inverse (a map u such that uv ~ 1) and if fou = f,
then TC(fv) < TC(f).
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c) If v admits a left homotopy inverse u, if fou~ f and if additionally fv is a
fibration, then TC(fv) < TC(f)

Proof. a) Suppose A C X x Y admits a partial section of 7, say ayf,: A — X!
and H: vu ~ 1. Then the formula

sy 2) = H(y) - (v o gy (uly). 2))
defines a continuous partial section on (u x 1)7!(A). Since (ux 1): X XY —
X x Y is continuous, then TC(f) < TC(fv) by Lemma 3.1.

b) Suppose A C X x Y admits a partial section of my, say ay: A— XT. Let
H: uv ~ 1. Then the formula

apy(,2) = E(a:) (uoas(v(zx),2))

defines a continuous map on (v x 1)71(A4). Observe that a,(z, ) is path start-
ing at 2 and ending at u(y’) where f(y') =z. Thus fvoays,(z,z) ends at
fo(u(y')) = f(y') = z. Therefore ay, is a continuous partial section for mg,.
Again, (v x 1): X x Y — X x Y is continuous, so, by 3.1, TC(fv) < TC(f).

c) Suppose A C X xY admits a partial section of ms, say ay: A— XT. Let
H:uv~1and K: fou~ f. Let I'y,: Xny! — X! denote the lifting func-
tion for the fibration fv. Then the formula

agole,2) == (@) - (wo ap(v(x), 2)) - Tro(ula), K ('),

where 2’ = af(v(z),2)(1), defines a continuous partial section for (v x 1)~*(A).
Thus by 3.1 TC(fv) < TC(f). O

Furthermore, we have the following surprising result that the complexity of a map
cannot increase if we pre-compose it with a fibration.

Theorem 3.6. Ifv: X —Y is a fibration, then TC(fv) < TC(f) for every f: X =Y.

Proof. Let ay: A — Y' be a partial section for mp: PY —Y X Z over some A C
Y x Z. Then the formula

agy(@,y) = To(z, ap(v(z),2))

defines a partial section for mf, over (v x 1)7'(A). As usual, this implies that
TC(fv) < TC(f), O

The above theorems have several interesting corollaries. First, we deduce the fol-
lowing important invariance property, which states that the complexity of the map
is not altered by a deformation retraction of the domain.

Corollary 3.7. Ifv: X—>Xisa deformation retraction, then for every f: X =Y
we have TC(f) = TC(fv).

Proof. Let i: X — X be the inclusion, so that vi = 1x and v ~ 1. Then Theo-
rem 3.5(a) implies that TC(fv) > TC(f), while statement (b) and the observation
that fhi = f gives TC(fh) < TC(f). O
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It is important to keep in mind that the deformation retraction in the statement
of the above Corollary cannot be replaced by an arbitrary homotopy equivalence. For
example, the identity map 1) and the map f depicted in Figure 1 have homotopy
equivalent domains, and yet the complexity of f is TC(f) = 2, while TC(1}9 ) = 1.
The problem is that a homotopy equivalence u between the domains cannot be chosen
so to be a fibrewise map over the base [0, 2], i.e. so that the following diagram strictly
commutes:

0,3 ———~——=10,2]

[0,2]

Nevertheless, if f: X — Y is a homotopy equivalence, then Corollary 3.8(b) bellow
applies so we have TC(f) > TC(X) = TC(Y).
Corollary 3.8. a) If f: X =Y is a fibration, then TC(f) < TC(Y).
b) If f: X =Y admits a homotopy section, then TC(f) > TC(Y).
c) If f: X =Y is a fibration that admits a homotopy section, then TC(f) =
TC(Y).

Proof. Consider the following diagram:

X -
If f is a fibration, then by Theorem 3.6
TC(f) = TC(Ly o f) < TC(1y) = TC(Y).
On the other hand, if f admits a homotopy section s: Y — X, then by Theorem 3.5(a)
TC(f) = TC(ly o f) = TC(1ly) = TC(Y).
By putting together (a) and (b) we get (c). O
3.2. Invariance with respect to homotopy

Recall that two maps f: X — Y and f': X' — Y are said to be fibre homotopy
equivalent (or FHE-equivalent) if there is a commutative diagram of the form

X<—X’

N

and the maps u ov and v o u are homotopic to the respective identity map by fibre-
preserving homotopies. It is not surprising that topological complexities of fibre-
homotopic maps are equal. In fact, a little more is true:

Corollary 3.9. Given f: X =Y and g: X' — Y assume that there exist fibrewise
maps u: X — X' and v: X' — X that homotopy inverses one to the other. Then
TC(f) = TC(f").

In particular, the topological complexity is a FHE-invariant.
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Proof. By Theorem 3.5(a) we have
TC(f) = TC(f'u) = TC(f') = TC(fv) = TC(f),
therefore TC(f) = TC(f"). O

The following proposition shows that the fibrations have minimal complexity within
their homotopy class.

Proposition 3.10. If f ~g: X =Y and f is a fibration, then TC(f) < TC(g).

Proof. Let H: f~g, and let I': X MY! — X! denote the lifting function for the
fibration f.

Suppose A C X x Y admits a partial section of 7y, say a: A — X’. Then for every
(z,y) € A, a(z,y) is a path in X starting at = and ending at z’ such that g(z’) = y.
Observe that 2’ = evy(a(z,y)) is continuously dependent on (z,y).

Define a(z,y) := a(x,y) - T'(2', H(x")). Clearly, & is a continuous section of (1 x

f)oevgi. Thus by 3.1, TC(f) < TC(g). O

In particular, we have
Corollary 3.11. If f,g: X — Y are homotopic fibrations, then TC(f) = TC(g).

Another important consequence of Theorem 3.5 is that the complexity cannot
increase if we replace a map by a fibration.

Corollary 3.12. If f: X =Y s the fibrational substitute for f: X =Y, then

TC(f) < TC(f). Equality holds if f is a fibration.

Proof. Since f is the fibrational substitute for f, we have the following diagram

XC<—i7>Y
h
N
Y

where h is a fibration, vu = 1x and uv ~ 1. Then the first claim follows by Theo-

rem 3.5(a) because TC(f) = TC(fh) < TC(f). Moreover, if f is a fibration, then so
is fh, hence TC(fh) = TC(f) Theorem 3.5(c). O

3.3. Effect of post-composition on the complexity
Next we study the effect that the post-composition by a map has on the topological
complexity.

Proposition 3.13. Consider the diagram X Ly»ny.

a) If v admits a right inverse (section) u: Y =Y, then TC(f) = TC(vf)

b) If v admits a left homotopy inverse u: Y >Y and if f is a fibration, then
TC(f) < TC(uf).
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Proof. a) Let mp: X! — X x Y admit a partial section a: A — X' for some A C
X x Y. Then the formula
o p(w, 2) = ap(z, (u(z))

defines a path starting at  and ending at some 2/, such that f(z') = u(z),
therefore vf(2') = vu(z) = z. It follows that «, s defines a partial section for

mpp over (1 x u)~1(A) C X x Y. As before, this implies TC(f) = TC(vf).
b) Let H: Y x I — Y be the homotopy from uv to 1y, and let .,y : A — XX bea

partial section for m, f for some A C X x Y. Then for every (z,y) € (1 x v)~1(A)
the formula oy, (2, v(y)) gives a path in X starting at = and ending at some 2’,

such that vf(z’) = v(y). Consequently uvf(z') = uv(y), so ﬁ(f(m’)) : ﬁ(y) is
a path in Y starting at f(2’) and ending at y. Therefore, the formula
s (w,9) = vy, o(y)) - Tr(a' H (@) - Hy))

defines a partial section to 7y over (1 x v)~'(A). Again, we conclude that
TC(uf) > TC(f). O

The following result complements Corollary 3.8(b):
Corollary 3.14. If f: X — Y admits a section, then TC(f) < TC(X).

Proof. Let i: Y — X be a right inverse for f and apply Proposition 3.13 (a) to the
diagram

f
X=—=X_—=YV.
1
Then we have

TC(f) = TC(f o 1x) < TC(1y) = TC(X). m

Observe, that the last result together with Corollary 3.8 yield the following very
useful estimate: if f: X — Y admits a section, then

TC(X) > TC(f) > TO(Y),
The next result is analogous to Corollary 3.7, but it requires f to be a fibration.

Corollary 3.15. Ifv: Y — Yisa deformation retraction then TC(vf) = TC(f) for
every fibration f: X =Y.

Proof. By assumption, there is a map ¢: Y — Y such that iv = 1 and vi =~ 1y. Then
part (a) of Proposition 3.13 implies that TC(vf) > TC(f), while part (b) implies
TC(vf) < TC(). O

In other words, if f is a fibration, one cannot alter its complexity by deforming its
codomain. This no longer needs to be true if f is not a fibration. As an easy example,
let f:[0,3] — [0,2] be the map consider before, and let v: [0,2] — [0, 1] be given as

[t telo,1],
v(®) '_{ 1 tell,2).

Clearly, v is a deformation retraction and TC(vf) = 1, while TC(f) = 2.
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It is well-known (and easy to prove) that TC(X) =1 if, and only if, X is con-
tractible. An analogous characterization of maps whose complexity is equal to 1 is
more elusive.

Proposition 3.16. The following statements are equivalent for a map f: X — Y

1. TC(f) =1 and at least one fibre of f is categorical in X.

2. X is contractible and f admits a continuous section.

Proof. Assume 1.: then by Proposition 3.3 f admits a continuous section, and by
Proposition 3.4 cat(X) = 1, therefore X is contractible.

Conversely, if we assume 2., then Corollary 3.14 implies TC(f) < TC(X) =1,
therefore TC(f) = 1. O

However, note that if Y is contractible then Corollary 3.8 b) implies that the
complexity of the projection pr: ¥ x F' — Y is equal to 1 regardless of the fibre F'.

3.4. A general upper bound for TC(f)

All upper estimates for TC(f) that we considered so far required quite restrictive
assumptions on the map f like being a fibration or admitting a (homotopy) section.
The following theorem gives an upper estimate of TC(f) for general f.

Recall that subspaces A, B of a topological space are said to be separated if AN B =
AN B = . It is easy to verify that a function defined on A U B is continuous if, and
only if, its restrictions to A and B are continuous.

Theorem 3.17. Topological complexity of a map f: X — Y is bounded above by
TC(f) < cat(X) +sec(f) — 1.

Proof. Let
P=Uy<U1<...<U, =X

be an open filtration of X, such that for each i the difference U; — U;_; is categorical
in X, i.e., there exists a homotopy H;: I — X between the inclusion U; — X and a
constant map. Furthermore, let

P=Vo<Vi<...<V,, =Y

be an open filtration of Y, such that on each difference V; — V;_; there exists a
continuous section s;: V; — X to f. The formula

oig(w,y) = Hilw) - Hils; ()

clearly defines a partial section to 7y over U; x Vj.
For every 2 < k <m +n let W}, := Ui+j<k U; x V;. Then

Wo CWoC-o - Whpn =X XY

is an open filtration (of length m +n — 1) of X x Y and for each k
Wk*Wk_li U leVj
itj=k

Observe that the sets in the above union are separated, which implies that partial
section o; ; for ¢ + j = k define a continuous partial section on W}, — Wj,_;. Since by
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definition of cat(X) and sec(f) we could assume n = cat(X) and m = sec(f) we have
thus proved that TC(f) < cat(X) + sec(f) — 1. O

The exact value of sec(f) is often hard to compute, so we mostly rely on the
following coarser but easily computable estimate.

Corollary 3.18. Assume that the map f: X — Y is simplicial with respect to some
choice of triangulations on X and Y. Then

TC(f) < cat(X) + dim(Y) — 1.

Proof. Tt is sufficient to prove that under the assumptions sec(f) < dim(Y). To this
end let K and L be simplicial complexes that triangulate respectively X ~ |K| and
Y ~ |L|, and with respect to which the map f is simplicial. Consider the filtration of
Y by subcomplexes

ILO| c|LM| ... |LdmY)| =y

and observe that for every 1 <i < dimY the difference |L()| — |[LO~1)]| is a sepa-
rated union of open i-simplices. Since the map f is simplicial, it clearly admits a
continuous section over each open i-simplex, and thus a continuous section over their
separated union |L(®)| —|LU=Y|. This shows that sec(f) < dim(Y"), which together
with Theorem 3.17 implies our claim. ]

3.5. Cohomological estimate of TC(f)
We mentioned in the Introduction the cohomological lower bound for the topolog-
ical complexity of a space

TC(X) = nil((ker A™: H*(X x X) —» H* (X)),

which is widely used in the computations of topological complexity. Here Ker A*
is the ideal of ‘zero divisors’ (cf. [4]) and its nilpotency nil(Ker A*) is the minimal
integer n for which every product of n elements in Ker A* is equal to zero. We will
present a similar estimate for the topological complexity of a map (a variant of which
was already used in [10]).

Let o: A — X be a partial section to T X' — X x Y and consider the following
diagram:

evy

X ——= X

« Tf
' (1,1)

A= X XY

7

in which the right-hand triangle is homotopy commutative. By applying any multi-
plicative cohomology functor H* and identifying H*(X!) with H*(X) we obtain a
commutative diagram:

H(X)

/ T(Lf)*

H*(A) ~— H*(X x Y) =~ H*(X x Y, A)
i J
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in which the bottom row is exact. It follows that every class u € Ker(1, f)* is contained
in Keri* = Im j*, so it is of the form u = j*(u) for some relative class w € H*(X x
Y,A). If Ay,..., A, is a cover of X xY by sets that admit local sections to y,
then there are relative classes uy € H*(X x Y, Ay)...w, € H*(X x Y, A,,) such that
u; = j*(u;). By the properties of the cohomology product we obtain

because Ty - ... U, € H(X XY, A U---UA,)=H"(X xY,X xY)=0. We con-
clude that the product of any n classes in Ker((1, f)*) must be zero.

Theorem 3.19. For every map f: X — Y and for every multiplicative cohomology
theory H* we have the estimate

TC(f) = nil(Ker(1, f)*: H*(X x Y) — H*(X)).

Although the theorem is formulated in general terms, we will mostly consider the
cases when H*(X xY) = H*(X)® H*(Y). Then the action of (1, f)* on decompos-
able tensors is given as

we X*(X),ve H(Y), (1,/)*(u®@v)=u-f"(v) e H(X).

Normally we do not attempt to compute the entire kernel of the homomorphism
(1, f)* but we rather look for specific elements in the kernel and try to find long
non-trivial products. A common source of elements in Ker(1, f)* are classes of the
form f*(v)®1—-1®wv for v e H*(Y).

3.6. Summary of main estimates

For the convenience of the reader, we summarize in one place the main estimates
for the topological complexity of an arbitrary map.

Let f: X =Y be any map

max{cat(Y),sec(f)} < TC(f) < cat(X) +sec(f) — 1
f simplicial = TC(f) < cat(X) + dim(Y) — 1
f admits a section = TC(Y) < TC(f) < TC(X)
f fibration = TC(f) < TC(Y)
TC(f) is FHE invariant
e v: X — X deformation retraction = TC(f) = TC(fv)
f ~ g, g fibration = TC(g) < TC(f)
f fibrational substitute for f = TC(f) < TC(f)
TC(f) = nil(Ker(1, f)*: H*(X xY) —» H*(X))
For completeness we state without proof the following estimates (see [11, Propo-
sition 5.5 and Theorem 6.1]).
e Product formula: for f: X - Y and f: X’ — Y’ we have

max{TC(f), TC(f)} < TC(f x ') < TC(f) + TC(f') -

e For every partition X xY =Gy U...UG, into disjoint subsets admitting a
partial section to 7y there exists a point (z,y) € X x Y such that every neigh-
bourhood of it intersects at least TC(f) different domains G;.
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4. Topological complexity of a fibration

As seen in the previous sections, several results about topological complexity
depend on the assumption that some of the maps involved are fibrations. We will
now explore this situation more thoroughly. Furthermore, as explained in Section 2,
the invariants sec and sec,p, for fibrations whose base is an ANR. We will thus reiterate
our standing assumption that X and Y are metric ANR'’s.

Lemma 4.1. The map f: X — Y s a fibration if, and only if, the induced map
T X' = X XY is a fibration.

Proof. If f is a fibration, then 1 x f: X x X = X XY is also a fibration, thus 7
can be written as a composition of two fibrations.

XI

SRS

XxX—XXY
Ixf

Conversely, assume 7 is a fibration and consider arbitrary maps h and H for which
the following diagram commutes

ff

X

It gives rise to the following commutative diagram

_h o x

h
s
Ax]—=Y

H

A—F o xI

v 7
K
\L\ - \Lﬂ-‘f
e

Ax ] —=XxY
K

where k(a) = constq, K (a,t) = (h(a), H(a,t)), and K exists, because 7y is a fibration.

Then the map H: A x I — X, defined by H(a,t) := K(a,t)(1) is a suitable lifting of
H in the first diagram, which proves that f is a fibration. O

Since a homotopy section of a fibration can be always replaced by a strict section,
we immediately obtain the following description of the topological complexity of a
fibration.

Corollary 4.2. If f: X — Y is a fibration, then
TC(f) := secat(mp: X' — X x Y).

It is often useful to restate the definition of TC(f) in more geometric terms, based
on the following characterization (cf. [6, Lemma 4.2.1 and Proposition 4.2.4] for anal-
ogous description of TC(X)).

Proposition 4.3. Let f: X — Y be a fibration, and let A C X x Y. Then the fol-
lowing statements are equivalent:
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1. A admits a partial section s: A — X! to the projection my;
2. The maps fopry,pry: A — Y are homotopic;
3. A can be deformed in X xY to the graph 'y of the map f.

Proof. Let us denote by 5: A x I — X the adjoint of the partial section s: A — X'.
Then fos: Ax I —Y is clearly a homotopy between f o pr; and pr,. Conversely,
given a homotopy H: A x I — Y between f opr; and pr, one can use the fibration
property to lift it to a homotopy H:AxI— X, starting at Hy = pry;. Then the
adjoint of Hisa partial section to 7y over A.

In a similar vein, if s: A — X' is a partial section to 7, then we may define a
homotopy H: Ax I — X x Y as H(a,t) := (s(a)(%), f(s(a)(1 — %))) and check that
it defines a deformation of A to I'y. On the other hand, let H: A x I — X xY be
a deformation of A to I'y. Then we define a homotopy K: A x I =Y by K(a,t) :=
pry(H(a,1—t)) and lift it along the fibration f to a homotopy K: A x I — X with

Ko =pr;: A— X. It is easy to check that the adjoint of Kisa partial section to 7y
over A. O

Corollary 4.4. If f: X — Y is a fibration, then TC(f) equals the minimal number
of elements of a covering of X XY by open sets that can be deformed in X XY to
the graph of f.

As we mentioned in Remark 2.4, for a large class of spaces X one can compute
cat(X) and TC(X) by taking arbitrary subspaces of X or X x X as domains of partial
sections. We are going to show that an analogous result holds for the topological
complexity of a fibration.

Lemma 4.5. Let f,g: X =Y be continuous maps between compact metric ANR
spaces, and let A be an arbitrary subset of X. If f|la >~ g|a, then there exists an
open neighbourhood U C X of A such that fly ~ glu.

Proof. For simplicity we will use the same notation d for the metrics in X and Y and
also for the induced supremum metric on the space of path Y.
We will need the following standard properties of maps into metric ANR spaces:

e For every compact metric ANR space F there exist an £ > 0, such that every
two maps f,g: X — E that are e-close (i.e. d(f(z),g(z)) < ¢ for all z € X)) are
homotopic (cf. [14, Theorem 2.4]).

e (Walsh lemma) Assume that X and E are separable metric spaces, and fur-
thermore, that E is an ANR. Let h: A — E be a continous map defined on an
arbitrary subset A C X. Then, up to a small homotopy, h can be extended to
an open neighbourhood of A. More precisely, for every e, > 0 there exists an
open subset U C X containing A and a map h: U — E, satisfying the following
conditions:

(1) for every u € U there exists a € A such that d(u,a) < 6 and d(h(u), h(a)) < &;
(2) hla~h
(cf. [14, Theorem 2.3] and the comments at the end of the proof therein).

Returning to the proof of our statement, let € > 0 be such that any two e-close maps
Y are homotopic. Since X is compact, f and g are uniformly continuous, so there
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exists 0 > 0 such that d(z,2") < ¢ imply d(f(z), f(z')) < § and d(g(z),g(z")) < §.
The homotopy H: A x I — Y between f and g corresponds by adjunction to a map
H: A— YT 1t is well-known that if Y is a compact metric ANR then Y/ is a metric
ANR. Thus we may apply the Walsh lemma to obtain an open neighbourhood U
of A and a map G: U — Y! , such that for every u € U there exists a, € A satisfy-
ing d(u,a,) < é and d(G(u), H(a,)) < 5 (ie. d(G(u)(t), H(a,)(t)) < § for all t € I).
Define Go,G1: U =Y as Go(u) := G(u)(0) and Gy(u) := G(u)(1). Then for every
u € U we have the triangle inequality (note that H(a,)(0) = f(ay))

d(Go(u), f(u)) < d(Go(w), H(a,)(0)) +d(f(au), () < 5 +5 ==

As a consequence, Gy and f|y are homotopic, and similarly for G and g¢|y. Since Gy
and G are homotopic by construction, we conclude that f|y ~ gy as claimed. [

Theorem 4.6. Let f: X — Y be a fibration between compact metric ANR spaces X
and Y. Then TC(f) is equal to the minimal integer n for which there exists a cover

XXY:AlLJ...UAn,

such that each A; admits a continuous partial section to my.

Proof. 1t is clearly sufficient to show that each A; is contained in some open set that
admits a partial section to my.

If A; admits a partial section to 7 then the maps f o pry,pry: A; — Y are homo-
topic by Proposition 4.3. Observe that f opr; and pr, are defined on entire X x Y.
We may thus apply Lemma 4.5 to obtain an open neighbourhood U; C X x Y of A;,
such that the maps f o pry,pry: U; — Y are homotopic. Again by Proposition 4.3 it
follows that U; admits a continuous partial section to 7. ]

Most estimates of TC(f) can be considerably strengthened if we assume that f is
a fibration.

Proposition 4.7. If f is a fibration then
cat(Y) < TC(f) < min{TC(Y), cat(X x Y)}.
In particular, TC(f) =1 if, and only if Y is contractible.

Proof. By Proposition 3.2 TC(f) > cat(Y), and by Corollary 3.8 TC(f) < TC(Y).
Moreover, since m¢ is a fibration, there exists a partial section to 7 over every
categorical subset of X x Y. As a consequence TC(f) < cat(X x Y). O

If Y is a topological group (or more generally, for an H-group), then the complexity
of Y coincide with its category, so we obtain the following result:

Corollary 4.8. Let f: X — Y be a fibration, and assume that X is contractible or
that Y is an H-group. Then TC(f) = cat(Y).

The following theorem allows a more detailed description of TC(f).

Theorem 4.9. a) If f: X =Y s a fibration, then the fibration my: X' — X x
Y is fibre-homotopy equivalent to the projection q¢: X MY! = X xY given by

q(z,a) = (x,a(1)).



TOPOLOGICAL COMPLEXITY OF A MAP 125

b) Furthermore, the following diagram is a pull-back

XNyl ——y!
I

XxY ——Y xY
fx1

so in particular ¢: X NY!T — X x Y is a fibration with fibre QY .
As a consequence, if f: X =Y s a fibration, then TC(f) equals the sectional
category of the fibration ¢: X MY!T — X x Y.

Proof. a) Recall that f: X — Y is a fibration if, and only if, there exists a lifting
function I'y: X M PY — X!, which is, by definition, a section to the natural
projection p: X! — X MY, given by p(a) = (a(1), f o a). This may be restated
by saying that I'f and p are fibrewise maps over X x Y as in the following
commutative diagram (where ¢(z, ) = (z, a(1))).

P
X1 xXny!
Ly
k /

X xY

Since pol'y = 1xnyr and I'¢ o p is fibre-homotopic to 17 we conclude that 7
and p are fibre-homotopy equivalent.

b) The second statement follows from the following computation
(X xY)NY! = {(z,y,0) € X xY x YT | f(x) = a(0),y = a(1)}
={(z,0) e X xY | f(z) =a(0)} = X NY!
Being a pull-back of the path-fibration 7: Y/ — Y x Y, the map ¢ is also a
fibration, with the same fibre as 7, which is the loop space QY.

We conclude the proof by observing that fibre-homotopy equivalent fibrations have
the same sectional category. O

It may be worth noting that we have actually proved that if f: X — Y is a fibra-
tion, then the diagram

xI 17 oy

ﬂfl . lw

XxY—=YxY
fx1

is a homotopy pull-back. Since the pull-back operation cannot increase sectional cate-
gory, we immediately deduce TC(f) = secat(ms) < secat(my) = TC(Y'). On the other
hand the sectional category of a fibration is smaller or equal to the category of the
base, therefore TC(f) < cat(X x Y). We have thus obtained an alternative proof of
Proposition 4.7.

Ezample 4.10. 1. TC(X — {y}) =1, by Corollary 3.8(b).
2. TC(evy: PX — X) = cat(X), by Corollary 4.8.
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3. TC(evy: X! — X) = TC(X), by Corollary 3.8(b).
4. TC(prx: X x F'— X) = TC(X) by Corollary 3.8(b). This example shows that
the complexity of a map f: X — Y can be much smaller than cat(X x Y).

One very useful estimate of the topological complexity of a space is the ‘dimension
divided by connectivity’ bound (see [5]): if X is dim(X)-dimensional and conn(X)-
connected, then

2 dim(X)
TCX) < | ——— ) | 4,
(X) L‘onn(X)—i—lJ

(where |r| stands for the value of r rounded down to the closest integer). The result
is proved by obstruction theory applied to the Schwarz’s [13] characterization of
the sectional category. One could follow the same approach to estimate the sectional
category of the fibration g: X M PY — X x Y with fibre QY but it turns out that an
even better estimate can be obtained by combining Proposition 4.7 with the dimension
divided connectivity estimate for the category ([1, Theorem 1.50]).

Corollary 4.11. If f: X — Y s a fibration then

co:;r(n)(())(it 1J ’ Loﬁ(nig)fl 1J } + {MJ +1,

Te(f) < min {|

Proof. We may restate Proposition 4.7 as
TC(f) < min{cat(X x Y),cat(Y x Y)}.
Then the combination of the bound for the category of a product
cat(X xY) < cat(X) + cat(Y) — 1,
with the ‘dimension divided connectivity’ bound for the category [1]
TC(f) < {MJ
yields the stated result. O

Ezxample 4.12. 1. Consider the covering map p: S™ — RP"™: since dimension-to-
connectivity ratio is smaller for the sphere than for the projective plane, Corol-
lary 4.11 yields TC(p) < 1 +n+ 1 = n + 2. In comparison, TC(RP") is usually
much bigger and closer to 2n (cf. [6]).

2. Similarly, for the standard quotient map ¢: S?"t! — CP™ we obtain the esti-
mate TC(g) < n + 2, which is much smaller that TC(CP") = 2n + 2.

3. For a fibration over a sphere f: X — S™ we obtain 2 = cat(S™) < TC(f) < 3.
Observe that if n is odd, we have TC(f) = 2 by Corollary 3.8, and the differ-
ence is caused by the fact that for odd-dimensional sphere the dimension-to-
connectivity estimate is not sharp.

Let us illustrate the use of the cohomological estimate in the computation of the
topological complexity of a map.

There are many fibrations for which f*: H*(Y) — H*(X) is trivial (examples
include p: S™ — RP", q: S?"*1 — CP", Hopf fibrations, ...). In that case non-trivial
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elements in Ker(1, f)* must be contained in @®;-oH*(X)® H’(Y). It follows that
every k-fold product in Ker(1, f)* ‘contains’a k-fold product in H*(Y), therefore

nil(Ker(1, f)*) < nil(H*(Y)) < cat(Y),
so if f* = 0 the cohomology estimate does not improve the estimate TC(f) > cat(Y).

Example 4.13. Let f: SO(n) — S™~! be the standard fibration obtained by project-
ing each orthogonal matrix to its last column. If n is even, then

2 =cat(S"1) < TC(f) < TC(S" 1) =2,

hence TC(f) = 2. However, if n is odd, then 2 < TC(f) < 3, and we are going to
use the cohomology estimate to show that the actual value is 3. In fact, it is well
known that the image f*(u) of a generator u € H" 1(S"71) is a non-trivial ele-

ment of H"~1(SO(n) because it reduces to one of the standard generators of H
n —1(SO(n);Z/2). Therefore f*(u) ®1—1®u € Ker(1, f)* and

(ffw)@l—-1ou)?=-2f"(u)@u#0.
We conclude that TC(f) = 3.

The above example is an instance of a general situation when f*: H*(Y) — H*(X)
is injective. If we apply a cohomology functor H* to the following commutative diagram

X———Y

] |

X XY —YxY
fx1

and assume that H* has field coefficients or that H*(Y') is free, and that f* is injective.
Then we obtain the diagram

7

H*(X) H*(Y)
] fas
H (X x V)<Y H* (Y x Y)

7T el T7

H*(X)® H*(Y) H*(Y)® H*(Y)

Observe that the f* ® 1 is injective because we assumed that either H* has field
coefficients or that H*(Y') is free, and tensoring with a free module preserves injec-
tivity. The commutativity of the diagram implies that we can identify Ker A} with
a subideal of Ker(1, f)*, so we have proved the following result:

Theorem 4.14. Let f: X — Y be any map and assume that we consider a cohomol-
ogy with field coefficients or that H*(Y') is free. If f*: H*(Y) — H*(X) is injective,
then TC(f) > nil(Ker A},).

If, in addition, f is a fibration, then nil(Ker A}) < TC(f) < TC(Y).

Note that the nilpotency of Ker A} was introduced by Farber [4] (under the name
of ‘zero divisors cup length’) as the basic lower bound for the topological complexity.
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In many cases (in fact, in almost all cases where the exact value of TC(Y') is known)
nil(Ker A}) is either equal to TC(Y') or to TC(Y) — 1, so the above estimate is a
very useful tool for computations.

An important class of maps to which the above Theorem applies are fibre bundles
whose fibres are totally non-homologous to zero. Recall that the fibre F' of a fibration
f: X =Y is said to be totally non-homologous to zero with respect to a field R if
the homomorphism H*(X; R) — H*(F; R) induced by the inclusion of the fibre is
surjective. If that case the Serre spectral sequence for f collapses at the Es-term,
which in turn implies that f*: H*(Y; R) — H*(X; R) is injective.

Corollary 4.15. If f: X = Y is a fibration whose fibre is totally non-homologous to
zero with respect to a field R, and if TC(Y') = nil(Ker A}.) (cohomology with coeffi-
cients in R), then TC(f) = TC(Y).

Let X be a pointed CW-complex (we omit the base-point from the notation), and
let Cov(X) denote the set of (equivalence classes) of base-point preserving covering
projections over X. It is well-known that there is a bijection between Cov(X) and
the lattice of subgroups of the fundamental group m (X). To every G < m1(X) there
corresponds a unique pg: )?G — X such that Im(pg)y = G. In particular, p,, (x) =
idy and pyq) is the universal covering projection over X.

If G, G’ are subgroups of 71 (X), then the lifting criterion for covering spaces implies
that G < G’ if, and only if, there exists a map v: )?G — )?G/ such that the following
diagram commutes

Moreover, when such v exists it is unique and it is itself a covering projection. There-
fore, if G < G’ < m1(X), then there is a fibration v such that pg:v = pg, and Theo-
rem 3.6 implies that TC(pg) < TC(pg). We have thus proved

Theorem 4.16. The topological complexity of covering projections determines an
increasing map from the lattice of subgroups of w1 (X) to NU {oo}. Its minimal value
is the topological complexity of the universal covering projection and its mazximal value

is TC(X).

Observe that for an arbitrary covering projection p: X=X Propositon 4.7 implies
the estimate cat(X) < TC(p) < cat(X x X), which is often easier to compute.

Let us now study more closely covering projections over Eilenberg-MacLane spaces.
The homotopy type of an Eilenberg-MacLane space K(G,1) is uniquely determined
by the group G. As a consequence both cat(K (G, 1)) and TC(K(G, 1)) are in fact
invariants of G and are often denoted as cat(G) and TC(G), respectively. Every cov-
ering projections over K (G, 1) corresponds to a subgroup H < G and its total space
is in fact an Eilenberg-MacLane space of type K (H,1). Since the universal covering
space of K(G,1) is contractible we have TC(py;y) = cat(G) by 4.8. Theorem 4.16
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then yields a general estimate
cat(G) < TC (p: K(H,1) — K(G,1)) < TC(G).

Note that if G is abelian then K (G, 1) is an H-group and Corollary 4.8 implies that
TC(p) = cat(G) for every covering projection p with base K(G,1).

We also give two non-commutative examples. Let p: X — SV S! be the universal
covering of the wedge of two circles. Since X is contractible, we get TC(p) = 2, while
TC(S' v S') = 3. Similarly, let S be a closed surface different from the sphere or

projective plane, and let p: S — S be its universal covering. Then S is contractible,
therefore TC(p) = cat(S) = 3 while TC(S) = 5.

Remark 4.17. Eilenberg and Ganea [3] showed that cat(G) can be expressed in a
completely algebraic manner: they proved that cat(G) = cat(K(G, 1) = cd(G) + 1,
where cd denotes the cohomological dimension of G.

At this moment there is no completely algebraic way to compute TC(G). We have
the general estimate

cd(G) +1 = cat(K (G, 1)) < TC(G) < cat(K(G,1) x K(G,1)) = cd(G x G) + 1.

Rudyak [12] proved that for a suitable choice of group G the value of TC(G) can be
any number between ¢d(G) + 1 and ¢d(G x G) + 1. On the other hand it has been
recently proved by Farber and Mescher [7] that for a large class of groups (including
all hyperbolic groups) TC(G) is either c¢d(G x G) or ¢d(G x G) + 1.

We conclude with a partial result about finite-sheeted covering projections.

Theorem 4.18. Assume that the topological complexity of X equals the rational coho-
mological lower bound TC(X) = nil(ker H*(A;Q)). Then TC(p) = TC(X) for every
finite-sheeted covering projection p: X — X.

Proof. Recall that finite-sheeted covering projections induce monomorphisms in ra-
tional cohomology (see [8, Proposition 3G.1]). Then the claim follows directly from
Theorem 4.14. O

For instance, the topological complexity of every finite-sheeted covering over an
orientable surface P of genus bigger then 1 is equal to TC(P) = 5, while the topolog-
ical complexity of its universal cover is equal to cat(P) = 3. We do not know whether
there are covering projections to P whose topological complexity is 4. On the other
hand we suspect that TC(p) = TC(X) for every finite sheeted covering projection p
with base X.
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