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Abstract
Working in the Arone-Ching framework for homotopical

descent, it follows that the Bousfield-Kan completion map with
respect to integral homology is the unit of a derived adjunc-
tion. We prove that this derived adjunction, comparing spaces
with coalgebra complexes over the associated integral homol-
ogy comonad, via integral chains, can be turned into a derived
equivalence by replacing spaces with the full subcategory of
simply connected spaces. In particular, this provides an inte-
gral chains characterization of the homotopy type of simply
connected spaces.

1. Introduction

In this paper we revisit Bousfield-Kan [8] completion of spaces with respect to
integral homology. Our aim is to clarify and conceptualize the important completion
result proved in [8] that homology completion for simply connected spaces recovers the
original space (up to homotopy)—our main result, Theorem 1.1, recasts the Bousfield-
Kan completion theorem in terms of coalgebraic structures encoding simply connected
homotopy types.

Bousfield-Kan completion is constructed by gluing together (via a homotopy limit)
a cosimplicial resolution that is nothing more than iterations of homology. The reason
these homology invariants are useful is that they throw away information about the
space, thus making computations of these invariants “easier”, at the cost of losing
information. The classical completion result of Bousfield-Kan indicates that if funda-
mental group information “takes care of itself”, then no information is really lost, it
somehow gets preserved or encoded without loss in the coface maps and codegener-
acy maps of the resolution. In other words, in this paper we ask the deeper question:
What is the completion result of Bousfield-Kan really telling us? Unwinding what the
cosimplicial identities mean reveals that they are encoding nothing other than the
fact that homology is equipped with a coaction of the homology comonad up to all
higher coherences: i.e., 3-fold coassociativity, 4-fold coassociativity, 5-fold coassocia-
tivity, etc., mixed in with various co-unit maps and diagrams (see [32, VII.2] for a
useful discussion of coherence diagrams). This suggests the following idea: Maybe the
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homotopy category of 1-connected simplicial abelian groups equipped with a coaction
of the homology comonad captures the entire homotopy category of simply connected
spaces—that is our main result. In more detail:

In this paper we investigate the homotopy category of 1-connected simplicial
abelian groups equipped with the coalgebraic structure naturally arising on the space
level homology Z̃X (Section 3.1) of a pointed space X. This coalgebraic structure is
encoded by the coaction of the associated homology comonad K = Z̃U whose under-
lying functor on simplicial abelian groups assigns to Y the reduced free abelian group
complex generated by the underlying simplicial set UY ; the comultiplication map
K→ KK is induced from the canonical unit map id→ U Z̃, which sends an element x
to the element underlying the (equivalence class of the) formal sum 1 · x; i.e., comulti-
plication is the canonical map Z̃idU → Z̃U Z̃U . We show that this homotopy category
of 1-connected coalgebras, built by appropriately fattening up “all constructions in
sight” (to be homotopy meaningful) via the Arone-Ching enrichments [1, Section 1],
is equivalent to the homotopy category of simply connected spaces.

Our hope is that the characterization of simply connected homotopy types de-
scribed in this paper will provide a jumping off point for future work in using “homol-
ogy equipped with coalgebraic structure” to distinguish homotopy types of simply
connected spaces. The informal slogan is: Naturally occurring coalgebraic structures
on integral chains, while less traditional to exploit, are potentially more powerful and
sensitive than, say, dualizing in order to work with algebraic objects. With an eye
on future calculational outcomes of this work, the next step in this project is the
construction of concrete chain-level descriptions of the associated homology comonad
K = Z̃U and its coalgebras; i.e., a derived-equivalent category of coalgebras on chain
complexes. A natural candidate is provided via the normalization-denormalization
comparison (in the Dold-Kan theorem) to get down to the level of chains (where
homological algebra becomes available); working out the precise analysis and details
is beyond the scope of our work here.

This paper is written simplicially so that “space” means “simplicial set” unless
otherwise noted; see Bousfield-Kan [8, VIII] and Goerss-Jardine [24, I].

1.1. The space level Hurewicz map
If X is a pointed space, the usual Hurewicz map between homotopy groups and

reduced homology groups has the form

π∗(X)→ H̃∗(X;Z). (1)

The starting point of the work in Bousfield-Kan [8, I.2.3] is essentially the observation
that this comparison map comes from a space level Hurewicz map of the form

X → Z̃(X) (2)

and that applying π∗ recovers the map (1).

1.2. Iterating the Hurewicz map to build a resolution
Once one has such a Hurewicz map on the level of spaces, it is natural to form a

cosimplicial resolution of X with respect to integral homology of the form

X //Z̃(X) ////Z̃2(X) ////
//
Z̃3(X) · · · (3)
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showing only the coface maps. The codegeneracy maps, not shown above, are induced
by the counit K→ id of the associated integral homology comonad K that can be
thought of as encoding the space level co-operations on the integral homology com-
plexes; compare with Miller [39, Section 1] in the context of the Sullivan conjecture.

In other words, by iterating the space level Hurewicz map (2), Bousfield-Kan [8,
I.4.1] build a cosimplicial resolution of X with respect to integral homology, and
taking the homotopy limit of the resolution (3) produces the Z-completion map

X → X∧
Z

which can be interpreted in the case of simply connected or nilpotent spaces as
the localization of X with respect to integral homology; see Bousfield [6, Section
1] for this, together with the associated universal property characterization of local-
ization behind the argument, and Bousfield-Kan [8, V.4]. This is the integral analog
of the completions and localizations of spaces originally studied in Sullivan [44, 45],
and subsequently in Bousfield-Kan [8] and Hilton-Mislin-Roitberg [28]; there is an
extensive literature—for a useful introduction, see also Bousfield [6], Dwyer [18], and
May-Ponto [36]; a transfinite version of “iterating the Hurewicz map” is studied in
Dror-Dwyer [13].

1.3. The main result
Working in the Arone-Ching [1] framework for homotopical descent, it follows that

the Bousfield-Kan completion map with respect to integral homology is the unit of a
derived adjunction (4). Our main result is the following theorem (Theorem 1.1): that
this derived adjunction can be turned into a derived equivalence by replacing spaces
with the full subcategory of simply connected spaces. This is reminiscent of Quillen’s
[41] rational chains equivalence in rational homotopy theory and, dually, Sullivan’s
[46] rational cochains equivalence; compare Bousfield-Gugenheim [7] for an adjoint
functor approach to Sullivan’s theory using methods of Quillen’s model categories.
Since the foundational work of Quillen and Sullivan, the problem of establishing p-
adic and fully integral versions of the rational chains equivalence theorem, or its dual,
have been studied in the work of Dwyer-Hopkins [19] (see Mandell [33, C]), Goerss
[23], Karoubi [30], Kriz [31], Mandell [33, 34], and Smirnov [43]; we have been
motivated and inspired by their work.

The Arone-Ching framework [1] constructs a highly homotopy coherent topolog-
ical enrichment [1, 1.14] for K-coalgebras comprising the collections of maps called
derived K-coalgebra maps [1, 1.11]—the underlying maps are required to respect the
K-coalgebra structure (i.e., the K-coaction), but only in a highly homotopy coher-
ent manner. In this framework, MapcoAlgK(Y, Y

′) denotes the space of all derived
K-coalgebra maps from Y to Y ′. This highly homotopy coherent topological enrich-
ment on K-coalgebras [1, Section 1] (see Sections 6 and 7 for a brief development in
the context of this paper) provides a framework that allows one to analyze homo-
topical descent without being forced into a direct analysis of limits in the category of
K-coalgebras and strict K-coalgebra maps: that is the main payoff of the Arone-Ching
enrichments.

In terms of these enrichments, the upshot of our main result (Theorem 1.1) is
that the integral chains functor Z̃ in (4) is a Dwyer-Kan equivalence between 1-
connected spaces, equipped with their usual topological enrichment, and 1-connected
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K-coalgebras, equipped with their highly homotopy coherent topological enrichment
built in Arone-Ching [1, Section 1]. In the statement of the following theorem, C(Y )
is the usual cosimplicial cobar construction (Definition 3.2) associated to the K-
coalgebra Y .

Theorem 1.1. The integral chains functor Z̃ fits into a derived adjunction

MapcoAlgK(Z̃X,Y ) ≃ MapS∗
(X, holim∆ C(Y )) (4)

comparing pointed spaces to coalgebra complexes over the associated integral homology
comonad K = Z̃U , that is a Dwyer-Kan equivalence after restriction to the full sub-
categories of 1-connected spaces and 1-connected cofibrant K-coalgebras, with respect
to the enrichments discussed above (see Remark 1.2)

Remark 1.2. The proof boils down to the following assertions on the integral chains
functor Z̃:
(a) If Y is a 1-connected cofibrant K-coalgebra, then the derived counit map

Z̃holim∆ C(Y )
≃−−→ Y

associated to (4) is a weak equivalence.

(b) If X ′ is a 1-connected space, then the derived unit map

X ′ ≃−−→ holim∆ C(Z̃X ′)

associated to (4) is tautologically the Bousfield-Kan Z-completion map X ′ →
X ′∧

Z , and hence is a weak equivalence by [8, III.5.4]; in particular, the integral
chains functor induces a weak equivalence

Z̃ : MaphS∗
(X,X ′) ≃ MapcoAlgK(Z̃X, Z̃X ′) (5)

on mapping spaces and hence is homotopically fully faithful on 1-connected
spaces.

Here, the realization of the Dwyer-Kan [20, 4.7] homotopy function complex, denoted
MaphS∗

(X,X ′), can be replaced with the realization of the usual mapping complex,
denoted MapS∗

(X,X ′), if X ′ is fibrant in S∗. The right-hand side of (5) denotes the

space of all derived K-coalgebra maps from Z̃X to Z̃X ′ [1, 1.10] (Definition 6.6).

1.4. Corollaries of the main result
The following are corollaries of the main result (Theorem 1.1). Integral cochains

versions of the first two results below were previously established by Mandell [34,
0.1], assuming additional finite type conditions; an interesting approach to some of
the integral cochains results in [34] was subsequently developed in Karoubi [30].
In [34, 0.1] it is shown that the integral cochains functor cannot be full on the
homotopy category; on the other hand, an advantage of the cochains setup is that
E∞ cochain algebras have a more familiar “homological algebra” feel to them than,
say, K-coalgebras.

Theorem 1.3 (Classification theorem). A pair of 1-connected pointed spaces X and
X ′ are weakly equivalent if and only if the integral chains Z̃X and Z̃X ′ are weakly
equivalent as derived K-coalgebras.
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Theorem 1.4 (Classification of maps theorem). Let X,X ′ be pointed spaces. Assume
that X ′ is 1-connected and fibrant.

(a) (Existence) Given any map ϕ in [Z̃X, Z̃X ′]K, there exists a map f in [X,X ′]
such that ϕ = Z̃(f).

(b) (Uniqueness) For each pair of maps f, g in [X,X ′], f = g if and only if Z̃(f) =
Z̃(g) in the homotopy category of K-coalgebras.

Theorem 1.5 (Characterization theorem). A cofibrant K-coalgebra Y is weakly
equivalent, via derived K-coalgebra maps, to the integral chains Z̃X of some 1-con-
nected space X if and only if Y is 1-connected.

1.5. Strategy of attack

We were encouraged by the results in [23] showing that the Bousfield-Kan comple-
tion map should be the derived unit map of a derived comparison adjunction between
spaces and coalgebraic data; this result foreshadows the later developments and ideas
in [1, 22, 27] on homotopical descent. Our argument, motivated by [11], involves
leveraging Goodwillie’s higher dual Blakers-Massey theorem [25, 2.6], together with
the “uniformity of faces” behavior forced by the cosimplicial identities via existence
of appropriate retractions, along with strong estimates for the uniform cartesian-ness
of iterations of the Hurewicz map provided by Dundas’ higher Hurewicz theorem [15,
2.6], to obtain connectivity estimates for commuting the left derived integral chains
functor past the right derived limit of the associated cosimplicial cobar construction
on coalgebra complexes.

1.6. Commuting integral chains with holim of a cobar construction

Once the framework is setup, the main result boils down to proving that the left
derived integral chains functor Z̃ commutes,

Z̃holim∆ C(Y ) ≃ holim∆ Z̃C(Y )

up to weak equivalence, with the right derived limit functor holim∆, when composed
with the cosimplicial cobar construction C associated to integral homology and eval-
uated on 1-connected coalgebra complexes over K; but our homotopical estimates
are stronger—they prove strong convergence of the associated homotopy spectral
sequence (Theorem 3.32).

1.7. Organization of the paper

In Section 2 we outline the argument of our main result. The proof naturally
breaks up into four subsidiary results. In Section 3 we review the integral chains
functor and then prove the main result. Sections 4 and 5 are background sections;
for the convenience of the reader we briefly recall some preliminaries on simplicial
structures and homotopy limits that are essential to understanding this paper. In
Section 6 we recall briefly the Arone-Ching enrichments and associated homotopy
theory of K-coalgebras in the context of this paper, and in Section 7 the associated
derived adjunction. For the experts, who are also familiar with the enrichments in
Arone-Ching [1], it should suffice to read Sections 2 and 3 for a complete proof of the
main result.
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2. Outline of the argument

We will now outline the proof of our main result (Theorem 1.1). Since the derived
unit map is tautologically the Bousfield-Kan Z-completion map X ′ → X ′∧

Z , which is
proved to be a weak equivalence on 1-connected spaces in Bousfield-Kan [8, III.5.4],
proving the main result reduces to verifying that the derived counit map is a weak
equivalence. Our attack strategy naturally breaks up into four subsidiary results;
Theorems 2.1, 2.2, 2.4, and 2.5.

The following theorem is proved in Section 3 (just after Proposition 3.31).

Theorem 2.1. If Y is a 1-connected cofibrant K-coalgebra and n ⩾ 1, then the natural
map

holim∆⩽n C(Y )→ holim∆⩽n−1 C(Y )

is an (n+ 2)-connected map between 1-connected objects.

Theorem 2.2. If Y is a 1-connected cofibrant K-coalgebra and n ⩾ 0, then the natural
maps

holim∆ C(Y )→ holim∆⩽n C(Y ) (6)

Z̃holim∆ C(Y )→ Z̃holim∆⩽n C(Y ) (7)

are (n+ 3)-connected maps between 1-connected objects.

Proof. Consider the first part. By Theorem 2.1 each of the maps in the holim tower
{holim∆⩽n C(Y )}n, above level n, is at least (n+ 3)-connected. It follows that the
map (6) is (n+ 3)-connected. The second part follows from the first part, since by
the Hurewicz theorem the integral chains functor Z̃ preserves such connectivities.

Remark 2.3. It is worth pointing out that holim∆ (resp. holim∆⩽n) (Definition 5.11)
is a derived version of the familiar Tot (resp. Totn) (Definitions 5.3 and 5.7, and
Proposition 5.8).

We prove the following theorem in Section 3 (following Theorem 3.30). At the
technical heart of the proof lies Goodwillie’s higher dual Blakers-Massey theorem
[25, 2.6] (Proposition 3.26). To carry out this line of attack, the input to [25, 2.6]
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requires the homotopical analysis of an ∞-cartesian (n+ 1)-cube associated to the
n-th stage, holim∆⩽n C(Y ), of the holim tower associated to C(Y ); it is built from
coface maps in C(Y ) (Definition 3.24). The needed homotopical analysis is worked
out by leveraging the strong uniform cartesian-ness estimates for iterations of the
Hurewicz map, applied to X = UY , in Dundas’ higher Hurewicz theorem [15, 2.6]
(Proposition 3.9), together with the “uniformity of faces” behavior forced by the
cosimplicial identities (see (16), (18), and Proposition 3.28) which ensures that the
“other faces” (any of the ones involving the K-coaction map on Y ) required for input
to [25, 2.6] have similar cartesian-ness estimates forced on them.

Theorem 2.4. If Y is a 1-connected cofibrant K-coalgebra and n ⩾ 1, then the natural
map

Z̃holim∆⩽n C(Y )→ holim∆⩽n Z̃C(Y ) (8)

is (n+ 5)-connected; the map is a weak equivalence for n = 0.

The following is a corollary of these connectivity estimates, together with a left
cofinality argument in [13, 3.16].

Theorem 2.5. If Y is a 1-connected cofibrant K-coalgebra, then the natural maps

Z̃holim∆ C(Y )
≃−−→ holim∆ Z̃C(Y )

≃−−→ Y (9)

are weak equivalences.

Proof. Consider the left-hand map. It suffices to verify that the connectivities of the
natural maps (7) and (8) are strictly increasing with n, and Theorems 2.2 and 2.4
complete the proof. Consider the case of the right-hand map. Since the cosimplicial
cobar construction Cobar(K,K, Y ), which is isomorphic to Z̃C(Y ), has extra code-
generacy maps s−1 [21, 6.2], it follows from the cofinality argument in [13, 3.16],

together with the fact that Y
d0

−→ Cobar(K,K, Y )
s−1

−−→ Y factors the identity, that
the right-hand map in (9) is a weak equivalence.

Proof of Theorem 1.1. We want to verify that the natural map Z̃ holim∆ C(Y )
≃−−→

Y is a weak equivalence; since this is the composite (9), Theorem 2.5 completes
the proof; this reduction argument can be thought of as a homotopical Barr-Beck
comonadicity theorem (see [1, 2.20]).

3. Homotopical analysis

The purpose of this section is to prove Theorems 2.1 and 2.4.

3.1. Integral chains

The functor Z̃ is equipped with a coaction over the comonad K that appears in
the Bousfield-Kan Z-completion construction; this observation, which remains true
for any adjunction provided that the indicated limits below exist, forms the basis of
the homotopical descent ideas appearing in [1, 22, 27].
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Consider any pointed space X and recall that Z̃(X) := Z(X)/Z(∗). Then there is
an adjunction

S∗
Z̃ // sAb
U

oo (10)

with left adjoint on top and U the forgetful functor. Associated to the adjunction
in (10) is the monad U Z̃ on pointed spaces S∗ and the comonad K := Z̃U on simplicial
abelian groups sAb of the form

id
η−→ U Z̃ (unit), id

ε←− K (counit),

U Z̃U Z̃ → U Z̃ (multiplication), KK
m←− K (comultiplication),

(11)

and it follows formally that there is a factorization of adjunctions of the form

S∗
Z̃ // coAlgK

//
lim∆ C
oo sAb

K
oo (12)

with left adjoints on top and coAlgK → sAb the forgetful functor; here, coAlgK denotes
the category of K-coalgebras and their morphisms (just after Remark (6.2) and [1,
1.2]). In particular, the integral homology complex Z̃X is naturally equipped with
a K-coalgebra structure. While we defer the definition of C to the next subsection
(Definition 3.2), to understand the comparison in (12) between S∗ and coAlgK it
suffices to know that lim∆ C(Y ) is naturally isomorphic to an equalizer of the form

lim∆ C(Y ) ∼= lim
(
UY

d0
//

d1
// UKY

)
where d0 = mid, d1 = idm, m : U → UK = U Z̃U denotes the K-coaction map on U
(defined by m := ηid), and m : Y → KY denotes the K-coaction map on Y ; this is
because of the following property of cosimplicial objects (see Definition 3.2).

Proposition 3.1. Let M be a category with all small limits. If A ∈ M∆ (resp. B ∈
M∆res), then its limit is naturally isomorphic to an equalizer of the form

lim∆ A ∼= lim
(
A0

d0
//

d1
//A1

) (
resp. lim∆res B

∼= lim
(
B0

d0
//

d1
//B1

))
in M, with d0 and d1 the indicated coface maps of A (resp. B).

Proof. This follows easily by using the cosimplicial identities [24, I.1] to verify the
universal property of limits.

3.2. The cosimplicial cobar construction

It will be useful to interpret the cosimplicial integral homology resolution of X
in terms of the following cosimplicial cobar construction involving the comonad K
on sAb. First note that associated to the adjunction (Z̃, U) is a right K-coaction
m : U → UK on U (defined by m := ηid) and a left K-coaction (or K-coalgebra struc-
ture) m : Z̃X → KZ̃X on Z̃X (defined by m = idηid), for any X ∈ S∗.
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Definition 3.2. Let Y be an object in coAlgK. The cosimplicial cobar construc-
tion (or two-sided cosimplicial cobar construction) C(Y ) := Cobar(U,K, Y ) looks like
(showing only the coface maps)

C(Y ) : UY
d0

//
d1

//UKY
//////UKKY · · · (13)

and is defined objectwise by C(Y )n := UKnY with the obvious coface and codegen-
eracy maps; see, for instance, the face and degeneracy maps in the simplicial bar
constructions described in [26, A.1] or [35, Section 7], and dualize. For instance,
in (13) the indicated coface maps are defined by d0 := mid and d1 := idm.

3.3. Connectivity estimates, cofinality, and cubical diagrams

The purpose of this section is to prove Theorems 2.1 and 2.4 that provide the
estimates we need. The following definitions appear in [25, Section 1, 1.12] in the
context of spaces.

Definition 3.3 (Indexing categories for cubical diagrams). Let W be a finite set and
M a category.

• Denote by P(W ) the poset of all subsets of W , ordered by inclusion ⊂ of sets.
We will often regard P(W ) as the category associated to this partial order in
the usual way; the objects are the elements of P(W ), and there is a morphism
U → V if and only if U ⊂ V .

• Denote by P0(W ) ⊂ P(W ) the poset of all nonempty subsets of W ; it is the full
subcategory of P(W ) containing all objects except the initial object ∅.

• A W -cube X in M is a P(W )-shaped diagram X in M; in other words, a functor
X : P(W )→ M.

Remark 3.4. If X is a W -cube in M where |W | = n, we will sometimes refer to X
simply as an n-cube in M. In particular, a 0-cube is an object in M and a 1-cube is a
morphism in M.

Definition 3.5 (Faces of cubical diagrams). Let W be a finite set and M a category.
Let X be a W -cube in M and consider any subsets U ⊂ V ⊂W . Denote by ∂V

UX the
(V − U)-cube defined objectwise by

T 7→ (∂V
UX )T := XT∪U , T ⊂ V − U.

In other words, ∂V
UX is the (V − U)-cube formed by all maps in X between XU and

XV . We say that ∂V
UX is a face of X of dimension |V − U |.

The following definitions appear in [15, Section 2], [16, A.8.0.1, A.8.3.1].

Definition 3.6 (Subcubes of cubical diagrams). Let T,W be finite sets such that
|T | ⩽ |W | and M a category. Let X be a W -cube in M. A T -subcube of X is a T -cube
resulting from the precomposite of X along an injection ξ : P(T )→ P(W ) satisfying
that if U, V ⊂ T , then ξ(U ∩ V ) = ξ(U) ∩ ξ(V ) and ξ(U ∪ V ) = ξ(U) ∪ ξ(V ). If |T | =
d, we will often refer to a T -subcube of X simply as a d-subcube of X .
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Remark 3.7. In general, not all subcubes of X are faces of X . For instance, consider
any 2-cube X . There are exactly four 1-dimensional faces of X , and exactly five
1-subcubes of X .

Definition 3.8. Let f : N→ N be a function and W a finite set. A W -cube X is
f -cartesian (resp. f -cocartesian) if each d-subcube of X is f(d)-cartesian (resp. f(d)-
cocartesian); here, N denotes the non-negative integers.

The following is Dundas’ higher Hurewicz theorem for spaces and is proved in
[15, 2.6]; see also the subsequent elaboration in [16, A.8.3]. It provides an alternate
proof, together with strong estimates for the uniform cartesian-ness of cubes built
by iterations of the Hurewicz map, of the result in Bousfield-Kan [8, III.5.4] that
the Z-completion map X → X∧

Z is a weak equivalence for any 1-connected space X.
These uniform cartesian-ness estimates, resulting from Proposition 3.9, will play a
key role in our homotopical analysis of the derived counit map below.

Proposition 3.9 (Higher Hurewicz theorem). Let k⩾ 2. If X is an (id + k)-cartesian
cube of pointed spaces, then so is X → U Z̃X .

Definition 3.10. Let n ⩾ −1 and suppose Z is a cosimplicial pointed space coaug-
mented by d0 : Z−1 → Z0. The coface (n+ 1)-cube, denoted Xn+1, associated to the
coaugmented cosimplicial pointed space Z−1 → Z, is the canonical (n+ 1)-cube built
from the coface relations [24, I.1] djdi = didj−1, if i < j, associated to the coface maps
of the n-truncation

Z−1 d0
//Z0

d1
//

d0
//Z1 · · · Zn

of Z−1 → Z; in particular, X0 is the pointed space (or 0-cube) Z−1.

Remark 3.11. For instance, the coface 1-cube X1 has the left-hand form

Z−1 d0
//Z0

Z−1 d0
//

d0

��

Z0

d0

��
Z0 d1

//Z1

and the coface 2-cube X2 has the indicated right-hand form.

The following proposition, proved in [8, XI.9.2], allows one to compute homotopy
limits of D-shaped diagrams in terms of homotopy limits over D′-shaped diagrams,
provided that the comparison map D′ → D is left cofinal [8, XI.9.1].

Proposition 3.12. Let α : D′ → D be a functor between small categories. If Z is
a D-shaped diagram in pointed spaces and α is left cofinal, then the induced map

holimD′ X
≃←−− holimD X is a weak equivalence.

Definition 3.13. Let n ⩾ 0. Denote by ∆⩽n ⊂ ∆ the full subcategory of objects [m]
such that m ⩽ n (see Proposition 5.6).

The functor in the following definition, appearing in [42, 6.3], plays a key role in
the homotopical analysis of this paper; see also [40, 9.4.1].
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Definition 3.14. Define the totally ordered sets [n] := {0, 1, . . . , n} for each n ⩾ 0,
and given their natural ordering. The functor P0([n])→ ∆⩽n is defined objectwise
by U 7→ [|U | − 1], and which sends U ⊂ V in P0([n]) to the composite

[|U | − 1] ∼= U ⊂ V ∼= [|V | − 1]

where the indicated isomorphisms are the unique isomorphisms of totally ordered
sets.

Remark 3.15. For instance, the punctured 1-cube P0([0])→ ∆⩽0 has the left-hand
form and the punctured 2-cube P0([1])→ ∆⩽1 has the indicated

{0}

{1}

d0

��
{0} d1

//{0, 1}

right-hand form.

The following proposition, proved in [42, 6.7], explains the homotopical significance
of the punctured n-cube appearing in Definition 3.14; see also [10, 6.1–6.4] and [14,
18.7].

Proposition 3.16. Let n ⩾ 0. The functor P0([n])→ ∆⩽n is left cofinal; hence, if Z

is a cosimplicial pointed space, then the induced map of the form holimP0([n]) Z
≃←−−

holim∆⩽n Z is a weak equivalence (Proposition 3.12).

Remark 3.17 (Higher Hurewicz implies the Bousfield-Kan result X ≃ X∧
Z ). Assume

that X is a 1-connected pointed space. For notational simplicity we often drop the for-
getful functor U , appearing in Proposition 3.9, from our arguments. The n-truncation
of the Bousfield-Kan cosimplicial resolution (3) has the form

X
d0

//Z̃X
d1

//
d0

//Z̃Z̃X · · · Z̃n+1X

Dundas [15, Section 2] points out that just as (3) is built by iterating the Hurewicz
map, the associated coface (n+ 1)-cube Xn+1 can be built by applying the Hurewicz
map to the coface n-cube Xn. In more detail: the coface (n+ 1)-cube Xn+1 can be
described as the (n+ 1)-cube Xn → Z̃Xn for each n ⩾ 0.

To verify that the Z-completion map X → X∧
Z is a weak equivalence, it suffices to

verify that the map

X → holim∆⩽n C(Z̃X) (14)

into the n-th stage of the homotopy limit tower has connectivity strictly increas-
ing with n. The map (14) can be built, up to weak equivalence, from the coface
(n+ 1)-cube Xn+1. In more detail: the map (14) can be described as the map X →
holimP0([n]) Xn+1; the connectivity of this map is the same as the cartesian-ness of the
coface (n+ 1)-cube Xn+1, but this is the same as the cartesian-ness of the (n+ 1)-
cube Xn → Z̃Xn, for each n ⩾ 0.

Since X is a 1-connected pointed space, the map X → ∗ is 2-connected, and hence
the 0-cube X0 is (id + 2)-cartesian. Hence by Proposition 3.9 we know that X1 is
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(id + 2)-cartesian, and therefore another application of Proposition 3.9 gives that X2

is (id + 2)-cartesian, and so forth. In a similar way, the coface (n+ 1) cube Xn+1

is (id + 2)-cartesian for each n ⩾ 0; hence Dundas’ higher Hurewicz theorem has
provided us with strong estimates for the uniform cartesian-ness of cubes built by
iterations of the Hurewicz map. In particular, we know that the (n+ 1)-cube Xn+1

is (n+ 1 + 2)-cartesian for each n ⩾ 0, which means that the map (14) is (n+ 3)-
connected for each n ⩾ 0. Therefore, these connectivity estimates imply that

X → holimn holim∆⩽n C(Z̃X) ≃ holim∆ C(Z̃X) ≃ X∧
Z

is a weak equivalence; since this is the Z-completion map X → X∧
Z , we have recovered

the Bousfield-Kan result. The uniform cartesian-ness estimates for Xn+1 are stronger
than the statement that the coaugmentation X ≃ X∧

Z is a weak equivalence. For
instance, such uniform cartesian-ness estimates imply uniform cocartesian-ness esti-
mates, and vice-versa [15, 2.4]; the strength of these uniform cartesian-ness estimates
become important in [15, 16] and for the main results of this paper.

The following is proved in [40, 3.4.8].

Proposition 3.18. Consider any 2-cube X of the form

X
d //Y

s

��
X X

in S∗; in other words, suppose s is a retraction of d. There are natural weak equiva-
lences hofib(d) ≃ Ωhofib(s); here, the notation d and s is intended to suggest to the
reader “coface map” and “codegeneracy map”, respectively.

Definition 3.19. Let Z be a cosimplicial pointed space and n ⩾ 0. The codegeneracy
n-cube, denoted Yn, associated to Z, is the canonical n-cube built from the codegen-
eracy relations [24, I.1] sjsi = sisj+1, if i ⩽ j, associated to the codegeneracy maps
of the n-truncation

Z0 Z1s0oo Z2 · · · Zn
s0oo
s1

oo

of Z; in particular, Y0 is the pointed space (or 0-cube) Z0.

Remark 3.20. For instance, the codegeneracy 1-cube Y1 has the left-hand form

Z1 s0 //Z0

Z2 s1 //

s0

��

Z1

s0

��
Z1 s0 //Z0

and the codegeneracy 2-cube Y2 has the indicated right-hand form.

Remark 3.21. It is important to note that the total homotopy fiber of an n-cube of
pointed spaces is weakly equivalent to its iterated homotopy fiber [25, Section 1],
and in this paper we use the terms interchangeably; we use the convention that the
iterated homotopy fiber of a 0-cube Y (or object Y∅) is the homotopy fiber of the
unique map Y∅ → ∗ and hence is weakly equivalent to Y∅; see also [40, 5.5.4].
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Remark 3.22. The homotopical significance of the codegeneracy n-cubes Yn asso-
ciated to a cosimplicial pointed space Z can be understood as follows: the total
homotopy fiber of Yn is the derived version of the fiber of the natural map Zn →
Mn−1Z; here, Mn−1Z denotes the indicated matching space of Z ([8, X.4.5] and
[24, VII.4.9]); i.e., if Z is Reedy fibrant, then there are natural weak equivalences [8,
X.6.3] (iterated hofib)Yn ≃ fiber(Zn →Mn−1Z), n ⩾ 0.

The following calculation is proved in [8, X.6.3] for the Tot tower of a Reedy fibrant
cosimplicial pointed space; compare with [40, 5.5.7].

Proposition 3.23. Let Z be a cosimplicial pointed space and n ⩾ 0. There are nat-
ural zigzags of weak equivalences

hofib(holim∆⩽n Z → holim∆⩽n−1 Z) ≃ Ωn(iterated hofib)Yn
where Yn denotes the codegeneracy n-cube associated to Z.

Definition 3.24. Let Z be an objectwise fibrant cosimplicial pointed space and
n ⩾ 0. Denote by Z : P0([n])→ S∗ the corresponding composite diagram P0([n])→
∆⩽n ⊂ ∆

Z−→ S∗ (Definition 3.14). The associated∞-cartesian (n+ 1)-cube built from

Z, denoted Z̃ : P([n])→ S∗, is defined objectwise by

Z̃V :=

{
holimT ̸=∅ ZT , for V = ∅,

ZV , for V ̸= ∅.

In other words, the Z̃ construction is simply “filling in” the punctured (n+ 1)-cube

Z : P0([n])→ S∗ with value Z̃∅ = holimP0([n]) Z ≃ holim∆⩽n Z at the initial vertex
to turn it into an (n+ 1)-cube that is ∞-cartesian.

Remark 3.25. For instance, in the case n = 1 the Z̃ construction produces the ∞-
cartesian 2-cube of the form

holim∆⩽1 Z //

��

Z0

d0

��
Z0 d1

//Z1

Let Y be a 1-connected cofibrant K-coalgebra. We want to estimate the connec-
tivity of the map

Z̃holim∆⩽n C(Y )→ holim∆⩽n Z̃C(Y )

for each n ⩾ 0. In the case n = 0 this is the identity map Z̃UY → Z̃UY and hence a

weak equivalence. Consider the case n = 1. Let’s build C̃(Y ), the∞-cartesian 2-cube
of the left-hand form

holim∆⩽1 C(Y ) //

��

C(Y )0

d0

��
C(Y )0

d1
//C(Y )1

Z̃ holim∆⩽1 C(Y ) //

��

Z̃C(Y )0

Z̃d0

��
Z̃C(Y )0

Z̃d1
// Z̃C(Y )1

Applying Z̃ gives the 2-cube Z̃C̃(Y ) of the indicated right-hand form. The connectivity
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of the map

Z̃holim∆⩽1 C(Y )→ holim∆⩽1 Z̃C(Y ) (15)

is the same as the cartesian-ness of the 2-cube Z̃C̃(Y ). The idea is to (i) estimate

the cocartesian-ness of the 2-cube C̃(Y ), (ii) applying Z̃ will play nicely with the

cocartesian-ness estimate, (iii) Z̃C̃(Y ) is a 2-cube in simplicial abelian groups, hence
by [12, 3.10] it is k-cocartesian if and only if it is (k − 2 + 1)-cartesian. To carry
this out, the idea is to use Goodwillie’s higher dual Blakers-Massey theorem [25, 2.6],
which we recall here for the convenience of the reader, to estimate the cocartesian-ness

of the 2-cube C̃(Y ).

Proposition 3.26 (Higher dual Blakers-Massey theorem). Let W be a nonempty
finite set. Let X be a W -cube of pointed spaces. Suppose that

(i) for each nonempty subset V ⊂W , the V -cube ∂W
W−V X (formed by all maps in

X between XW−V and XW ) is kV -cartesian,

(ii) kU ⩽ kV for each U ⊂ V .

Then X is k-cocartesian, where k is the minimum of |W | − 1 +
∑

V ∈λ kV over all
partitions λ of W by nonempty sets.

Taking W = {0, 1} since C̃(Y ) is a 2-cube, the input to Proposition 3.26 requires
that we estimate the cartesian-ness of each of the faces

∂W
W−V C̃(Y ), ∅ ̸= V ⊂W.

Hence we need to estimate the cartesian-ness of the two 1-faces indicated in the
left-hand diagram

C(Y )0

d0

��
C(Y )0

d1
//C(Y )1

UY

d0

��
UY

d1
//U Z̃UY

which have the form in the indicated right-hand diagram. We know that d0 = mid
is the Hurewicz map on UY , and since UY is 1-connected we know that d0 is a
3-connected map and hence a 3-cartesian 1-cube. What about the map d1 = idm
involving the K-coaction map on Y ? The key observation is that the cosimplicial
identities force a certain “uniformity of faces” behavior as follows. Consider the com-
mutative diagrams (or 2-cubes) of the form

UY
d0

//U Z̃UY

s0

��
UY UY

UY
d1

//U Z̃UY

s0

��
UY UY

(16)

coming from the cosimplicial identities [24, I.1]. Then by Proposition 3.18 we know

hofib(d0) ≃ Ωhofib(s0), hofib(d1) ≃ Ωhofib(s0),

and hence hofib(d0) ≃ hofib(d1). Therefore, by this uniformity we know that d1 is
also a 3-connected map and hence a 3-cartesian 1-cube. Since we know that the 2-face
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of C̃(Y ) is ∞-cartesian (by construction), it follows from Proposition 3.26 that C̃(Y )
is k-cocartesian, where k − 1 is the minimum of

k{0,1} =∞, k{0} + k{1} = 3 + 3 = 6.

Hence k = 7 and we have calculated that C̃(Y ) is a 7-cocartesian 2-cube in S∗, hence

Z̃C̃(Y ) is a 7-cocartesian 2-cube in sAb, and therefore by above it is a (7− 1)-cartesian

2-cube in sAb. The upshot is that Z̃C̃(Y ) is 6-cartesian and hence we have calculated
that the map (15) is 6-connected.

Consider the case n = 2. Let’s build the ∞-cartesian 3-cube C̃(Y ). Applying Z̃
gives the 3-cube Z̃C̃(Y ) and the connectivity of the map

Z̃holim∆⩽2 C(Y )→ holim∆⩽2 Z̃C(Y ) (17)

is the same as the cartesian-ness of Z̃C̃(Y ). The idea is to (i) estimate the cocartesian-

ness of the 3-cube C̃(Y ), (ii) applying Z̃ will play nicely with the cocartesian-ness

estimate, (iii) Z̃C̃(Y ) is a 3-cube in simplicial abelian groups, hence by [12, 3.10] it
is k-cocartesian if and only if it is (k − 3 + 1)-cartesian. To carry this out, the idea is

to use Proposition 3.26 to estimate the cocartesian-ness of the 3-cube C̃(Y ).

Taking W = {0, 1, 2} since C̃(Y ) is a 3-cube, the input to Proposition 3.26 requires

that we estimate the cartesian-ness of each of the faces ∂W
W−V C̃(Y ), ∅ ̸= V ⊂W .

Hence we need to estimate the cartesian-ness of three 2-faces and three 1-faces (or
maps). The key observation is that exactly one of these 2-faces does not involve the
K-coaction map on Y ; furthermore, this particular 2-face is precisely the coface 2-
cube X2 in Remark 3.17 when taking X = UY . Since UY is 1-connected, we know by
Dundas’ higher Hurewicz theorem and Remark 3.17 that X2 is an (id + 2)-cartesian
2-cube; in particular, X2 is 4-cartesian. What about the other two 2-faces involving
theK-coaction map on Y ? The key observation is that the cosimplicial identities force
a certain “uniformity of faces” behavior as follows. For ease of notational purposes,
let Z = C(Y ) and consider the commutative diagrams of the form

Z0

d0

��

d0
//

(F1)

Z1

d1

��
Z1

s0

��

d0
//Z2

s1

��

s0 //Z1

s0

��
Z0 d0

//Z1 s0 //Z0

Z0

d1

��

d1
//

(F2)

Z1

d2

��

s0 //Z0

d1

��
Z1 d1

//Z2

s1

��

s0 //Z1

s0

��
Z1 s0 //Z0

Z0

d1

��

d0
//

(F3)

Z1

d2

��

s0 //Z0

d1

��
Z1 d0

//Z2

s1

��

s0 //Z1

s0

��
Z1 s0 //Z0

(18)

coming from the cosimplicial identities [24, I.1]. The upper left-hand square (F1) is
the coface 2-cube X2 which is (id + 2)-cartesian by above. The upper left-hand squares
(F2) and (F3) are the remaining two 2-faces that we need cartesian-ness estimates
for. The key observation is that the lower right-hand squares are each a copy of the
codegeneracy 2-cube Y2 associated to Z, and that furthermore, the indicated vertical
and horizontal composites are the identity maps by the cosimplicial identities [24,
I.1]; then by repeated application of Proposition 3.18 to these composites in (18), we
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know that

(iterated hofib)(F1) ≃ Ω2(iterated hofib)Y2
(iterated hofib)(F2) ≃ Ω2(iterated hofib)Y2
(iterated hofib)(F3) ≃ Ω2(iterated hofib)Y2

and hence (iterated hofib)(F1) ≃ (iterated hofib)(F2) ≃ (iterated hofib)(F3). There-
fore, by this uniformity we know that (F2) and (F3) are also 4-cartesian 2-cubes.
Similarly, we know that the three 1-faces (or maps) with codomain Z2 are 3-cartesian.

Since we know that the 3-face of C̃(Y ) is ∞-cartesian (by construction), it follows

from Proposition 3.26 that C̃(Y ) is k-cocartesian, where k − 2 is the minimum of

k{0,1,2} =∞, k{0} + k{1,2} = 3 + 4 = 7, k{0} + k{1} + k{2} = 3 + 3 + 3 = 9.

Note that by the “uniformity of faces” behavior, we get nothing new from the other
partitions of W ; this is why we have not written them out here. Hence k = 9 and

we have calculated that C̃(Y ) is a 9-cocartesian 3-cube in S∗, hence Z̃C̃(Y ) is a 9-
cocartesian 3-cube in sAb, and therefore by above it is a (9− 2)-cartesian 3-cube in

sAb. The upshot is that Z̃C̃(Y ) is 7-cartesian and hence we have calculated that the
map (17) is 7-connected.

Remark 3.27. There is more information in the argument above. Since the 2-face (F1)
is 4-cartesian, its total homotopy fiber is 3-connected, hence (Proposition 3.23)

hofib(holim∆⩽2 Z → holim∆⩽1 Z) ≃ Ω2(iterated hofib)Y2
is 3-connected and therefore the map holim∆⩽2 Z → holim∆⩽1 Z is 4-connected. Also,
since Ω2(iterated hofib)Y2 is 3-connected, then (iterated hofib)Y2 is 5-connected.

And so forth, in a similar way, for each n ⩾ 3, the connectivity of the map

Z̃holim∆⩽n C(Y )→ holim∆⩽n Z̃C(Y )

is the same as the cartesian-ness of the (n+ 1)-cube Z̃C̃(Y ). The idea is to (i) estimate

the cocartesian-ness of the (n+ 1)-cube C̃(Y ), (ii) applying Z̃ will play nicely with the

cocartesian-ness estimate, (iii) Z̃C̃(Y ) is an (n+ 1)-cube in simplicial abelian groups,
hence by [12, 3.10] it is k-cocartesian if and only if it is (k − (n+ 1) + 1)-cartesian.
To carry this out, the idea is to use Proposition 3.26 to estimate the cocartesian-ness

of the (n+ 1)-cube C̃(Y ). We can organize our argument as follows, exactly as in the
above cases for n = 1, 2.

First we recall the following proposition, which appears in [11, 6.27]; it can be
proved by arguing exactly as in [40, 5.5.7]. We have already verified it above in low
dimensional cases; see (16) and (18), together with the resulting iterated homotopy
fiber calculations.

Proposition 3.28 (Uniformity of faces). Let Z be a cosimplicial pointed space and
n ⩾ 0. Let ∅ ̸= T ⊂ [n] and t ∈ T . Then there is a weak equivalence

(iterated hofib)∂T
{t}Z̃ ≃ Ω|T |−1(iterated hofib)Y|T |−1

in S∗, where Y|T |−1 denotes the codegeneracy (|T | − 1)-cube associated to Z.
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Remark 3.29. We will exploit Proposition 3.28 below by taking Z = C(Y ) for Y a cofi-

brant 1-connected K-coalgebra. It follows from the observation that each face ∂T
{t}Z̃

of the Z̃ construction is connected to the codegeneracy cube Y|T |−1 by a “sequence of
retractions” built from codegeneracy maps: see (16) for the case of 1-faces and (18)
for the case of 2-faces; the higher dimensional faces are similar, and the argument is
then completed by repeated application of Proposition 3.18; see [11, 6.29].

Theorem 3.30. Let Y be a 1-connected cofibrant K-coalgebra and n ⩾ 1. Consider

the ∞-cartesian (n+ 1)-cube C̃(Y ) in S∗ built from C(Y ). Then

(a) the cube C̃(Y ) is (2n+ 5)-cocartesian in S∗,

(b) the cube Z̃C̃(Y ) is (2n+ 5)-cocartesian in sAb,

(c) the cube Z̃C̃(Y ) is (n+ 5)-cartesian in sAb.

Proof. Consider part (a). TakingW = {0, 1, . . . , n} since C̃(Y ) is an (n+ 1)-cube, our
strategy is to use Goodwillie’s higher dual Blakers-Massey theorem (Proposition 3.26)

to estimate how close the W -cube C̃(Y ) in S∗ is to being cocartesian; the input to
Proposition 3.26 requires that we estimate the cartesian-ness of each of the faces

∂W
W−V C̃(Y ), ∅ ̸= V ⊂W

We know from Dundas’ higher Hurewicz theorem (Proposition 3.9), on iterations of
the Hurewicz map applied to UY , together with the “uniformity of faces” property
enforced by the cosimplicial identities and summarized in Proposition 3.28, that for

each nonempty subset V ⊂W , the V -cube ∂W
W−V C̃(Y ) is (|V |+ 2)-cartesian; since

it is ∞-cartesian by construction when V = W , it follows immediately from Proposi-

tion 3.26 that C̃(Y ) is (2n+ 5)-cocartesian in S∗, which finishes the proof of part (a).
Part (b) follows from the fact that Z̃ : S∗ → sAb is a left Quillen functor together with
the fact that Z̃ preserves connectivity of maps between 1-connected spaces. Part (c)
follows easily from the fact that sAb and Ch⩾0(Z) are Quillen equivalent via the
normalization functor and that the homotopy groups of a simplicial abelian group
are naturally isomorphic to their associated homology groups as chain complexes,
together with the obvious chain complex analog of [12, 3.10]; in other words, that

Z̃C̃(Y ) is k-cocartesian if and only if it is (k − n)-cartesian. Taking k = (2n+ 5) from
part (b) finishes the proof.

Proof of Theorem 2.4. We want to estimate how connected the comparison map
Z̃holim∆⩽n C(Y )→ holim∆⩽n Z̃C(Y ) is, which is equivalent to estimating how carte-

sian Z̃C̃(Y ) is, and Theorem 3.30(c) completes the proof.

Similar to Remark 3.27, there is more information in the proof of Theorem 3.30

above. We know that for exactly one w ∈W , the n-face ∂W
{w}C̃(Y ) (i.e., the unique n-

face of this form not involving the K-coaction map on Y ) in the proof of Theorem 3.30
is precisely the coface n-cube Xn in Remark 3.17 when taking X = UY . Since UY is
1-connected, we know that Xn is an (id + 2)-cartesian n-cube by the higher Hurewicz
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theorem; in particular, this n-face ∂W
{w}C̃(Y ) is (n+ 2)-cartesian and hence its total

homotopy fiber is (n+ 1)-connected. By Proposition 3.28, we know

(iterated hofib)∂W
{w}C̃(Y ) ≃ Ω(n+1)−1(iterated hofib)Y(n+1)−1

similar to Remark 3.27, hence by Proposition 3.23 we know that

hofib(holim∆⩽n C(Y )→ holim∆⩽n−1 C(Y )) ≃ Ωn(iterated hofib)Yn
is (n+ 1)-connected; therefore the map holim∆⩽n C(Y )→ holim∆⩽n−1 C(Y ) is (n+
2)-connected. Also, since Ωn(iterated hofib)Yn is (n+ 1)-connected, then we know
(iterated hofib)Yn is (2n+ 1)-connected. The upshot is that we have just proved
Proposition 3.31 and Theorem 2.1.

Proposition 3.31. Let Y be a cofibrant K-coalgebra and n ⩾ 1. Denote by Yn the
codegeneracy n-cube associated to the cosimplicial cobar construction C(Y ) of Y . If
Y is 1-connected, then the total homotopy fiber of Yn is (2n+ 1)-connected.

Proof of Theorem 2.1. The homotopy fiber of holim∆⩽n C(Y )→ holim∆⩽n−1 C(Y )
is weakly equivalent to Ωn of the total homotopy fiber of the codegeneracy n-cube
Yn associated to C(Y ) by Proposition 3.23, hence by Proposition 3.31 this map is
(n+ 2)-connected.

3.4. Strong convergence for the holim∆ C(Y ) spectral sequence
The following strong convergence result for the homotopy spectral sequence ([8,

IX.4], [24, VIII.1]) associated to the cosimplicial cobar construction C(Y ) of a K-
coalgebra Y is a corollary of the connectivity estimates in Theorem 2.1.

Theorem 3.32. If Y is a 1-connected cofibrant K-coalgebra, then the homotopy spec-
tral sequenceE2

−s,t=πsπtC(Y )⇒πt−s holim∆C(Y ) converges strongly (Remark 3.33).

Proof. This follows from the connectivity estimates in Theorem 2.1.

Remark 3.33. By strong convergence of {Er} to π∗ holim∆ C(Y ) we mean that (i) for
each (−s, t), there exists an r such that Er

−s,t = E∞
−s,t and (ii) for each i, E∞

−s,s+i = 0
except for finitely many s. Strong convergence implies that for each i, {E∞

−s,s+i} is the
set of filtration quotients from a finite filtration of πi holim∆ C(Y ); see, for instance,
[8, IV.5.6, IX.5.3, IX.5.4] and [17, p. 255].

This is the homotopy spectral sequence associated to the cosimplicial cobar con-
struction (3.2); it generalizes to K-coalgebra complexes the unstable Adams spectral
sequence of a space; see [9] and the subsequent work of [4, 5].

4. Background on simplicial structures

In this section we recall the simplicial structure on pointed spaces and simplicial
abelian groups; the expert may wish to skim through, or skip entirely, this background
section.

Definition 4.1. Let X,X ′ be pointed spaces and K a simplicial set. The tensor prod-
uct X⊗̇K in S∗ is defined by X⊗̇K := X ∧K+, the mapping space HomS∗(X,X ′) in
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sSet byHomS∗(X,X ′)n :=homS∗(X⊗̇∆[n], X ′), and themapping object homS∗(K,X)
in S∗ by homS∗(K,X ′)n := homS∗(K+⊗̇∆[n], X ′), where homS∗(K,X ′) is pointed
by the constant map.

Definition 4.2. Let Y, Y ′ be simplicial abelian groups and K a simplicial set.
The tensor product Y ⊗̇K in sAb is defined by Y ⊗̇K := Y⊗ZK, the mapping space
HomsAb(Y, Y

′) in sSet by HomsAb(Y, Y
′)n := homsAb(Y ⊗̇∆[n], Y ′), and the mapping

object homsAb(K,Y ) in sAb by homsAb(K,Y ′)n := homsAb(ZK⊗̇∆[n], Y ′), where the
mapping object homsAb(K,Y ′) inherits the usual abelian group structure from Y ′.

For ease of notation purposes, we sometimes drop the S∗ and sAb decorations from
the notation and simply write Hom and hom.

Proposition 4.3. With the above definitions of mapping object, tensor product, and
mapping space the categories of pointed spaces S∗ and simplicial abelian groups sAb
are simplicial model categories.

Proof. This is proved, for instance, in [24, II.3].

Remark 4.4. Let M denote either S∗ or sAb. In particular, there are isomorphisms

homM(X⊗̇K,X ′) ∼= homM(X,hom(K,X ′)) ∼= homsSet(K,Hom(X,X ′)) (19)

in Set, natural in X,K,X ′, that extend to isomorphisms

HomM(X⊗̇K,X ′) ∼= HomM(X,hom(K,X ′)) ∼= HomsSet(K,Hom(X,X ′))

in sSet, natural in X,K,X ′.

Recall that the free-forgetful adjunction (10), whose unit is the space level Hurewicz
map, is a Quillen adjunction with left adjoint on top and U the forgetful functor; in
particular, there is an isomorphism homsAb(Z̃X,Y ) ∼= homS∗(X,UY ) in Set, natural
in X,Y . The following proposition, which is proved in [24, II.2.9], is fundamental to
this paper. It verifies that the free-forgetful adjunction (10) meshes nicely with the
simplicial structure.

Proposition 4.5. Let X be a pointed space, Y a simplicial abelian group, and K,L
simplicial sets. Then

(a) there is a natural isomorphism σ : Z̃(X)⊗̇K
∼=−−→ Z̃(X⊗̇K);

(b) there is an isomorphism Hom(Z̃X,Y ) ∼= Hom(X,UY ) in sSet, natural in
X,Y , that extends the adjunction isomorphism associated to (10);

(c) there is an isomorphism U hom(K,Y ) ∼= hom(K,UY ) in S∗, natural in K,Y ;

(d) there is a natural map σ : U(Y )⊗̇K → U(Y ⊗̇K) induced by U ;

(e) the functors Z̃ and U are simplicial functors (Remark 4.6) with the structure
maps σ of (a) and (d), respectively.

Remark 4.6. For a useful reference on simplicial functors in the context of homotopy
theory, see [29, 9.8.5].

The following proposition is fundamental to this paper.
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Proposition 4.7. Consider the monad U Z̃ on S∗ and the comonad K = Z̃U on sAb
associated to the adjunction (Z̃, U) in (10). The four associated natural transforma-
tions (11) are simplicial natural transformations.

Proof. This is an exercise left to the reader; compare [11, Proof of 7.8].

5. Background on homotopy limits of ∆-shaped diagrams

The purpose of this section is to recall some well-known constructions and prop-
erties associated to the homotopy limit of ∆-shaped diagrams; the expert may wish
to skim through, or skip entirely, this background section.

Remark 5.1. From now on in this section, we assume that M is the simplicial model
category S∗, sAb, or sSet (see [24, II.2]) with tensor product X⊗̇K in M, mapping
space Hom(X,X ′) in sSet, and mapping object hom(K,X ′) in M; here, X,X ′ ∈ M
and K ∈ sSet.

Definition 5.2. A cosimplicial object Z ∈ M∆ in M is coaugmented if it comes with
a map d0 : Z−1 → Z0 in M such that d0d0 = d1d0 : Z−1 → Z1; in this case, it follows
easily from the cosimplicial identities [24, I.1] that d0 induces a map Z−1 → Z of
∆-shaped diagrams in M, where Z−1 denotes the constant cosimplicial object with
value Z−1; i.e., via the inclusion Z−1 ∈ M ⊂ M∆ of constant diagrams.

We follow Dror-Dwyer [13, 3.3] in use of the terms restricted cosimplicial objects
for ∆res-shaped diagrams, and restricted simplicial category ∆res to denote the sub-
category of ∆ with objects the totally ordered sets [n] for n ⩾ 0 and morphisms the
strictly monotone maps of sets ξ : [n]→ [n′]; i.e., such that k < l implies ξ(k) < ξ(l).

Definition 5.3. The totalization functor Tot for cosimplicial objects in M and the
restricted totalization (or fat totalization) functor Totres for restricted cosimplicial
objects in M are defined objectwise by the ends

Tot: M∆ → M, X 7→ hom(∆[−], X)∆

Totres : M∆res → M, Y 7→ hom(∆[−], Y )∆res

We often drop the adjective “restricted” and simply refer to both functors as totaliza-
tion functors. It follows from the universal property of ends that Tot(X) is naturally
isomorphic to an equalizer diagram of the form

Tot(X) ∼= lim
( ∏

[n]∈∆

hom(∆[n], Xn) ////
∏

[n]→[n′]
in∆

hom(∆[n], Xn′
)
)

in M, and similarly for Totres(Y ) by replacing ∆ with ∆res. We sometimes refer to
the natural maps Tot(X)→ hom(∆[n], Xn) and Totres(Y )→ hom(∆[n], Y n) as the
projection maps.

Proposition 5.4. The totalization functors Tot and Totres fit into adjunctions

M
−⊗̇∆[−]// M∆

Tot
oo , M

−⊗̇∆[−]// M∆res

Totres
oo (20)

with left adjoints on top.
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Definition 5.5. Let D be a small category. The Bousfield-Kan homotopy limit
holimBK

D for D-shaped diagrams in M is defined by, holimBK
D : MD → M, X 7→

Tot
∏∗

D X. We will sometimes suppress D from the notation and simply write holimBK

and
∏∗

. Here, the cosimplicial replacement functor
∏∗

: MD → M∆ is defined object-
wise by (with the obvious coface di and codegeneracy maps sj)∏n

X :=
∏

a0→···→an
inD

X(an)

The simplicial category ∆ has a natural filtration by its truncated subcategories
∆⩽n of the form ∅ ⊂ ∆⩽0 ⊂ ∆⩽1 ⊂ · · · ⊂ ∆⩽n ⊂ ∆⩽n+1 ⊂ · · · ⊂ ∆ where ∆⩽n ⊂ ∆
denotes the full subcategory of objects [m] such that m ⩽ n; we use the convention
that ∆⩽−1 = ∅ is the empty category. This leads to the following holimBK tower of a
∆-shaped diagram in M.

Proposition 5.6. If X ∈ M∆, then holimBK
∆ X is naturally isomorphic to a limit

of the form holimBK
∆ X ∼= lim

(
∗←holimBK

∆⩽0 X←holimBK
∆⩽1 X←holimBK

∆⩽2 X←· · ·
)
in

M; here, it may be helpful to note that holimBK
∆⩽−1 X = ∗ and holimBK

∆⩽0 X ∼= X0.

Definition 5.7. Let s ⩾ −1. The functors Tots and Totress are defined objectwise by
the ends

Tots : M
∆ → M, X 7→ hom(sks∆[−], X)∆

Totress : M∆res → M, Y 7→ hom(sks∆[−], Y )∆res

Here we use the convention that the (−1)-skeleton of a simplicial set is the empty
simplicial set. In particular, sk−1∆[n] = ∅ for each n ⩾ 0; it follows immediately that
Tot−1(X) = ∗ and Totres−1(Y ) = ∗.

Proposition 5.8. If Y ∈ M∆ is Reedy fibrant, then the natural maps TotY
≃−−→

holimBK
∆ Y and Totn Y

≃−−→ holimBK
∆⩽n Y in M are weak equivalences.

Proof. The left-hand map is the composite

hom(∆[−], Y )∆
≃−−→hom(B(∆/−), Y )∆ ∼= holimBK

∆ Y

where the indicated map is a weak equivalence [8, XI.4.4] since it is induced by the

natural map ∆[−] ≃←−− B(∆/−) in (sSet)∆, which itself is a weak equivalence between
Reedy cofibrant objects [8, XI.2.6]; here, B denotes the nerve functor. Similarly, the
right-hand map is the composite

hom(skn∆[−], Y )∆ ∼= hom(∆⩽n[−], Y )∆
⩽n

≃−−→hom(B(∆⩽n/−), Y )∆
⩽n ∼= holimBK

∆⩽n Y

where the indicated map is a weak equivalence [8, XI.4.4] since it is induced by the

natural map ∆⩽n[−] ≃←−− B(∆⩽n/−) in (sSet)∆
⩽n

, which itself is a weak equivalence
between Reedy cofibrant objects [8, XI.2.6].

Proposition 5.9. The inclusion of categories ∆res ⊂ ∆ is left cofinal; hence, if X ∈
M∆ is objectwise fibrant, then the induced map holimBK

∆res
X

≃←−− holimBK
∆ X is a weak

equivalence.
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Proof. The inclusion ∆res ⊂ ∆ is left cofinal by [13, 3.17], hence the induced map on
holimBK is a weak equivalence by [8, XI.9.2] (Proposition 3.12).

Proposition 5.10. If X ∈ M∆res is objectwise fibrant, then the natural map (in M)

Totres X
≃−−→ holimBK

∆res
X is a weak equivalence.

Proof. This is the same as in Proposition 5.8, except here the map is the composite

hom(∆[−], X)∆res
≃−−→hom(B(∆res/−), X)∆res ∼= holimBK

∆res
X

where the indicated map is a weak equivalence [8, XI.4.4] since it is induced by the

natural map ∆[−] ≃←−− B(∆res/−) in (sSet)∆res .

Definition 5.11. Let D be a small category. The homotopy limit functor holimD

for D-shaped diagrams is defined objectwise by holimD : M
D → M, X 7→ holimBK

D Xf ,
where Xf denotes a functorial objectwise fibrant replacement of X in MD. In other
words [8, XI.3, XI.8], there is a natural weak equivalence holimD X ≃ R holimBK

D X
and if furthermore, X is objectwise fibrant, then holimD X ≃ holimBK

D X; here, we
have denoted by R holimBK

D the total right derived functor of holimBK
D .

6. The homotopy theory of K-coalgebras

In this section we recall briefly the Arone-Ching enrichments and associated homo-
topy theory of K-coalgebras [1, Section 1] in the context needed for this paper. Com-
pare also with the context in [11], but note that here the Arone-Ching enrichments
are considerably simpler since every object in S∗ is cofibrant and every object in sAb
is fibrant in the underlying category S∗.

Definition 6.1. A morphism in coAlgK is a cofibration if the underlying morphism
in sAb is a cofibration. An object Y in coAlgK is cofibrant if the unique map ∅ → Y
in coAlgK is a cofibration.

Remark 6.2. In coAlgK the initial object ∅ and the terminal object ∗ are isomorphic.
Here, the terminal object is the trivial K-coalgebra with underlying object 0. This
is because there is an adjunction coAlgK

//sAb : Koo with K right adjoint to the
forgetful functor on top, together with the fact that right adjoints preserve terminal
objects, and the calculation that K0 = Z̃(∗) = 0.

Recall that a morphism of K-coalgebras from Y to Y ′ is a map f : Y → Y ′ in
sAb that respects the K-coaction; i.e., such that (Kf)m = mf . This motivates the
following cosimplicial resolution of K-coalgebra maps from Y to Y ′.

Definition 6.3. Let Y, Y ′ be cofibrant K-coalgebras. The cosimplicial object (in sSet)
HomsAb(Y,K

•Y ′) looks like (showing only the coface maps)

HomsAb(Y, Y
′)

d0
//

d1
// HomsAb(Y,KY

′)
////// HomsAb(Y,KKY

′) · · ·

and is defined objectwise by HomsAb(Y,K
•Y ′)n := HomsAb(Y,K

nY ′) with the obvi-
ous coface and codegeneracy maps induced by the comultiplication and coaction maps,
and counit map, respectively; see [1, 1.3].
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Recall the usual notion of realization of a simplicial set, regarded as taking values
in the category of compactly generated Hausdorff spaces, denoted CGHaus (e.g., [24]).

Definition 6.4. The realization functor | − | for simplicial sets is defined objectwise
by the coend | − | : sSet→ CGHaus, X 7→ X ×∆ ∆(−). Here, ∆n in CGHaus denotes
the topological standard n-simplex for each n ⩾ 0 (see Goerss-Jardine [24, I.1.1]).

Definition 6.5. Let X,Y be pointed spaces. The mapping space MapS∗
(X,Y ) in

CGHaus is defined by realization MapS∗
(X,Y ) := |HomS∗(X,Y )| of the indicated

simplicial set.

The following definition of the mapping space of derived K-coalgebra maps appears
in Arone-Ching [1, 1.10] and is a key ingredient in both the statements and proofs of
our main results.

Definition 6.6. Let Y, Y ′ be cofibrant K-coalgebras. The mapping spaces of derived
K-coalgebra maps HomcoAlgK(Y, Y

′) in sSet and MapcoAlgK(Y, Y
′) in CGHaus are de-

fined by the restricted totalizations

HomcoAlgK(Y, Y
′) := Totres HomsAb

(
Y,K•Y ′)

MapcoAlgK(Y, Y
′) := Totres MapsAb

(
Y,K•Y ′)

of the indicated cosimplicial objects.

Recall the following useful propositions.

Proposition 6.7. If Y ∈ (sSet)∆res and Z ∈ (sSet)∆ are objectwise fibrant, then the

natural maps |Totres Y | ≃−−→ Totres |Y | and |holimBK
∆ Z| ≃−−→ holimBK

∆ |Z| in CGHaus
are weak equivalences.

Proof. This is proved in [11, 4.10].

The following corollary plays a key role in this paper.

Proposition 6.8. Let Y, Y ′ be cofibrant K-coalgebras. Then the natural map of the

form |HomcoAlgK(Y, Y
′)| ≃−−→ MapcoAlgK(Y, Y

′) is a weak equivalence.

Proof. This follows from Proposition 6.7.

The following provides a useful language for working with the spaces of derived
K-coalgebra maps; see [1, 1.11].

Definition 6.9. Let Y, Y ′ be cofibrant K-coalgebras. A derived K-coalgebra map f
of the form Y → Y ′ is any map in (sSet)∆res of the form f : ∆[−]→ HomsAb

(
Y,K•Y ′).

A topological derived K-coalgebra map g of the form Y → Y ′ is any map in
(CGHaus)∆res of the form g : ∆• → MapsAb

(
Y,K•Y ′). The underlying map of a derived

K-coalgebra map f is the map f0 : Y → Y ′ that corresponds to the map f0 : ∆[0]→
HomsAb(Y, Y

′). Note that every derived K-coalgebra map f determines a topological
derived K-coalgebra map |f | by realization.
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Definition 6.10. If X,Y ∈ (sSet)∆ their box product X□Y ∈ (sSet)∆ is defined ob-
jectwise by a coequalizer of the form

(X□Y )n ∼= colim
( ⨿

p+q=n
Xp × Y q

⨿
r+s=n−1

Xr × Y soooo
)

where the top (resp. bottom) map is induced by id× d0 (resp. dr+1 × id) on each
(r, s) term of the indicated coproduct; note that (X□Y )0 ∼= X0 × Y 0. The coface
maps di : (X□Y )n → (X□Y )n+1 are induced by{

Xp × Y q di×id−−−→ Xp+1 × Y q, if i ⩽ p,

Xp × Y q id×di−p

−−−−−→ Xp × Y q+1, if i > p,

and the codegeneracy maps sj : (X□Y )n → (X□Y )n−1 are induced by{
Xp × Y q sj×id−−−−→ Xp−1 × Y q, if j < p,

Xp × Y q id×sj−p

−−−−−→ Xp × Y q−1, if j ⩾ p.

If (M,⊗) is any closed symmetric monoidal category and X,Y ∈ M∆, then their
box product X□Y ∈ M∆ is defined similarly by replacing (sSet,×) with (M,⊗); for
instance, with (CGHaus,×).

Remark 6.11. If X,Y ∈ (sSet)∆ their box product X□Y ∈ (sSet)∆ is the left Kan
extension of objectwise product along ordinal sum (or concatenation). This is proved
in [38, 2.3]; see also Batanin [3, Section 2] and McClure-Smith [37]; a dual version
of the construction appears in Artin-Mazur [2, III].

Proposition 6.12. Let Y, Y ′, Y ′′ be cofibrant K-coalgebras. There is a natural map of
the form µ : HomsAb

(
Y,K•Y ′)□HomsAb

(
Y ′,K•Y ′′)→HomsAb

(
Y,K•Y ′′) in (sSet)∆.

We sometimes refer to µ as the composition map.

Proof. This is proved exactly as in [1, 1.6]; µ is the map induced by the collection of
composites

HomsAb

(
Y,KpY ′)×HomsAb

(
Y ′,KqY ′′) id×Kp

−−−−→

HomsAb

(
Y,KpY ′)×HomsAb

(
KpY ′,KpKqY ′′) comp−−−→ HomsAb

(
Y,Kp+qY ′′)

where p, q ⩾ 0.

Proposition 6.13. Let A,B ∈ (sSet)∆. There is a natural isomorphism of the form
|A□B| ∼= |A|□|B| in (CGHaus)∆.

Proof. This follows from the fact that realization commutes with finite products and
all small colimits.

Proposition 6.14. Let Y, Y ′, Y ′′ be cofibrant K-coalgebras. There is a natural map of
the form µ : MapsAb

(
Y,K•Y ′)□MapsAb

(
Y ′,K•Y ′′)→MapsAb

(
Y,K•Y ′′) in (CGHaus)∆.

We sometimes refer to µ as the composition map.

Proof. This follows from Proposition 6.12 by applying realization, together with
Proposition 6.13.
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Definition 6.15. Let Y be a cofibrant K-coalgebra. The unit map ι is the map ∗ →
MapsAb(Y,K

•Y ) in (CGHaus)∆ which is realization of the coaugmentation map [1, 1.6]
of the form ∗ → HomsAb(Y,K

•Y ) that picks out the identity map on Y in simplicial
degree 0.

Definition 6.16. The non-Σ operad A in CGHaus is the coendomorphism operad of
∆• with respect to the box product □ ([1, 1.12]) and is defined objectwise by the end

construction A(n) := Map∆res

(
∆•, (∆•)□n

)
:= Map

(
∆•, (∆•)□n

)∆res
. In other words,

A(n) is the space of restricted cosimplicial maps from ∆• to (∆•)□n; in particular,
note that A(0) = ∗.

Consider the natural collection [1, 1.13] of maps of the form (n ⩾ 0)

A(n)×MapcoAlgK(Y0, Y1)× · · · ×MapcoAlgK(Yn−1, Yn)→ MapcoAlgK(Y0, Yn) (21)

induced by (iterations of) the composition map µ (Proposition 6.14); in particular,
in the case n = 0, note that (21) denotes the map ∗ = A(0)→ MapcoAlgK(Y0, Y0) that
is Totres applied to the unit map.

Proposition 6.17. The collection of maps (21) determines a topological A∞ cate-
gory with objects the cofibrant K-coalgebras and morphism spaces the mapping spaces
MapcoAlgK(Y, Y

′).

Proof. This is proved exactly as in [1, 1.14].

Definition 6.18. The homotopy category of K-coalgebras (see [1, 1.15]), denoted
Ho(coAlgK), is the category with objects the cofibrant K-coalgebras and morphism
sets [Y, Y ′]K from Y to Y ′ the path components [Y, Y ′]K := π0 MapcoAlgK(Y, Y

′) of the
indicated mapping spaces.

Proposition 6.19. Let Y, Y ′ be cofibrant K-coalgebras. There is a natural map of
morphism sets of the form π : homcoAlgK(Y, Y

′)→ [Y, Y ′]K.

Proposition 6.20. There is a well-defined functor γ : coAlgcK → Ho(coAlgK) that is
the identity on objects and is the map π on morphisms; here, coAlgcK ⊂ coAlgK denotes
the full subcategory of cofibrant K-coalgebras.

Proof. This is proved exactly as in [1, 1.14].

Definition 6.21. A derived K-coalgebra map f of the form Y → Y ′ is a weak equiv-
alence if the underlying map f0 : Y → Y ′ is a weak equivalence.

Proposition 6.22. Let Y, Y ′ be cofibrant K-coalgebras. A derived K-coalgebra map
f of the form Y → Y ′ is a weak equivalence if and only if the induced map γ(f) in
[Y, Y ′]K is an isomorphism in the homotopy category of K-coalgebras.

Proof. This is proved exactly as in [1, 1.16].
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7. The derived adjunction

The derived unit is the map of pointed spaces of the form X → holim∆ C(Z̃X)
corresponding to the identity map id: Z̃X → Z̃X; it is tautologically the Bousfield-
Kan Z-completion map X → X∧

Z in [8, I.4]. The derived counit is the derived K-

coalgebra map of the form Z̃ holim∆ C(Y )→ Y corresponding to the identity map
id: holim∆ C(Y )→ holim∆ C(Y ), after taking into account the natural zigzags of
weak equivalences holim∆ C(Y ) ≃ Totres C(Y ) of pointed spaces.

Definition 7.1. The derived counit map associated to (4) is the derived K-coalgebra
map of the form Z̃holim∆ C(Y )→ Y , with Z̃Totres C(Y )→ Y the underlying map
corresponding to the identity map id: Totres C(Y )→ Totres C(Y ) in S∗, via the ad-
junctions (20) and (10). In more detail, the derived counit map is the derived K-
coalgebra map defined by the composite (see [1, 2.17])

∆[−] (∗)−−→ HomS∗

(
Totres C(Y ), C(Y )

) ∼= HomsAb

(
Z̃Totres C(Y ),K•Y

)
(22)

in (sSet)∆res , where (∗) corresponds to the identity map on Totres C(Y ) in S∗, via the
adjunctions (20) and (10).

Proposition 7.2. Let M,M′ be simplicial model categories. Let F : M→ M′ be a sim-
plicial functor and X a cosimplicial (resp. restricted cosimplicial) object in M. There
are maps of the form F Tot(X)→ Tot(FX) and F Totres(X)→ Totres(FX) (in M′)
induced by the simplicial structure maps of F .

Proof. In both cases, the indicated map is induced by the composite maps

F
(
hom(∆[n], Xn)

)
⊗̇∆[n]

σ−→ F
(
hom(∆[n], Xn)⊗̇∆[n]

) id(ev)−−−−→ F (Xn), n ⩾ 0,

via the natural isomorphisms in Remark 4.4.

Consider the collection of maps ∆[n]→ HomsAb

(
Z̃Totres C(Y ),KnY

)
, n ⩾ 0, in

sSet described in (22) associated to the derived counit map. It follows from the
adjunction isomorphisms that these maps correspond with the maps(

Z̃Totres C(Y )
)
⊗̇∆[n]→ KnY, n ⩾ 0,

in sAb, defined by the composite(
Z̃Totres C(Y )

)
⊗̇∆[n]→

(
Totres Z̃C(Y )

)
⊗̇∆[n]

(∗)−−→ K(K)nY
ε(id)nid=s−1

−−−−−−−−→ id(K)nY

where (∗) denotes the indicated projection map; here, it may be helpful to note that
Z̃C(Y ) = Cobar(K,K, Y ).

Proposition 7.3. Let X,X ′ be pointed spaces. There are natural morphisms of map-
ping spaces of the form Z̃ : MapS∗

(X,X ′)→ MapcoAlgK(Z̃X, Z̃X ′) in CGHaus.

Proof. Consider the composite

HomS∗(X,X ′)→ Totres HomS∗(X,X ′)

(∗)−−→Totres HomS∗

(
X,C(Z̃X ′)

) ∼= HomcoAlgK(Z̃X, Z̃X ′)

The proposition follows by applying realization and using Proposition 6.7; here, the
map (∗) is induced by the natural coaugmentation X ′ → C(Z̃X ′) in (S∗)

∆.
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Proposition 7.4. There is an induced functor Z̃ : Ho(S∗)→ Ho(coAlgK) which on
objects is the map X 7→ Z̃X and on morphisms is the map [X,X ′]→ [Z̃X, Z̃X ′]K
which sends [f ] to [Z̃(f)] obtained by taking path components.

Proof. This follows from Proposition 7.3 (see [1, 2.20]).

The following three propositions, which are exercises left to the reader, verify that
the cosimplicial resolutions of K-coalgebra mapping spaces respect the adjunction
isomorphisms associated to the (Z̃, U) adjunction (Proposition 7.8).

Proposition 7.5. Let X ∈ S∗ and Y ∈ coAlgK. The adjunction isomorphisms associ-
ated to the (Z̃, U) adjunction induce well-defined isomorphisms of ∆-shaped diagrams
homsAb(Z̃X,K•Y ) ∼= homS∗(X,UK•Y ) in Set, natural in X,Y .

Proposition 7.6. If Y ∈ coAlgK with comultiplication map m : Y → KY and L ∈
sSet, then Y ⊗̇L in sAb has a natural K-coalgebra structure with comultiplication map

m : Y ⊗̇L→ K(Y ⊗̇L) given by the composite Y ⊗̇L m⊗̇id−−−→ K(Y )⊗̇L σ−→ K(Y ⊗̇L).

Proposition 7.7. Let X ∈ S∗ and Y ∈ coAlgK. Then σ : Z̃(X)⊗̇L→ Z̃(X⊗̇L) in-
duces well-defined isomorphisms homsAb

(
Z̃(X⊗̇L),K•Y

) ∼= homsAb

(
Z̃(X)⊗̇L,K•Y

)
of ∆-shaped diagrams in Set, natural in X,Y .

Proposition 7.8. Let X ∈ S∗ and Y ∈ coAlgK. The adjunction isomorphisms associ-
ated to the (Z̃, U) adjunction induce well-defined isomorphisms of ∆-shaped diagrams
HomsAb(Z̃X,K•Y ) ∼= HomS∗(X,UK•Y ) in sSet, natural in X,Y .

Proof. It suffices to verify that the composite

hom(Z̃(X)⊗̇∆[n],K•Y ) ∼= hom(Z̃(X⊗̇∆[n]),K•Y ) ∼= hom(X⊗̇∆[n], UK•Y )

is a well-defined map of cosimplicial objects in Set, natural in X,Y , for each n ⩾ 0;
this follows from Propositions 7.5 and 7.7.

Proposition 7.9. If X is a pointed space, then there is a zigzag of weak equivalences
of the form X∧

Z ≃ holim∆ C(Z̃X) ≃ Totres C(Z̃X) in S∗, natural with respect to all
such X.

Definition 7.10. A pointed space X is Z-complete if the natural coaugmentation
X ≃ X∧

Z is a weak equivalence.

Proposition 7.11. There are natural zigzags of weak equivalences in CGHaus of the
form MapcoAlgK(Z̃X,Y ) ≃ MapS∗

(X, holim∆ C(Y )) and applying π0 gives the natural

isomorphism [Z̃X,Y ]K ∼= [X, holim∆ C(Y )].

Proof. There are natural zigzags of weak equivalences of the form (see [1, 2.20])

HomS∗(X, holim∆ C(Y )) ≃ HomS∗

(
X,Totres C(Y )

) ∼= Totres HomS∗

(
X,UK•Y

)
∼= Totres HomsAb

(
Z̃X,K•Y

)
= HomcoAlgK(Z̃X,Y )

in sSet; applying realization, together with Proposition 6.7 finishes the proof.
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The following amounts to the observation that mapping into fibrant Z-complete
objects induces the indicated weak equivalence on mapping spaces; compare [27, 5.5]
and [1, 2.15]. It shows that the integral chains functor in (4) is homotopically fully
faithful on Z-complete spaces.

Proposition 7.12. Let X,X ′ be pointed spaces. If X ′ is Z-complete and fibrant, then
there is a natural zigzag Z̃ : MapS∗

(X,X ′) ≃ MapcoAlgK(Z̃X, Z̃X ′) of weak equiva-

lences; applying π0 gives the map [f ] 7→ [Z̃(f)].

Proof. This follows from the natural zigzags

MapS∗
(X,X ′∧

Z ) ≃ MapS∗
(X, holim∆ C(Z̃X ′)) ≃ MapcoAlgK(Z̃X, Z̃X ′)

of weak equivalences.
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