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Abstract
We explain that a variant of a recent result of Kwasik-

Schultz [3] about stable indecomposability of three-manifolds
is an immediate consequence of results of Kotschick, Löh and
Neofytidis [2, 1].

The following result was proved recently by Kwasik and Schultz; see [3, Theo-
rem A]:

Theorem 1.1. Let M be a closed oriented 3-manifold that is not a Cartesian product.
Then there is no closed oriented manifold N of dimension ⩽ 3 such that M ×N
decomposes as a Cartesian product of surfaces and the circle.

We show that the following variation on the theme of this theorem follows directly
from the results of Kotschick, Löh and Neofytidis in [2, 1]:

Theorem 1.2. Let M be a closed oriented 3-manifold that is not finitely covered by
a Cartesian product. Then there is no closed oriented manifold N , of any dimension,
such that M ×N decomposes as a Cartesian product of surfaces and the circle.

This is both weaker and stronger than Theorem 1.1. It is weaker in that we not
only assume that M is not a product, but make the stronger assumption that M
is not finitely covered by a product. It is stronger in that it does not require the
assumption dim(N) ⩽ 3.

Proof of Theorem 1.2. Recall that a closed oriented 3-manifold is rationally essential
if and only if it has an aspherical summand in its Kneser–Milnor decomposition;
cf. [2, Theorem 3]. With the additional assumption of rational essentialness one has
the following much stronger conclusion than in Theorems 1.1 and 1.2:

Proposition 1.3. Let M be a rationally essential closed oriented 3-manifold that is
not finitely covered by a Cartesian product. Then there is no closed oriented mani-
fold N such that M ×N admits a non-zero degree map from a Cartesian product of
surfaces and the circle.

Proof. Since M is rationally essential and not finitely covered by a product, it is
not dominated by a product by [2, Proposition 1]. Therefore, the conclusion follows
from [1, Theorem 2.3].
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Most cases of Theorem 1.2 follow from Proposition 1.3. The missing cases concern
the rationally inessential manifolds that are not finitely covered by products. By [2,
Theorem 3], a rationally inessential M is finitely covered by some #k(S

1 × S2) for
k ⩾ 0. Moreover, the case k = 1 is excluded by the assumption that M is not finitely
covered by a product.

If k ⩾ 2, then π2(M) = H2(M̃ ;Z) is not finitely generated since M̃ is the universal
covering of #k(S

1 × S2). For such M the conclusion of Theorem 1.2 follows from
the fact that for a product of closed orientable surfaces and the circle, the second
homotopy group is finitely generated, with generators the S2-factors in the product.

Finally, if k = 0, then M is finitely covered by S3 and the universal covering of

any M ×N splits as S3 × Ñ . In particular, H3(M̃ ×N ;Z) ̸= 0. For such an M the
conclusion of Theorem 1.2 follows from the fact that for a product of closed ori-
entable surfaces and the circle, the universal covering is a product of two-spheres and
Euclidean spaces; in particular its third homology vanishes.

This completes the proof of Theorem 1.2.
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