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Abstract
A poset-stratified space is a pair (S, S

π−→ P ) of a topological
space S and a continuous map π : S → P with a poset P consid-
ered as a topological space with its associated Alexandroff topol-
ogy. In this paper we show that one can impose such a poset-
stratified space structure on the homotopy set [X,Y ] of homotopy
classes of continuous maps by considering a canonical but non-
trivial order (preorder) on it, namely we can capture the homotopy
set [X,Y ] as an object of the category of poset-stratified spaces.
The order we consider is related to the notion of dependence of
maps (by Karol Borsuk). Furthermore via homology and cohomol-
ogy the homotopy set [X,Y ] can have other poset-stratified space
structures. In the cohomology case, we get some results which are
equivalent to the notion of dependence of cohomology classes (by
René Thom) and we can show that the set of isomorphism classes
of complex vector bundles can be captured as a poset-stratified
space via the poset of the subrings consisting of all the character-
istic classes. We also show that some invariants such as Gottlieb
groups and Lusternik–Schnirelmann category of a map give poset-
stratified space structures to the homotopy set [X,Y ].

1. Introduction

The homotopy set [X,Y ] is the set of homotopy classes of continuous maps from a
topological spaceX to another one Y . In our previous work [40] we consider a preorder
on the homotopy set [X,Y ] using the action of the self-homotopy equivalences E [X] of
X and the self-homotopy equivalences E [Y ] of Y on [X,Y ]. Using such a preordered
set (proset), we consider some classification of Hurewicz fibrations.

In this paper we consider another preorder on [X,Y ] via the action of monoids
[X,X] and [Y, Y ] on [X,Y ], instead of E [X] and E [Y ]. Here we note that a homotopy
class [f ] ∈ E [X] has its inverse [f ]−1 ∈ E [X], but a homotopy class [f ] ∈ [X,X] does
not always have an inverse [f ]−1 ∈ [X,X], which is a substantial difference between
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[X,X] and E [X]. For example, we consider the following order:

[f ] ≦R [g]⇐⇒ ∃[s] ∈ [X,X] such that [f ] = [g] ◦ [s],

i.e., the following diagram commutes up to homotopy (f ∼ g ◦ s):

X

s
��

f // Y

X
g

>>

This is a preorder. Then we consider the following equivalence relation ∼R using this
preorder ≦R:

[f ] ∼R [g]⇐⇒ [f ] ≦R [g] and [g] ≦R [f ],

namely,

∃[s1], [s2] ∈ [X,X] such that [f ] = [g] ◦ [s1], [g] = [f ] ◦ [s2],

i.e., the following diagram commutes up to homotopy:

X

s1
��

f // Y

X

s2

OO

g

>>

The relation ∼R is an equivalence relation, called right equivalence relation and the
set of equivalence classes shall be denoted by [X,Y ]R := [X,Y ]/ ∼R. The equivalence
class of [f ] is denoted by [f ]R. We define the order ≦′

R on [X,Y ]R by

[f ]R ≦′
R [g]R ⇐⇒ [f ] ≦R [g].

This order ≦′
R is well-defined and becomes a partial order. Thus the canonical map

πR : ([X,Y ],≦R)→ ([X,Y ]R,≦′
R) is a monotone (order-preserving) map from a pro-

set to a poset. If we consider the Alexandroff topologies τ≦R
on the source ([X,Y ],≦R)

and τ≦′
R

on the target ([X,Y ]R,≦′
R), this in turn gives us a continuous map

πR : ([X,Y ], τ≦R
)→ ([X,Y ]R, τ≦′

R
). In other words, this is a continuous map from

a topological space ([X,Y ], τ≦R
) to a poset ([X,Y ]R,≦′

R) which is considered as a

topological space ([X,Y ]R, τ≦′
R
) with the Alexandroff topology. Such a map is called a

poset-stratified space in modern terminology (e.g., see [23]).

Remark 1.1. In the case when we consider the self-homotopy equivalences E [X]
of X, instead of the monoid [X,X], since each element [s] ∈ E [X] has its inverse
[s]−1 ∈ E [X] (more precisely, ∃s′ : X → X such that s ◦ s′ ∼ idX and s′ ◦ s ∼ idX ,
thus [s]−1 = [s′]), the above equivalence relation ∼R is replaced simply by the follow-
ing equivalence relation ∼ER:

[f ] ∼ER [g]⇐⇒ ∃[s] ∈ E [X] such that [f ] = [g] ◦ [s],

i.e., the following diagram commutes up to homotopy (f ∼ g ◦ s):

X

s
��

f // Y

X
g

==
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Because f ∼ g ◦ s automatically implies that g ∼ f ◦ s′. On the set [X,Y ]ER of equiv-
alence classes, as in the case of [X,Y ]R, one can define the following order for
[f ]ER, [g]ER ∈ [X,Y ]ER

[f ]ER ≦R [g]ER ⇐⇒ ∃s ∈ [X,X] (not ∃s ∈ E [X]) such that [f ] = [g] ◦ [s].

Here we emphasize that this order is not necessarily a partial order, but that the
above order ≦′

R on [X,Y ]R defined by [f ]R ≦′
R [g]R ⇐⇒ [f ] ≦R [g] is a partial order,

because of the equivalence relation [f ] ∼R [g] defined by ∃[s1], [s2] ∈ [X,X] such that
[f ] = [g] ◦ [s1], [g] = [f ] ◦ [s2]. One could think of such a pair ([s1], [s2]) as a “mock”
self-homotopy equivalence of X with respect to the pair (f, g).

Similarly we consider the preorder

[f ] ≦L [g]⇐⇒ ∃[t] ∈ [Y, Y ] such that [f ] = [t] ◦ [g],

i.e., the following diagram commutes up to homotopy (f ∼ t ◦ g1):

X

g !!

f // Y

Y

t

OO

Then we consider the following equivalence relation ∼L using this preorder ≦L:

[f ] ∼L [g]⇐⇒ [f ] ≦L [g] and [g] ≦L [f ],

i.e., ∃[t1], [t2] ∈ [Y, Y ] such that [f ] = [t1] ◦ [g], [g] = [t2] ◦ [f ], i.e., the following dia-
gram commutes up to homotopy:

X

g   

f // Y

t2
��

Y

t1

OO

The equivalence relation ∼L is called left equivalence relation and the set of equiv-
alence classes shall be denoted [X,Y ]L := [X,Y ]/ ∼L. As in the case of ≦R and ≦′

R,
the canonical map πL : ([X,Y ],≦L)→ ([X,Y ]L,≦′

L) is a monotone map from a proset
to a poset.

These poset-stratified spaces can be captured as functors from the homotopy cat-
egory of topological spaces to the category of poset-stratified spaces as follows:

Theorem 1.2. Let hT op be the homotopy category of topological spaces.

1. For any object S ∈ Obj(hT op), we have an associated covariant functor
stS∗ : hT op→ Strat such that

(a) for each object Y ∈ Obj(hT op),

stS∗ (X) :=
(
([S,X], τ≦R

), ([S,X], τ≦R
)
πR−−→ ([S,X]R,≦′

R)
)

1As remarked later, in a different context Borsuk [6, 7] considered such a relation when he charac-
terized his definition of f : X → Y depending on g : X → Y .
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(b) for a morphism [f ] ∈ [X,Y ], stS∗ ([f ]) is the following commutative diagram:

([S,X], τ≦R
)

πR //

f∗
��

([S,X]R,≦′
R)

f∗
��

([S, Y ], τ≦R
)

πR

// ([S, Y ]R,≦′
R)

2. For any object T ∈ Obj(hT op), we have an associated contravariant functor
st∗T : hT op→ Strat such that

(a) for each object X ∈ Obj(hT op),

st∗T (X) :=
(
([X,T ], τ≦L

), ([X,T ], τ≦L
)
πL−−→ ([X,T ]L,≦′

L)
)

(b) for a morphism [f ] ∈ [X,Y ], st∗T ([f ]) is the following commutative diagram:

([Y, T ], τ≦L
)

πL / /

f∗

��

([Y, T ]L,≦′
L)

f∗

��
([X,T ], τ≦L

)
πL

// ([X,T ]L,≦′
L)

In Example 3.7 we see an example where the homotopy sets are the same: [S,X] =
[S, Y ], but their poset-stratified space structures are different: stS∗ (X) ̸= stS∗ (Y ).

By considering homology and cohomology, and homotopy and cohomotopy, we
can get other more “algebraic” or “geometric” poset-stratified space structures on
the homotopy set. For example, consider the homotopy set [S1, S1] = Z. Then the
preorder a ≦R b is by our definition nothing but ∃s ∈ Z such that a = b · s, i.e.,
b divides a, b|a. For an integer n ∈ Z = [S1, S1], i.e., n is the homotopy class of the
map zn : S1 → S1 and consider (zn)∗ : H1(S

1)→ H1(S
1) or (zn)∗ : π1(S

1)→ π1(S
1),

which gives us the homomorphism ×n : Z→ Z. Then the image Im(×n) = (n) =
{kn | k ∈ Z} is the subgroup generated by the integer n. The set Sub(Z) of all the
subgroups of Z is {(n) |n ∈ Z} and the order (a) ≦ (b) defined by the inclusion
(a) ⊂ (b), which means that ∃s ∈ Z such that a = b · s, thus b|a. Thus the map
ImH1

: ([S1, S1],≦R) = (Z,≦R)→ (Sub(Z),≦) defined by ImH1
(n) = Im((zn)∗) =

(n) is a monotone map.
In the case of ([X,Y ],≦L) we consider the cohomology theory H∗(−;Z) and we get

a canonical monotone map ImH∗ : ([X,Y ],≦L)→ (Sub(H∗(X)),≦), which is defined
by ImH∗([f ]) := Im(f∗ : H∗(Y )→ H∗(X)) = f∗(H∗(Y )). Here Sub(H∗(X)) is the
set of all the subgroups of H∗(X) and the order S1 ≦ S2 for subgroups S1, S2 ∈
Sub(H∗(X)) is the usual inclusion S1 ⊂ S2. This monotone map

ImH∗ : ([X,Y ],≦L)→ (Sub(H∗(X)),≦)

has a connection with Thom’s notion of dependence of cohomology classes [36].
Indeed, let us consider Y = K(Z, p) the Eilenberg-Maclane space, then we have

ImH∗ : ([X,K(Z, p)],≦L)→ (Sub(H∗(X)),≦).

Since Hp(X,Z) = [X,K(Z, p)], let fα : X → K(Z, p) be a map whose homotopy class
[fα] corresponds to the cohomology class α ∈ Hp(X,Z). Let β ∈ Hp(X,Z) be another
cohomology class, thus we consider the corresponding homotopy class [fβ ]. Let
[fβ ] ≦L [fα], i.e., ∃[t]∈ [K(Z, p),K(Z, p)] such that [fβ ] = [t] ◦ [fα] (fβ ∼ t ◦ fα), which
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implies that

Im(f∗β) = f∗β(H
∗(K(Z, p))) ⊂ Im(f∗α) = f∗α(H

∗(K(Z, p))).

In particular, β ∈ f∗β(H∗(K(Z, p))), thus β ∈ f∗α(H∗(K(Z, p))), which implies by
Thom’s definition of dependence of cohomology classes [36] (also see [18]) that the
cohomology class β depends on the cohomology class α. Thus the upshot is that our
[fβ ] ≦L [fα], namely, that fβ depends on fα (using Borsuk’s definition of dependence
of maps) implies that β depends on α.

If we consider Y = Gn(C∞) the infinite Grassmann of n-dimensional planes in C∞

for ImH∗ : ([X,Y ],≦L)→ (Sub(H∗(X)),≦), then we get a natural “order” among the
isomorphism classes of complex vector bundles. Indeed, if we denote the set of isomor-
phism classes of complex vector bundles of rank n, then we know that Vectn(X) ∼=
[X,Gn(C∞)], which is by the correspondence [E]↔ [fE ], where fE : X → Gn(C∞)
is a classifying map of E, i.e., E = f∗Eγ

n, where γn is the universal complex vector
bundle of rank n over Gn(C∞). By the isomorphism Vectn(X) ∼= [X,Gn(C∞)] we can
consider the preorder on Vectn(X): [E] ≦L [F ]⇐⇒ [fE ] ≦L [fF ], where fE , fF : X →
Gn(C∞) are respectively the classifying maps of E and F . Then we have the following
well-defined monotone (order-preserving) map:

ImH∗ : (Vectn(X),≦L)→ (Sub(H∗(X;Z)),≦)

defined by ImH∗([E]) := Im (f∗E : H∗(Gn(C∞);Z)→ H∗(X;Z)). By the definition of
characteristic classes, Im (f∗E : H∗(Gn(C∞);Z)→ H∗(X;Z)) is the subring consisting
of all the characteristic classes of E, denoted by Char(E). Therefore we have [E] ≦L
[F ] =⇒ Char(E) ⊆ Char(F ). We also get that [E] ∼L [F ] =⇒ Char(E) = Char(F ).

We also show that the Gottlieb groups and Lusternik–Schnirelmann category of a
map give poset-stratified space structures to homotopy sets.

2. Preliminaries

In this section we give some preliminaries for later use.

A preorder on a set P is a relation ≦ which is reflexive (a ≦ a) and transitive
(a ≦ b, b ≦ c =⇒ a ≦ c). A set (P,≦) equipped with a preorder ≦ is called a proset
(preordered set). If a preorder ≦ is anti-symmetric (a ≦ b, b ≦ a =⇒ a = b), then it is
called a partial order and a set with a partial order is called a poset (partially ordered
set).

Definition 2.1 (Alexandroff topology [1]). Let X be a topological space. If the inter-
section of any family of open sets is open or equivalently the union of any family of
closed sets is closed, then the topology is called an Alexandroff topology and the space
is called an Alexandroff space.

For Alexandroff topology or spaces, e.g., see [1, 2, 3], [9, §4.2.1 Alexandroff Topol-
ogy], [33], [39, Appendix A Pre-orders and spaces].

Note that any finite topological space, i.e., a finite set with a topology, is clearly an
Alexandroff space. (For finite topological spaces, e.g., see [5, 25, 26, 27, 29, 30, 34].)

Given a proset (X,≦), we define U ⊂ X to be an open set if and only if x ∈ U ,
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x ≦ y =⇒ y ∈ U , i.e., if and only if U is closed upwards2. In other words, if we let
Ux := {y ∈ X |x ≦ y}, then {Ux |x ∈ X} is the base for the topology. This topology
is denoted by τ≦.

Lemma 2.2. For a proset (X,≦), the topological space (X, τ≦) is an Alexandroff
space.

Because of this, the topology τ≦ is called the Alexandroff topology (associated to

the preorder).

Observation 2.3. A subset F is a closed set in the topology τ≦ if and only if

x ∈ F, y ≦ x =⇒ y ∈ F .

From this observation we can see that if P is a poset, not a proset, for any
point x ∈ P , {x} = {y ∈ P |x ≦ y} ∩ {y ∈ P | y ≦ x}. In other words, in the asso-
ciated Alexandroff topology τ≦ any singleton {x} is a locally closed set, i.e., the
intersection of a closed set and an open set. Note that for example, for a two-point
proset ({a, b},≦) with the preorder ≦ defined by a ≦ b, b ≦ a, the above observation
does not hold.

If we let Proset be the category of prosets and monotone (order-preserving) func-
tions of prosets and Alex be the category of Alexandroff spaces and continuous maps,
then we have a covariant functor T : Proset→ Alex.

Conversely, for a topological space (X, τ), we define the following order, called
specialization order, on X: x ≦τ y ⇐⇒ x ∈ {y}. Certainly this is a preorder, but not
necessarily a partial order. (For example, for any indiscrete topological space hav-
ing more than or equal to two points, it is never a partial order.) If f : (X, τ1)→
(Y, τ2) is a continuous map, then f : (X,≦τ1)→ (Y,≦τ2) is a monotone function.
Therefore we have a covariant functor P : T op→ Proset. We have that for any
proset (X,≦), (P ◦ T ) ((X,≦)) = (X,≦), i.e., P ◦ T = IdProset. However, in gen-
eral, for a topological space (X, τ) we have (T ◦ P) ((X, τ)) ̸= (X, τ), i.e., T ◦ P ̸=
IdT op. The reason is simple: (T ◦ P) ((X, τ)) is always an Alexandroff space, even
if the original space (X, τ) is not an Alexandroff space, namely the topology of
(T ◦ P) ((X, τ)) is stronger that the original topology τ . However, if we restrict the
covariant functor P : T op→ Proset to the subcategory Alex of Alexandroff spaces,
then we have (T ◦ P) ((X, τ)) = (X, τ), i.e., T ◦ P = IdAlex. Therefore we have that
P ◦ T = IdProset, T ◦ P = IdAlex. Thus Alexandroff spaces and prosets are equiva-
lent.

For a proset (P,≦), we can consider the reversed order, denoted ≦op, by a ≦op
b⇐⇒ b ≦ a. Here we note that the Alexandroff topologies associated to the two
prosets (P,≦) and (P,≦op) of the same set P are different.

A stratification of a topological space (which can be the underlying topological
space of a much finer object such as a complex algebraic variety, a complex analytic
space) is a special kind of decomposition with certain extra conditions. It seems that
there is no fixed or standard definition of stratification and there are several ones

2The Alexandroff topology is sometimes considered by defining an open set to be closed downwards
instead of closed upwards, e.g., see [3, 5, 25, 33]. When stratification theory or poset-stratified
spaces are considered as in the above cited references [9] and [39], upward closedness is used in
defining Alexandroff topology (e.g., see [23, Definition A.5.1] and [35, Definition 2.1 ] as well).
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depending on the objects to study, such as topologically stratified spaces and Thom–
Whitney stratified spaces. In [35] Tamaki gives a nice review of several stratifications
available in mathematics.

Here is one definition of stratification:

Definition 2.4. Let X be a topological space. If a family {eλ}λ∈Λ of subsets of X
satisfies the following conditions, then {eλ}λ∈Λ is called a stratification of X:

1. eλ ∩ eµ = ∅ if λ ̸= µ.

2. X =
∪
λ eλ.

3. (locally closed set) Each eλ is a locally closed set.

4. (frontier condition) eλ ∩ eµ ̸= ∅ =⇒ eλ ⊂ eµ.

Just a decomposition requires only (1) and (2). Given a decomposition D of X, we
have the quotient map πD : X → X/D, which means that one considers each piece
eλ as a point. Then we can identify X/D = Λ. We consider the quotient topology,
denoted τπD , on the target Λ, i.e., the finest or strongest topology on Λ such that
the quotient map πD : X → X/D = Λ becomes a continuous map. Suppose that the
quotient topology τπD is an Alexandroff topology, which is the case when the decom-
position D is finite, i.e., Λ is a finite set. Then we get the preorder ≦τπD

. If ≦τπD
is

a partial order, then each piece eλ = π−1
D (λ) has to be locally closed, because each

singleton {λ} is a locally closed set as observed above. At the moment we do not
know if the converse holds, i.e., whether each piece eλ being locally closed implies
that ≦τπD

is a partial order.
As to the preorder on Λ, we can define it using the above “frontier condition” by

λ ≦∗ µ⇐⇒ eλ ⊂ eµ. Then one can see that each piece eλ being locally closed implies
that the above preorder ≦∗ is, in fact, a partial order. Furthermore the quotient
map πD : X → X/D = Λ is a continuous map with the Alexandroff topology τ≦∗

associated to the order ≦∗ if and only if the Alexandroff topology τ≦∗ is equal to

the quotient topology. In other words, if the decomposition space X/D = Λ with the
quotient topology is an Alexandroff space, then the order ≦∗ is the same as ≦τπD

,
i.e., λ ≦τπD

µ⇐⇒ eλ ⊂ eµ.
Such a continuous map from a topological space to a poset considered as a topo-

logical space with the Alexandroff topology has been studied in recent papers (e.g.,
[4, 9, 23, 35, 41], etc.)

Definition 2.5. Let P be a poset. A poset-stratified space S over the poset P is a
pair (S, S

π−→ P ) of a topological space S and a continuous map π : S → P where P
is considered as the associated Alexandroff space.

Remark 2.6. The notion of poset-stratified space is due to Lurie [23]. For a poset-

stratified space (S, S
π−→ P ), S is the underlying topological space and π : S → P

is considered as a structure of poset-stratification. If the context is clear, then we
just write a poset-stratified space S, just like writing a topological space S without
referring to which topology to be considered on it.

The category of poset-stratified spaces is denoted by Strat. The objects are pairs
(S, S

π−→ P ) of a topological space S and a continuous map π : S → P from the space S
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to a poset P with the Alexandroff topology associated to the poset P . Given two

poset-stratified spaces (S, S
π−→ P ) and (S′, S′ π′

−→ P ), a morphism from (S, S
π−→ P )

to (S′, S′ π′

−→ P ′) is a pair of a continuous map f : S → S′ and a monotone map
q : P → P ′ (i.e., for a ≦ b in P we have q(a) ≦ q(b) in P ′, thus it is a continuous map
for the associated Alexandroff spaces) such that the following diagram commutes:

S
π //

f
��

P
q
��

S′
π′

// P ′

3. A poset-stratified space structure of [X,Y ]

Lemma 3.1. On the homotopy set [X,Y ] we define the following orders, which are
preorders:

1. [f ] ≦R [g]⇐⇒ ∃[s] ∈ [X,X] such that [f ] = [g] ◦ [s], i.e., the following diagram
commutes up to homotopy:

X

s
��

f // Y

X
g

==

2. [f ] ≦L [g]⇐⇒ ∃[t] ∈ [Y, Y ] such that [f ] = [t] ◦ [g], i.e., the following diagram
commutes up to homotopy:

X
f //

g !!

Y

Y

t

OO

3. [f ] ≦LR [g]⇐⇒ ∃[s] ∈ [X,X], ∃[t] ∈ [Y, Y ] such that [f ] = [t] ◦ [g] ◦ [s], i.e., the
following diagram commutes up to homotopy:

X

s
��

f // Y

X
g

// Y

t

OO

Lemma 3.2. On the homotopy set [X,Y ] we define the following relations:

1. right equivalence relation : [f ] ∼R [g]⇐⇒ [f ] ≦R [g] and [g] ≦R [f ], i.e.,
∃ [s1], [s2] ∈ [X,X] such that [f ] = [g] ◦ [s1], [g] = [f ] ◦ [s2], i.e., the following
diagram commutes up to homotopy:

X

s1
��

f // Y

X

s2

OO

g

>>

The relation ∼R is an equivalence relation and the set of equivalence classes
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shall be denoted by

[X,Y ]R := [X,Y ]/ ∼R .

The equivalence class of [f ] is denoted by [f ]R.

2. left equivalence relation : [f ] ∼L [g]⇐⇒ [f ] ≦L [g] and [g] ≦L [f ], i.e., ∃ [t1],
[t2] ∈ [Y, Y ] such that [f ] = [t1] ◦ [g], [g] = [t2] ◦ [f ], i.e., the following diagram
commutes up to homotopy:

X
f //

g   

Y

t2
��

Y

t1

OO

The relation ∼L is an equivalence relation and the set of equivalence classes
shall be denoted by

[X,Y ]L := [X,Y ]/ ∼L .

The equivalence class of [f ] is denoted by [f ]L.

3. left-right equivalence relation [f ] ∼LR [g]⇐⇒ [f ] ≦LR [g] and [g] ≦LR [f ],
i.e.,

∃ [s1], [s2] ∈ [X,X], ∃ [t1], [t2] ∈ [Y, Y ] such that [f ] = [t1] ◦ [g] ◦ [s1],
and [g] = [t2] ◦ [f ] ◦ [s2]

i.e., the following diagram commutes up to homotopy:

X

s1
��

f // Y

t2
��

X

s2

OO

g
// Y

t1

OO

The relation ∼LR is an equivalence relation and the set of equivalence classes
shall be denoted by

[X,Y ]LR := [X,Y ]/ ∼LR .

The equivalence class of [f ] is denoted by [f ]LR.

Remark 3.3. As to the above relation [f ] ≦L [g], Stasheff (private communication)
informed us of Borsuk’s papers [6, 7] and Hilton’s paper [18] (cf. [19, 20]). Borsuk
introduced dependence of maps: f : X → Y is said to depend on g : X → Y if whenever
g is extended to X ′ ⊃ X, so is f . He gave an alternative naming for this notion: f is a
multiple of g or g is a divisor of f . It turned out that this naming was correct, because
Borsuk proved that f depends on g if and only if there exists a map t : Y → Y such
that f ∼ t ◦ g, i.e., [f ] ≦L [g] in our notation. Furthermore Borsuk defined two maps
f and g to be conjugate if they depend on each other, i.e., [f ] ∼L [g] in our notation.
Dually, f : X → Y is said to co-depend on g : X → Y if whenever g lifts to the total
space E of a fibration over Y , so does g. Then the dual of the above Borsuk’s result is
that f co-depends on g if and only if there exists a map s : X → X such that f ∼ g ◦ s,
i.e., [f ] ≦R [g] in our notion. Thus, using Borsuk’s notion, [X,Y ]R and [X,Y ]L are
the poset of the homotopy classes of co-conjugate maps and conjugate maps, resp. In
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this sense, [X,Y ]LR is the poset of homotopy classes of conjugate-co-conjugate maps,
abusing words. According to [19, 20], Thom [36] independently introduced the notion
of dependence of cohomology classes, but it turned out that Thom’s dependence is
subsumed in Borsuk’s dependence, and the above results about the co-dependence
marked the birth of Eckmann–Hilton duality.

We can define orders on [X,Y ]R, [X,Y ]L, [X,Y ]LR. For the sake of completeness
we write them down below.

Proposition 3.4. The following orders are well-defined and they are partial orders,
i.e., reflexive, antisymmetric and transitive:

1. For [f ]R, [g]R ∈ [X,Y ]R, [f ]R ≦′
R [g]R ⇐⇒ ∃ [ϕ]∈ [X,X] such that [f ] = [g]◦ [ϕ],

i.e., the following diagram commutes up to homotopy (namely, f ∼ g ◦ ϕ):

X

ϕ
��

f // Y

X
g

==

2. For [f ]L, [g]L ∈ [X,Y ]L, [f ]L ≦′
L [g]L ⇐⇒ ∃ [ψ] ∈ [Y, Y ] such that [f ] = [ψ]◦ [g],

i.e., the following diagram commutes up to homotopy (namely, f ∼ ψ ◦ g):

X
f //

g !!

Y

Y

ψ

OO

3. For [f ]LR, [g]LR ∈ [X,Y ]LR, [f ]LR ≦′
LR [g]LR ⇐⇒ ∃ [ϕ] ∈ [X,X],∃[ψ] ∈ [Y, Y ]

such that [f ] = [ψ] ◦ [g] ◦ [ϕ], i.e., the following diagram commutes up to homo-
topy (namely, f ∼ ψ ◦ g ◦ ϕ):

X

ϕ ��

f // Y

X
g

// Y

ψ

OO

Proposition 3.5. The following canonical maps are monotone maps:

1. πR : ([X,Y ],≦R)→ ([X,Y ]R,≦′
R), πR([f ]) := [f ]R;

2. πL : ([X,Y ],≦L)→ ([X,Y ]L,≦′
L), πL([f ]) := [f ]L;

3. πLR : ([X,Y ],≦LR)→ ([X,Y ]LR,≦′
LR), πLR([f ]) := [f ]LR.

Hence each is a continuous map from a topological space (which is an Alexandroff
space) to a poset with the Alexandroff topology. In other words the homotopy set
[X,Y ] can have these three poset-stratified space structures.

Theorem 3.6. Let hT op be the homotopy category.

1. For any object S ∈ Obj(hT op), we have an associated covariant functor
stS∗ : hT op→ Strat such that

(a) for each object Y ∈ Obj(hT op),

stS∗ (X) :=
(
([S,X], τ≦R

), ([S,X], τ≦R
)
πR−−→ ([S,X]R,≦′

R)
)
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(b) for a morphism [f ] ∈ [X,Y ], stS∗ ([f ]) is the following commutative diagram:

([S,X], τ≦R
)

πR //

f∗
��

([S,X]R,≦′
R)

f∗
��

([S, Y ], τ≦R
)

πR

// ([S, Y ]R,≦′
R)

2. For any object T ∈ Obj(hT op), we have an associated contravariant functor
st∗T : hT op→ Strat such that

(a) for each object X ∈ Obj(hT op),

st∗T (X) :=
(
([X,T ], τ≦L

), ([X,T ], τ≦L
)
πL−−→ ([X,T ]L,≦′

L)
)

(b) for a morphism [f ] ∈ [X,Y ], st∗T ([f ]) is the following commutative diagram:

([Y, T ], τ≦L
)

πL / /

f∗

��

([Y, T ]L,≦′
L)

f∗

��
([X,T ], τ≦L

)
πL

// ([X,T ]L,≦′
L)

Example 3.7. Let X = Y1 = K(Q, 3)×K(Q, 2) and Y2 = K(Q, 3)×K(Q, 5). Recall
the Sullivan minimal modelM(S) of a space S [13]. Then homotopy sets are identified
with DGA(differential graded algebra)-homotopy sets as

(1) [X,Y1] = [M(Y1),M(X)] = [(Λ(x, y), 0), (Λ(x, y), 0)],

(2) [X,Y2] = [M(Y2),M(X)] = [(Λ(x, z), 0), (Λ(x, y), 0)],

where |x| = 3, |y| = 2 and |z| = 5. They are isomorphic to Q×Q = {(a, b) | a, b ∈ Q}
by the DGA-maps f(x) = ax and f(y) = by for (1) and f(x) = ax and f(z) = bxy for
(2), respectively. Then their right equivalence classes are (1) [X,Y1]R = {α, β, γ, δ}
and (2) [X,Y2]R = {α′, β′, γ′, δ′} where α = α′ = [(0, 0)]R, β = β′ = [(1, 0)]R, γ = γ′

= [(0, 1)]R and δ = δ′ = [(1, 1)]R. However, their poset structures are given as the
following Hasse diagrams:

(1) δ

β γ

α

(2) δ′

β′ γ′

α′

respectively. In particular, there does not exist γ′ ≦′
R δ

′ in (2) since ψ(M(f)(z)) =
ψ(xy) = 0 if ψ(M(f)(x)) = ψ(x) = 0 for ψ : M(X)→M(X). For both cases, the
stratifications of Q×Q are given as

Q×Q = eα ∪ eβ ∪ eγ ∪ eδ = eα′ ∪ eβ′ ∪ eγ′ ∪ eδ′ ,
where eα = eα′ = {(0, 0)}, eβ = eβ′ = {(a, 0) | a ̸= 0}, eγ = eγ′ = {(0, b) | b ̸= 0} and
eδ = eδ′ = {(a, b) | ab ̸= 0}. However, the topologies are different. Indeed, eδ = Q×Q
in (1) but eδ′ does not contain eγ′ in (2).

If a map f : Y1 → Y2 is given byM(f) : (Λ(x, z), 0)→ (Λ(x, y), 0) withM(f)(x) = x
andM(f)(z) = xy, the induced map of homotopy sets f∗ : [X,Y1] = Q×Q→ [X,Y2]
= Q×Q is given by f∗(a, b) = (a, ab). Then the poset map f∗ : [X,Y1]R → [X,Y2]R
is given by f∗(α) = f∗(γ) = α′, f∗(β) = β′ and f∗(δ) = δ′.
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4. Some applications

Definition 4.1. For a group G let Sub(G) be the set of all the subgroups of the
group G. For subgroups A,B ∈ Sub(G) we define the order A ≦ B by A ⊆ B, which
is a partial order.

Lemma 4.2. Let H∗(−) be the homology theory with a coefficient ring R. Then the
following maps are well-defined and monotone (order-preserving) maps:

1. ImH∗ : ([X,Y ],≦R)→ (Sub(H∗(Y )),≦),
ImH∗([f ]) := Im(f∗ : H∗(X)→ H∗(Y )).

2. Im′
H∗

: ([X,Y ]R,≦′
R)→ (Sub(H∗(Y )),≦) , Im′

H∗
([f ]R) := ImH∗([f ]).

We have the following commutative diagram:

([X,Y ],≦R)
id[X,Y ]

��

πR // ([X,Y ]R,≦′
R)

Im′
H∗��

([X,Y ],≦R)
ImH∗

// (Sub(H∗(Y )),≦)

Proof. Let [f ] ≦R [g]. Thus ∃t : X → X such that f ∼ g ◦ t. Hence f∗ = g∗ ◦ t∗, i.e.,
the following diagram commutes:

H∗(X)

t∗ ��

f∗ // H∗(Y )

H∗(X)
g∗

88

which implies that Im(f∗ : H∗(X)→ H∗(Y )) ⊂ Im(g∗ : H∗(X)→ H∗(Y )). Thus
ImH∗([f ]) ⊂ ImH∗([g]). Hence ImH∗ : ([X,Y ],≦R)→ (Sub(H∗(Y )),≦) is a monotone
map. For Im′

H∗
we just observe that if [f ] ∼R [g], i.e., ∃t1 : X → X, t2 : X → X such

that f ∼ g ◦ t1 and g ∼ g ◦ t2, then it follows from the above that Im(f∗ : H∗(X)→
H∗(Y )) = Im(g∗ : H∗(X)→ H∗(Y )), i.e., ImH∗([f ]) = ImH∗([g]). Thus ImH∗([f ]R) :=
ImH∗([f ]) is well-defined.

Similarly we get the following:

Lemma 4.3. Let H∗(−) be the cohomology theory with a coefficient ring R. Then
the following maps are well-defined and monotone (order-preserving) maps:

1. ImH∗ : ([X,Y ],≦L)→ (Sub(H∗(X)),≦),
ImH∗([f ]) := Im(f∗ : H∗(Y )→ H∗(X)).

2. Im′
H∗ : ([X,Y ]L,≦′

L)→ (Sub(H∗(X)),≦) , Im′
H∗([f ]L) := ImH∗([f ]).

We have the following commutative diagram:

([X,Y ],≦L)
id[X,Y ]

��

πL // ([X,Y ]L,≦′
L)

Im′
H∗

��
([X,Y ],≦L)

ImH∗
// (Sub(H∗(X)),≦)

Corollary 4.4. Let H∗(−) and H∗(−) be as above.

1. For ∀S∈Obj(hT op), we have a covariant functor stSH∗
: hT op→Strat such that
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(a) for each object X ∈ Obj(hT op),

stSH∗
(X) :=

(
([S,X], τ≦R

), ([S,X], τ≦R
)

ImH∗−−−→ (Sub(H∗(X)),≦)

)
(b) for a morphism [f ]∈ [X,Y ], stSH∗

([f ]) is the following commutative diagram:

([S,X], τ≦R
)

ImH∗ //

f∗ ��

(Sub(H∗(X)),≦)

f∗
��

([S, Y ], τ≦R
)

ImH∗

// (Sub(H∗(Y )),≦)

2. Im′
H∗

gives rise to a natural transformation Im′
H∗

: stS∗ (−)→ stSH∗
(−), namely

for a morphism [f ] ∈ [X,Y ] we have the following commutative diagram:

stS∗ (X)

f∗
��

Im′
H∗ // stSH∗

(X)

f∗��
stS∗ (Y )

Im′
H∗

// stSH∗
(Y )

Namely we have the following commutative cube:

([S,X], τ≦R
)

f∗

��

πR

))

id[S,X] // ([S,X], τ≦R
)

f∗��

ImH∗

**
([S,X]R,≦′

R)

f∗

��

Im′
H∗ // (Sub(H∗(X)),≦)

f∗

��

([S, Y ], τ≦R
)

id[S,Y ]

/ /

πR ))

([S, Y ], τ≦R
)

ImH∗ **
([S, Y ]R,≦′

R)
Im′

H∗

// (Sub(H∗(Y )),≦)

3. For any object T ∈ Obj(hT op), we have an associated contravariant functor
stH

∗

T : hT op→ Strat such that

(a) for each object X ∈ Obj(hT op),

stH
∗

T (X) :=
(
([X,T ], τ≦L

), ([X,T ], τ≦L
)

ImH∗−−−→ (Sub(H∗(X)),≦)
)

(b) for a morphism [f ]∈ [X,Y ], stH
∗

T ([f ]) is the following commutative diagram:

([Y, T ], τ≦L
)

ImH∗ //

f∗

��

(Sub(H∗(Y )),≦)

f∗

��
([X,T ], τ≦L

)
ImH∗

// (Sub(H∗(X)),≦)

4. Im′
H∗ gives rise to a natural transformation Im′

H∗ : st∗T (−)→ stH
∗

T (−), namely
for a morphism [f ] ∈ [X,Y ] we have the following commutative diagram:
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st∗T (Y )

f∗

��

Im′
H∗ // stH

∗

T (Y )

f∗��
st∗T (X)

Im′
H∗

// stH
∗

T (X)

Namely we have the following commutative cube:

([Y, T ], τ≦L
)

f∗

��

πL

))

id[Y,T ] // ([Y, T ], τ≦L
)

f∗
��

ImH∗

**
([Y, T ]L,≦′

L)

f∗

��

Im′
H∗ // (Sub(H∗(Y )),≦)

f∗

��

([X,T ], τ≦L
)

id[X,T ]

//

πL ))

([X,T ], τ≦L
)

ImH∗ **
([X,T ]L,≦′

L)
Im′

H∗

// (Sub(H∗(X)),≦)

The case of ImH∗ : ([X,T ],≦L)→ (Sub(H∗(X),≦) is related to Thom’s depen-
dence of cohomology classes [36] mentioned in the introduction. To explain this, we
recall the definition of dependence of cohomology classes (e.g., see [18]).

Definition 4.5 (R. Thom). The cohomology class β ∈ Hq(X;B) depends on the
cohomology class α ∈ Hp(X;A), where A,B are coefficient rings, if, for all (perhaps
infinite) polyhedra Y and all maps f : X → Y such that α ∈ f∗(Hp(Y ;A)), we have
β ∈ f∗(Hq(Y ;B)).

Thom [36] proves the following proposition (see [18]). For this we recall that the
cohomology theory is representable by the Eilenberg-Maclane space, i.e., Hj(X,Λ) ∼=
[X,K(Λ, j)] where K(R, j) is the Eilenberg-Maclane space whose homotopy type is
completely characterized by the homotopy groups πj(K(Λ, j)) = Λ and πi(K(Λ, j)) =
0, i ̸= j. Then by the Hurewicz Theorem we have Hj(K(Λ, j);Z) ∼= πj(K(Λ, j)) = Λ
and Hd(K(Λ, j)) = 0 for d < j. Hence by the universal coefficient theorem we have
the isomorphism

Φ: Hj(K(Λ, j); Λ) ∼= Hom(Hj(K(Λ, j);Z),Λ)
∼= Hom(πj(K(Λ, j)),Λ) ∼= Hom(Λ,Λ).

Let u := Φ−1(idΛ) for the identity map idΛ : Λ→ Λ. Then the isomorphism

Θ: [X,K(Λ, j)] ∼= Hj(X,Λ)

is obtained by Θ([f ]) := f∗u where f∗ : Hj(K(Λ, j); Λ)→ Hj(X,Λ).

Proposition 4.6 (Thom [36]). Let α ∈ Hp(X;A) ∼= [X,K(A, p)] and let fα : X →
K(A, p) be a map such that the homotopy class [fα] corresponds to α. Then β ∈
Hq(X,B) depends on α if and only if β ∈ f∗α(Hq(K(A, p);B)).

Using this proposition we can get the following result. By the monotone (order-
preserving) map

ImH∗ : ([X,K(A, p)],≦L)→ (Sub(H∗(X;B)),≦)

the image ImH∗([fα]) = f∗α(H
q(K(A, p);B)) is nothing but the subgroup of all the
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cohomology classes β ∈ Hq(X;B) depending on the cohomology class α.
We also see that let α, α′ ∈ Hp(X,A) and let fα, fα′ : X → K(A, p) be the corre-

sponding maps. Then, if fα depends on fα′ , i.e., [fα] ≦L [fα′ ] by our terminology (in
other words, we can define the order of the cohomology classes α ≦L α′ by this), then
we have (α ∈) ImH∗([fα]) ⊂ ImH∗([fα′ ]), i.e., ImH∗([fα]) ≦ ImH∗([fα′ ]). Thus, that
α depends on α′ is equivalent to that ImH∗([fα]) ≦ ImH∗([fα′ ]).

Here is another application to vector bundles and characteristic classes (e.g., see
[31, 17]). Let Vectn(X) be the set of isomorphism classes of complex vector bundles
of rank n. Then it is well-known that

Vectn(X) ∼= [X,Gn(C∞)],

where Gn(C∞) is the infinite Grassmann manifold of complex planes of dimension n,
i.e., the classifying space of complex vector bundles of rank n. This isomorphism is
by the correspondence [E]←→ [fE ], where fE : X → Gn(C∞) is a classifying map of
E, i.e., E = f∗Eγ

n, where γn is the universal complex vector bundle of rank n over
Gn(C∞).

By the isomorphism Vectn(X) ∼= [X,Gn(C∞)] we can consider the preorder of [E]
and [F ]:

[E] ≦L [F ]⇐⇒ [fE ] ≦L [fF ],

where fE , fF : X → Gn(C∞) are respectively the classifying maps of E and F .
Then we have the following well-defined monotone (order-preserving) map:

ImH∗ : (Vectn(X),≦L)→ (Sub(H∗(X;Z)),≦)

defined by ImH∗([E]) := Im
(
f∗E : H∗(Gn(C∞);Z)→ H∗(X;Z)

)
. By the definition of

characteristic classes, for each element α ∈ H∗(Gn(C∞)), the pullback f∗E(α) is called
the characteristic class of E defined by the class α, and denoted by α(E) := f∗E(α). It
is well-known (e.g., see [31]) that H∗(Gn(C∞)) = Z[c1, c2, . . . , cn] is generated by 1
and the Chern classes c1, c2, . . . , cn of the universal bundle γn. Here 1, c1, c2, . . . , cn

are linearly independent. Im
(
f∗E : H∗(Gn(C∞);Z)→ H∗(X;Z)

)
is nothing but the

subring consisting of all the characteristic classes of E, which could be also denoted
by

Z[c1(E), c2(E), . . . , cn(E)].

Here we should note that 1, c1(E), c2(E), . . . , cn(E) are not linearly independent in
general. Let us denote this subring by Char(E). Therefore we have [E] ≦L [F ] =⇒
Char(E) ⊆ Char(F ). We also get that [E] ∼L [F ] =⇒ Char(E) = Char(F ).

Remark 4.7. In the case of real vector bundles, the complex infinite Grassmann
Gn(C∞), the Chern class ci and the coefficient ring Z are respectively replaced by
the real infinite Grassmann Gn(R∞), the Stiefell–Whitney class wi and the coefficient
ring Z2.

Remark 4.8. Instead of homology H∗(−) and cohomology H∗(−), we can consider
homotopy version of these, i.e., homotopy groups π∗(−) and cohomotopy “groups”
π∗(−). In this case we consider the based homotopy set [X,Y ]∗. We note that the
cohomotopy set πp(X) := [X,Sp] (e.g., see [22]). Note that in the case when p = 1,
π1(X) = [X,S1] = [X,K(Z, 1)] = H1(X;Z) is an abelian group.
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Remark 4.9. For any locally small category C, in a similar manner as above we can
consider a poset-stratified space structure on the hom set homC(X,Y ) for any objects
X,Y ∈ Obj(C), and using reasonable covariant functor H∗ and contravariant functor
H∗ on the locally small category C we can do similar things as above. For example,
derived categories, triangulated categories, and derived functors, etc.

When it comes to the homotopy groups π∗, we have another application. We let
Map(X,Y ; f) be the path component of Map(X,Y ) containing f . Let ∗ be the base
point of X and we consider the evaluation map

ev : Map(X,Y ; f)→ Y, ev(g) := g(∗).

Definition 4.10 ([38]). For a continuous based map f : X → Y , the n-th evaluation
subgroup Gn(Y,X; f) of the n-th homotopy group πn(Y ) is defined as follows:

Gn(Y,X; f) := Im
(
ev∗ : πn(Map(X,Y ; f))→ πn(Y )

)
.

This is a generalized version of the following Gottlieb group Gn(X) [15, 16]:

Gn(X) := Im
(
ev∗ : πn(aut1X)→ πn(X)

)
,

where aut1X =Map(X,X; idX) and idX is the identity map.
The n-th evaluation subgroup Gn(Y,X; f) can be described as follows:

Lemma 4.11 ([38]). The n-th evaluation subgroup of a continuous based map
f : X → Y is

Gn(Y,X; f) :=

{
a ∈ πn(Y ) |

X × Sn
∃ϕ

%%

Sn
iSnoo

a
��

X
f

//

iX

OO

Y

is homotopy commutative

}

from the adjointness.

As to the case of generalized Gottlieb groups, we need to reverse the order.

Proposition 4.12. The following map (called “the n-th generalized Gottlieb evalua-
tion subgroup map”)

gn : [X,Y ]→ S(πn(Y )) Gn([f ]) := Gn(Y,X; f)

is well-defined, i.e., f ∼ f ′ implies that Gn(Y,X; f) = Gn(Y,X; f ′).

Proposition 4.13. The following map (called “the finer n-th generalized Gottlieb
evaluation subgroup map”)

gRn : [X,Y ]R → S(πn(Y )) gRn ([f ]R) := Gn(Y,X; [f ]) = Gn(Y,X; f)

is well-defined, i.e., [f ] ∼R [g] implies that Gn(Y,X; f) = Gn(Y,X; g). Namely the
following diagram commutes:

[X,Y ]

gn &&

πR // [X,Y ]R

gR
n��

S(πn(Y ))
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Proof. For two maps f, g : X → Y , suppose that f ∼ g ◦ h for some map s : X → X.
Then Gn(Y,X; g) ⊂ Gn(Y,X; f). Indeed, there is the homotopy commutative dia-
gram for a ∈ Gn(Y,X; g):

X
f

""

iX //

s

��

X × Sn

s×1

��

ψ

xx
Y Sn

iSn
ff

iSnxx

a
oo

X
iX

//
g

<<

X × Sn
∃ϕ

ff

by ψ := ϕ ◦ (s× 1). Then ψ ◦ iX ≃ f and ψ ◦ iSn ≃ a. Hence a ∈ Gn(Y,X; f). More-
over, suppose that g∼ f ◦s′. Then similarly we obtain Gn(Y,X; f)⊂Gn(Y,X; g).

As a corollary of the above proof, we have the following:

Theorem 4.14.

1. If [f ] ≦R [g], then we have Gn(Y,X; g) ⊂ Gn(Y,X; f), i.e., gn([g])≦ gn([f ]).
Hence gn : ([X,Y ],≦opR )→ Sub(πn(Y ),≦) is a monotone map.

2. If [f ]R≦ [g]R, then we have Gn(Y,X; g)⊂Gn(Y,X; f), i.e., gRn ([g]R)≦ gRn ([f ]R).
Hence gRn : ([X,Y ]R,≦′op

R )→ Sub(πn(Y ),≦) is a monotone map.

We also have the following commutative diagram:

([X,Y ],≦opR )

id[X,Y ]
��

πR // ([X,Y ]R,≦′op
R )

gR
n ��

([X,Y ],≦opR )
gn

// (Sub(πn(Y )),≦)

Corollary 4.15.

1. For ∀S ∈ Obj(hT op), we have a covariant functor stSGott : hT op→ Strat such
that

(a) for each object X ∈ Obj(hT op),

stSGott(X) :=
(
([S,X], τ≦op

R
), ([S,X], τ≦op

R
)

gn−→ (Sub(πn(X)),≦)
)

(b) for a morphism [f ]∈ [X,Y ], stSGott([f ]) is the following commutative diagram:

([S,X], τ≦op
R
)

gn //

f∗ ��

(Sub(πn(X)),≦)

f∗
��

([S, Y ], τ≦op
R
)

gn

// (Sub(πn(Y )),≦)

2. gRn gives rise to a natural transformation gRn : stS∗ (−)→ stSGott(−), namely for
a morphism [f ] ∈ [X,Y ] we have the following commutative diagram:

stS∗ (X)

f∗ ��

gR
n // stSGott(X)

f∗��
stS∗ (Y )

gR
n

// stSGott(Y )



18 TOSHIHIRO YAMAGUCHI and SHOJI YOKURA

Namely we have the following commutative cube:

([S,X], τ≦op
R
)

f∗

��

πR

**

id[S,X] // ([S,X], τ≦op
R
)

f∗��

gn

**
([S,X]R,≦′op

R )

f∗

��

gR
n // (Sub(πn(X)),≦)

f∗

��

([S, Y ], τ≦op
R
)

id[S,Y ]

//

πR **

([S, Y ], τ≦op
R
)

gn **
([S, Y ]R,≦′op

R )
gR
n

/ / (Sub(πn(Y )),≦)

Remark 4.16. When it comes to the case [X,Y ]L we do not have similar results as
above.

Let G∗(Y,X; f) :=
⊕

nGn(Y,X; f) ⊂ π∗(Y ) :=
⊕
πn(Y ). We let

G(X,Y ) := {G∗(Y,X; f) | f ∈Map(X,Y )}

be the poset with the partial order by the inclusions G∗(Y,X; g) ⊂ G∗(Y,X; f) for
some maps f and g from X to Y . Then π∗(Y ) = G∗(Y,X; ∗) is the maximal element
of G(X,Y ). In particular, when X = Y , the Gottlieb group G∗(X) := G∗(X,X; idX)
is the minimal element of G(X,X). Thus

Corollary 4.17. The map G : ([X,Y ]R,≦′op
R )→ (G(X,Y ),≦) given by G([f ]R) =

G(f) := G∗(Y,X; f) is a poset map.

Example 4.18. Let X = Sn and Y = (Sn × Sn)0 for an even integer n. Here (Sn ×
Sn)0 is the rationalization of Sn × Sn [21]. Then [X,Y ]R = Q⊕Q/ ∼R = P 1(Q) ∪
(0, 0) as a set with (a, b) ∼R (a′, b′) when a′ = ka and b′ = kb for some k ∈ Q− 0. It
is ordered only by [a, b] < (0, 0) for any [a, b] ∈ P 1(Q). On the other hand, G(X,Y )
is the set of four points whose order is given as the Hasse diagram:

G(i1 + i2) = 0

G(i1) = 0⊕Q G(i2) = Q⊕ 0

G(∗) = Q⊕Q

for the k-factor inclusion ik : S
n → (Sn × Sn)0 and the constant map ∗. Then the

poset map G : [X,Y ]R → G(X,Y ) is given by G((0, 0)) = Q⊕Q, G([1, 0]) = 0⊕Q,
G([0, 1]) = Q⊕ 0 and G([a, b]) = 0 when ab ̸= 0.

Definition 4.19 ([42, Definition 2.1]). The n-th generalized dual Gottlieb set of a
map f : X → Y is

Gn(X, f, Y ) :=

{
a ∈ Hn(X) |

X

f
��

(f×a)◦∆ //
∃ϕ

((

Y ×K(Z, n)

Y
iY

// Y ∨K(Z, n)
incl.

OO
is homotopy commutative

}

for the diagonal map ∆: X → X ×X.



POSET-STRATIFIED SPACE STRUCTURES OF HOMOTOPY SETS 19

Proposition 4.20. The following map (called “the finer n-th generalized dual Got-
tlieb map”)

gnL : [X,Y ]L → S(Hn(X)) gnL([f ]L) := Gn(X, f, Y )

is well-defined, i.e., [f ] ∼L [g] implies that Gn(X, f, Y ) = Gn(X, g, Y ). Namely the
following diagram commutes:

[X,Y ]

gn &&

πL // [X,Y ]L

gn
L��

S(Hn(X))

Proof. For two maps f, g : X → Y , suppose that g ∼ s ◦ f for some map s : Y → Y .
Then Gn(X, f, Y ) ⊂ Gn(X, g, Y ). Indeed, there is the homotopy commutative dia-
gram for a ∈ Gn(X, f, Y ):

Y
iY //

s

��

Y ∨K(Z, n)

s∨1

��

X

f
__

g�� ϕ &&

∃ψ
88

a
// K(Z, n)

iK
gg

iKww
Y

iY
// Y ∨K(Z, n)

by ϕ := (s ∨ 1) ◦ ψ. Then iX ◦ g ≃ ϕ and iSn ◦ a ≃ ϕ. Hence a ∈ Gn(X, g, Y ). Further-
more, suppose that f ∼ s′ ◦ g. Then similarly we obtain Gn(X, g, Y ) ⊂ Gn(X, f, Y ).

Remark 4.21. For generalized dual Gottlieb sets, we obtain similar properties as eval-
uation subgroups.

Example 4.22. Let cat(f) be the Lusternik–Schnirelmann category of a map f : X→
Y [13, p. 352]. Then cat : [X,Y ]→ (Z≧0,≦) is a monotone map. In the case of cat,
we have the three finer poset-stratified space structure on the reversed ordered posets
[X,Y ]R, [X,Y ]L and [X,Y ]LR as follows:

1. If [g] ≦R [f ], i.e., g ∼ f ◦ s with s : X → X, then we have [13, Lemma 27.1(ii)]

cat(g) = cat(f ◦ s) ≦ min{cat(f), cat(s)} ≦ cat(f).

Hence we have cat(g) ≦ cat(f). So there is a poset map catR : [X,Y ]R →
(Z≧0,≦). Here catR([f ]R) := cat(f).

2. If [g] ≦L [f ], i.e., g ∼ t ◦ f with t : Y → Y , then we have

cat(g) = cat(t ◦ f) ⩽ min{cat(t), cat(f)} ≦ cat(f).

Hence we have cat(g) ≦ cat(f). Thus catL : [X,Y ]L → (Z≧0,≦) is a poset map.

Here catL([f ]R) := cat(f).

3. If [g] ≦LR [f ], i.e., g ∼ h ◦ f ◦ s with s : X → X and t : Y → Y , then we have

cat(g) = cat(t ◦ f ◦ s) ⩽ min{cat(t), cat(f), cat(s)} ≦ cat(f).

Hence we have cat(g) ≦ cat(f). Thus catLR : [X,Y ]LR → (Z≧0,≦) is a poset

map. Here catLR([f ]R) := cat(f).
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Namely we have the following commutative diagrams:

[X,Y ]
πR //

id[X,Y ]
��

[X,Y ]R

catR
��

[X,Y ]
cat

// (Z≧0,≦)

[X,Y ]
πL //

id[X,Y ]
��

[X,Y ]L

catL
��

[X,Y ]
cat

// (Z≧0,≦)

[X,Y ]
πLR //

id[X,Y ]
��

[X,Y ]LR

catLR
��

[X,Y ]
cat

// (Z≧0,≦)

Remark 4.23. Finally, we remark that the referee pointed out that our machinery
might be relevant to, for example, the following examples:

1. The theorem of Dehornoy [10, 11, 12] about natural orders on braid groups
(e.g., see [14]), which has given rise to considerable activity in low-dimensional
topology, such as generalizations to knot group.

2. Elmendorf’s theorem in equivariant homotopy theory, which describes G-equi-
variant homotopy types in terms of fixed-point spaces indexed by the orbit
category of homogeneous spaces G/H and G-maps between them (e.g., see [24]):
this yields natural stratifications of G-spaces.

3. Some related connections between homotopy theory and (equivariant) posets,
e.g., such as a theorem saying that the category of (G-)posets admits a model
structure that is Quillen equivalent to the standard model structure on the
category of topological (G-)spaces3 (e.g., see [28, 32, 37]).

Furthermore the referee pointed out that he/she suspects that in the long run such
poset structures will find an interpretation as part of Connes–Consani’s recent theory
“Homological algebra in characteristic one” [8].

In this paper we deal with only the homotopy set [X,Y ]. However, if other things,
e.g., the above examples and Connes–Consani’s recent theory, are relevant to our
machinery, then it would be quite interesting.
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