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TARA S. HOLM and GARETH WILLIAMS
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Abstract
We apply a Mayer–Vietoris sequence argument to identify the

Atiyah–Segal equivariant complexK-theory rings of certain toric
varieties with rings of integral piecewise Laurent polynomials on
the associated fans. We provide necessary and sufficient condi-
tions for this identification to hold for toric varieties of complex
dimension 2, including smooth and singular cases. We prove that
it always holds for smooth toric varieties, regardless of whether
or not the fan is polytopal or complete. Finally, we introduce
the notion of fans with “distant singular cones” and prove that
the identification holds for them. The identification has already
been made by Harada, Holm, Ray and Williams in the case of
divisive weighted projective spaces; in addition to enlarging the
class of toric varieties for which the identification holds, this
work provides an example in which the identification fails. We
make every effort to ensure that our work is rich in examples.

1. Background and notation

Toric varieties are an important class of examples in symplectic and algebraic geom-
etry. Their explicit definition and combinatorial properties mean that their invariants
are amenable to direct calculation. They provide an important testing ground for con-
jectures and theories. In this paper, we use elementary tools to explore the topological
equivariant K-theory rings of toric varieties. The goal is to find a large class of toric
varieties for which we may identify this K-theory with rings of piecewise Laurent
polynomials. We begin with a quick overview of where our work fits in the current
literature.

Let G be a compact Lie group and G � Y a G-space, which we commonly abbrevi-
ate to Y . Our aim is to consider the G-equivariant complex K-theory rings K∗

G(Y ) for
certain Y in the case when G is a torus. This work may be considered as a broadening
of the results in [13], though it is not a direct extension. In part, this is because there
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are Y for which results of [13] but not the present paper apply, and yet other Y for
which the results of the present paper but not [13] apply (though there is a large fam-
ily of Y , namely smooth, polytopal toric varieties, for which the results of both papers
apply). The main tool of the current paper, namely the Mayer–Vietoris sequence, is
fundamentally different from, and simpler than, the techniques developed in [13]. The
other notable difference is that the present paper is concerned solely with equivariant
K-theory, whereas [13] is one of a number of papers [3, 4, 5, 10] to consider other
complex-oriented equivariant cohomology theories.

Given the plurality of K-theory functors and results for algebraic vector bundles
and algebraic K-theory, it is important to keep in mind precisely which K-theory
rings we consider. We are concerned with the unreduced Atiyah–Segal G-equivariant
ring K∗

G(Y ) [25], graded over the integers. For compact Y , K0
G(Y ) is constructed

from equivalence classes of G-equivariant complex vector bundles; otherwise, it is
given by equivariant homotopy classes [Y,Fred(HG)]G, where HG is a Hilbert space
containing infinitely many copies of each irreducible representation of G [2]. For the
1-point space ∗ with trivial G-action, we write the coefficient ring K∗

G(∗) as K∗
G. It

is isomorphic to R(G)[z, z−1], where R(G) denotes the complex representation ring of
G, and realises K0

G; the Bott periodicity element z has cohomological dimension
−2. The equivariant projection Y → ∗ induces the structure of a graded K∗

G-algebra
on K∗

G(Y ), for any G � Y .
We consider G � Y in the case that Y is a toric variety and G is a suitable torus.

Specifically, we consider the toric variety XΣ of real dimension 2n, where Σ is a fan
in the vector space NR = N ⊗Z R ∼= R

n, with respect to the lattice N . The compact
n-torus T = S1 × · · · × S1 = (N ⊗Z R)/N acts on XΣ. In the context of this G � Y ,
there is much [1, 6, 8, 15, 17, 18, 20, 24, 27] in the literature regarding algebraic
bundles, results in algebraic and operational K-theory, and the relationships between
these results. For example Vezzosi and Vistoli [27] computed equivariant algebraic
K-theory for smooth toric varieties, and the comparison theorem of Thomason [26]
provides a link between their answer and the topological Borel equivariant K-theory.
The latter is the completion of the topological Atiyah–Segal equivariant K-theory;
however, as there is no known method to reverse the process of completion, knowl-
edge of the topological Borel equivariant K-theory does not guarantee results about
topological Atiyah–Segal equivariant K-theory. Thus it is important to keep in mind
that the present work focuses on topological, Atiyah–Segal equivariant K-theory,
and that we consider a topological invariant of varieties arising in algebraic geome-
try (endowed with the classical topology). Further details regarding the relationship
between topological Borel equivariant K-theory and topological Atiyah–Segal equiv-
ariant K-theory, in the context of toric varieties, may be found in [13, §6].

The correspondence between fan and toric variety is an elegant interplay which is
crucial to our work. Fans are constructed from cones in a highly controlled manner.
We assume that Σ has finitely many cones, each of which is strongly convex and
rational. Then we have affine pieces Uσ for each cone σ ∈ Σ, and

XΣ =
⋃
σ∈Σ

Uσ.

We note that a single cone σ may be viewed as a fan itself. As a fan, its cones are σ
and all the faces of σ. We will henceforth abuse notation and write σ for both the
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cone and the fan. Occasionally it will be convenient to consider a fan as a subspace
of Euclidean space rather than as a collection of cones. For definitions and details
relating to cones, fans and toric varieties, the reader is recommended to consult one
or more of [11, 7, 22].

Before proceeding further, it is useful to fix notation and conventions; our aim is
to be as consistent as possible with [13]. In the case of a single (possibly singular)
cone σ, we have an equivariant homotopy equivalence

Uσ �Tn Tn/Tσ

by [7, Proposition 12.1.9, Lemma 3.2.5], where Tσ is the isotropy torus of Uσ. (Note
that in [7], the authors work with algebraic tori (C∗)n; as we are only concerned with
homotopy equivalence, we have abusively used the same notation for the compact
tori.) As is explained further in [13, §4], we may write

K∗
Tn(Uσ) ∼= K∗

Tn(Tn/Tσ) ∼= PK(σ), (1)

where (as discussed in [13, Example 4.12]), PK(σ) is a graded ring which additively
includes a copy of Z[α±1

1 , . . . , α±1
n ]/Jσ in each even degree, and zero in each odd

degree. Here the classes α±1
i are in cohomological degree zero and Jσ denotes the

ideal generated by certain Euler classes, which we describe below.
For each cone σ, we may define a subspace σ⊥ of the dual space MR = M ⊗Z R by

σ⊥ =
{
m ∈MR

∣∣∣ 〈m,u〉 = 0 ∀u ∈ σ
}
.

When σ is d-dimensional, σ⊥ is (n− d)-dimensional. Because σ is rational, σ⊥ ∩M
is a rank (n− d) sublattice in the dual lattice M . We may choose a Z-basis of this
sublattice, ν1, . . . , νn−d, and for each νj , there is a K-theoretic equivariant Euler class
e(νj) = (1−ανj ). We define

Jσ :=

〈
(1−αν1) , . . . , (1−ανn−d)

〉
< Z[α±1

1 , . . . , α±1
n ].

Remark 1.1. For an equivalence class [fσ] ∈ Z[α±1
1 , . . . , α±1

n ]/Jσ, we shall usually
work with a choice of representative fσ ∈ Z[α±1

1 , . . . , α±1
n ]. One consequence of this

is that when σ has dimension d and is considered in an ambient space of dimension
n > d, we may make a choice of representative fσ for any [fσ] ∈ Z[α±1

1 , . . . , α±1
n ]/Jσ

involving only those α±1
i which do not arise in the definition of Jσ. In other words,

considering σ in a larger ambient space has the effect of introducing more variables in
Z[α±1

1 , . . . , α±1
n ] but also more relations in Jσ, and hence no practical effect overall.

More generally, a definition of PE(Σ) for any complex-oriented equivariant coho-
mology theory E is given in [13, Definition 4.6] as the limit of a diagram in an
appropriate category. In this paper, we work solely in the case when E is equivariant
K-theory, and we interpret PK(Σ) in the same way as in [13, Example 4.12]: each
element of PK(Σ) may be interpreted as the equivalence class of an integral piece-
wise Laurent polynomial on the fan Σ. A piecewise Laurent polynomial on Σ is
determined by its values on the maximal cones, and the ring of piecewise Laurent
polynomials on Σ is denoted PLP (Σ). In this interpretation, as a graded ring PK(Σ)
is zero in odd degrees, PLP (Σ) in even degrees, and addition/multiplication of classes
corresponds to cone-wise addition/multiplication of Laurent polynomials.
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Recall from (1) that, in the case of a single cone σ, K∗
T (Xσ) ∼= PK(σ). A natural

question to ask is:

Question 1.2. For which fans Σ is K∗
Tn(XΣ) ∼= PK(Σ)?

In Section 2, we set up our main tool to analyse Question 1.2. In Sections 3 and 4
we give a satisfying answer (Theorem 4.3) to Question 1.2 for fans in R

2. In particular,
we show that fans Σ in R

2 corresponding to Hirzebruch surfaces or weighted projec-
tive spaces do satisfy K∗

Tn(XΣ) ∼= PK(Σ), but fans in R
2 corresponding to those fake

weighted projective spaces which are not weighted projective spaces, do not (Exam-
ples 4.4 and 4.5). In Sections 5 and 6 we develop theory for smooth fans. Smooth
polytopal fans were considered in [13] but the present treatment does not require
polytopal, and culminates in the expected answer (Theorem 6.5) to Question 1.2 for
smooth fans. Finally, in Section 7 we introduce the notion of fans with distant sin-
gular cones and analyse Question 1.2 in this context, providing several examples
in R

3. We emphasize that our computations involve solely elementary techniques and
do not rely upon any of the sophisticated machinery which is prominent in much of
the literature.
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2. Mayer–Vietoris

We aim to use a Mayer–Vietoris argument to compute the Atiyah–Segal [25] equiv-
ariant K-theory ring K∗

T (XΣ) of a toric variety XΣ. We set up the Mayer–Vietoris
sequence as follows. Suppose Δ′ and Δ′′ are both subfans of Σ such that Σ = Δ′ ∪Δ′′.
We call such a union a splitting of Σ. For every splitting, there is a Mayer–Vietoris
long exact sequence of K∗

T -algebras:

· · · K2i−1
T (XΔ′∩Δ′′)

K2i
T (XΣ) K2i

T (XΔ′)⊕K2i
T (XΔ′′) K2i

T (XΔ′∩Δ′′)

K2i+1
T (XΣ) · · · .

#

(2)

We say a splitting Σ = Δ′ ∪Δ′′ is proper if Σ �= Δ′ and Σ �= Δ′′. The only fans
which do not admit proper splittings are those fans which consist of a single cone
(and all its faces). Since every fan contains the zero cone, Δ′ ∩Δ′′ is never empty.
Whilst the union or intersection of two fans in general need not be a fan, Δ′ ∪Δ′′

and Δ′ ∩Δ′′ are fans here because Δ′ and Δ′′ are both subfans of the same fan.
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Typically we will work with splittings Σ = Δ′ ∪Δ′′ where we have control over
Δ′, Δ′′ and Δ′ ∩Δ′′. In particular, when K2i+1

T (XΓ) = 0 for Γ = Δ′,Δ′′,Δ′ ∩Δ′′

(all i ∈ Z), the long exact sequence (2) becomes the 4-term exact sequence in the top
row of the diagram below.

0 �� K2i
T (XΣ) �� K2i

T (XΔ′)⊕K2i
T (XΔ′′)

#
��

∼=
��

K2i
T (XΔ′∩Δ′′) ��

∼=
��

K2i+1
T (XΣ) �� 0

PLP (Δ′)⊕ PLP (Δ′′)
#

�� PLP (Δ′ ∩Δ′′)

We shall work in situations where the vertical maps are isomorphisms of K∗
T -algebras

and thus we treat the four terms exact sequence as

0→ K2i
T (XΣ)→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′)→ K2i+1
T (XΣ)→ 0, (3)

and deduce that we have K2i
T (XΣ) ∼= PLP (Σ) as K∗

T -algebras.

The exact sequence (3) makes plain the central role played by the map

PLP (Δ′)⊕ PLP (Δ′′)
#→ PLP (Δ′ ∩Δ′′),

a map which may be made very explicit. For (F,G) ∈ PLP (Δ′)⊕ PLP (Δ′′),

#
(
(F,G)

)
= F |Δ′∩Δ′′ −G|Δ′∩Δ′′ ∈ PLP (Δ′ ∩Δ′′).

It is immediate from (3) that we have K0
T (XΣ) = ker(#) = PLP (Σ), and also that

K1
T (XΣ) = coker(#).

3. General results for fans in R
2

Fans in R
2 are amenable to study because of the limited ways in which their cones

may interact with each other. If Σ is a fan in R
2 with cones σ and τ , then σ ∩ τ

must be either {0}, a ray, or the union of two rays. Only the last case requires serious
consideration, and by careful construction of the Mayer–Vietoris argument we may
limit the frequency of this occurrence to just once when the fan is complete, and not
at all when the fan is incomplete.

When the fan is a single cone σ, then (1) guarantees that K∗
T (Xσ) ∼= PK(σ). We

must now consider the possibility of more than one cone. We say that a non-trivial
incomplete fan Σ in R

2 is a clump if Σ \ {0} is connected (as a subspace of R2). We
begin our analysis by proving that clumps always satisfy K∗

T (XΣ) ∼= PK(Σ).

Lemma 3.1. If Σ is a clump, then K∗
T (XΣ) ∼= PK(Σ).

Proof. If Σ has no two-dimensional cones, then it must consist of a single zero- or
one-dimensional cone and the lemma is immediate from (1). We now consider the
case that Σ has k > 0 two-dimensional cones, and proceed by induction on k. If
k = 1, the lemma is immediate from (1), which concludes the base case. Now suppose
that Σ has two-dimensional cones σ1, . . . , σk and rays ρ1, . . . , ρk+1, indexed so that
σi ∩ σi+1 = ρi+1 for 1 � i � k − 1 as in Figure 1. We assume inductively that we have
an isomorphism K∗

T (Xσ1∪···∪σk−1
) ∼= PK(σ1 ∪ · · · ∪ σk−1) as K

∗
T -algebras.
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In the Mayer–Vietoris sequence (2) take Δ′ = σ1 ∪ · · · ∪ σk−1 and Δ′′ = σk. Then
Δ′ ∩Δ′′ = ρk and we haveK∗

T (XΔ′∩Δ′′) ∼= PK(ρk) as aK
∗
T -algebra. Then the Mayer–

Vietoris sequence splits into a 4-term sequence as in (3),

0→ K0
T (XΣ) −→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′) −→ K1
T (XΣ)→ 0.

Noting that # is surjective from the second summand, we have

K0
T (XΣ) = ker(#) = PLP (Σ)

and K1
T (XΣ) = coker(#) = 0. Since all the identifications made in the inductive step

were as K∗
T -algebras, we may assemble the 4-term sequences to achieve an algebra

isomorphism K∗
T (XΣ) ∼= PK(Σ), as desired. This completes the inductive step, and

the lemma follows.

We are now able to analyse incomplete fans in R
2.

Lemma 3.2. If Σ is an incomplete fan in R
2, then K∗

T (XΣ) ∼= PK(Σ).

Proof. Since every incomplete fan in R
2 may be decomposed as a union of clumps

with pairwise intersections equal to {0}, it suffices to prove the lemma for such unions
of clumps. We proceed by induction on the number of clumps. Lemma 3.1 establishes
the base case.

Suppose inductively that the lemma holds for such unions of fewer than k clumps,
and consider Σ = Σ1 ∪ · · · ∪ Σk, a union of k clumps satisfying Σi ∩ Σj = {0} for
indices i �= j. In the Mayer–Vietoris sequence (2), we take Δ′ = Σ1 ∪ · · · ∪ Σk−1 and
Δ′′ = Σk. Since the pairwise intersections Σi ∩ Σj are {0}, we have Δ′ ∩Δ′′ = {0}
andK∗

T (XΔ′∩Δ′′) ∼= PK({0}) as aK∗
T -algebra. The Mayer–Vietoris sequence becomes

a 4-term sequence as in (3),

0→ K0
T (XΣ) −→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′) −→ K1
T (XΣ)→ 0.

Noting that # is surjective from the second summand by Lemma 3.1, we have
K0

T (XΣ) = ker(#) = PLP (Σ) and K1
T (XΣ) = coker(#) = 0.

Since all the identifications made in the inductive step were asK∗
T -algebras, we may

assemble the 4-term sequences to achieve an algebra isomorphism K∗
T (XΣ) ∼= PK(Σ),

as desired. This completes the inductive step, and the lemma follows.

Lemma 3.2 gives a description of the equivariant K-theory ring of a toric variety
whose fan in R

2 is incomplete. To continue our study, we analyse the map # in more
detail in the context of a clump.

Let Σ be a clump. Denote the maximal cones of Σ by σ1, . . . , σk and the rays by
ρ1, . . . , ρk+1, numbered so that σi ∩ σi+1 = ρi+1 for 1 � i � k − 1 (as in Figure 1).
We consider surjectivity of the map

#: PLP (Σ)→ PLP (ρ1 ∪ ρk+1),

interpreting # as the restriction of a piecewise Laurent polynomial on Σ, to a piecewise
Laurent polynomial on the subfan ρ1 ∪ ρk+1 ⊂ Σ. Our use of the symbol # here is a
small abuse of notation, which we justify upon anticipation of the application!

The question of whether #: PLP (Σ)→ PLP (ρ1 ∪ ρk+1) is surjective becomes:
given (f, g) piecewise on ρ1 ∪ ρk+1, does there exist (F1, . . . , Fk) ∈ PLP (Σ) whose
image under # is (f, g)? It is convenient to phrase the piecewise conditions in terms of
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. . .
. . .

f

g

Figure 1: An incomplete fan in R
2 which is a clump (left) and related piecewise

Laurent polynomials (right).

ideal membership. Observe that a pair (f, g) being piecewise on ρ1 ∪ ρk+1 is equivalent
to the ideal membership f − g ∈ J{0}. The tuple (F1, . . . , Fk) being piecewise on Σ
with image under # equal to (f, g) is equivalent to all of the ideal membership
requirements

F1 − f ∈ Jρ1
,

F2 − F1 ∈ Jρ2
,

... (4)

Fk − Fk−1 ∈ Jρk
,

g − Fk ∈ Jρk+1
.

Lemma 3.3. For the map # : PLP (σ1 ∪ · · · ∪ σk)→ PLP (ρ1 ∪ ρk+1), we have

Im
(
#
)
=

{
(f, g)

∣∣∣∣ f − g ∈ Jρ1
+ · · ·+ Jρk+1

}
. (5)

Proof. Adding all of the equations in the list (4) gives g − f ∈ Jρ1 + · · ·+ Jρk+1
, and

this establishes that the left-hand side of (5) is contained in the right-hand side.
To show the opposite inclusion, suppose (f, g) satisfies f − g ∈ Jρ1

+ · · ·+ Jρk+1
and

write

f − g = a1e(ρ1) + · · ·+ ak+1e(ρk+1) (6)

for some Laurent polynomials a1, . . . , ak+1 ∈ Z[α±1, β±1]. Then set

F1 = f − a1e(ρ1),

F2 = F1 − a2e(ρ2),

... (7)

Fk−1 = Fk−2 − ak−1e(ρk−1),

Fk = Fk−1 − ake(ρk) = f − (f − g − ak+1e(ρk+1)) = g + ak+1e(ρk+1).
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By construction of the Fj , it follows that f , g and the Fj satisfy (4), and so

#
(
(F1, · · · , Fk)

)
= (f, g),

as desired.

Remark 3.4. In the proof of Lemma 3.3, we could have chosen different representatives
in place of f and g, giving rise to a different expression in (6) and so in turn to different
Laurent polynomials in (7). Nevertheless, these would still satisfy (4) and so the choice
of representative does not matter.

We end this section with a result which is valid for both complete and incomplete
fans in R

2. This provides a tool for our analysis of complete fans in R
2 in the next

section.

Theorem 3.5. Let Σ be a fan in R
2 that admits a proper splitting. Then we have

K2i
T (XΣ) = PLP (Σ) for each i ∈ Z, and the following statements are equivalent:

a. For each proper splitting, the map # in (2) is surjective.

b. For some proper splitting, the map # in (2) is surjective.

c. K2i+1
T (XΣ) = 0 for each i ∈ Z.

d. K∗
T (XΣ) ∼= PK(Σ) as K∗

T -algebras.

Proof. Let Σ be a fan in R
2 that admits a proper splitting, and choose a proper

splitting Σ = Δ′ ∪Δ′′. Then Δ′ and Δ′′ are incomplete fans, so Lemma 3.2 guarantees
that both K∗

T (XΔ′) ∼= PK(Δ′) and K∗
T (XΔ′′) ∼= PK(Δ′′) as K∗

T -algebras. Hence the
long exact Mayer–Vietoris sequence (2) for this splitting reduces to a 4-term exact
sequence

0→ K2i
T (XΣ)→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′)→ K2i+1
T (XΣ)→ 0 (8)

for each i ∈ Z. Thus we may identify K2i
T (XΣ) = ker(#) = PLP (Σ), as required.

We next show that the four given statements are equivalent.

(a) =⇒ (b): This is straightforward.

(b) =⇒ (c): Fix a proper splitting for which # is surjective. Then it is straightforward

from (8) that K2i+1
T (XΣ) = 0 for each i ∈ Z.

(c) =⇒ (a): Let Σ = Δ′ ∪Δ′′ be any proper splitting. Then we have a 4-term exact

sequence (8). But we are assuming K2i+1
T (XΣ) = 0, so we must have that # is sur-

jective.

(c) =⇒ (d): When K2i+1
T (XΣ) = 0, the 4-term exact sequence (8) becomes a 3-term

exact sequence. Using the identification K2i
T (XΣ) = PLP (Σ), this is

0→ PLP (XΣ) −→ PLP (Δ′)⊕ PLP (Δ′′)
#−→ PLP (Δ′ ∩Δ′′)→ 0. (9)

The identifications K2i
T (XΓ) ∼= PLP (Γ), for Γ = Δ′,Δ′′, and Δ′ ∩Δ′′ induce algebra

isomorphisms K∗
T (XΓ) ∼= PK(Γ). We may thus assemble the sequences (9) to achieve

an algebra isomorphism K∗
T (XΣ) ∼= PK(Σ).

(d) =⇒ (c): This is straightforward.
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4. Complete fans in R
2

We next consider surjectivity of the map # of (2) in the context of complete fans
in R

2. The ideal Jρ1
+ · · ·+ Jρk+1

appeared in Lemma 3.3, and our study involves
further ideals of this form. Thus we make a small algebraic digression to discuss these
lattice ideals.

The theory of lattice ideals in polynomial rings is well-developed; see [19, §7.1],
for example. We make the natural generalisation to Laurent polynomial rings here.
Given a lattice L � Z

s for some s > 0, we write JL for the Laurent polynomial
lattice ideal of L,

JL =

〈
αu −αv

∣∣∣∣ u− v ∈ L, u, v ∈ Z
s

〉
< Z[α±1

1 , . . . , α±1
s ].

If L is a matrix whose columns �1, . . . , �r Z-span the lattice L, we write

JL =

〈
1−α�1 , . . . , 1−α�r

〉
< Z[α±1

1 , . . . , α±1
s ].

The lattice ideal lemma for Laurent polynomial rings (Corollary A.2) guarantees that
JL = JL. Thus, in the terminology of Section 1, for L = [ν1 · · · νn−d], the ideal Jσ = JL
is the lattice ideal for the sublattice σ⊥ ∩M . Returning to the context of Lemma 3.3,
the lattice ideal lemma for Laurent polynomial rings (Corollary A.2) guarantees that
Jρ1

+ · · ·+ Jρk+1
= JL, where L is the lattice Z-spanned by the normal vectors to

the rays ρ1, . . . , ρk+1. For an incomplete fan Σ ⊂ R
2 which is a clump, with rays

ρ1, . . . , ρk+1, we denote this lattice ideal by JΣ = JL = Jρ1 + · · ·+ Jρk+1
. We provide

further discussion of the lattice ideal lemma in Appendix A, contenting ourselves here
with an immediate corollary of Proposition A.3.

Lemma 4.1. In Z[α±1, β±1], we have Jρ1
+ · · ·+ Jρk+1

= 〈1− α, 1− β〉 if and only
if the primitive generators of the rays ρ1, . . . , ρk+1 span (over Z) the lattice Z

2.

We now continue our study of fans in R
2.

Proposition 4.2. Let Σ be a complete fan in R
2, and consider a splitting of the fan

Σ = Δ′ ∪Δ′′ into two clumps, with intersection Δ′ ∩Δ′′ equal to two rays ρ1 ∪ ρk+1.
Then for the map # : PLP (Δ′)⊕ PLP (Δ′′)→ PLP (ρ1 ∪ ρk+1), we have

Im
(
#
)
=

{
(f, g) ∈ PLP (ρ1 ∪ ρk+1)

∣∣∣∣ f − g ∈ JΔ′ + JΔ′′

}
. (10)

Proof. Let Σ = Δ′ ∪Δ′′ be such a splitting. Denote the maximal cones of Δ′ by
σ1, . . . , σk and the rays by ρ1, . . . , ρk+1, numbered so that σi ∩ σi+1 = ρi+1 for values
1 � i � k − 1. Similarly, denote the maximal cones of Δ′′ by τ1, . . . , τ� and the rays
by δ1, . . . , δ�+1, numbered so that τi ∩ τi+1 = δi+1 for 1 � i � �− 1, and so that the
rays ρ1 = δ�+1 = τ� ∩ σ1 and ρk+1 = δ1 = τ1 ∩ σk.

We first show that the left-hand side of (10) is contained in the right-hand side.
Let

((F ′
1, . . . , F

′
k), (F

′′
1 , . . . , F

′′
� )) ∈ PLP (Δ′)⊕ PLP (Δ′′).

Then by Lemma 3.3, we have that #
(
(F ′

1, . . . , F
′
k)
)
= (f ′, g′) satisfying f ′ − g′ ∈ JΔ′ ,
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and that #
(
(F ′′

1 , . . . , F
′′
� )

)
= (f ′′, g′′) satisfying f ′′ − g′′ ∈ JΔ′′ . So we have

#
(
(F ′

1, . . . , F
′
k), (F

′′
1 , . . . , F

′′
� )

)
= (f ′ − g′)− (f ′′ − g′′) ∈ JΔ′ + JΔ′′ ,

as desired.

Next, we show that the right-hand side of (10) is contained in the left-hand side.
Suppose (f, g) ∈ PLP (ρ1 ∪ ρk+1) satisfies f − g ∈ JΔ′ + JΔ′′ . Then we can write the
difference f − g = A−B, where A ∈ JΔ′ and B ∈ JΔ′′ . Setting

f ′ = (A−B), g′ = −B,

f ′′ = f − (A−B) = g, g′′ = g +B,

we compute f ′ + f ′′ = f and g′ + g′′ = g. Moreover, we have f ′ − g′ = A ∈ JΔ′ and
also f ′′ − g′′ = −B ∈ JΔ′′ . Then by Lemma 3.3, we know that there must exist
(F ′

1, . . . , F
′
k) and (F ′′

1 , . . . , F
′′
� ) satisfying

#
(
(F ′

1, . . . , F
′
k)
)
= (f ′, g′) and #

(
(F ′′

1 , . . . , F
′′
� )

)
= (f ′′, g′′).

But then

#

((
(F ′

1, . . . , F
′
k),−(F ′′

1 , . . . , F
′′
� )

))
= #

(
(F ′

1, . . . , F
′
k)
)
−#

(
− (F ′′

1 , . . . , F
′′
� )

)
= (f ′, g′) + (f ′′, g′′)
= (f, g),

and so (f, g) ∈ Im(#). This completes the proof.

We may now prove our main result for fans in R
2.

Theorem 4.3. Let Σ be a fan in R
2.

a. If Σ is incomplete, then K∗
T (XΣ) ∼= PK(Σ) as a K∗

T -algebra.

b. If Σ is complete, then K∗
T (XΣ) ∼= PK(Σ) as a K∗

T -algebra if and only if the
primitive generators of the rays of Σ span (over Z) the lattice Z

2.

Proof. For (a) nothing beyond Lemma 3.2 is required. We now turn our attention
to (b) and take a complete fan Σ in R

2. It is immediate that for any such fan we may
choose a splitting into two clumps, Σ = Δ′ ∪Δ′′ with intersection Δ′ ∩Δ′′ equal to
the union of two rays ρ1 ∪ ρk+1. By Theorem 3.5 it is now necessary and sufficient to
show that, for our splitting, the map # in (2) is surjective if and only if the primitive
generators of the rays of Σ span (over Z) the lattice Z

2.

By Proposition 4.2, the image of # is{
(f, g) ∈ PLP (ρ1 ∪ ρk+1)

∣∣∣∣ f − g ∈ JΔ′ + JΔ′′

}
,

and this is all of PLP (ρ1 ∪ ρk+1) if and only if JΔ′ + JΔ′′ = J{0} = 〈1− α, 1− β〉.
By Lemma 4.1, this is the case if and only if the primitive generators of the rays of
Σ span (over Z) the lattice Z

2, as required.
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Example 4.4 (Weighted projective spaces and fake weighted projective spaces).
Weighted projective spaces are amongst the best known examples of toric vari-
eties; in fact, each one is also a fake weighted projective space (the class of the
latter is strictly larger than the class of the former). Fake weighted projective spaces,
and their relationship to weighted projective spaces, are discussed in [16].

Let Σ be a complete fan in R
n whose rays have primitive generators v0, . . . , vn

in the lattice Z
n such that R

n = Span
R�0

(v0, . . . , vn); as a consequence one may
find coprime χ0, . . . , χn ∈ Z>0, unique up to order, such that χ0v0 + · · ·+ χnvn = 0.
Then XΣ is a fake weighted projective space with weights (χ0, . . . , χn); if in addition
the lattice Z

n = Span
Z
(v0, . . . , vn) then XΣ is also a weighted projective space with

weights (χ0, . . . , χn).

From the definitions and using Theorem 4.3, it is immediate that if Σ is a fan in
R

2 such that XΣ is a fake weighted projective space but not a weighted projective
space, then K∗

T (XΣ) is not isomorphic to PK(Σ). We deduce from Theorem 3.5 that
Kodd

T (XΣ) �= 0 and that there is no proper splitting for which the map # in (2)
is surjective. On the other hand, if Σ is a fan in R

2 such that XΣ is a weighted
projective space, then K∗

T (XΣ) ∼= PK(Σ) as K∗
T -algebras. This latter class includes

examples such as P(2, 3, 5), which is not a divisive weighted projective space and
hence its equivariant K-theory ring is not computed in [13].

Example 4.5 (Hirzebruch surfaces). As discussed in [7, Example 3.1.16], the Hirze-
bruch surface Hr for r = 1, 2, 3, . . . is the toric variety arising from the complete
fan Σr in R

2 with rays (1, 0), (0,±1) and (−1, r); in the case of r = 1, then Hr is
nothing more than the product P

1 × P
1. Theorem 4.3 applies and we deduce that

K∗
T (Hr) ∼= PK(Σr) as a K∗

T -algebra, for r = 1, 2, 3, . . .. Of course, Hr is polytopal
and smooth, so the result also follows from [13]. The result may also be deduced
from the treatment of smooth toric varieties in the present paper (Section 6) without
reliance upon the fact that Hr is polytopal.

5. A single cone in R
n and its boundary

The preceding sections highlight how Mayer–Vietoris arguments may be applied
to toric varieties; crucial to our study is the correspondence between affine pieces and
cones, together with an understanding of the map # of (3). As we shall see, it is
especially useful to continue with the case of a single cone and its interactions with
its boundary.

Lemma 5.1. Let σ ⊂ R
n be a d-dimensional cone with facets τ1, . . . , τk, satisfying

∂σ = τ1 ∪ · · · ∪ τk. Then for #: PLP (σ)→ PLP (τ1 ∪ · · · ∪ τk), we have

Im
(
#
)
=

{
(F1, . . . , Fk)

∣∣∣ Fi − Fj ∈ Jτi + Jτj

}
. (11)

Remarks 5.2. a. Strictly, one ought to specify a splitting in order to discuss the
map #. Since σ is a single cone, we cannot choose a proper splitting. Instead,
we take in (3) Σ = σ, Δ′ = σ and Δ′′ = ∂σ, so that Δ′ ∩Δ′′ = ∂σ. Strictly, # is
then a map PLP (σ)⊕ PLP (∂σ)→ PLP (∂σ). In the lemma, we have restricted
to the first summand, and retained the name # by abuse of notation.
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b. Note that in this context, the piecewise condition requires that Fi − Fj ∈ Jτi∩τj .
We know that τi ∩ τj is a face of each of τi and τj . Thus we also have that
(τi ∩ τj)

⊥ contains both τ⊥i and τ⊥j . Proposition A.3 then says that we have the
ideal containment Jτi∩τj � Jτi + Jτj . This guarantees that the right-hand side
of (11) is indeed a subset of PLP (τ1 ∪ · · · ∪ τk).

Proof of Lemma 5.1. Let σ be a d-dimensional cone in R
n. That is, σ is contained

in a d-dimensional subspace V of R
n. The rationality of σ means that V ∩ Z

n is
a rank d sublattice of Zn. Thus, we may apply an element of SLn(Z) so that the
image σ̂ of σ is a subset of the subspace given by xd+1 = · · · = xn = 0. The SLn(Z)-
transformation induces an equivariant isomorphism of toric varieties Xσ

∼= Xσ̂ and
hence an isomorphism PLP (σ) ∼= PLP (σ̂). Thus, without loss of generality, we may
assume that σ is contained in the coordinate subspace spanned by the standard basis
vectors e1, . . . , ed.

We note that PLP (τ1 ∪ · · · ∪ τk) consists of tuples (F1, . . . , Fk) of Laurent polyno-
mials in Z[α±1

1 , . . . , α±1
d ] satisfying the piecewise condition, as follows. Strictly speak-

ing, each Fi is an equivalence class in a quotient of Z[α±1
1 , . . . , α±1

n ] by an ideal, but
following Remark 1.1, we may work with representatives Fi ∈ Z[α±1

1 , . . . , α±1
n ]. For

Fi associated to τi, then Fi is a representative of an equivalence class in

Z[α±1
1 , . . . , α±1

n ]

〈1− αd+1, . . . , 1− αn, 1−ανi〉 ,

where νi is a primitive generator of the lattice M ∩ τ⊥i . Here, τ⊥i is the concatenation
(τ⊥d

i , 0, . . . , 0) where τ⊥d
i means the one dimensional subspace of Rd = 〈e1, . . . , ed〉

orthogonal to τi when the latter is considered in R
d.

In practice, this means that we may view all of the Fi, and indeed an element
F ∈ PLP (σ), as not involving the variables αd+1, . . . , αn, by virtue of the fact that
they may be replaced by 1 in any representative which involves them. Each Fi (with
1 � i � k) is well-defined only up to a multiple of (1−ανi). As we shall see, we
shall only require Fi modulo the ideal Jτi and thus, choice of representative of Fi

is immaterial to the existence of a preimage for a tuple (F1, . . . , Fk). Preimages are
certainly not unique.

We now note that #(F ) = (F, F, . . . , F ) for any F ∈ PLP (σ). Thus, because the
difference F − F = 0, we immediately have

Im
(
#: PLP (σ)→ PLP (τ1 ∪ · · · ∪ τk)

)
⊆

{
(F1, . . . , Fk)

∣∣∣ Fi − Fj ∈ Jτi + Jτj

}
.

To prove the reverse containment, we start with a tuple (F1, . . . , Fk) and aim to
find F ∈ PLP (σ) so that F − Fi = 0 ∈ Jτi . Then we shall have

#(F ) = (F, . . . , F ) = (F1, . . . , Fk)

in the appropriate quotient ring. So take (F1, . . . , Fk) and write

(F1, . . . , Fk) = (F1, F1, . . . , F1) + (0, F2 − F1, . . . , Fk − F1).

Now, because (F1, . . . , Fk) and (F1, F1, . . . , F1) are piecewise and satisfy the right-
hand side of (11), the same things hold true for (0, F2 − F1, . . . , Fk − F1). Because
(F1, . . . , Fk) satisfies the right-hand side of (11), we know that Fi − F1 ∈ Jτ1 + Jτi ,
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so we may write

Fi − F1 = F
(1)
i (1−αν1) +G

(1)
i (1−ανi)

for some Laurent polynomials F
(1)
i and G

(1)
i . Observe that

F
(1)
i (1−αν1) +G

(1)
i (1−ανi) = F

(1)
i (1−αν1)

in Jτi . Thus(
0, F2 − F1, . . . , Fk − F1

)
=

(
0, F

(1)
2 (1−αν1), . . . , F

(1)
k (1−αν1)

)
∈ PLP (τ1 ∪ · · · ∪ τk),

and so we have

(F1, . . . , Fk) = (F1, F1, . . . , F1) + (1−αν1)(0, F
(1)
2 , . . . , F

(1)
k ). (12)

We now observe that (0, F
(1)
2 , . . . , F

(1)
k ) is piecewise on τ1 ∪ · · · ∪ τk. This follows

from (12) and the fact that 1−αν1 is non-zero in the ideals Jτ2 , . . . , Jτk . Hence we
may iterate the process. At the next stage,

(F1, . . . , Fk) = (F1, F1, . . . , F1) + (1−αν1)(0, F
(1)
2 , . . . , F

(1)
k )

= (F1, F1, . . . , F1) + (1−αν1)(0, F
(1)
2 , . . . , F

(1)
2 )

+(1−αν1)(0, 0, F
(1)
3 − F

(1)
2 , . . . , F

(1)
k − F

(1)
2 )

= (F1, F1, . . . , F1) + (1−αν1)(0, F
(1)
2 , . . . , F

(1)
2 )

+(1−αν1)(1−αν2)(0, 0, F
(2)
3 , . . . , F

(2)
k ),

where (1−αν2)F
(2)
i = F

(1)
i − F

(1)
2 (modulo Jτi). Eventually one finds that the tuple

(F1, . . . , Fk) = (F1, F1, . . . , F1) + (1−αν1)(0, F
(1)
2 , . . . , F

(1)
2 )

+(1−αν1)(1−αν2)(0, 0, F
(2)
3 , . . . , F

(2)
3 )

...

+(1−αν1) · · · (1−ανk−1)(0, . . . , 0, F
(k−1)
k ),

and that the Laurent polynomial

F := F1 + (1−αν1)F
(1)
2 + (1−αν1)(1−αν2)F

(2)
3 + · · ·

+(1−αν1) · · · (1−ανk−1)F
(k−1)
k

∈ PLP (σ)

satisfies #(F ) = (F1, . . . , Fk). This completes the proof.

We now explain how Lemma 5.1 provides us a powerful tool for analysing the image
of #: PLP (σ)→ PLP (∂σ) when σ is a d-dimensional cone in R

n. At one extreme,
it allows us to deduce in Lemma 6.1 that # is surjective when σ is smooth. At the
other extreme, there exist non-simplicial σ with facets τ1 and τ2 such that τ1 ∩ τ2
has codimension strictly less than 2 inside σ. Then Jτ1 + Jτ2 has two generators
1−αν1 and 1−αν2 , whereas Jτ1∩τ2 has strictly more than 2 generators. In these
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circumstances PLP (∂σ) is strictly larger than the right hand side of (11) and so, by
Lemma 5.1, # is far from surjective.

6. Smooth toric varieties

In the case when Σ is a smooth, polytopal fan, K∗
T (X) has been identified with

PK(Σ) [13, Corollary 7.2.1]. That proof relied upon the existence of a polytope in
order that the symplectic techniques of [14] could be applied. However, there do exist
smooth fans which are not polytopal: an example of such a fan in R

3 is provided in
[11, p. 71]. In the present section we provide a treatment of smooth fans without
reliance on the hypothesis of being polytopal.

Recall that a cone in R
n is smooth if its rays form part of a Z-basis of Z

n.
A smooth cone of dimension d has

(
d
b

)
faces of dimension b (1 � b � d); in particular,

it has exactly d rays and d facets. It is immediate from the definition that every face
of a smooth cone is a smooth cone. A fan is smooth if all of its cones are smooth, and
every subfan of a smooth fan is smooth.

Lemma 6.1. Let σ ⊂ R
n be a smooth d-dimensional cone. Then the map

#: PLP (σ)→ PLP (∂σ)

is surjective.

Proof. Let σ be a smooth d-dimensional cone in R
n. As in the proof of Lemma 5.1, we

may apply an element of SLn(Z) so that the image σ̂ of σ is a subset of the positive
orthant in R

n. However, in this case, smoothness guarantees we can arrange that σ̂
is the standard coordinate subspace cone spanned by the standard basis vectors
e1, . . . , ed. The SLn(Z)-transformation induces an equivariant isomorphism of toric
varieties Xσ

∼= Xσ̂ and hence an isomorphism PK(σ) ∼= PK(σ̂). Thus, without loss of
generality, we may assume that σ is a standard coordinate subspace cone with rays
e1, . . . , ed.

Let the facets of σ be τi = σ ∩ {xi = 0} for i = 1, . . . , d. Thus Jτi = 〈1− αi〉 for
each i, and for i �= j, Jτi + Jτj = 〈1− αi, 1− αj〉 = Jτi∩τj , where the second equality
follows because we are working with a standard coordinate subspace cone. Lemma 5.1
now guarantees that for the map #: PLP (σ)→ PLP (τ1 ∪ · · · ∪ τd), we have

Im
(
#
)
=

{
(F1, . . . , Fd)

∣∣∣ Fi − Fj ∈ Jτi∩τj

}
= PLP (τ1 ∪ · · · ∪ τd).

Hence # is surjective, as required.

Given a class F ∈ PLP (∂σ), Lemma 6.1 guarantees that there is F̃ ∈ PLP (σ)

with #(F̃ ) = F ; we say that F̃ extends F .

Lemma 6.2. Let σ ⊂ R
n be a smooth d-dimensional cone, and Γ ⊆ σ a non-empty

subfan. Then the map

#: PLP (σ)→ PLP (Γ)

is surjective.

Proof. Let Γ be a non-empty subfan of the smooth d-dimensional cone σ in R
n.

We will work with representatives of equivalence classes on each cone of Γ or σ. In
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particular, we view an element F ∈ PLP (Γ) as a collection of compatible Laurent
polynomials F = (Fγ)γ∈Γ.

Suppose we are given F ∈ PLP (Γ). Write σ(k) for the collection of k-dimensional

cones of σ (0 � k � d), so that σ(d) = {σ}. We construct F̃ ∈ PLP (σ) satisfying

#(F̃ ) = F as follows. First {0} is always a subcone of Γ and so we are given F{0}.
For a ray ρ ∈ Γ, we are given Fρ. If ρ is a ray of σ but not Γ we may use Lemma 6.1
to extend F{0} to Fρ. In this way we obtain an element of PLP (Γ ∪ σ(1)). Now,
for a 2-dimensional cone υ ∈ σ, if υ ∈ Γ we are given Fυ. If υ �∈ Γ we have F∂υ and
hence may appeal to Lemma 6.1 to obtain Fυ. In this way we obtain an element
of PLP (Γ ∪ σ(2)). We continue this process recursively until we obtain an element

F̃ ∈ PLP (Γ ∪ σ(d)) = PLP (σ). By construction, #(F̃ ) = F .

Remark 6.3. Our construction of F̃ relied upon choices of representatives of equiva-
lence classes. Different choices may yield a different F̃ , but it is clear that they are
immaterial to the existence of F̃ .

Lemma 6.4. Let σ ⊂ R
n be a smooth d-dimensional cone (d � 1) in R

n and for each
k with 1 � k � d let Δd

k be a union of k facets of σ. Then

K∗
T (XΔd

k
) ∼= PK(Δd

k) as K∗
T -algebras.

In particular, K∗
T (X∂σ) ∼= PK(∂σ) as K∗

T -algebras.

Proof. For each d and k with 1 � k � d, we say “(d, k) holds” if and only if there is
a K∗

T -algebra isomorphism K∗
T (XΔd

k
) ∼= PK(Δd

k). For each d � 1 we say that “(d, ∗)
holds” if and only if (d, k) holds for all 1 � k � d. We will prove that (d, ∗) holds for
all d � 1; this will prove the lemma. We proceed by induction on d.

For the initial step, we must show that (1, ∗) holds, but this is no more than
showing that (1, 1) holds. But Δ1

1 = {0} and so (1, 1) holds by (1). This completes
the initial step.

For the inductive step, suppose (1, ∗), (2, ∗), . . . , (r − 1, ∗) hold for some 1 � r � d.
We shall show that (r, ∗) holds. This will complete the inductive step, and the proof.

We show that (r, ∗) holds by an inductive argument of its own. By (1), (r, 1)
holds, so now suppose that (r, 1), (r, 2), . . . , (r, s− 1) hold for some 1 � s � r. All that
remains is to deduce that (r, s) holds. So let σ ⊂ R

n be a smooth cone of dimension
r and let Δr

s be a union of s facets of σ; write Δr
s = τ1 ∪ · · · ∪ τs for facets τ1, . . . , τs

of σ. Set Δ′ = τ1 ∪ · · · ∪ τs−1 and Δ′′ = τs, so Δ′ ∪Δ′′ = Δr
s and

Δ′ ∩Δ′′ = (τ1 ∪ · · · ∪ τs−1) ∩ τs = (τ1 ∩ τs) ∪ · · · ∪ (τs−1 ∩ τs).

We note that each τi ∩ τs (1 � i � s− 1) is a facet of the smooth (r − 1)-cone τs ⊂ R
n,

so Δ′ ∩Δ′′ is of the form Δr−1
s−1. Thus we have K∗

T (XΓ) ∼= PK(Γ) as K∗
T -algebras for

Γ = Δ′,Δ′′ and Δ′ ∩Δ′′ because (r, s− 1) holds, by (1) and because (r − 1, ∗) holds,
respectively. This means that the Mayer–Vietoris sequence (2) splits into a 4-term
sequence

0→ K2i
T (XΔr

s
)→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′)→ K2i+1
T (XΔr

s
)→ 0.

Since Δ′ ∩Δ′′ is a non-empty subfan of the smooth cone τs, we may apply Lemma 6.2
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to see that # is surjective, from the second summand. It follows that

K2i
T (XΔr

s
) ∼= PLP (Δr

s) and K2i+1
T (XΔr

s
) = 0

for each i ∈ Z. Since all the identifications made in the inductive step were as K∗
T -

algebras, we may assemble the 4-term sequences to achieve an algebra isomorphism
K∗

T (XΔr
s
) ∼= PK(Δr

s), as desired.

We are now ready to deduce our main result for smooth toric varieties.

Theorem 6.5. If Σ is a smooth fan in R
n then K∗

T (XΣ) ∼= PK(Σ) as K∗
T -algebras.

Proof. Let Σ ⊆ R
n be a smooth fan. Enumerate all the cones of Σ as σ0, σ1, σ2, . . . , σN

in an order so that dim(σi) � dim(σj) whenever i < j. Let Σk =

k⋃
i=0

σi. We will prove

that K∗
T (Σk) ∼= PK(Σk) as K

∗
T -algebras for k � 0 by induction on k.

The base case is when k = 0. We know that K∗
T (Xσ0

) ∼= PK(σ0) as K∗
T -algebras

immediately from (1).

Assume inductively that the statement holds for Σk−1 (some k � N) and consider
Σk = σk ∪ Σk−1. All proper faces of σk must belong to Σk−1 for dimension reasons:
dim(σi) � dim(σj) for all i < j. It follows that σk ∩ Σk−1 = ∂σk. We now consider the
Mayer–Vietoris sequence (2) with Δ′ = σk and Δ′′ = Σk−1. We have an isomorphism
K∗

T (XΓ) ∼= PK(Γ) as K∗
T -algebras for Γ = Δ′,Δ′′, and Δ′ ∩Δ′′ by (1), the induc-

tive hypothesis, and Lemma 6.4, respectively. This means that the Mayer–Vietoris
sequence (2) splits into a 4-term sequence

0→ K2i
T (XΣk

)→ PLP (Δ′)⊕ PLP (Δ′′)
#−→ PLP (Δ′ ∩Δ′′)→ K2i+1

T (XΣk
)→ 0.

We now apply Lemma 6.2 to see that # is surjective, from the first summand. It
follows that

K2i
T (XΣk

) ∼= PLP (Σk) and K2i+1
T (XΣk

) = 0

for each i ∈ Z. Since all the identifications we made in the inductive step were made
as K∗

T -algebras, we may assemble the 4-term sequences to achieve an algebra isomor-
phism K∗

T (XΣk
) ∼= PK(Σk), as desired.

Our final result in this section concerns the map # in the case of a smooth fan Σ
and any non-empty subfan Γ.

Theorem 6.6. Let Σ be a smooth fan in R
n and Γ ⊆ Σ a non-empty subfan. Then

the map

#: PLP (Σ)→ PLP (Γ)

is surjective.

Remark 6.7. In (3), take Δ′ = Σ and Δ′′ = Γ, so that Δ′ ∩Δ′′ = Γ. Strictly, # is then
a map PLP (Σ)⊕ PLP (Γ)→ PLP (Γ), but in the spirit of Remarks 5.2 we have, in
the theorem, restricted to the first summand, and retained the name # by abuse of
notation.
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Proof of Theorem 6.6. Let Σ ⊆ R
n be a smooth fan. Enumerate the maximal cones

of Σ as σ1, σ2, . . . , σN such that if σi ∈ Γ for some i, then σj ∈ Γ for all 1 � j � i. Let

F ∈ PLP (Γ). We seek F̃ ∈ PLP (Σ) such that #(F̃ ) = F . As usual, we work with

representatives of equivalence classes. Different choices may yield a different F̃ but
are immaterial to the existence of such an F̃ .

If Γ = Σ there is nothing to prove, so let σr be such that σi ∈ Γ for 1 � i � r − 1,
but σr �∈ Γ. Each element of PLP (Σ) is determined by its values on the maximal
cones of Σ, so we must extend F to each of σr+1, . . . , σN in a compatible way.

We will construct F̃i ∈PLP (Γ ∪ {σr+1, . . . , σr+i}) for i = 1, . . . , N − r in an induc-

tive manner. Suppose we have constructed F̃i−1 (in the case i = 1, we take F̃0 = F as
our construction). Now ∂σr+i ∩ (Γ ∪ {σr+1, . . . , σr+i−1}) is a subfan of ∂σr+i, non-
empty since both contain {0}. Hence we may apply Lemma 6.2 to extend

F̃i−1|∂σr+i∩(Γ∪{σr+1,...,σr+i−1})

to σr+i. We define F̃i to have the same value as the extension on σr+i and the same

value as F̃i−1 on Γ ∪ {σr+1, . . . , σr+i−1}.
The end result F̃ = F̃N is an element of Γ ∪ {σ1, . . . , σN} = Σ, and by construction,

#(F̃ ) = F . This completes the proof.

Remark 6.8. The analysis in this section relied upon Σ being smooth. This assump-
tion is necessary to ensure the existence of an element of SLn(Z) so that the image
of a given smooth cone is a standard coordinate subspace cone (see the proof of
Lemma 6.1).

7. Fans in R
n with distant or isolated singular cones

Having dealt with smooth fans in Section 6, we turn our attention now to fans
in R

n with singularities. An arbitrary such fan is a step too far: instead, we impose
control over the singularities we work with.

Definition 7.1. Let Σ be a singular fan in R
n and let σ ∈ Σ. We say that σ is an

isolated singular cone in Σ if σ is a singular cone and σ ∩ τ is smooth for every
cone τ ∈ Σ with τ �= σ. We say that σ is a distant singular cone if σ is a singular
cone and σ ∩ τ = {0} for every singular cone τ ∈ Σ with τ �= σ. We say that Σ is a
fan with isolated singular cones if every singular cone of Σ is an isolated singular
cone, and we say that Σ is a fan with distant singular cones if every singular
cone of Σ is a distant singular cone.

It is immediate that any face of an isolated or distant singular cone is smooth, and,
in particular, isolated and distant singular cones in Σ are maximal in Σ. Isolated and
distant singular cones may or may not be simplicial.

When the fan Σ is complete, these notions have easy interpretations in terms of the
corresponding toric varieties: isolated singular cones correspond to isolated singular
points in the variety. A distant singular cone corresponds to a singular point in the
variety which does not lie on the same proper T -invariant subvariety as any other
singular point in the variety.
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We shall see some examples shortly, but first we state our main result about fans
with distant singular cones.

Theorem 7.2. Let Σ be a fan in R
n with distant singular cones. Then we may iden-

tify K∗
T (XΣ) ∼= PK(Σ) as K∗

T -algebras.

Proof. Let Σ be a fan in R
n with distant singular cones σ1, . . . , σk. In the Mayer–

Vietoris sequence (2) take Δ′ = Σ \ { ◦
σ1, . . . ,

◦
σk} and Δ′′ = σ1 ∪ · · · ∪ σk so that the

intersection Δ′ ∩Δ′′ = ∂σ1 ∪ · · · ∪ ∂σk. In particular, Δ′ is a smooth fan, and Δ′ ∩
Δ′′ is a subfan of Δ′. An easy induction argument based on (1), the Mayer–Vietoris
sequence, and the fact that the σi are distant cones allows one to deduce that
K∗

T (Xσ1∪···∪σk
) ∼= PK(σ1 ∪ · · · ∪ σk) as K∗

T -algebras. This, and Theorem 6.5 allows
us to conclude that the Mayer–Vietoris sequence reduces to a 4-term exact sequence
as in (3),

0→ K2i
T (XΣ)→ PLP (Δ′)⊕ PLP (Δ′′)

#−→ PLP (Δ′ ∩Δ′′)→ K2i+1
T (XΣ)→ 0.

We now apply Theorem 6.6 to see that # is surjective (from the first summand),
from which it follows that

K2i
T (XΣ) ∼= PLP (Σ) and K2i+1

T (XΣ) = 0.

Since all the identifications made in the inductive step were as K∗
T -algebras, we may

assemble the 4-term sequences to achieve an algebra isomorphism K∗
T (XΣ) ∼= PK(Σ),

as desired.

One might hope that a version of Theorem 7.2 applies for fans with isolated sin-
gular cones. However, in that case, the ‘easy induction’ mentioned in the proof of
Theorem 7.2 fails, since we have no way to analyse surjectivity of the map # in that
set-up.

We conclude by providing examples of fans for which Theorem 7.2 applies. It is
trivial to construct non-complete fans with distant singularities (by taking a collection
of singular cones, disjoint other than at {0}) so we restrict attention to examples for
which the fan is complete.

Example 7.3. Let Σ′ be any complete, smooth fan in R
n with rays ρ′1, . . . , ρ

′
k for

some k � n+ 1. Construct the complete fan Σ in R
n+1 as follows. To the primitive

generator of each ρ′i, adjoin a 1 to give a primitive element of Zn+1; this specifies rays
ρ1, . . . , ρk in R

n+1. Let ρ be the ray in R
n+1 with primitive generator (0, . . . , 0,−1).

Then Σ is the fan with rays ρ1, . . . , ρk, ρ, and such that a collection C of rays generates
a maximal cone of Σ if and only if

C = {ρ, ρi1 , . . . , ρin | ρ′i1 , . . . , ρ′in generate a maximal cone of Σ′} or C = {ρ1, . . . , ρk}.
Each maximal cone involving ρ is smooth; this follows from the two facts that its
projection to the hyperplane xn+1 = 0 is a maximal cone of the smooth fan Σ′, and
that it contains the ray ρ. Now consider the maximal cone 〈ρ1, . . . , ρk〉. If k = n+ 1,
it follows that Σ′ was the fan of the unweighted projective space CPn. In these
circumstances, it is straightforward to check, via [16, Proposition 2.1], that Σ is the
fan for the weighted projective space P(1, . . . , 1, n+ 1); this is a divisive example, so
of little new interest. However, if k > n+ 1 the maximal cone is not simplicial and is
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a singular cone which is both distant and isolated. Thus Theorem 7.2 applies and we
may conclude that K∗

T (XΣ) ∼= PK(Σ) as a K∗
T -algebra.

If we choose Σ′ to have at least n+ 2 rays, we ensure that the maximal cone
〈ρ1, . . . , ρk〉 of Σ is not smooth. It follows that there are examples of fans for which
Theorem 7.2 applies in all dimensions greater than 1.

As an explicit example of this construction, let Σ′ = Σ1, the fan in R
2 correspond-

ing to the Hirzebruch surface H1
∼= P

1 × P
1 (see Example 4.5). The fan Σ in R

3 is
shown in Figure 2. In more detail, Σ has five rays with primitive generators

ρ1 =

⎛⎝ 1
0
1

⎞⎠, ρ2 =

⎛⎝ 0
1
1

⎞⎠, ρ3 =

⎛⎝ −1
0
1

⎞⎠, ρ4 =

⎛⎝ 0
−1
1

⎞⎠, ρ5 =

⎛⎝ 0
0

−1

⎞⎠,

five maximal cones

〈ρ1, ρ2, ρ3, ρ4〉, 〈ρ1, ρ2, ρ5〉, 〈ρ1, ρ4, ρ5〉, 〈ρ2, ρ3, ρ5〉, 〈ρ3, ρ4, ρ5〉,
and is the normal fan to a square-based pyramid. Our analysis guarantees that
K∗

T (XΣ) ∼= PK(Σ) as a K∗
T -algebra.

In the absence of the construction of Σ from Σ′, one could check by hand that
the fan Σ in Figure 2 is a singular, complete, non-simplicial, polytopal fan which has
distant singular cones. However, in such circumstances, we prefer to make use of the
packages Polyhedra and NormalToricVarieties for the computer algebra system
Macaulay2. Code for the fan Σ shown in Figure 2 is supplied in Appendix B. Code
for the other explicit examples in this section is very similar, and is available from
either author upon request.

Figure 2: Fans Σ (left) and Δ (right) in R
3 as discussed in Examples 7.3 and 7.4. In

each case only one maximal cone is highlighted by shading.

Example 7.4. Not all fans with a distant singular cone arise from the construction of
Example 7.3. Consider the fan Δ in R

3 shown in Figure 2. In more detail, Δ has four
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rays with primitive generators

ρ1 =

⎛⎝ 1
0
2

⎞⎠, ρ2 =

⎛⎝ 0
1
2

⎞⎠, ρ3 =

⎛⎝ −1
−1
1

⎞⎠, ρ4 =

⎛⎝ 0
0

−1

⎞⎠,

and four maximal cones

〈ρ1, ρ2, ρ3〉, 〈ρ1, ρ2, ρ4〉, 〈ρ1, ρ3, ρ4〉, 〈ρ2, ρ3, ρ4〉.
One checks that Δ is a singular, complete, simplicial, polytopal fan which has distant
singular cones. Thus Theorem 7.2 applies, and we deduce that K∗

T (XΔ) ∼= PK(Δ) as
K∗

T -algebras.

Example 7.5. Consider the fan Σ in R
3 with twelve rays whose primitive generators

are

ρ1 =

⎛⎝ 1
0
1

⎞⎠, ρ2 =

⎛⎝ 0
1
1

⎞⎠, ρ3 =

⎛⎝ −1
0
1

⎞⎠, ρ4 =

⎛⎝ 0
−1
1

⎞⎠, ρ5 =

⎛⎝ 1
0

−1

⎞⎠,

ρ6 =

⎛⎝ 0
1

−1

⎞⎠, ρ7 =

⎛⎝ −1
0

−1

⎞⎠, ρ8 =

⎛⎝ 0
−1
−1

⎞⎠, ρ9 =

⎛⎝ 1
0
0

⎞⎠, ρ10 =

⎛⎝ 0
1
0

⎞⎠,

ρ11 =

⎛⎝ −1
0
0

⎞⎠, ρ12 =

⎛⎝ 0
−1
0

⎞⎠,

and eighteen maximal cones

σ1 = 〈ρ1, ρ2, ρ3, ρ4〉, σ2 = 〈ρ5, ρ6, ρ7, ρ8〉, σ3 = 〈ρ1, ρ2, ρ9〉, σ4 = 〈ρ2, ρ9, ρ10〉,
σ5 = 〈ρ2, ρ3, ρ10〉, σ6 = 〈ρ3, ρ10, ρ11〉, σ7 = 〈ρ3, ρ4, ρ11〉, σ8 = 〈ρ4, ρ11, ρ12〉,
σ9 = 〈ρ1, ρ4, ρ12〉, σ10 = 〈ρ1, ρ9, ρ12〉, σ11 = 〈ρ5, ρ6, ρ9〉, σ12 = 〈ρ6, ρ9, ρ10〉,

σ13 = 〈ρ6, ρ7, ρ10〉, σ14 = 〈ρ7, ρ10, ρ11〉, σ15 = 〈ρ7, ρ8, ρ11〉,
σ16 = 〈ρ8, ρ11, ρ12〉, σ17 = 〈ρ5, ρ8, ρ12〉, σ18 = 〈ρ5, ρ9, ρ12〉.

The pictures in Figure 3 may help in visualising Σ. One checks that Σ is a singu-
lar, complete, non-simplicial, non-polytopal fan with distant singular cones. Thus
Theorem 7.2 applies, and we deduce that K∗

T (XΣ) ∼= PK(Σ) as K∗
T -algebras.

Example 7.6. Consider the variation Σ′ on the fan Σ of Example 7.5 as follows. The
rays of Σ′ are precisely the rays ρ1, . . . , ρ12 of Σ, and we start as in the picture on the
left in Example 7.5. However, rather than adding smooth cones, we add non-simplicial
cones, each with four rays. If the cone spanned by rays ρ4 and ρ11 in the picture on
the right in Figure 3 were removed, the result would show the start of the process.
Thus Σ′ has ten maximal cones, viz.

σ1 = 〈ρ1, ρ4, ρ9, ρ12〉, σ2 = 〈ρ1, ρ2, ρ9, ρ10〉, σ3 = 〈ρ2, ρ3, ρ10, ρ11〉,
σ4 = 〈ρ3, ρ4, ρ11, ρ12〉, σ5 = 〈ρ5, ρ8, ρ9, ρ12〉, σ6 = 〈ρ5, ρ6, ρ9, ρ10〉,

σ7 = 〈ρ6, ρ7, ρ10, ρ11〉, σ8 = 〈ρ7, ρ8, ρ11, ρ12〉,
σ9 = 〈ρ1, ρ2, ρ3, ρ4〉, σ10 = 〈ρ7, ρ8, ρ9, ρ10〉.

One checks that Σ′ is a singular, complete, non-simplicial, polytopal fan with isolated
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Figure 3: The fan Σ in R
3 as discussed in Example 7.5. On the left we indicate the

rays of Σ, two 3-cones and four 2-cones in the xy-plane. From this picture, the idea
is to then produce a complete fan by adding smooth cones; the start of this process
is indicated on the right.

singular cones. However, the singular cones are not distant, so Theorem 7.2 does not
apply. Although we cannot say anything about K∗

T (XΣ′), the fan Σ′ is of interest
because it is a complete fan, and yet every maximal cone is an isolated singular cone
because each proper face of each maximal cone is smooth.

Example 7.7. Toric degeneration is an important technique in algebraic geometry
and representation theory. It is a technique that starts with a variety and produces
a family of varieties, at least one of which is a toric variety. One then hopes to use
toric techniques on the toric variety to answer questions about the original variety.
The Gelfand–Tsetlin system was first developed in the context of integrable systems
[12]. The connection to algebro-geometric toric degeneration is described in [21]. In
the simplest non-trivial example, the toric degeneration X of F �ags(C3), has fan Σ
with a single (hence distant) singular cone. This fan Σ was explicitly described in
[23, §3.3], and has rays

ρ1 =

⎛⎝ −1
0
0

⎞⎠, ρ2 =

⎛⎝ 1
0
0

⎞⎠, ρ3 =

⎛⎝ 0
−1
0

⎞⎠,

ρ4 =

⎛⎝ 0
1
0

⎞⎠, ρ5 =

⎛⎝ 1
0

−1

⎞⎠, ρ6 =

⎛⎝ 0
−1
1

⎞⎠.

It has maximal cones

σ1 = 〈ρ1, ρ3, ρ5〉, σ2 = 〈ρ1, ρ3, ρ6〉, σ3 = 〈ρ1, ρ4, ρ5〉, σ4 = 〈ρ1, ρ4, ρ6〉,
σ5 = 〈ρ2, ρ3, ρ5, ρ6〉, σ6 = 〈ρ2, ρ4, ρ5〉, σ7 = 〈ρ2, ρ4, ρ6〉.

One checks that Σ is a singular, complete, non-simplicial, polytopal fan with
distant singular cones; the single isolated singularity corresponds to the distant singu-
lar cone σ5. The geometry of this particular singularity is precisely that of
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[7, Example 1.1.18]. Theorem 7.2 guarantees that this variety has K∗
T (X) ∼= PK(Σ)

as K∗
T -algebras.

Appendix A. The lattice ideal lemma

In Section 4 above, we associated to a lattice L � Z
s for some s > 0, the lattice

ideal JL in the Laurent polynomial ring Z[x±1
1 , . . . , x±1

s ]. We also write JL for the
lattice ideal of L in the polynomial ring Z[x1, . . . , xs], where

JL = 〈xu − xv | u− v ∈ L, u, v ∈ N
s〉.

We write JL for the lattice ideal in either ring in what follows, taking care to be clear
of the context.

If L = (�ij) is a matrix whose columns �1, . . . , �r are a Z-basis for L, we write

JL =

〈⎛⎝ ∏
i with �ij>0

x
�ij
i

⎞⎠−
⎛⎝ ∏

i with �ij<0

x
−�ij
i

⎞⎠∣∣∣∣∣ 1 � j � r

〉
.

For notational convenience we write �j = �j+ − �j− where the ith entry of �jε ∈ Z
s is

ε�ij , for ε = +,−. We may then write expressions in the form x�j+ − x�j− . Again, JL
is an ideal in the polynomial ring Z[x1, . . . , xs] or in the Laurent polynomial ring
Z[x±1

1 , . . . , x±1
s ], depending on the context. In the Laurent polynomial ring, it is clear

that

JL =
〈
1− x�j | 1 � j � r

〉
,

and so our notation here is consistent with that in Section 4.

Lemma A.1 (The lattice ideal lemma for polynomial rings). In the polynomial ring
Z[x1, . . . , xs], JL = JL:(x1 · · ·xs)

∞, where the latter ideal is the saturation of JL
with respect to x1 · · ·xs, i.e.

JL:(x1 · · ·xs)
∞ =

{
f ∈ Z[x1, . . . , xs]

∣∣∣∣ f · (x1 · · ·xs)
N ∈ JL for some N > 0

}
.

This is [19, Lemma 7.6], but as the full details of the proof are not given explicitly
in [19], we provide them here.

Proof. Clearly JL � JL and hence JL:(x1 · · ·xs)
∞ � JL. For the reverse we take a

generator xu − xv for JL, so u, v ∈ N
s and u− v ∈ L. We shall show that we have

xu−v − 1 ∈ JL:(x1 · · ·xs)
∞.

Write u− v =
r∑

i=1

ai�
i with ai ∈ Z. Then

xu−v − 1 =
∏
ai>0

(
x�i+

x�i−

)ai ∏
ai<0

(
x�i−

x�i+

)−ai

− 1

and working with the saturation allows us to essentially clear denominators: for some
N > 0,

xN (xu−v − 1) = m

(∏
ai>0

(
x�i+

)ai ∏
ai<0

(
x�i−

)−ai −
∏
ai>0

(
x�i−

)ai ∏
ai<0

(
x�i+

)−ai

)
,
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where m is some monomial. It now suffices to show that∏
ai>0

(
x�i+

)ai ∏
ai<0

(
x�i−

)−ai −
∏
ai>0

(
x�i−

)ai ∏
ai<0

(
x�i+

)−ai

(13)

is in JL, which we do by expressing it in terms of the generators of JL. We induct on
the number of basis elements �1, . . . , �r involved in (13).

If only one basis element is involved, say �1, and when a1 > 0, then the expression

(13) becomes
(
xa1�

1
+ − xa1�

1
−
)
, which we may factor to get(

x�1+ − x�1−
)(

(x�1+)a1−1 + (x�1+)a1−2x�1− + · · ·+ x�1+(x�1−)a1−2 + (x�1−)a1−1
)

(14)

and hence (13) is a polynomial multiple of x�1+ − x�1− . The case a1 < 0 is dealt with
similarly. This completes the initial step of the induction.

Now suppose we may write (13) in terms of the generators of JL whenever (13)
involves no more that k − 1 basis elements �1, . . . , �r, and consider the situation in
which k basis elements are involved. Without loss, we may assume �1 is involved. We
also assume a1 > 0, as the case a1 < 0 is similar. Then (13) may be written as⎛⎝xa1�

1
+

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠−
⎛⎝xa1�

1
−

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠
+

⎛⎝xa1�
1
−

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠−
(∏

ai>0

xai�
i
−

∏
ai<0

x−ai�
i
+

)
. (15)

The first two terms may be written as

(xa1�
1
+ − xa1�

1
−)

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
− ,

which is, by the factorization in (14), a polynomial multiple of x�1+ − x�1− . It now
suffices to consider the final two terms of (15). Observe that⎛⎝xa1�

1
−

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠−
(∏

ai>0

xai�
i
−

∏
ai<0

x−ai�
i
+

)

=

⎛⎝xa1�
1
−

∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠−
⎛⎝xa1�

1
−

∏
ai>0,i �=1

xai�
i
−

∏
ai<0

x−ai�
i
+

⎞⎠
= xa1�

1
−

⎛⎝⎛⎝ ∏
ai>0,i �=1

xai�
i
+

∏
ai<0

x−ai�
i
−

⎞⎠−
⎛⎝ ∏

ai>0,i �=1

xai�
i
−

∏
ai<0

x−ai�
i
+

⎞⎠⎞⎠ .

Ignoring the factor xa1�
1
− , the remainder of the final line is of the form (13), but

involving only k − 1 basis elements. Hence by the inductive hypothesis, it may be
expressed as a polynomial multiple of generators of JL. This completes the inductive
step, and the proof.
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We note that in the Laurent polynomial ring Z[x±1
1 , . . . , x±1

s ], ideals are invari-
ant under taking saturation with respect to x1 · · ·xs. Thus, we have an immediate
corollary.

Corollary A.2 (The lattice ideal lemma for Laurent polynomial rings). In the Lau-
rent polynomial ring Z[x±1

1 , . . . , x±1
s ], we have JL = JL.

Corollary A.2 guarantees the following important relationship between sublattices
and the corresponding lattice ideals when working in Laurent polynomial rings; the
analogous statement for polynomial rings does not hold.

Proposition A.3. Let L and L′ be sublattices of Zn. Then working in the Laurent
polynomial ring Z[x±1

1 , . . . , x±1
s ], we have

L � L′ ⇐⇒ JL � JL′ .

Proof. In fact, we shall show that

L � L′ ⇐⇒ JL � JL′ in Z[x±1
1 , . . . , x±1

s ]⇐⇒ JL � JL′ in C[x±1
1 , . . . , x±1

s ].

First, if L � L′, it follows immediately from the definition of a lattice ideal that
JL � JL′ in Z[x±1

1 , . . . , x±1
s ].

Second, suppose that JL � JL′ in Z[x±1
1 , . . . , x±1

s ]. Consider JL in C[x±1
1 , . . . , x±1

s ];
each of its generators is of the form xu − xv where u, v ∈ Z

s and u− v ∈ L. But
this is precisely the form of a generator of JL in Z[x±1

1 , . . . , x±1
s ], so by supposition,

xu − xv ∈ JL′ in Z[x±1
1 , . . . , x±1

s ]. This means u− v ∈ L′ and hence xu − xv ∈ JL′ in
C[x±1

1 , . . . , x±1
s ]. It follows that JL � JL′ in C[x±1

1 , . . . , x±1
s ].

Third, and to complete the proof, we shall show that JL � JL′ in C[x±1
1 , . . . , x±1

s ]
implies L � L′. So suppose that JL � JL′ in C[x±1

1 , . . . , x±1
s ]. Since JL is a binomial

ideal in a Laurent polynomial ring, we may choose a generating set with generators
of the form 1− x�j for j = 1, . . . , r, where �j ∈ Z

s. This in turn allows us to define
a lattice in Z

s, namely LJL
:= Span(�1, . . . , �r) � Z

s. But by [9, Theorem 2.1(a)],
this new lattice must, in fact, be the original, LJL

= L. Now, since JL � JL′ in
C[x±1

1 , . . . , x±1
s ], we can choose our generating set of JL to be a subset of a generat-

ing set for JL′ . This guarantees that LJL
� LJL′ , which exactly means L � L′, as

desired.

Appendix B. Macaulay2 code for Example 7.3

restart

loadPackage "Polyhedra"

loadPackage "NormalToricVarieties"

--We give the rays as matrices; note they are columns

R1= matrix {{1},{0},{1}}

R2= matrix {{0},{1},{1}}

R3= matrix {{-1},{0},{1}}

R4= matrix {{0},{-1},{1}}

R5= matrix {{0},{0},{-1}}



MAYER–VIETORIS AND EQUIVARIANT K-THEORY OF TORIC VARIETIES 399

--Set up the maximal cones, using posHull

C1 = posHull {R1,R2,R3,R4}

C2 = posHull {R1,R2,R5}

C3 = posHull {R1,R4,R5}

C4 = posHull {R2,R3,R5}

C5 = posHull {R3,R4,R5}

--Create the fan

F=fan C1

F=addCone(C2,F)

F=addCone(C3,F)

F=addCone(C4,F)

F=addCone(C5,F)

--Check whether maximal cones are smooth

isSmooth(C1)

isSmooth(C2)

isSmooth(C3)

isSmooth(C4)

isSmooth(C5)

--Verify that intersections of maximal cones with

--singular C1 are smooth

C12=intersection(C1,C2)

C13=intersection(C1,C3)

C14=intersection(C1,C4)

C15=intersection(C1,C5)

isSmooth(C12)

isSmooth(C13)

isSmooth(C14)

isSmooth(C15)

--Check things about the fan

isSmooth(F)

isComplete(F)

isSimplicial(F)

isPolytopal(F)
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