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Abstract
Given a coalgebra C over a cooperad and an algebra A over

an operad, it is often possible to define a natural homotopy
Lie algebra structure on hom(C,A), the space of linear maps
between them, called the convolution algebra of C and A. In the
present article, we use convolution algebras to define the defor-
mation complex for ∞-morphisms of algebras over operads and
coalgebras over cooperads. We also complete the study of the
compatibility between convolution algebras and ∞-morphisms
of algebras and coalgebras. We prove that the convolution alge-
bra bifunctor can be extended to a bifunctor that accepts ∞-
morphisms in both slots and which is well defined up to homo-
topy, and we generalize and take a new point of view on some
other already known results. This paper concludes a series of
works by the two authors dealing with the investigation of con-
volution algebras.
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1. Introduction

Suppose that we are given a type of algebra — such as associative, commutative or
Lie algebras, but also more elaborate ones, such as homotopy Lie or hypercommuta-
tive algebras — and a type of coalgebra — coassociative, cocommutative, and so on
— encoded respectively by an operad P and a cooperad C . Suppose that these types
of algebras and coalgebras are related by an operadic twisting morphism α : C → P.
Some interesting examples of these include the universal twisting morphisms associ-
ated to the operadic bar and cobar constructions, and the twisting morphisms given
by Koszul duality. Then, given a C -coalgebra C and a P-algebra A, one can equip
the chain complex of linear maps hom(C,A) with the structure of a (shifted) homo-
topy Lie algebra (usually referred to as sL∞-algebras) in a canonical way. We denote
this algebra by homα(C,A) and call it the convolution algebra of C and A.

These algebras have already found various applications. They helped to construct a
“universal Maurer–Cartan element” in [RN17], they are used to construct complete
rational invariants of maps between topological spaces in [Wie16], and they were
applied to the construction of rational models for mapping spaces in [RNW17].

The first of the two main results of the present paper is that one can use convo-
lution algebras to define the correct deformation complex for ∞-morphisms between
P-algebras, as well as ∞-morphisms between conilpotent C -coalgebras. Namely,
given two P-algebras, resp. conilpotent C -coalgebras, we define a shifted homo-
topy Lie algebra whose Maurer–Cartan elements are in natural bijection with the
∞-morphisms between the algebras, resp. coalgebras, and which is such that two
Maurer–Cartan elements are gauge equivalent if and only if the corresponding ∞-
morphisms are homotopic. We also relate the ∞-groupoid associated to the deforma-
tion complex with the mapping space in the ∞-category of algebras. Some partial
results in this direction were already given e.g., in [Dol07, DHR15], and [RN18a,
Sect. 7.1].

Convolution algebras have been proven to behave well with respect to the tools of
homotopical algebra. For example [RN18a, Thm. 5.1], they are compatible with the
homotopy transfer theorem, see e.g., [LV12, Sect. 10.3]. They are also compatible
with a generalized notion of morphisms, called ∞-morphisms, in the sense that the
bifunctor homα(−,−) can be extended to a bifunctor accepting ∞-morphisms in
either one of its slots. This was proven in [RN18a, Prop. 4.4] for a special case, and
in full generality in [RNW17, Sect. 5.2]. Unfortunately, in op. cit. the authors were
also able to prove that one cannot perform the next natural step and extend the two
bifunctors to a bifunctor accepting ∞-morphisms in both slots. The counterexample
consists in an ∞-morphism Φ of C -coalgebras and an ∞-morphism Ψ of P-algebras
such that the two composites

homα(Φ, 1) homα(1,Ψ) and homα(1,Ψ)homα(Φ, 1) (1)

are not equal, which tells us that a common extension to a new bifunctor is impossible.

The second main result of the present article is that, assuming that the twisting
morphism α is Koszul, these two composites are homotopic as∞-morphisms of shifted
homotopy Lie algebras. In particular, it is possible to extend the bifunctor homα(−,−)
to take ∞-morphisms in both slots if one accepts to work only up to homotopy.

The content of this article is as follows. Section 2 begins with a short recollection
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of the less classical background notions we will use: those of convolution algebras
and ∞-morphisms relative to a twisting morphism. This is followed by giving an
interpretation of the Maurer–Cartan elements of a convolution algebra in terms of
usual morphisms of algebras and coalgebras, and showing that two such Maurer–
Cartan elements are gauge equivalent if and only if the associated morphisms are
homotopic. This is Theorem 2.4, and it motivates the construction of a deformation
complex for ∞-morphisms between algebras or coalgebras using convolution algebras.

Section 3 contains most of the new results of the present article. The main result
of the section is Theorem 3.1, which describes a morphism of sL∞-algebras between
certain convolution algebras, and which gives us all the tools we need to study the
compatibility of convolution algebras with ∞-morphisms. The rest of the section is
mostly composed by consequences of this main theorem, and reaches its culmination
with Theorem 3.6, which tells us that, even though we cannot extend the bifunctor
homα(−,−) to a bifunctor taking ∞-morphisms in both its slots, we can do so if we
pass to the homotopy categories provided the twisting morphism α is Koszul. The
precise statement is that the two compositions described in (1) are homotopic.

Throughout the text, we postpone various technical proofs in order to improve
readability. These are collected in Section 4. This section also contains a result of
independent interest. This is Theorem 4.1, which compares the deformation complex
described at the end of Section 2 with another natural construction, proving that they
contain exactly the same information. This last result also relates the Maurer–Cartan
∞-groupoid of the deformation complex with the ∞-categorical mapping space for
algebras over an operad.

We conclude the paper with Appendix A, where we give an explicit counterexample
to the conclusion of Theorem 3.6 if we remove the assumption that the twisting
morphism is Koszul.

This paper concludes a series of articles by the two authors dealing with the inves-
tigation of convolution algebras which started with [Wie16], and [RN18a], and then
continued jointly with [RNW17].

Acknowledgments

Both authors are grateful to Bruno Vallette and Alexander Berglund for their
comments, advice, and constant support.

Notation and conventions
We will use essentially the same notation and conventions as in [RNW17]. By

transitivity, we will follow the notation of the book [LV12] as closely as possible
when talking about operads.

We work over a field K of characteristic 0, and over the category of chain complexes.
The dual of a chain complex will again be seen as a chain complex. All operads and
cooperads in this paper are implicitly assumed to be reduced, meaning that they are
zero in arity 0, and spanned by the identity in arity 1. Similarly, all coalgebras and
cooperads are assumed to be conilpotent.

When talking about the homotopy theory of algebras, we always place ourselves in
the Hinich model structure [Hin97, Thm. 4.1.1], where the fibrations are the surjec-
tions, and the weak equivalences are the maps of algebras that are quasi-isomorphisms
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of the underlying chain complexes. When considering coalgebras, the model structure
we will use is the one defined in [DCH16] generalizing [Val14, Sect. 2.1], and depends
on the specific twisting morphism we are working with. If α : C → P is a twisting
morphism, the associated model structure on C -coalgebras has the injections as cofi-
brations, and the fibrations and weak equivalences are created by the cobar functor
Ωα. This means that a morphism of coalgebras f is a fibration, resp. a weak equiv-
alence, if and only if Ωαf is surjective, resp. a quasi-isomorphism. All Koszul mor-
phisms induce the same model structure by [LG16, Prop. 32]. In the Koszul case, the
class of weak equivalences is the closure of the class of filtered quasi-isomorphisms of
coalgebras under the 2-out-of-3 property, see [RN18b, Thm. 4.9].

2. Infinity-morphisms and convolution algebras

Since this paper is a follow-up of the article [RNW17], we will keep the recollec-
tions to a minimum and we refer the reader to op. cit. for any need of reminders on
the topic of convolution algebras or the theory surrounding them. We give nonetheless
a small list of definitions and basic facts that we will need throughout the paper, and
give an upgraded version of [Wie16, Thm. 7.1], see Theorem 2.4.

2.1. Infinity-morphisms relative to a twisting morphism
The notions of ∞-morphisms of algebras and coalgebras relative to a twisting

morphism are defined as follows.

Definition 2.1. Let C be a cooperad, let P be an operad, and let α : C → P be a
twisting morphism.

1. Let A,A′ be two P-algebras. An ∞-morphism Ψ of P-algebras relative to α

— or an ∞α-morphism — from A to A′ is a morphism

Ψ: BαA −→ BαA
′

of C -coalgebras. We also write Ψ: A A′.

2. Let C ′, C be two C -coalgebras. An ∞-morphism Φ of C -coalgebras relative to
α — or an ∞α-morphism — from C ′ to C is a morphism

Ψ: ΩαC
′ −→ ΩαC

of P-algebras. We also write Φ: C ′  C.

These notions of ∞-morphisms relative to a twisting morphism were studied in
[RNW17, Sect. 3].

We know that for any twisting morphism α : C → P the relative bar construction
Bα preserves fibrations, and dually the relative cobar construction Ωα preserves cofi-
brations, as they form a Quillen pair (see [DCH16, Thm. 3.11(1)], and [Val14, Thm.
2.9] for the Koszul case). Therefore, any coalgebra of the form BαA is fibrant, and any
algebra of the form ΩαC is cofibrant. We also know that all P-algebras are fibrant,
and that all C -coalgebras are cofibrant. Therefore, we can see ∞α-morphisms, both
of algebras and coalgebras, as morphisms between bifibrant objects. In particular, the
homotopy relation is an equivalence relation for them.

Definition 2.2. Let α : C → P be a twisting morphism.
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1. Two ∞α-morphisms A A′ of P-algebras are homotopic (as ∞α-morphisms)
if they are homotopic seen as morphisms of C -coalgebras BαA → BαA

′.

2. Dually, two ∞α-morphisms C ′  C of C -coalgebras are homotopic (as ∞α-
morphisms) if they are homotopic seen as morphisms of P-algebras ΩαC

′ →
ΩαC.

One should also compare this notion of homotopy with the results of the article
[DHR15].

2.2. Convolution algebras
The main subject of interest of this article are convolution algebras and their

homotopical properties. We give a short reminder of how these objects appear. Recall
that, given a cooperad C and an operad P, there is a natural operad structure on
hom(C ,P), called the convolution operad. It was introduced in [BM03, Sect. 1], see
also [LV12, Sect. 6.4.1]. We denote by sL∞ := ΩCom∨ the operad encoding shifted
homotopy Lie algebras, see e.g., [RNW17, Sect. 2.7].

Theorem 2.3 ([Wie16, Sect. 7]). Let C be a cooperad, and let P be an operad.
There is a natural, canonical bijection

Tw(C ,P) ∼= homOp(sL∞, hom(C ,P))

between the set of twisting morphisms from C to P and the set of morphisms of oper-
ads from the operad sL∞ encoding shifted homotopy Lie algebras to the convolution
operad hom(C ,P).

This bijection is explicitly given by sending a twisting morphism α : C → P to

M

α : sL∞ −→ hom(C ,P)

defined by

M

α(µ
∨
n) = α(n) : C (n) → P(n). This assignment is also compatible with

morphisms of operads. We refer the reader to [RNW17, Thm. 4.1] for the details.
Let α : C → P be a twisting morphism, let C be a C -coalgebra, and let A be a

P-algebra. Then hom(C,A) is naturally a hom(C ,P)-algebra, so that we can pull
its structure back along

M

α to get an sL∞-algebra, which we denote by homα(C,A)
and call the convolution algebra of C and A. Explicitly, if C is a C -coalgebra and A is
a P-algebra, and denoting ∆C : C → C (C) and γA : P(A) → A the structure maps
of C and A respectively, then the sL∞-algebra structure of homα(C,A) is given by

ℓn(f1, . . . , fn) = γA(α⊗ F )S∆n
C ,

where ∆n
C is the part of ∆C landing in (C (n)⊗ C⊗n)Sn , and where

(α⊗ F )S :=
∑

σ∈Sn

(−1)σ(F )α⊗ fσ(1) ⊗ · · · ⊗ fσ(n)

for f1, . . . , fn ∈ hom(C,A) and σ(F ) is the Koszul sign coming from switching around
the fi. The map (α⊗ F )S maps from invariants to invariants. Notice that there is an
implicit identification of invariants with coinvariants before composing in A.

The operation sending (C,A) to homα(C,A) is compatible with morphisms of C -
coalgebras in the first slot, and with morphisms of P-algebras in the second slot.
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Therefore, we obtain a bifunctor

homα : (C -cog)op × P-alg −→ sL∞-alg ,

which is given by homα(C,A) on objects. Here, C -cog denotes the category of conilpo-
tent C -coalgebras, and P-alg denotes the category of P-algebras, both with strict
morphisms.

2.3. Maurer–Cartan elements and the deformation complex for infinity-
morphisms

Given an sL∞-algebra, it is natural — from a deformation theoretical point of
view — to ask what its Maurer–Cartan elements and gauge relations are. In the case
of convolution algebras, we can give a clean and complete answer.

Theorem 2.4. Let α : C → P be a twisting morphism, let C be a C -algebra, and let
A be a P-algebra. Then there are natural bijections

homC -cog(C,BαA) ∼= MC(homα(C,A)) ∼= homP-alg(ΩαC,A) .

Moreover,

1. two morphisms of C -coalgebras C → BαA are homotopic if and only if the
respective Maurer–Cartan elements are gauge equivalent, and

2. two morphisms of P-algebras ΩαC → A are homotopic if and only if the respec-
tive Maurer–Cartan elements are gauge equivalent.

The proof of this result is postponed to Section 4.1.

Remark 2.5. The Maurer–Cartan equation in the result above is well defined, since
all C -coalgebras are supposed to be conilpotent.

Remark 2.6. The characterization of the Maurer–Cartan set of convolution algebras
was initially done in [Wie16, Thm. 7.1], where point (1) is also stated, and in
[RN18a, Thm. 6.3]. A special case of this result can also be found in [DP16, Thm. 1].

We can use Theorem 2.4 to solve the problem of giving the correct deformation
complex for both ∞-morphisms between P-algebras, and ∞-morphisms between C -
coalgebras. The problem of defining such a deformation complex was mentioned by
M. Kontsevich in his 2017 talk at Séminaire Bourbaki [Kon17]. A first approach to
its solution was given by [RN18a, Thm. 7.1].

Definition 2.7. Let α : C → P be a twisting morphism.

1. Let A,A′ be two P-algebras. The deformation complex of ∞α-morphisms of
P-algebras from A to A′ is the sL∞-algebra homα(BαA,A

′).

2. Let C ′, C be two C -coalgebras. The deformation complex of ∞α-morphisms of
C -coalgebras from C ′ to C is the sL∞-algebra homα(C ′,ΩαC).

Indeed, a Maurer–Cartan element of homα(BαA,A
′) is the same thing as a mor-

phism BαA → BαA
′, i.e., an ∞α-morphism A A′. Moreover, being homotopic as

morphisms of C -coalgebras gives an equivalence relation between ∞α-morphisms of
P-algebras, as the bar construction Bα lands in the bifibrant C -coalgebras. In [Val14,
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Sect. 3.2], it was shown that if α is Koszul, then this is the correct notion of homotopy
equivalence for ∞α-morphisms. Dually, a Maurer–Cartan element of homα(C ′,ΩαC)
is the same thing as an ∞α-morphism C ′  C of C -coalgebras, and being homotopic
as morphisms of P-algebras is an equivalence relation on these morphisms.

3. Compatibility between convolution algebras and

infinity-morphisms

The main result of this section is the fact that certain natural maps between certain
deformation complexes are morphisms of sL∞-algebras. It has many interesting and
important consequences, which we explore in Sections 3.2 and 3.3. In particular, we
recover the two bifunctors from [RNW17, Sect. 5] extending homα(−,−), and we
prove that they commute in the homotopy category of sL∞-algebras and their ∞-
morphisms.

3.1. Statement of the main theorem

Fix a twisting morphism α : C → P, and let A,A′ be two P-algebras. Suppose
we are given

x ∈ homα(BαA,A
′) .

Then given any C -coalgebra C, we define a map

homα
r (1, x) : Bι hom

α(C,A) −→ homα(C,A′) ,

where ι : Com∨ → ΩCom∨ = sL∞ is the natural twisting morphism. It is given as
follows. Let f1, . . . , fn ∈ hom(C,A), and let F := f1 ⊗ · · · ⊗ fn for brevity. Similarly
to what was done before, denote by

F S :
(
C (n)⊗ C⊗n

)Sn
−→

(
C (n)⊗A⊗n

)Sn

the map

F S :=
∑

σ∈Sn

(−1)σ(F ) idC ⊗fσ(1) ⊗ · · · ⊗ fσ(n) ,

where σ(F ) is the Koszul sign obtained by switching around the fi. We define
homα

r (1, x) by the following diagram:

C C (C)

(C (n)⊗ C⊗n)
Sn

(C (n)⊗A⊗n)
SnA′ ⊂ C (A)

∆C

projn

F S

x

homα
r (1, x)(µ

∨
n ⊗ F )
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Dually, let C ′, C be two C -coalgebras, and suppose we have y ∈ homα(C ′,ΩαC).
Given a P-algebra A, we define a map

homα
ℓ (y, 1) : Bι hom

α(C,A) −→ homα(C ′, A)

by sending µ∨
n ⊗ F to the following map:

C ′ P(C)

(P(n)⊗ C⊗n)
Sn

(P(n)⊗A⊗n)
SnA ⊂ P(A)

y

projn

F S

γA

homα
ℓ (y, 1)(µ

∨
n ⊗ F )

Here, we implicitly used the fact that we are working over a field of characteristic 0
to identify invariants and coinvariants.

The main result of this section is the following one.

Theorem 3.1. Let α : C → P be a twisting morphism. Let C ′, C be two C -coalge-
bras, and let A,A′ be two P-algebras.

1. The map

homα
r (1,−) : homα(BαA,A

′) −→ homι(Bι hom
α(C,A), homα(C,A′))

is a strict morphism of sL∞-algebras.

2. The map

homα
ℓ (−, 1) : homα(C ′,ΩαC) −→ homι(Bι hom

α(C,A), homα(C ′, A))

is a strict morphism of sL∞-algebras.

The proof of this result is technical, and we postpone it to Section 4.2.

3.2. Infinity-morphisms and two bifunctors
We will now begin to unravel the consequences of Theorem 3.1.
The reader might have recognized the diagrams defining the morphisms homα

r (1,−)
and homα

ℓ (−, 1), as they are very similar to the ones found in [RNW17, Sect. 5],
which define two extensions of the functor homα(−,−) to take ∞α-morphisms in
one slot or the other. We can use Theorem 2.4 to easily recover one of the main
results found in loc. cit. From now on we will identify ∞α-morphisms Ψ: A A′ of
P-algebras with the associated Maurer–Cartan elements Ψ ∈ homα(BαA,A

′), and
similarly for ∞α-morphisms of C -coalgebras.

Corollary 3.2 ([RNW17, Thm. 5.1]). Let α : C → P be a twisting morphism. Let
C ′, C be two C -coalgebras, and let A,A′ be two P-algebras.

1. Let Ψ: A A′ be an ∞α-morphism of P-algebras. Then

homα
r (1,Ψ): homα(C,A) homα(C,A′)

is an ∞-morphism of sL∞-algebras.



CONVOLUTION ALGEBRAS AND DEFORMATIONS OF INFINITY-MORPHISMS 359

2. Let Φ: C ′  C be an ∞α-morphism of C -coalgebras. Then

homα
ℓ (Φ, 1) : homα(C,A) homα(C ′, A)

is an ∞-morphism of sL∞-algebras.

Proof. We prove only the first statement, the proof of the second one being com-
pletely analogous. The ∞α-morphism Ψ corresponds to a Maurer–Cartan element in
homα(BαA,A

′), which we denote again by Ψ by abuse of notation. Since the map
homα

r (1,−) is a morphism of sL∞-algebras by Theorem 3.1, it preserves Maurer–
Cartan elements, so that homα

r (1,Ψ) is a Maurer–Cartan element of the sL∞-algebra
homι(Bι hom

α(C,A), homα(C,A′)). But this is equivalent to say that homα
r (1,Ψ) is

an∞-morphism of sL∞-algebras from homα(C,A) to homα(C,A′), as we wanted.

But Theorem 3.1 gives us even more than that.

Corollary 3.3. Let α : C → P be a twisting morphism. Let C ′, C be two C -coalge-
bras, and let A,A′ be two P-algebras.

1. Let Ψ,Ψ′ : A A′ be two ∞α-morphisms of P-algebras. If Ψ and Ψ′ are homo-
topic, then so are the two induced ∞-morphisms of sL∞-algebras homα

r (1,Ψ)
and homα

r (1,Ψ
′).

2. Let Φ,Φ′ : C ′  C be two ∞α-morphisms of C -coalgebras. If Φ and Φ′ are
homotopic, then so are the ∞-morphisms of sL∞-algebras homα

ℓ (Φ, 1) and
homα

ℓ (Φ
′, 1).

Proof. Again, we will only prove the first statement. The fact that Ψ and Ψ′ are
homotopic is equivalent to saying that the associated Maurer–Cartan elements of
homα(BαA,A

′) are gauge equivalent (by Theorem 2.4). Since the map homα
r (1,−) is a

morphism of sL∞-algebras, this implies that the Maurer–Cartan elements homα
r (1,Ψ)

and homα
r (1,Ψ

′) are also gauge equivalent, which is equivalent to say that the asso-
ciated ∞-morphisms of sL∞-algebras are homotopic.

There is one important but straightforward fact that was not proven in [RNW17],
which relates the morphisms homα

r (1,−) and homα
ℓ (−, 1), and compositions of mor-

phisms. Recall that the action of an ∞-morphisms Θ: g → h of sL∞-algebras on
Maurer–Cartan elements is given by

MC(Θ)(x) :=
∑

n>1

1

n!
θn(x, . . . , x) ∈ MC(h)

on x ∈ MC(g).

Proposition 3.4. Let α : C → P be a twisting morphism. Let C ′, C be two C -coal-
gebras, and let A,A′ be two P-algebras.

1. Let Ψ: A A′ be an ∞α-morphism of P-algebras, and let f : C → BαA be
a morphism of C -coalgebras, which we see as a Maurer–Cartan element of
homα(C,A). Then

homα
r (1,Ψ)(f) =

(
C

f
−→ BαA

Ψ
−→ BαA

′
)

is a morphism of C -coalgebras.
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2. Let Φ: C ′  C be an ∞α-morphism of C -coalgebras, and let g : ΩαC → A be
a morphism of P-algebras, which we see as a Maurer–Cartan element of
homα(C,A). Then

homα
ℓ (Φ, 1)(g) =

(
ΩαC

′ Φ
−→ ΩαC

g
−→ A

)

is a morphism of P-algebras.

Proof. In order to give a clear proof, we will write f̃ ∈ MC(homα(C,A)) for the
element f seen as a linear map C → A, and f for the equivalent map of C -coalgebras
C → BαA. We pass from the former to the latter by

f = (1C ◦ f̃)∆C .

When writing Ψ, we will mean the map of C -coalgebras BαA → BαA
′, and the asso-

ciated Maurer–Cartan element is

Ψ̃ := projA′Ψ ∈ MC(homα(BαA,A
′)) .

With this notation, we have

MC(homα
r (1, Ψ̃))(f̃) =

∑

n>1

1

n!
homα

r (1, Ψ̃)(µ∨
n ⊗ f̃⊗n)

=
∑

n>1

1

n!
Ψ̃(f̃⊗n)S∆n

C

=
∑

n>1

projA′Ψ(1C ◦ f̃)∆n
C

= projA′Ψ(1C ◦ f̃)∆C

= projA′Ψf ,

where µ∨
1 = id. Here, MC(homα

r (1, Ψ̃)) denotes the map induced on the set of Maurer–

Cartan elements of homα(C,A) by the morphism of sL∞-algebras homα
r (1, Ψ̃). The

other case is similar, and left to the reader.

In particular, we can take C = BαA
′′ in Proposition 3.4, so that f is an ∞α-

morphism of P-algebras A′′  A, and we recover compositions of ∞α-morphisms.
In particular, Proposition 3.4 immediately implies that

homα
r (1,Ψ)homα

r (1,Ψ
′) = homα

r (1,ΨΨ′)

for composable ∞α-morphisms of P-algebras, and that

homα
ℓ (Φ

′, 1) homα
ℓ (Φ, 1) = homα

ℓ (ΦΦ
′, 1)

for composable ∞α-morphisms of C -coalgebras (notice the contravariance). Thus, we
recover another important result.
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Corollary 3.5 ([RNW17, Cor. 5.4]). The bifunctor

homα : (C -cog)op × P-alg −→ sL∞-alg

extends to two bifunctors

homα
r : (C -cog)op ×∞α-P-alg −→ sL∞-alg

and

homα
ℓ : (∞α-C -cog)op × P-alg −→ sL∞-alg .

Proof. It is straightforward to check that if f : C ′ → C is a strict morphism of C -
coalgebras, and Ψ is an ∞α-morphism of P-algebras, then

homα(f, 1) homα
r (1,Ψ) = homα

r (1,Ψ)homα(f, 1) .

What said above then concludes the proof that homα
r (−,−) is a bifunctor. The proof

for homα
ℓ (−,−) is analogous.

3.3. The two bifunctors commute up to homotopy
Having extended the bifunctor homα(−,−) to the two bifunctors homα

r (−,−) and
homα

ℓ (−,−) accepting ∞α-morphisms in the right and left slot respectively, it is
natural to ask if those two functors admit a common extension to a bifunctor accepting
∞α-morphisms in both slots simultaneously. Unfortunately, this is not possible, as
was proven by the authors in [RNW17, Sect. 6]. In the present paper, we will prove
the next best thing.

Theorem 3.6. Let α : C → P be a Koszul twisting morphism. Let C ′, C be two C -
coalgebras and Φ: C ′  C an ∞α-morphism between them, and let A,A′ be two P-
algebras and Ψ: A A′ an ∞α-morphism between them. The two composites

homα
ℓ (Φ, 1) hom

α
r (1,Ψ) and homα

r (1,Ψ)homα
ℓ (Φ, 1)

are homotopic as ∞-morphisms of sL∞-algebras from homα(C,A) to homα(C ′, A′).

The proof of this result is postponed to Section 4.3.

Remark 3.7. The assumption that α is Koszul in this result cannot be removed —
although we do not exclude that it might be weakened. Counterexamples to the
conclusion of Theorem 3.6 for α not Koszul can easily be constructed, e.g., by taking α
to be the zero twisting morphism. We will give such a counterexample in Appendix A.

An immediate corollary is the following result.

Corollary 3.8. Let α : C → P be a Koszul twisting morphism. The bifunctor

homα : (C -cog)op × P-alg −→ sL∞-alg

extends to a bifunctor

Ho(homα) : Ho(∞α-C -cog)op ×Ho(∞α-P-alg) −→ Ho(∞-sL∞-alg)

between the respective homotopy categories which restricts to homα
ℓ and homα

r on the
evident subcategories.
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4. Proof of Theorems 2.4, 3.1, and 3.6

This section collects all of the proofs we have postponed in the rest of the article
in order to improve readability.

4.1. Proof of Theorem 2.4
We will prove the following theorem, which we find of independent interest. To

prove Theorem 2.4 we will only need the case of the 0th homotopy group, but proving
the whole result does not require a much bigger amount of work. We denote by Ω•

the simplicial commutative algebra given by the polynomial de Rham forms on the
simplices, and for an sL∞-algebra g we denote by

MC•(g) := MC(g⊗ Ω•)

the simplicial set of Maurer–Cartan elements. Notice that this definition does not
make sense if one does not assume some kind of “finiteness” condition on g, since
the Maurer–Cartan equation is an infinite sum of elements in a chain complex. The
appropriate condition in this context is requiring that g carries a sensible filtration
with respect to which it is complete, see e.g., [RNW17, Def. 8.1]. Since in the present
paper we work exclusively with conilpotent coalgebras, all the convolution algebras
appearing automatically satisfy this condition, as we will see shortly.

Theorem 4.1. Let α : C → P be a twisting morphism, let C be a C -coalgebra, and
let A be a P-algebra. Then we have a natural homotopy equivalence of simplicial sets

MC•(hom
α(C,A)) ≃ MC(homα(C,A⊗ Ω•)) .

induced by the canonical inclusion

Θ: hom(C,A)⊗ Ω•

∼=
−→ hom(C,A⊗ Ω•)

given on pure tensors by sending φ⊗ ω with φ ∈ hom(C,A) and ω ∈ Ω• to

Θ(φ⊗ ω) =
(
c ∈ C 7−→ φ(c)⊗ ω

)
.

Here, the sL∞-algebra homα(C,A) is filtered by

Fn hom
α(C,A) :=

{
φ ∈ hom(C,A) F

corad
n C ⊆ kerφ

}
,

where F
corad
• C is the coradical filtration of C, see e.g., [LV12, Sect. 5.8.4], which

is exhaustive since we supposed that all coalgebras are conilpotent. This makes
homα(C,A) into a complete sL∞-algebra, so that it makes sense to define the Maurer–
Cartan space MC•(hom

α(C,A)). A similar filtration is put on homα(C,A⊗ Ωn), for
all n > 0. Complete sL∞-algebra were called filtered sL∞-algebras in [RNW17,
Def. 8.1].

One would like to go the easy way, and to prove the statement simply by saying
that homα(C,A⊗ Ω•) is isomorphic to homα(C,A)⊗ Ω•. However, since Ω• is infinite
dimensional this is not true unless C is finite dimensional. We can work around this
problem as follows. There is a contraction due to Dupont [Dup76]

Ω• C•

p•

i•

h•
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from Ω• to a simplicial sub-complex C•. This sub-complex can be thought of as
the dual of the cellular complex of the geometric simplices. In particular, it is finite
dimensional in every simplicial degree. The reader desiring more detail should consult
the original article [Dup76], or e.g., [Get09, Sect. 3]. Then, we proceed as follows:

1. We transfer the simplicial sL∞-algebra structure from homα(C,A⊗ Ω•) to
hom(C,A⊗ C•) using the Dupont contraction, and prove that the simplicial
sets obtained from these algebras by taking the Maurer–Cartan elements are
homotopy equivalent.

2. We prove that the simplicial sL∞-algebra hom(C,A⊗ C•) thus obtained is
isomorphic to the simplicial sL∞-algebra hom(C,A)⊗ C• similarly obtained
from homα(C,A)⊗ Ω• by homotopy transfer theorem.

3. We conclude by using some results of [RN17] to prove that the simplicial sets of
Maurer–Cartan elements of hom(C,A)⊗ C• and of homα(C,A)⊗ Ω• are homo-
topy equivalent.

The proof of point (1) uses methods very similar to the ones used to prove [RN17,
Thm. 3.3], whose demonstration is itself inspired from the proof of the Dolgushev–
Rogers theorem [DR15], and which implies point (3).

Now to make the details more precise. The Dupont contraction induces a contrac-
tion

homα(C,A⊗ Ω•) hom(C,A⊗ C•)
(1A ⊗ p•)∗

(1A ⊗ i•)∗

(1A ⊗ h•)∗

By the homotopy transfer theorem — e.g. [LV12, Sect. 10.3] — we can endow
hom(C,A⊗ C•) with an sL∞-algebra structure and extend (1A ⊗ p•)∗ and (1A ⊗ i•)∗
to simplicial ∞ι-morphisms of sL∞-algebras, where as usual ι : Com∨ → sL∞ is the
natural twisting morphism. We denote by

P• : MC(homα(C,A⊗ Ω•)) −→ MC•(hom
α(C,A))

and

I• : MC•(hom
α(C,A)) −→ MC(homα(C,A⊗ Ω•))

the morphisms of simplicial sets induced by these ∞-morphisms on the Maurer–
Cartan sets. The following result implies point (1).

Proposition 4.2. The morphisms of simplicial sets P• and I• are homotopy inverses
to each other.

Proof. The proof of [RN17, Thm. 3.3] goes through essentially unchanged by replac-
ing g⊗ Ω• by homα(C,A⊗ Ω•), and g⊗ C• by hom(C,A⊗ C•). Therefore, we will
only give a sketch of the proof here, and refer to op. cit. for the details.

First of all, the composite P•I• is the identity, cf. [RN17, Lemma 3.5]. Therefore,
it is enough to prove that the composite

R• := I•P• : MC(homα(C,A⊗ Ω•)) −→ MC(homα(C,A⊗ Ω•))

is a weak equivalence. This is done by an inductive procedure on the filtration, and
then passing to the limit.
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The map R0 is simply given by the identity, and thus induces a bijection at the level
of the 0th homotopy group. Then one considers the case where C = F

corad
2 C, where

homα(C,−) lands in abelian sL∞-algebras, and proves that R• is a weak equivalence
of simplicial sets in that case, with the same methods as [RN17, Lemma 3.7]. Further,
one notices that [RN17, Lemmas 3.8 and 3.10] also hold in this context, so that
all of the arguments carry over to the present situation, giving us the result we
wanted.

The other contraction we consider is

homα(C,A)⊗ Ω• hom(C,A)⊗ C•

1hom(C,A) ⊗ p•

1hom(C,A) ⊗ i•

1hom(C,A) ⊗ h•

Again, the homotopy transfer theorem gives us an sL∞-algebra structure on the chain
complex hom(C,A)⊗ C•. Since C• is finite dimensional in every simplicial degree, we
have a natural isomorphism of simplicial chain complexes

Θ̃ : hom(C,A)⊗ C•

∼=
−→ hom(C,A⊗ C•)

given on pure tensors by sending φ⊗ ω with φ ∈ hom(C,A) and ω ∈ C• to

Θ̃(φ⊗ ω) =
(
c ∈ C 7−→ φ(c)⊗ ω

)
.

We check that Θ̃ respects the transferred sL∞-structures.

Proposition 4.3. The map Θ̃ is an isomorphism of sL∞-algebras with respect to the
two transferred structures.

Proof. We consider the diagram

homα(C,A)⊗ Ω• hom(C,A)⊗ C•

1hom(C,A) ⊗ p•

1hom(C,A) ⊗ i•

1hom(C,A) ⊗ h•

homα(C,A⊗ Ω•) hom(C,A⊗ C•)
(1A ⊗ p•)∗

(1A ⊗ i•)∗

(1A ⊗ h•)∗

Θ

We have that Θ preserves the filtrations, and

Θ(1hom(C,A) ⊗ h•) = (1A ⊗ h•)∗Θ .

Therefore, the morphism Θ is a morphism of complete contractions in the sense
of [Ban17, Def. 1.7]. Since Θ is a morphism of sL∞-algebras, then by [Ban17,
Lemma 1.10] we have that

pr2(Θ) := (1hom(C,A) ⊗ p•)Θ(1A ⊗ i•)∗

is a morphism of sL∞-algebras between the transfered sL∞-algebras. But



CONVOLUTION ALGEBRAS AND DEFORMATIONS OF INFINITY-MORPHISMS 365

(1hom(C,A) ⊗ p•)Θ(1A ⊗ i•)∗(φ⊗ ω) = (1hom(C,A) ⊗ p•)Θ(φ⊗ i(ω))

= (1hom(C,A) ⊗ p•)
(
c 7→ φ(c)⊗ i(ω)

)

=
(
c 7→ φ(c)⊗ pi(ω)

)

=
(
c 7→ φ(c)⊗ ω

)

= Θ̃(φ⊗ ω)

for any φ ∈ hom(C,A) and ω ∈ C•. This concludes the proof.

Now we can conclude the proof of the theorem.

Proof of Theorem 4.1. We have taken care of points (1) and (2) in our program.
Point (3) is given by [RN17, Thm. 3.3]. Putting these steps together, we obtain the
desired homotopy equivalence.

To prove that MC(Θ) is indeed a homotopy equivalence, we refine slightly the
proof of Proposition 4.3 and notice that the second part of [Ban17, Lemma 1.10],
together with the fact that

(1hom(C,A) ⊗ p•)∞(1hom(C,A) ⊗ i•)∞ = 1hom(C,A)⊗C•
,

implies that

P•MC(Θ)I• = MC(Θ̃) .

Since all the morphisms except — a priori — MC(Θ) are homotopy equivalences, we
conclude that MC(Θ) must also be one, concluding the proof of the theorem.

As a consequence, we have the following.

Proof of Theorem 2.4. As mentioned in Remark 2.6, the proof of the fact that
Maurer–Cartan elements corresponds to morphisms of algebras and coalgebras was
done in [Wie16, Thm. 7.1(1)] and in a special case in [RN18a, Thm. 6.3].

We are left to prove points (1) and (2) of the statement. For this, notice that if A
is a P-algebra, then A⊗ Ω1 is a good path object for A. This is seen by considering
the two morphisms of P-algebras

A −→ A⊗ Ω1 −→ A×A ,

the first one sending a ∈ A to a⊗ 1 ∈ A⊗ Ω1 and the second one sending a(t0, t1) ∈
A⊗ Ω1 to (a(1, 0), a(0, 1)) ∈ A×A. Therefore, two morphisms of P-algebras

f0, f1 : ΩαC −→ A

are homotopic if and only if there exists a morphism of P-algebras

H : ΩαC −→ A⊗ Ω1

such that H equals f0, respectively f1, if we evaluate its image at (1, 0), resp. (0, 1).
But this is exactly saying that

H ∈ homα(C,A⊗ Ω1)

is a 1-simplex going from f0 ∈ homα(C,A) to f1 ∈ homα(C,A), i.e., that f0 and f1 re-
present the same element of π0MC(homα(C,A)). Finally, by Theorem 4.1 this is equi-
valent to the fact that f0 and f1 are in the same path component of MC•(hom

α(C,A)),
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i.e., that they are gauge equivalent. This concludes the proof of point (2).
The proof of point (1) is done analogously using the fact that Bα(A⊗ Ω1) is a

good path object for BαA, which we show now. The bar functor Bα is a right Quillen
functor by [DCH16, Thm. 3.11(1)], or by [Val14, Thm. 2.1.3] in the case where
α is Koszul. Thus, it preserves fibrations, and by Ken Brown’s lemma — see e.g.,
[Hov99, Lemma 1.1.12] — it also sends weak equivalences between fibrant objects
to weak equivalences. But all P-algebras are fibrant, and Bα also preserves limits
being right adjoint, so it follows that Bα preserves good path objects. Therefore,
Bα(A⊗ Ω1) is a good path object for BαA, and one concludes the proof of point (1)
proceeding in the same way as before.

4.2. Proof of Theorem 3.1
We begin by proving a technical result that we will need in the main proof.

Lemma 4.4. Let C be a cooperad, and let C be a conilpotent C -coalgebra. Then

(∆(1) ◦ 1C)∆
n
C =

∑

n1+n2=n+1
16i6n1

(
1C ◦

(
1
⊗(i−1)
C ⊗∆n2

C ⊗ 1
⊗(n−i)
C

))
∆n1

C .

Moreover, let f1, . . . , fn ∈ hom(C, V ) for a chain complex V . Under the canonical
inclusion

⊕

n1+n2=n+1
16i6n1

C (n1) ◦
(
C⊗(i−1) ⊗

(
C (n2)⊗ C⊗n2

)
⊗ C⊗(n−i)

)
−֒→ (C ◦ C )(n)⊗ C⊗n

we have

F S(∆(1) ◦ 1C)∆
n
C =

∑

S1⊔S2=[n]

(−1)ǫ((FS1∆n1

C )⊗ FS2)∆n2

C ,

where n1 = |S1| and n2 = |S2|+ 1, and again ǫ is given by the Koszul sign rule because
we are shuffling the maps fi.

Proof. For the first identity, one considers the equality

(∆C ◦ 1C)∆C = (1C ◦∆C)∆C

and then projects on the subspace

(C ◦(1) C )(C) ∼= C ◦ (C;C (C)) .

We leave the details to the reader. The second statement then follows in a straight-
forward way.

We can now prove the main result.

Proof of Theorem 3.1. We prove the first case, the second one being dual. We will
begin by proving that the map homα

r (1,−) commutes with the brackets, and then
show that it also commutes with the differentials. All of this will be done by explicitly
writing down and comparing the formulæ.

Let x1, . . . , xk ∈ homα(BαA,A
′). Then we have

ℓk(x1, . . . , xk) = γA′(α⊗X)S(∆k
C ◦ 1A) ,

where X := x1 ⊗ · · · ⊗ xk, and thus for f1, . . . , fn ∈ homα(C,A) we get
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homα
r (1, ℓk(X))(µ∨

n ⊗ F ) = ℓk(X)F S∆n
C

= γA′(α⊗X)S(∆k
C ◦ 1A)F

S∆n
C

= γA′(α⊗X)SF S(∆k
C ◦ 1C)∆

n
C

=
∑

n1+···+nk=n

γA′(α⊗X)SF S(1C ◦ (∆n1

C ⊗ · · · ⊗∆nk

C ))∆k
C

=
∑

S1⊔···⊔Sk=[n]

(−1)ǫ1γA′(α⊗X)S(1C ◦ (FS1∆n1

C ⊗ · · · ⊗ FSk∆nk

C ))∆k
C

=
∑

S1⊔···⊔Sk=[n]
σ∈Sk

(−1)ǫ1+ǫ2γA′(α ◦ 1A′)(1C ◦ (xσ(1)F
S1∆n1

C ⊗ · · · ⊗ xσ(k)F
Sk∆nk

C ))∆k
C

where the fourth line follows from (∆C ◦ C)∆C = (1C ◦∆C)∆C , and in the passage
from the fourth line to the fifth line we denoted ni := |Si|. The Koszul signs are

ǫ1 =
k∑

i=1

∑

s∈Si

|fs|
∑

j<i

∑

p∈Sj

p>s

|fp| ,

obtained by shuffling the maps fi, and ǫ2, which is similarly obtained by permuting
the maps xi and interchanging them with the maps fj .

On the other hand, we have

ℓk(hom
α(1, X))(µ∨

n⊗F )=
(
γhomα(C,A′)(ι⊗homα(1, X))S(∆k

Com∨⊗1hom(C,A))
)
(µ∨

n⊗F )

=
(
γhomα(C,A′)(ι⊗ homα(1, X))S

)



∑

S1⊔...⊔Sk=[n]

(−1)ǫ1µ∨
k ⊗

k⊗

i=1

(µ∨
ni

⊗ FSi)




= γhomα(C,A′)




∑

S1⊔...⊔Sk=[n]
σ∈Sk

(−1)ǫ1+ǫ2s−1µ∨
k ⊗

k⊗

i=1

homα(1, xσ(i))(µ
∨
ni

⊗ FSi)




=
∑

S1⊔...⊔Sk=[n]
σ∈Sk

(−1)ǫ1+ǫ2γA′

(
α⊗

k⊗

i=1

homα(1, xσ(i))(µ
∨
ni

⊗ FSi)

)
∆k

C

=
∑

S1⊔...⊔Sk=[n]
σ∈Sk

(−1)ǫ1+ǫ2γA′

(
α⊗

k⊗

i=1

xσ(i)F
Si∆ni

C

)
∆k

C .

Notice that in the fourth line we do not need to sum over permutations when applying
the structure map γhomα(C,A′), because the term

∑

S1⊔...⊔Sk=[n]
σ∈Sk

(−1)ǫ1+ǫ2s−1µ∨
k ⊗

k⊗

i=1

homα(1, xσ(i))(µ
∨
ni

⊗ FSi)

in the third line naturally lives in invariants, not coinvariants.
In conclusion, we have

homα(1, ℓk(X)) = ℓk(hom
α(1, X)) .
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We are left to prove that the morphism commutes with the differentials. In order
to avoid cumbersome notation, we will denote simply by d the differentials of both
the sL∞-algebras homα(BαA,A

′) and homι(Bι hom
α(C,A), homα(C,A′)). The let-

ter ∂ denotes instead the differential of hom(C,A). Let x ∈ homα(BαA,A
′), and let

f1, . . . , fn ∈ homα(C,A). On one hand, we have

d(x) = dA′x− (−1)|x|xdBαA

= dA′x− (−1)|x|xdC◦A − (−1)|x|x(1C ◦ (1A; γA))((1C ◦(1) α) ◦ 1A)(∆(1) ◦ 1A) ,

and thus

homα(1, d(x))(µ∨
n ⊗ F ) = d(x)F S∆n

C

= dA′xF S∆n
C − (−1)|x|xdC◦AF

S∆n
C (L1)

− (−1)|x|x(1C ◦ (1A; γA))((1C ◦(1) α) ◦ 1A)(∆(1) ◦ 1A)F
S∆n

C . (L2)

The second term in (L1) equals

xdC◦AF
S∆n

C = x(dC ◦ 1A)F
S∆n

C + x(1C ◦′ dA)F∆n
C

= (−1)|F |xF S(dC ◦ 1C)∆
n
C + x∂(F )S∆n

C + (−1)|F |xF (1C ◦′ dC)∆
n
C

= (−1)|F |xF SdC (C)∆
n
C + x∂(F )S∆n

C

= (−1)|F |xF S∆n
CdC + x∂(F )S∆n

C , (T1)

while the term of (L2) gives

x(1C ◦ (1A; γA))((1C ◦(1) α) ◦ 1A)(∆(1) ◦ 1A)F
S∆n

C =

= x(1C ◦ (1A; γA))((1C ◦(1) α) ◦ 1A)F
S(∆(1) ◦ 1C)∆

n
C

=
∑

S1⊔S2=[n]

(−1)ǫx(1C ◦ (1A; γA))((1C ◦(1) α) ◦ 1A)((F
S1∆n1

C )⊗ FS2)∆n2

C , (T2)

where in the third line we used Lemma 4.4. On the other hand,

d(homα(1, x)) = dhomα(C,A′) hom
α(1, x)− (−1)| hom

α(1,x)| homα(1, x)dBι homα(C,A) .

Notice that (−1)| hom
α(1,x)| = (−1)|x|. We apply this to µ∨

n ⊗ F and obtain

d(homα(1, x))(µ∨
n ⊗ F ) = dA′ homα(1, x)− (−1)|x|+|F | homα(1, x)(µ∨

n ⊗ F )dC

− (−1)|x| homα(1, x)(dBι homα(C,A)(µ
∨
n ⊗ F )) .

The first term equals dA′xF∆n
C and cancels with the first term of (L1), and the second

term equals the first term of (T1). For the third term, we have

homα(1, x)(dBι homα(C,A)(µ
∨
n ⊗ F ))

= homα(1, x)(µ∨
n ⊗ ∂(F ))

+ homα(1, x)

(
∑

S1⊔S2=[n]

µ∨
n2

⊗ (ℓn1
(FS1)⊗ FS2)

)
. (T3)

The first term of this expression cancels the second term of (T1). Therefore, we are
left to show that (T3) equals (T2). We have
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homα(1,x)

(
∑

S1⊔S2=[n]

(−1)ǫµ∨
n2

⊗ (ℓn1
(FS1)⊗ FS2)

)

=
∑

S1⊔S2=[n]

(−1)ǫx(ℓn1
(FS1)⊗ FS2)∆n2

C

=
∑

S1⊔S2=[n]

(−1)ǫx((γA(α⊗ FS1)∆n1

C )⊗ FS2)∆n2

C

=
∑

S1⊔S2=[n]

(−1)ǫx(1C ◦ (γA(α ◦ 1A)⊗ 1
⊗(n2−1)
A ))(1C ◦ (FS1∆n1

C ⊗ FS2))∆n2

C

= (T2) ,

where n1 = |S1|, and n2 = |S2|+ 1. This concludes the proof.

4.3. Proof of Theorem 3.6
The strategy to prove that the two compositions are homotopic as ∞-morphisms

of sL∞-algebras, or equivalently gauge equivalent as Maurer–Cartan elements, is as
follows. We know that if Ψ were a strict morphism, then the two compositions would
commute. Therefore, we will rectify Ψ to get a strict morphism R(Ψ) of P-algebras,
which we do by applying the bar-cobar adjunction. However, to do this we need also
to rectify the P-algebras A and A′. Fortunately, if α is Koszul, then the new P-
algebras thus obtained are quasi-isomorphic to the original ones, and thus we are able
to apply the Dolgushev–Rogers theorem [DR15, Thm. 1.1] to go back to the original
two compositions and conclude the proof.

Proof of Theorem 3.6. Denote by R(A) := ΩαBαA the bar-cobar resolution of A, and
similarly for A′. Since α is Koszul, the counit of the adjunction

ǫA : R(A) −→ A

is a quasi-isomorphism by [LV12, Thm. 11.3.3]. The rectification of the∞α-morphism
Ψ is given by the strict morphism

R(Ψ): ΩαBαA
ΩαΨ
−−−→ ΩαBαA

′ .

The proof is outlined by the diagram in Figure 1. The innermost square is commuta-
tive since R(Ψ) is a strict morphism of P-algebras, and the maps passing from the
outer rim to the inner one are filtered quasi-isomorphisms. Notice that all squares are
commutative, except for the outer one, which fails to be commutative at homα(C,A).

Now consider the morphism of sL∞-algebras

homι(Bι hom
α(C,A), homα(C ′, A′))

homι(Bι hom
α(C,R(A)), homα(C ′, A′))

homι(Bι hom
α(1, ǫA), 1)

It is a filtered quasi-isomorphism, and it is given on Maurer–Cartan elements by
precomposition with homα(1, ǫA). The two compositions

homα(Φ, 1) homα(1,Ψ) and homα(1,Ψ)homα(Φ, 1)
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homα(C,A)

homα(C ′, A)

homα(C ′, R(A′))homα(C,R(A))

homα(C ′, R(A))

homα(C,R(A′))

homα(C,A′)

homα(C ′, A′)

ho
m

α (Φ
, 1
)

hom
α
(1,Ψ

)

homα(1, ǫA)

filtered qi

h
o
m

α
(1

,
ǫ
A
)

fi
lte

re
d

q
i

h
o
m

α
(1

,
ǫ
A

′
)

fi
lt
e
re
d

q
i

h
om

α

(Φ
, 1
)

h
om

α

(Φ
, 1
)

hom
α
(1,Ψ

)

ho
m

α (Φ
, 1
)

h
om

α
(1
, R

(Ψ
))

h
om

α
(1
, R

(Ψ
))

homα(1, ǫA′ )

filtered qi

Figure 1: Outline of the proof of Theorem 3.6.

are naturally elements of homι(Bι hom
α(C,A), homα(C ′, A′)) and are mapped to the

same elements, and thus, by the Dolgushev–Rogers theorem, they are homotopic.

Remark 4.5. The proof above supposes that we are filtering our convolution algebras
with the filtration induced by a filtration on the C -coalgebras — usually the coradical
filtration. If one filters them by a filtration induced by filtrations on the P-algebras,
then the exact same proof goes through with the sole difference that one has to rectify
the ∞α-morphism Φ instead of Ψ.

Appendix A. A counterexample

The goal of this appendix is to give an explicit counterexample to the conclusion
of Theorem 3.6 in the case when the twisting morphism α is not Koszul.

More precisely, we will show that there exists a (non-Koszul) twisting morphism
α : C → P, two C -coalgebras C ′, C, an ∞α-morphism Φ: C ′  C of C -coalgebras,
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two P-algebras A,A′, and an ∞α-morphism Ψ: A A′ which are such that the two
composites

homα(Φ, 1) homα(1,Ψ) and homα(1,Ψ)homα(Φ, 1)

are not homotopic.

For simplicity, we will work in the non-symmetric setting. It is straightforward to
construct a version of the example we present in the symmetric setting.

We take α : As∨ → As to be the zero twisting morphism α = 0. This greatly sim-
plifies the situation, because ∞0-morphisms are very simple:

1. If A is an associative algebra, then B0A = As∨(A) with the differential dAs∨(A) =
1As∨ ◦′ dA induced only by the differential of A. Therefore, an ∞0-morphism of
associative algebras A A′ is just a chain map As∨(A) → A′.

2. Dually, an ∞0-morphism of coassociative coalgebras C ′  C is nothing else
than a chain map C ′ → As(C).

Moreover, we will take our (co)algebras to be concentrated in degree 0, and thus
having trivial differential. Thus, we end up working with linear maps between vector
spaces, and two such maps are homotopic if and only if they are equal.

The coassociative coalgebra C ′ will be

C ′ := Kx with trivial coproduct, i.e. ∆C′(x) := id⊗x ∈ As∨(C ′) .

For the coassociative coalgebra C we take

C := As∨(Ky) ,

the cofree coassociative coalgebra over a 1-dimensional vector space. The ∞0-mor-
phism Φ: C ′  C is given by the linear map

Φ: C ′ −→ As(C)

defined by

Φ(x) := µ2 ⊗
(
(µ∨

2 ⊗ y ⊗ y)⊗ (id⊗y)
)
,

where µn ∈ As(n) is the operation corresponding to the multiplication of n elements
in an associative algebra.

For the algebras, we set A to be

A := As(Kz) ,

the free associative algebra on one generator, and A′ to be

A′ := Kw with µ2(w,w) := w .

The ∞0-morphism Ψ: A A′ is given by any linear map

Ψ: As∨(A) −→ A′

satisfying

Ψ(id⊗(id⊗z)) = w and Ψ
(
µ∨
2 ⊗

(
(id⊗z)⊗ (id⊗z)

))
= w .
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For example, one can define Ψ by the conditions above and setting it to be zero
everywhere else.

Finally, we take f ∈ hom0(C,A) to be any linear map such that f(id⊗y) = id⊗z.
For example, one can simply set f to be 0 on a complement of K(id⊗y) in C. We will
consider the action of the two compositions on the element µ∨

3 ⊗ F := µ∨
3 ⊗ f ⊗ f ⊗ f ,

and then apply the resulting map to x ∈ C ′. We refer to [RNW17, Sect. 6.1] for a
diagrammatic description of the two composites. In formulæ, we have that

hom0(1,Ψ)hom0(Φ, 1)(µ∨
3 ⊗ F )(x) = ΨAs∨(γA)F

Sproj3As
∨(Φ)∆C′(x)

= ΨAs∨(γA)F
Sproj3As

∨(Φ)(id⊗x)

= ΨAs∨(γA)F
Sproj3

(
id⊗

(
µ2 ⊗

(
(µ∨

2 ⊗ y ⊗ y)⊗ (id⊗y)
)))

= 0 ,

since the element in the second to last line lives in (As∨ ◦As)(2)⊗ C⊗2. At the same
time, the other composition gives

hom0(Φ, 1) hom0(1,Ψ)(µ∨
3 ⊗ F )(x) = γA′As(Ψ)F Sproj3As(∆C)Φ(x)

= γA′As(Ψ)F Sproj3As(∆C)
(
µ2 ⊗

(
(µ∨

2 ⊗ y ⊗ y)⊗ (id⊗y)
))

= γA′As(Ψ)F Sproj3

(
µ2 ⊗

((
(id⊗(µ∨

2 ⊗ y ⊗ y))⊗ (id⊗(id⊗y))
) )

+
(
(µ∨

2 ⊗ ((id⊗y)⊗ (id⊗y)))⊗ (id⊗(id⊗y))
))

= γA′As(Ψ)F S
(
µ2 ⊗

(
(µ∨

2 ⊗ ((id⊗y)⊗ (id⊗y)))⊗ (id⊗(id⊗y))
))

= γA′As(Ψ)
(
µ2 ⊗

(
(µ∨

2 ⊗ ((id⊗z)⊗ (id⊗z)))⊗ (id⊗(id⊗z))
))

= γA′

(
µ2 ⊗ w ⊗ w

)

= w .

Thus, the compositions are not equal, and, in particular, they are not homotopic.
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baki, 2016–2017(1126), 2017.

[LG16] B. Le Grignou. Homotopy theory of unital algebras. 2016. arXiv:
1612.02254.

[LV12] J. L. Loday and B. Vallette. Algebraic Operads, volume 346 of Grund-
lehren der Mathematischen Wissenschaften. Springer Verlag, 2012.

[RN17] D. Robert-Nicoud. Representing the deformation ∞-groupoid. 2017. To
appear in Algebr. Geom. Topol. arXiv:1702.02529.

[RN18a] D. Robert-Nicoud. Deformation theory with homotopy algebra struc-
tures on tensor products. Documenta Mathematica, 23:189–240, 2018.
arXiv:1702.02194.

[RN18b] D. Robert-Nicoud. A model structure for the Goldman–Millson theorem.
Graduate Journal of Mathematics, 3(1):15–30, 2018. arXiv:1803.03144.

[RNW17] D. Robert-Nicoud and F. Wierstra. Homotopy morphisms between con-
volution homotopy Lie algebras. 2017. To appear in J. Noncommut.
Geom. arXiv:1712.00794.

[Val14] B. Vallette. Homotopy theory of homotopy algebras. 2014. arXiv:
1411.5533.

[Wie16] F. Wierstra. Algebraic Hopf invariants and rational models for mapping
spaces. 2016. arXiv:1612.07762.

Daniel Robert-Nicoud robert-nicoud@math.univ-paris13.fr
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