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LOCAL FACE RINGS AND DIFFEOMORPHISMS
OF QUASITORIC MANIFOLDS

DAVID ALLEN and JOSÉ LA LUZ

(communicated by Donald M. Davis)

Abstract
In this paper we apply presheaves to develop an invariant

that can distinguish diffeomorphism classes of quasitoric mani-
folds in the category of quasitoric pairs Q. The objects in this
category are pointed topological spaces (M,p) where M is a
quasitoric manifold and p is a fixed point under the torus action.
Maps between pairs are continuous, base-point preserving with
respect to a certain topology that depends on the submanifolds
of M . It is shown that the category of quasitoric manifolds
is a subcategory of Q and then we develop local versions of
the Stanley–Reisner ring and the left higher derived functors
of the indecomposable functor. We prove that diffeomorphisms
between certain objects do not lift to equivalence in the cate-
gory Q. The main application is geared toward the quasitoric
manifolds #4CP

3 with orbit spaces that come from double ver-
tex truncations of the prism that has appeared in the work of
Masuda, Panov and their collaborators.

1. Introduction

In [BEMPP] it was shown that there is a diffeomorphism of quasitoric manifolds
with orbit spaces the double truncated prism. Each such manifold is known to be
#4CP

3. However, interestingly, the orbit spaces are not combinatorially equivalent.
In fact, of the three, two are combinatorially equivalent and one is not equivalent to
the other. This causes a significant obstruction when trying to compare the manifolds
using other methods because it is desirable to have a map of quasitoric manifolds that
descends to a map of orbit spaces. The implication, of course, is no such map exists, at
least not in the category of interest. One way to address this hurdle is to define what
it means for manifolds to be diffeomorphic as manifolds with corners. In such a case,
it is fairly straightforward to show that the manifolds above are not diffeomorphic in
this sense. This definition takes into account the local structure of the polytope and
it partly motivated a few of the arguments in this paper. Namely, to formalize the
local differences in the orbit spaces in a way that specific calculations can be made.
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The main contribution of this paper is to show that the manifolds #4CP
3 are

not equivalent in the category of quasitoric pairs – Q (refer to §7). The arguments
allow one to compare manifolds with varying orbit spaces without necessarily having
a combinatorial map of the orbit spaces. We accomplish this by defining a local
version of the Stanley–Reisner ring-a combinatorial invariant that sees the “local”
structure of the polytope by analyzing the face rings associated to each vertex in the
polytope P .

Results proven in [A, AL, AL2, AL3, AL4] are used to interpolate between
the manifolds and their orbit spaces. Specifically, the left higher derived functors of
the indecomposable functor LiQ(−) can be compared between each orbit space by,
roughly speaking, lifting the calculations into the cohomology rings of the manifolds
through the diffeomorphism and then comparing the local face rings. To make the
interpolation compatible, a local version of LiQ(−) that depends on the fixed points
of the T -action had to be defined for quasitoric manifolds which are part of the datum
for a certain generalized toric category.

The comparison depended on carefully counting the number of linearly indepen-
dent relations among relations that can show up in the orbit spaces. The number of
relations was determined by the work of [BP1] through the use of the Koszul resolu-
tion and it might be possible to ferret out, using their approach, the rank of the vector
space coming from the relations among relations. In [AL3, AL4] the authors make
related calculations directly linking the combinatorics of the orbit space to unstable
homotopy theoretic methods. In those works, the ranks of the zeroth, first and second
left higher derived functors (LiQ(−) for i = 0, 1, 2) of the E∗-face ring (here, E∗ is a
complex orientable theory) were made and applied to T -actions. In this paper, a geo-
metric method is developed and applied that allows one to inscribe figures within an
m-gon that represent these algebraic relations, then we count. The contribution here,
is the formalization of the underlying geometry that gives a faithful representation of
the algebra.

The paper is organized as follows. In §2 we re-state certain definitions and the
main results. In §3, key definitions from Toric Topology are listed for the conve-
nience of the reader along with some observations that are used in later parts of
the paper. §4 provides a brief overview of the construction of the left higher derived
functors of the indecomposable functor, certain calculations and other items of inter-
est. Some of its key properties that were proven by the authors in earlier work
[AL, AL2, AL3, AL4] are listed here too along with the crucial result – Corol-
lary 4.8, whose proof can be found in the appendix. §5 discusses a new topology
on a given quasitoric manifold. §6 is primarily concerned with the application of
presheaves to quasitoric manifolds using the topology defined in §5. Here, we define
“local” versions of the Stanley–Reisner ring and the left higher derived functors. A
new category of quasitoric pairs (M,p) (M is a quasitoric manifold and p is a fixed
point under the T -action) is defined and used to apply the machinery. The main
application used to highlight the tools is given in §7. We show that the quasitoric
manifolds #4CP

3 with the well known orbit spaces coming from the double vertex
truncation of the prism [BEMPP] are not equivalent in the category of quasitoric
pairs.
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2. Main results

We recall some key definitions and notation and then list the main results of the
paper. Let P be a fixed n-dimensional simple convex polytope with vertex set V (P ),

facet set F and set of faces F̂ . For p ∈ V (P ) let F(p) be the collection of facets in P

that contain the vertex p and likewise for F̂(p). For a commutative ring with unit, R,
we define a local version of the Stanley–Reisner that depends on a given p as above.
The p-local face ring is R(p) :=

⊗
F∈F̂(p) R(F ) where R(F ) is the R-face ring of F

(see definition 3.10 for the definition of R(F )).
For a given quasitoric manifold π : M → P and F a face of P , a topology on M is

constructed whose basis depends on the submanifolds MF where MF = π−1(F ). This
is then used to define a category Q of quasitoric pairs which contains the category
of quasitoric manifolds as a sub-category. A quasitoric pair consists of a pair (M,p)
where M is a quasitoric manifold and p belongs to the set of fixed points of M under
the T -action; namely, p ∈ π−1(V (P )). Maps in the category Q are maps of M which
are continuous with respect to the topology mentioned in §5 and send the fixed point
p to another fixed point. Within this generalized category, we only partially consider
the torus action. Namely, it is encoded in the basic sets in the topology and the
fixed points. Given the topology mentioned above, we define fixed-point dependent
left higher derived functors by considering a presheaf F. For additional details refer
to §6. Roughly speaking, the presheaf F maps each basic open set, a sub-quasitoric
manifold MF for a given face F of P , to the cohomology ring H∗(MF ).

A local version of the left higher derived functors of a quasitoric pair are defined in
Q, what we deem fixed point higher derived functors of the indecomposable functor.
For j � 0,

LjQ(M,p) := Lj+1Q(
⊗
U∈Bp

F(U)) ∼=
⊕
U∈Bp

Lj+1Q(F(U)),

where Bp is defined in Notation 6.6. There is an isomorphism of these fixed-point local
constructions that re-frame constructions/theorems that appeared in earlier work of
the authors [AL, AL2, AL3, AL4].

Theorem 6.10. Let (M,p) be a quasitoric pair. Then for j � 0,

LjQ(M,p) ∼= Lj+1Q(R(p)) ∼=
⊕

F∈F̂(p)

Lj+1Q(R(F )0).

The methods above allow one to move between certain spaces and their orbit spaces
even though there may not be a combinatorial map between the orbit spaces. More
specifically, one may lack a map of quasitoric manifolds in the category of quasitoric
manifolds but there is a map in the category of quasitoric pairs. In earlier work
[A, AL, AL3, AL4], we proved there is an isomorphism of the left higher derived
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functors of the indecomposable functor of H∗(MP ) and H∗(BTP ) for a given simple
convex polytope P . In the case where there is an isomorphismH∗(MP ) ∼= H∗(MQ) for
two given quasitoric manifolds MP and MQ with orbit spaces P and Q, these results
allow one to frame rigidity questions in another context. Here, we have a method
to descend from the global object to specific structures within the orbit space and
the manifold. More is true, although not pursued in the current paper (currently a
work in progress) and that is, certain rigidity problems of the orbit spaces can now
be analyzed using these methods and done so in a way that depends on fixed points.

These methods are applied to the quasitoric manifolds #4CP
3 with orbits spaces

being obtained from a double vertex truncation of the prism. All of these manifolds
are diffeomorphic [BEMPP] and not all of the orbits spaces have combinatorial
maps between them in such a way that is consistent with having a map of quasitoric
manifolds. One can declare that the manifolds are not diffeomorphic as manifolds
with corners, which of course, takes local information into account.

Before stating the main result, we recall some notation. For i = 1, 2, let πi : Mi →
Pi be quasitoric manifolds with orbit spaces P1 and P2 resp. Using notation that is well
accepted, P1 = 624332 and P2 = 61524232. The polytope P1 has as facets, two 6-gons,
three 4-gons and two 3-gons and P2 = 61524232 has one 6-gon, two 5-gons, two 4-gons
and two 3-gons as facets. Each manifold, M1 and M2 is diffeomorphic to #4CP

3.
Additional details can be found in [BEMPP]. From §6, we recall the definition of
equivalence in the category Q. Namely, two quasitoric pairs (M,p) and (N, q) are
equivalent in the category Q if there is a base-point preserving homeomorphism in
the topology defined by Q. The main result is:

Theorem 7.2. The quasitoric pairs (M1, p1) and (M2, p2) are not equivalent in Q
for any p1 ∈ π−1

1 (V (P1)) and p2 ∈ π−1
2 (V (P2)).

The appendix contains a counting argument that is used in proving the main result.
This requires enumerating the relations and relations among relations in the Stanley–
Reisner ring of the m-gon. We note that [BP1] uses the Koszul resolution to count,
at least the relations, in a very concrete way, but algebraically. In that paper, the
count is given by a certain bi-graded module R−1,2j where j depends on the missing
face. Our contribution, in this context, is to develop a geometric approach based on
inscribing figures into the m-gon that encode linear dependence (and independence)
then to count these figures in an orderly way. Although not explicitly written down,
our calculations agree with [BP1] in the cases under consideration and our approach
gives a faithful geometric interpretation that can be used to possibly determine higher
order relations among relations (see Appendix for a precise definition).

3. Toric topology

In this section we will highlight some well-known constructions in Toric Topology.
Some excellent references for this material would include the conference proceedings
[BR2] and the AMS book [BP1]. Much this section can be found in the paper [AL3]
and it is included here for the convenience of the reader.

For the applications needed in this paper, it is assumed that P is a simple convex
polytope with m facets F1, . . . , Fm which as a set, we label as F . The polytope P
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is q � 1 neighborly if the intersection of any q facets is not empty [BP1, p. 11] and
we further assume for the remainder of this paper that P is q � 1 neighborly. The
collection of faces of P will be denoted by F̂ . We will use the notation V (P ) to denote

the set of vertices of P . For p ∈ V (P ), F̂(p) is the set of faces containing p and F(p)
is the set of facets containing p. The torus Tn refers to the n-dimensional topological
torus and BTn its classifying space. When there is no chance of confusion we simply
write T instead of Tn.

Using the perspective of derived forms the notion of a quasitoric manifold and
related spaces can be described. In fact, derived forms are formulated in a much more
general setting, where sets more general than polyhedra are used [BR2]. Following
Buchstaber and Ray’s exposition, there is a map

P
λ

−−−−→ T (Tn),

where T (Tn) is the lattice of subtorii of the torus ordered by inclusion and the
topological structure is induced from the lower limit topology. λ sends q ∈ P to a
certain subtorus, λ(q). The derived space is by definition the following quotient space

D(λ) = (Tn × P )/ ∼,

where (g, q) ∼ (h, q) if and only if g−1h ∈ λ(q). It can be shown that ∼ is an equiva-
lence relation. The elements in D(λ) are equivalence classes [g, q] for which there is a
canonical action of the torus on D(λ) via multiplication on the first coordinate. The
orbit space of this action is P ; using the atlas {Uv} given by [BP1, p. 63, construc-
tion 5.8], it can be shown that the torus action is locally standard [DJ, p. 420] (here
locally standard is referred to as locally isomorphic to the standard representation).

Remark 3.1. Davis and Januszkiewicz [DJ] refer to the subgroup GF of the lattice
Z
m “determined by Tn and λ” cf., p. 423, 1.5. In addition, λ determines a map

between integer lattices Zm → Z
n. Note that this map is also referred to as “lambda”

in many research articles. Recall, to each facet Fj of P , one associates a certain circle
subgroup, say Tλ(Fj). In [BP1] these subtorii were made explicit, see p. 64, (5.3).
Each such torus subgroup gives rise to a facet vector λij ∈ Z

n, for 1 � i � n, 1 � j �
m. These vectors are indexed by the facets and from this and the discussion above,
a function can be defined from the set of facets of P , F , to the integer lattice whose
dimension depends on the dimension of P . This is how the characteristic function
F → Z

n is obtained and by a simple identification, the function Z
m → Z

n can be
derived.

Briefly summarizing condition (*) in [DJ], we have the requirement that each
codimension k-face of P gives a k-dimensional direct summand of Zn.

To obtain a quasitoric manifold (or Toric manifold in the language of [DJ]), one
must impose conditions on λ and a smooth structure on D(λ) cf. [DJ]. First, λ
associates a circle to the interior of a facet. Hence, if Fj is a facet, then Tλ(Fj) is a
circle. For additional details, see [BP1, p. 64, (5.3)]. Second, if F is a codimension
k-face, that is, the intersection of k facets, then the torus subgroup associated to the
interior of F is the product of those coordinate tori coming from each of the facets
whose intersection is the face F . Following the exposition in [BP1] and using their
notational conventions suppose G is a codimension d face (G =

⋂s
k=1 Fjk), then the
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following map is an isomorphism onto the image Tλ(G):

im
(∏

1�k�d Tλ(Fjk)
)

−−−−→ Tn.

Finally, it is required that the Ker of λ partitions P by the interior of the faces. By
a Quasitoric manifold M2n(λ) one means the derived space D(λ) where λ is subject
to the conditions described above.

Notation 3.2. Throughout the paper the dimension of a quasitoric manifold may
be dropped as well as any reference to λ when the context is clear. For example, we
may write M or M(λ) instead of M2n(λ). In addition, if M (or M(λ)) is a quasitoric
manifold with orbit space P , then it is common to say that M is a quasitoric manifold
over P or M sits over P (this parlance is also adopted in [BR2]) and we shall simple
write π : M → P (here it is implied that P is the orbit space).

Examples of quasitoric manifolds would include the following: CPn with orbit
space Δn. Buchstaber and Ray [BR] show that the 2n-dimensional manifold – Bn of
all bounded flags in C

n+1 is a quasitoric manifold over In. Buchstaber and Ray [BR]
show that CPn�CPn is a quasitoric manifold over Δ1 ×Δn−1 by defining a connect
sum operation on the level of the polytopes. Orlik and Raymond [OR] classified four
dimensional quasitoric manifolds that sit over polygons and showed that they are
connect sum of the Hirzebruch surface with connect sums of CP 2.

Given π : M → P , there is an action T ×M → M such that the orbit space is P .
The fixed points of this action are zero dimensional manifolds corresponding to the
pre-images of the vertices of P . Namely, for p ∈ V (P ), π−1(p) is a fixed point under
the T -action.

We now introduce the notion of a certain generalized map of quasitoric manifolds.
For m ∈ M and t ∈ T the T -action on M will be denoted by t ∗m. We take as our
motivation Definition 5.3 from [BP1].

Let P1 and P2 be two polyhedra. We say f : P1 → P2 is a pseudo-combinatorial
map if f maps vertex to vertex and for each face G ⊆ P2, f

−1(G) is a union of faces
in P1.

Remark 3.3. If f : P1 → P2 is a combinatorial map, then it is a pseudo-combina-
torial map.

Definition 3.4. For 1 � i � 2, let Tni be the ni-torus that acts on the quasitoric
manifold Mi with orbit space Pi. A generalized equivariant map of quasitoric mani-
folds is a pair of maps (φ, ψ) where φ : M1 → M2 and ψ : Tn1 → Tn2 such that the
following diagram commutes:

Tn1 ×M1
ψ×φ

∗

Tn2 ×M2

∗

M1
φ

M2

where the vertical maps are the actions of the corresponding tori and the map φ
induces a pseudo-combinatorial map φ∗ : P1 → P2.

Notation 3.5. If there is no possibility confusion, then we say that the generalized
equivariant map (φ, ψ) is a map from M1 to M2.
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Remark 3.6. In Definition 3.4 we do not assume that such a map induces a map of
the underlying polyhedra. Namely, the induced map φ∗ does not necessarily preserve
the dimension of a face.

Proposition 3.7. Suppose, for i = 1, 2,Mi is a quasitoric manifold with orbit space
Pi and (φ, ψ) is a generalized equivariant map from M1 to M2. Then the map φ is
well defined.

Proof. Let m1 ∈ M1 and write its orbit as [m1]. Define φ([m1]) = [φ(m1)]. We only
need to prove that φ is well defined. Suppose x ∈ [m1], then there exists t′ ∈ Tn1 ,m′ ∈
M1 such that x = t′ ∗m′. By the commutativity of the diagram we have φ(x) =
φ(t′ ∗m′) = ψ(t′) ∗ φ(m′) ∈ [φ(m1)]. Hence, φ is well defined.

An important case arises when n1 = n2, P1 = P2 with φ : M1 → M2 is a homeomor-
phism such that induced map on the orbit spaces is the identity, then the quasitoric
manifolds are equivalent [DJ]. In [BP1, p. 65, Definition 5.13], the notion of ψ equiv-
ariant diffeomorphism of quasitoric manifolds with the same orbit space is described.
In both of these formulations ψ ∈ Aut(qT ). In this case there is a commutative dia-
gram where T = Tni .

T ×M1
ψ×φ

∗

T ×M2

∗

M1
φ

∗

M2

∗

P1 P2

Definition 3.8. The category G is the category where the objects are quasitoric
manifolds and maps are generalized equivariant quasitoric maps.

Maps in the category G are those described in Definition 3.4 and they are equiv-
ariant maps that send a fixed point to a fixed point without necessarily descending
to a map of polyhedra. The maps in the category G are weaker than the maps in the
category of quasitoric manifolds.

Given a set X endowed with an action of a group G, the Borel Construction can
be used to replace the orbit space X/G, by a space EG×G X which is homotopy
equivalent to the orbit if the action is free, the latter fitting into a fibration. In the
case of a quasitoric manifold M , we have the following:

Definition 3.9. Let M be a quasitoric manifold. The Borel space BTM is the iden-
tification space

ET ×M/ ∼= ET ×T M,

where the equivalence relation is defined by: (e, x) ∼ (eg, g−1x) for any e ∈ ET and
x ∈ M , g ∈ T .

Notational convention: Sometimes the notation BTP appears in the literature
instead of BTM . The orbit space of the T -action on a quasitoric manifold M can be
identified with P , this should give some insight into the notational convention. When
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the context is clear, the notation BTP will be used instead of BTM . The following
fibration is well known [BP1, DJ]:

M(λ) −−−−→ BTP −−−−→ BT.

The face ring is an invariant that will be useful in the sections that follow. Recall,

Definition 3.10. Let F1, . . . , Fm be the facets of P . For a fixed commutative ring R
with unit we have

R(P ) = R[v1, . . . , vm]/(vi1 · · · vik |Fi1 ∩ · · · ∩ Fik = ∅),

where |vi| = 2 are indexed by the facets and the ideal I is generated by square free
monomials coming from trivial intersection of facets.

For example, if P = ∂Δ2, then Z(P ) = Z[v1, v2, v3]/(v1v2v3). Sometimes we refer
to R(P ) as the Stanley–Reisner algebra and I the Stanley–Reisner ideal.

Theorem 3.11. Let P be a simple convex polytope, then H∗(BTP ) ∼= Z(P ).

The proof can be found in [DJ]. An easy application of the Atiyah–Hirzebruch
spectral sequence gives the following generalization of Theorem 3.11. Namely, for P
as above, H∗(BTP ;R) ∼= R(P ). Additional details can be found in [A].

Before we proceed we give a result that will be used in §4.

Lemma 3.12. Let P be a fixed simple convex polytope. For i = 1, 2, let MFi
be

quasitoric manifolds over the faces Fi of P . Further assume MF1
∩MF2

	= ∅, then
MF1

∩MF2
is a quasitoric manifold over the smallest face of P contained within F1

and F2.

Proof. Recall, each quasitoric manifold Mi = (T ki × Fi)/ ∼ is a union of sets of the
form (T ki × Uv)/ ∼, the latter homeomorphic to a copy of Cr for some r. The sets
Uv are those described in [BP1]. On the intersection form the union of those sets to
give U = {Uv′} which is an atlas that comes from the smallest face contained within
both faces. Form the quotient (T r′ × U)/ ∼ where r′ is the dimension of the smallest
face. The corresponding quasitoric manifold is MF1

∩MF2
.

4. Higher derived functors

We assume that R is a commutative ring with unit and that all (graded) R-algebras
are connected with unit η : R → A. It is further assumed that all algebras are free

R-modules. Let A = Coker(R
η
→ A). The rank of an R-module M will be denoted by

rk(M). Recall that the R-face ring of P is written as: R(P ). For the convenience of
the reader we list here material from [AL, AL2, AL3, AL4] on certain left higher
derived functors that are used in the sequel. Additional information can be found in
those papers.

Definition 4.1. Let A be an R-algebra. The module of indecomposables of A is
defined and denoted by

Q(A) = A/A
2
.
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Q defines a non-additive functor from the category of (graded) R-algebras to the
category of (graded) R-modules.

Let F be the free, commutative algebra functor with unit over R. It is a func-
tor from the category of free R-modules to the category of R-algebras and comes
equipped with a natural transformation s : 1 → F . There is a diagram that describes
the universal property of F . If M is a free R-module and A is an R-algebra with an
R-module map f : M → A, then there is a unique R-algebra map f̄ : F (M) → A such
that the following diagram commutes:

M
s

f

F (M)

f̄

A

(4.1)

If M = J(A) where J is the forgetful functor from the category of R-algebras to
the category of R-modules then we have f = id, s−1 = s and d0 = id, then we obtain
an augmented simplicial object over the category of R-algebras (to simplify notation
we will omit the functor J from now on): F•(A)

· · ·F 3(A)

d0

d1

d2

F 2(A)

s0

s1

d0

d1

F (A)

s0

d0

A.

The di = Fn((d0)Fn−i(A)) : F
n(A) → Fn−1(A) for 0 � i � n and for 0 � i � n we

have si = Fn((s−1)Fn−i(A)) : F
n(A) → Fn(A). Applying the functor Q we obtain an

un-augmented chain complex, chu(QF•(A)) with δn =
∑n

i=0(−1)iQ(di).

Definition 4.2.

LiQ(A;R) = Hi(chu(QF•(A))).

If the ring R is fixed, then we simply write LiQ(A).

Notation 4.3. From this point forward, when the context is clear, we abbreviate
LiQ(−;R) by LiQ(−).

The basic properties of these functors are summarized below:

Theorem 4.4. For any R-algebras A, B and C,

i) L0Q(A) = QA

ii) If A is a free algebra, then LiQ(A) = 0 for i > 0

iii) LiQ(A⊗R B) ∼= LiQ(A)⊕ LiQ(B)

The interested reader can refer to §3 of [AL3] for proofs and calculations.

Definition 4.5. Let A = R[v1, . . . , vm]/(r1, . . . , rl) where ri are square-free mono-
mials. If ri = vi1 · · · vik then let I(ri) = {i1, . . . , ik}. When reference is made to the
intersection of ri and rj we mean I(ri) ∩ I(rj). Define I = I(ri) ∪ I(rj) along with
the products x̂i =

∏
s∈(I\Ii)

vs and x̂j =
∏

s′∈(I\Ij)
vs′ . We observe, for i 	= j, x̂i and

x̂j are square-free monomials in A. With this notation, a relation among relations in
A is a polynomial of the form: ρij = rix̂i − rj x̂j = 0.
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Theorem 4.6. Let A = R[v1, . . . , vm]/(r1, . . . , rn) then:

i) L0Q(A) = spanR{v1, . . . , vm}

ii) L1Q(A) = spanR{r1, . . . , rm}

iii) L2Q(A) = spanR{ρij} where ρij are relations among relations of minimal degree
with non-empty intersection.

Proof. See [AL3] for details.

Remark 4.7. Referring to item (iii) in Theorem 4.6 the relations among relations
are built upon minimal relations. By this, it is intended to mean those relations that
are not divisible by any relation of smaller degree.

Let P be an m-gon, then the dual one-dimensional simplicial complex shall be
written Km.

Corollary 4.8. For m � 6, the rank of L2(Q(R(Km))) is listed in the following table:

m 3 4 5 6
rk(L2Q(R(Km))) 0 0 5 16

Proof. The result follows from Theorem A.2 in the appendix.

The next result was proven in [AL3, AL4] and it concerns the relations between
the isomorphism of the higher derived functors described by Definition 4.2 and certain
coefficient rings.

Theorem 4.9. For any complex orientable theory E with coefficients E∗ we have

LiQE∗(M(λ);E∗) ∼= LiQE∗(BTP ;E∗)

for i � 1.

5. A new topology for M

Let P be an n-dimensional simple convex polytope with vertex set V (P ) and set of

faces F̂ . If π : M → P is a quasitoric manifold and F ∈ F̂ , thenMF is a sub-quasitoric
manifold of M [DJ]. We will now prove that the set B = {MF |F ∈ F̂} forms a basis
for a topology on M which, in the sequel, will be written TM .

Lemma 5.1. B forms a basis for a topology on M .

Proof. It is clear that M is the union of sets in B. Consider two quasitoric manifolds
MFi

and MFj
corresponding to two faces, Fi and Fj of P . If their intersection is

empty, then the basis condition is satisfied trivially. Suppose the intersection is not
trivial and assume further that x ∈ MFi

∩MFj
. By Lemma 3.12 the face coming from

the intersection is the smallest that contains the point x that is a sub-face of both
Fi and Fj . The corresponding quasitoric manifold is a submanifold of MFi

and MFj
,

hence is in the intersection. This completes the proof.
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Remark 5.2. We note that for a given quasitoric manifold M there are two topolo-
gies. The first comes from the definition and the second is the one whose open sets
belong to TM . In the latter case, the basic open sets are the manifolds themselves.
We do not assert any compatibility of the topologies at this stage. Furthermore, the
open sets in the topology coming from elements of B do not necessarily preserve the
quasitoric structure. Namely, we are not implying the action behaves well, nor are we
implying any map is a map of quasitoric manifolds.

6. Presheaves

Recall, R is a commutative ring with unit and the basis elements in B are quasitoric
sub-manifolds MF that arise as the pre-images of the faces F ⊆ P under the map
π : M → P .

For a given fixed quasitoric manifold M , the topology TM gives rise to a category
in the usual way. The objects are the open sets and the maps are the continuous
inclusions. Rather than introduce additional notation, we simply refer to this category
as TM .

Definition 6.1. We define a functor F from TM to the category of R-algebras defined
by

F(U ;R) = F(U) =

{
R U /∈ B or U = M,

H∗(U ;R) U ∈ B.

It is readily verified that F is a functor.

Note 6.2. A continuous map f : M1 → M2 where Mi is given the topologies TMi

induces a map f−1 : TM2
→ TM1

. Since cohomology is contravariant, this in turn, will
give an induced map f−1

∗ : F1 → F2 where Fi is the presheaf over TMi
for i = 1, 2.

Recall, for p ∈ V (P ), F̂(p) is the collection of facets in P whose intersection is
p. We can now define a local version of face ring that depends on the point. For
p ∈ V (P ), the p-local face ring (or p-local Stanley–Reisner ring) is:

R(p) =
⊗

F∈F̂(p)

R(F ).

Definition 6.3. Given a quasitoricmanifoldM overP and a base point p∈π−1(V (P )),
we call (M,p) a quasitoric pair. Let Q be the category whose objects are quasitoric
pairs and the maps are continuous, base-point preserving with respect to TM .

Note 6.4. There is a clear relationship between the categories G and Q (see §3).
Suppose πi : Mi → Pi are quasitoric manifolds for i = 1, 2. Then by Proposition 3.7 we
have a map φ∗ : P1 → P2. This implies φ : (M1, TM1

) → (M2, TM2
) is continuous and

φ(π−1
1 (V (P1))) ⊆ π−1

2 (V (P2)). Then for any p ∈ π−1
1 (V (P1)) the map φ : (M1, p) →

(M2, φ(p)) is a map in Q.

Two quasitoric pairs (M,p) and (N, q) are equivalent in the category Q if there is
a base-point preserving homeomorphism in the topology defined by Q.
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Remark 6.5. Equivalence in G implies equivalence in Q and we note that in the
category Q, the preimage of a basic set MF , where F is a face, could be the union
of submanifolds. On the level of polyhedra this would imply the image of a union of
faces is a face. This is not a map of polytopes. Therefore, an equivalence in Q does
not imply the manifolds are diffeomorphic as manifolds with corners.

Notation 6.6. For p ∈ π−1(V (P )) we let

Bp = {U ∈ B | p ∈ U}.

Definition 6.7. Let (M,p) be an object in the category Q. Then for j � 0, the fixed
point higher derived functors of the indecomposable functor of (M,p) are defined as
follows:

LjQ(M,p) = Lj+1Q(
⊗
U∈Bp

F(U)) ∼=
⊕
U∈Bp

Lj+1Q(F(U)).

Remark 6.8. Observe that the shift in dimension ensures that we have an isomor-
phism between the left higher derived functors of the indecomposable functor of the
Stanley–Reisner ring and the quasitoric manifold as described in Theorem 4.9.

Proposition 6.9. For any object (M,p) in Q and j � 0, LjQ(−) is a covariant
functor from Q to the category of graded R-modules.

Proof. Let (M1, p1) and (M2, p2) be quasitoric pairs and f : (M1, p1) → (M2, p2) a
map in Q. This induces a map f−1 : TM2

→ TM1
that takes elements of Bp2

to Bp1
.

The result follows from Note 6.2.

In what follows, the exact relation between the direct sum of the cohomology ring
of certain submanifolds and the p-local face rings is clarified.

Theorem 6.10. Let (M,p) be a quasitoric pair. Then for j � 0

LjQ(M,p) ∼= Lj+1Q(R(p)) ∼=
⊕

F∈F̂(p)

Lj+1Q(R(F )).

Proof. For each F ∈ F̂ let MF be the corresponding quasitoric manifold and we note
that such manifolds are basis elements in the topology TM . We have

Lj+1Q(R(p)) = Lj+1Q

⎛⎝ ⊗
F∈F̂(p)

R(F )

⎞⎠ by Definition

∼=
⊕

F∈F̂(p)

Lj+1Q(R(F )) by (iii) of Theorem 4.4

∼=
⊕

F∈F̂(p)

Lj+1Q(H∗(MF ;R)) by Theorem 4.9.

By Definition 6.1 and the observation above, F(U ;R) is the cohomology ring of MF

and so
⊕

F∈F̂(p) Lj+1Q(H∗(MF ;R)) is precisely
⊕

U∈Bp
Lj+1Q(F(U)) and the result

follows.
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In regards to Definition 6.7 and Theorem 6.10, the case of interest will occur
when j = 1 because the isomorphism of these higher derived functors holds in this
range and specific calculations were made for the second higher derived functor of
the indecomposable functor [AL3, AL4] cf., Theorems 4.6 and 4.9.

7. Application

In this section we consider the polyhedra that result from applying a double vertex
truncation as described in [BEMPP] and [BP1]. Pictures of each of these three
dimensional simple convex polytopes are as follows:

F6

F7

F1

F4

F2 F5

F3

6

10 8

2 5

43

1

9 7

P1

F6

F7

F1

F4

F2 F5

F3

1

6

8

9

2 5

43

10 7

P2

F6

F7

F1

F4

F2 F5

F3

1

6

2 5

3 4

810

9 7

P3

For the sake of brevity we write P1 = 624332 = P3 and P2 = 61524232 taking note
that the powers count the number of m-gons. For instance, 62 means two 6-gons.

These polytopes serve as the orbit spaces for the quasitoric manifolds M1,M2 and
M3; all of which are diffeomorphic to #4CP

3. We also note that there is no face
preserving map from either P1 or P3 to P2 and furthermore, these polytopes are
not combinatorially equivalent. A simple application of (iii) of Theorem 4.6 gives the
following:

Proposition 7.1. Let P be any one of the Pi for i = 1, 2, 3 obtained by a double
vertex truncation on the prism, then LjQ(R(P )) are R-free modules and

LjQ(R(P )) =

{
spanR{a1, . . . , a6} | |ak| = 4}, j = 1,

spanR{b1, . . . , b16} | |bk| = 6}, j = 2.
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Observe that these higher derived functors cannot detect, at least by the cal-
culations known to the authors, the difference in these polyhedra when considered
individually. The reason for this is that the trivial intersections of the facets are not
fine enough, in this context, to see the differences. However, the p-local face ring (§6)
can detect the more subtle differences as seen by the intersections along the vertices.
Furthermore, the presheaf theoretic approach allows for us to bypass the difficulty
imposed by the lack of a map of quasitoric manifolds that descends to a map of orbit
spaces.

Theorem 7.2. The quasitoric pairs (M1, p1) and (M2, p2) are not equivalent in Q
for any p1 ∈ π−1

1 (V (P1)) and p2 ∈ π−1
2 (V (P2)).

Proof. According to the second isomorphism of Theorem 6.10, the rank ofL1Q(Mi, pi)

is the sum of the ranks of L2Q(R(F )) where F ∈ F̂(pi). Any facet of P1 is either a 3, 4
or 6-gon and similarly, any facet of P2 is either a 3, 4, 5 or 6-gon. From this and the
table of Corollary 4.8 we determine that rk(L1Q(M1, p1)) is even for all p1. Referring
to Tables 1 and 2 in the second appendix we see that rk(L1Q(M2, 3)) = 21.

Appendix A. Formulas for the ranks of the first and second

derived functors of R(Km)

Theorem A.1. Let Km be the simplicial complex dual to an m-gon. Then for m � 4
we have

rk(L1Q(R(Km))) =
m(m− 3)

2
.

Proof. By part (ii) of Theorem 4.6 the rank of the first derived functor is the R-span
of the relations of the face ring ofKm. Since the relations are linearly independent, the
rank is the number of relations. This calculation is equivalent to finding the number
of non-existing edges between pairs of vertices in the m-gon. Given m vertices, there
are exactly

(
m
2

)
ways to form a pair of vertices and there are m edges, so we have:

rk(L1Q(R(Km))) =

(
m

2

)
−m

=
m(m− 1)

2
−m

=
m

2
[m− 1− 2]

=
m(m− 3)

2
.

Before dealing with the second derived functor we introduce a mechanism to assist
with counting relations among relations. An angle in the m-gon is the union of two
non-existent edges with a common vertex. Namely, if {a, b} and {b, c} are non-edges
in the m-gon, then the angle would be {a, b} ∪ {b, c}. It is not asserted that this union
is a simplex; it is not. Angles can be visualized; below is the angle {1, 3} ∪ {3, 5} in
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the 5-gon:

1

2

34

5

More is true, angles encode relations among relations. For the 5-gon, as above,
there is a relation among relations: (x1x3)x5 − (x3x5)x1 and this is equivalent to
the angle described above with additional structure. Namely, by completing an angle
into a triangle we mean filling in the missing edge so that the vertices that give
the angle are now the vertices of the boundary of a two simplex. In the case that
an angle is completed in this way, one obtains a triangle. More generally, suppose
there are two intersecting relations in the m-gon, r1 = xixj and r2 = xjxk, then
the corresponding relation among relations is ρ = (xixj)xk − (xjxk)xi. Completing
the angle {i, j} ∪ {j, k} gives a corresponding triangle in the m-gon which we label
as T (ρ).

Some vocabulary will be useful in the sequel. For k > 1, let R(k) denote the set of
higher order relations for the m-gon. For instance, R(2) is the set of relations among
relations, whereasR(3) would be the set of relations among relations among relations.
With this in mind, suppose R(2) = {ρ1, . . . , ρl}, then by following the construction
above there is a set of triangles {T (ρ1), . . . , T (ρl)} obtained by completing the angles.

In this context, completing an angle into a triangle is equivalent to analyzing the
linear dependence among the elements of R(2). For example, the following triangle
in the 6-gon

1 2

3

45

6

encodes the linear dependence of the ρi in R(2):

ρ1 = (x1x3)x5 − (x3x5)x1,

ρ2 = (x1x3)x5 − (x1x5)x3,

ρ3 = (x1x5)x3 − (x3x5)x1.

A simple verification shows that ρ3 = ρ1 − ρ2.
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We now compute the rank of the second derived functor.

Theorem A.2.

rk(L2Q(R(Km))) =

⎧⎨⎩0 m = 3,
m(m− 2)(m− 4)

3
m > 3.

Proof. For m = 3 there are no relations among relations; hence, the second derive
functor is trivial. For m = 4 there is a relation among relations but it comes from two
relations that have trivial intersection; hence the second derived functor is zero by
Theorem 4.6. We now focus on the cases m > 4. By the discussion above it will suffice
to first count all the relations among relations which is equivalent to enumerating all
the angles in the m-gon, then we subtract out all of the linearly dependent ones. This
depends on determining and counting the triads. More generally, we must find all
sequences j1, j2, j3 that satisfy the conditions:

i) 1 � j2 � m

ii) 1 � j1 < j3 � m

iii) j1 	= j2 + 1, j2 − 1, j3 	= j2 + 1, j2 − 1.

Fix j2, then we have to choose two elements, j1 and j3 satisfying conditions (i) and
(ii) above, hence there are m− 3 such vertices. The total number of relations among
relations is given by:

m

(
m− 3

2

)
= m

[
(m− 3)(m− 4)

2

]
=

m(m− 3)(m− 4)

2
. (A.1)

By the discussion above, determining and counting the triads is equivalent to
finding all sequences j1, j2, j3 where:

i) 1 � j1 < j2 < j3 � m

ii) j1 + 1 < j2, j2 + 1 < j3

iii) if j1 = 1 then j3 	= m.

For a fixed j1 = j with 2 � j � m− 4 we can count the number of unions of two
non-existent edges using the following table:

j2 j + 2 j + 3 j + 4 · · · m− 3 m− 2
j3 j + 4 · · ·

j + 5 j + 5 · · ·
j + 6 j + 6 j + 6 · · ·
...

...
...

...
m− 1 m− 1 m− 1 · · · m− 1
m m m · · · m m

totals m− j − 3 m− j − 4 m− j − 5 · · · 2 1
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Summing the totals and using the formula for the sum of squares we have:

m−j−3∑
i=1

(m− j − 2− i) =

m−j−3∑
i=1

(m− j − 2)−

m−j−3∑
i=1

i

= (m− j − 3)(m− j − 2)−
1

2
(m− j − 3)(m− j − 2)

=
1

2
(m− j − 3)(m− j − 2).

We add for 2 � j � m− 4

m−4∑
j=2

1

2
(m− j − 3)(m− j − 2) =

m−5∑
j=1

1

2
(m− j − 4)(m− j − 3)

=
1

2

m−5∑
j=1

(m2 − 7m+ 12) +
1

2

m−5∑
j=1

j2 +
1

2
(7− 2m)

m−5∑
j=1

j

=
1

2
(m− 5)(m2 − 7m+ 12) +

1

2

[
1

6
(m− 5)(m− 4)(2m− 9)

]
+ (7− 2m)

[
1

4
(m− 5)(n− 4)

]
=

1

2
(m− 5)(m− 4)(m− 3) +

1

12
(m− 5)(m− 4)(2m− 9)

+
1

4
(7− 2m)(m− 5)(m− 4)

=
1

12
(m− 5)(m− 4) [6(m− 3) + (2m− 9) + 3(7− 2m)]

=
1

12
(m− 5)(m− 4)(2m− 6)

=
1

6
(m− 5)(m− 4)(m− 3). (A.2)

In the case of j1 = 1 we have the following table:

j2 3 4 5 · · · m− 4 m− 3
j3 5 · · ·

6 6 · · ·
7 7 7 · · ·
...

...
...

...
m− 2 m− 2 m− 2 · · · m− 2
m− 1 m− 1 m− 1 · · · m− 1 m− 1

totals m− 5 m− 6 m− 7 · · · 2 1
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Summing the totals we have:

m−5∑
i=1

(m− 4− i) =

m−5∑
i=1

(m− 4)−
m−5∑
i=1

i

= (m− 4)(m− 5)−
1

2
(m− 5)(m− 4)

=
1

2
(m− 5)(m− 4). (A.3)

Adding formulas (A.2) and (A.3) we have

1

6
(m− 5)(m− 4)(m− 3) +

1

2
(m− 5)(m− 4) =

1

6
(m− 5)(m− 4)[(m− 3) + 3]

=
1

6
m(m− 4)(m− 5). (A.4)

Thus the number of generators of L2Q(R(Km)) is given by (A.1)–(A.4) and we
obtain:

rk(L2Q(R(Km))) =
1

2
m(m− 3)(m− 4)−

1

6
m(m− 4)(m− 5)

=
1

6
m(m− 4) [3(m− 3)− (m− 5)]

=
1

3
m(m− 2)(m− 4).

Appendix B. Ranks of the p-local face rings of M1 and M2

For clarification we list the faces of each polytope that could contribute to the
rank of the second derived functor. We recall that 0-faces, 1-faces and 2-faces do not
contribute any generators to the rank of the second derived functor (see Theorem A.2).

Table 1: Classification of the facets of P1 and P2.

P1 P2

3-gon F4, F7 F4, F6

4-gon F1, F3, F6 F3, F7

5-gon F1, F5

6-gon F2, F5 F2

Table 2 lists all the vertices and the facets that contain them for P1 and P2 pictured
in §7. Columns 3 and 5 are the ranks of the second derived functors for each facet
that contains each vertex listed in column 1. Rows 3, 5, 7, 9, 11, 13, 15, 17, 19 and
21 are the ranks of the p-local face rings of M1 and M2 at the given vertex (see
Theorem 6.10).
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Table 2: Ranks of the p-local face rings for vertices of M1 and M2.

P1 P2

p F̂(p) rk(L2Q(R(F ))) F̂(p) rk(L2Q(R(F )))

1
F2 16 F2 16
F4 0 F4 0
F5 16 F5 5

rk(L1Q(M1, 1)) 32 rk(L1Q(M1, 1)) 21

2
F2 16 F2 16
F3 0 F3 5
F4 0 F4 0

rk(L1Q(M1, 2)) 16 rk(L1Q(M1, 2)) 21

3
F1 0 F1 5
F2 16 F2 16
F3 0 F3 0

rk(L1Q(M1, 3)) 16 rk(L1Q(M1, 21)) 21

4
F1 0 F1 5
F3 0 F3 0
F5 16 F5 5

rk(L1Q(M1, 4)) 16 rk(L1Q(M1, 4)) 10

5
F3 0 F3 0
F4 0 F4 0
F5 16 F5 5

rk(L1Q(M1, 5)) 16 rk(L1Q(M1, 5)) 5

6
F2 16 F2 16
F5 16 F5 5
F7 0 F7 0

rk(L1Q(M1, 6)) 32 rk(L1Q(M1, 6)) 21

7
F5 16 F1 5
F6 0 F5 5
F7 0 F7 0

rk(L1Q(M1, 7)) 16 rk(L1Q(M1, 7)) 10

8
F1 0 F2 16
F5 16 F6 0
F6 0 F7 0

rk(L1Q(M1, 8)) 16 rk(L1Q(M1, 8)) 16

9
F2 16 F1 5
F6 0 F6 0
F7 0 F7 0

rk(L1Q(M1, 9)) 16 rk(L1Q(M1, 9)) 5

10
F1 0 F1 5
F2 16 F2 16
F6 0 F6 0

rk(L1Q(M1, 10)) 16 rk(L1Q(M1, 10)) 21
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