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INTEGRAL COHOMOLOGY OF CONFIGURATION SPACES

OF THE SPHERE

CHRISTOPH SCHIESSL

(communicated by Nathalie Wahl)

Abstract
We compute the cohomology of the unordered configuration spaces

of the sphere S2 with integral and with Z/pZ-coefficients using a cell
complex due to Fox, Neuwirth, Fuks, Vainshtein and Napolitano.
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1. Introduction

For any topological space X, let

Fn(X) = {(x1, . . . , xn) ∈ Xn|xi 6= xj}

be the ordered configuration space of n distinct points in X. The symmetric group
Sn acts on Fn(X) by permuting the points and the quotient

Cn(X) = Fn(X)/Sn
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is the unordered configuration space.
Despite their simple definition, getting a grasp of their topology is hard. The

cohomology of configuration spaces has been widely studied (e.g., [8, 27, 22, 1,
10, 24, 9]) but only few cases have been computed explicitly. Usually this is only
possible if the space X is very simple or one restricts to rational or mod p coefficients.
Aside from the Euclidean case due to Arnold [2], vanishingly few complete integral
homology calculations are available.

On the other hand, the cohomology of many configuration spaces satisfies inter-
esting properties, for example with rational coefficients homological stability [7] or
eventual periodicity with mod p coefficients [17, 5, 16].

In this paper, we will completely compute H∗(Cn(S
2),Z/pZ) and H∗(Cn(S

2),Z).

Theorem 1.1. Let
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Then

dimHr(Cn(S
2),Z/pZ) = Bp(n, r) +Bp(n− 1, r − 2)−B′

p(n, r)−B′
p(n, r − 1).

Corollary 1.2. We have

dimHr(Cn(S
2),Z/2Z) = B2(n, r) +B2(n− 1, r − 2).

Our main tool is a cellular decomposition of Cn(S
2) due to Napolitano [18]. It is

an extension of the Fox-Neuwirth cell structure for Cn(R
2) [13] used by Fuks [14]

and Vainshtein [25] to compute the mod p cohomology of Cn(R
2).

Theorem 1.1 could also be deduced from [21, Th. 18.3]. However, our approach is
more elementary and allows to determine the integral cohomology:

Theorem 1.3. The first cohomology groups Hr(Cn(S2),Z) are

H0(Cn(S2),Z) = Z, H1(Cn(S2),Z) = 0,

H2(Cn(S2),Z) = Z/(2n− 2)Z, H3(Cn(S2),Z) =











0 n = 1, 2,

Z n = 3,

Z× Z/2Z n > 4.

For r > 4, the cohomology groups Hr(Cn(S
2),Z) are finite and contain no elements

of order p2.

Hence we can reconstruct all integral cohomology groups by Theorem 1.1 and the
universal coefficient Theorem. Previously, the cohomology of Cn(S

2) was known with
rational coefficients [23, 19, 21], for low degree cases [23, 18], for mod 2 coefficients
[4] and for mod p coefficients [21]. The description of Hr(Cn(S

2),Z) seems to be new.
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We will first explain the computations of the cohomology of Cn(C) with Z/pZ-
coefficients by Fuks [14] and Vainshtein [25] and discuss the Fox-Neuwirth cell struc-
ture. Afterwards, we present the extension of this cell complex due to Napolitano
[18] used to calculate H∗(Cn(S

2),Z) for n 6 9. The main idea of this paper is the
construction of a very specific chain homotopy that simplifies Napolitano’s complex.

1.1. Conventions
We write

Part(n, s) = { [n1, . . . , ns] ∈ Zq
>0 |n1 + · · ·+ ns = n}

for partitions of n into s positive summands, for example

Part(5, 3) = {[3, 1, 1], [1, 3, 1], [1, 1, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2] }.

We call s the length and n the size of the partition.
The residue ring Z/mZ is from now on abbreviated by Zm. For any abelian group G

and prime p, we write GTp
= {g ∈ G| png = 0 for some n} for the p-torsion subgroup.

Acknowledgments

I want to thank Frederick Cohen, Emanuele Delucchi, Emmanuel Kowalski, Paolo
Salvatore, Johannes Schmitt, Junliang Shen for very helpful discussions and especially
Rahul Pandharipande for his invaluable support.

2. Configuration spaces of the plane

2.1. Cellular decomposition of Cn(C)
+

The following construction comes from [14] and [25]. The projection

C → R, x+ iy 7→ x

to the real line maps any configuration in Cn(C) to a finite sets of points in R.
Counting the number of preimages of each of these points, we get a partition of
n. Here we use that the one-dimensional line is ordered. The union of all points in
Cn(C) mapping to the same partition n = n1 + · · ·+ ns and the point ∞ is an n+ s-
dimensional cell in the one point compactification Cn(C)

+. We denote this cell by
[n1, . . . , ns]. All such cells together with the point ∞ are a cellular decomposition of
Cn(C)

+. Using Poincaré-Lefschetz duality for Borel-Moore homology [6], [26, Chapter
13.2]

Hi(Cn(C)) = H̃2n−i(Cn(C)
+),

this cell complex can be used to compute the cohomology of Cn(C).
The (co)-chains of the resulting (cochain)-complex A•

n = (Ar
n) with the property

H∗(Cn(C),Z) = H∗(A•
n)

are the free Z-modules

Ar
n = ZPart(n, n− r).

The basis elements are the partitions [n1, . . . , ns] ∈ Part(n, s) with s = n− r. The
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boundary maps δ : Ar
n → Ar+1

n are

δ[n1, . . . , ns] =

s−1
∑

l=1

(−1)l−1P (nl, nl+1)[n1, . . . , nl−1, nl + nl+1, nl+2, . . . , ns],

with coefficients

P (x, y) =







0 if x ≡ y ≡ 1 mod 2,
(

⌊x/2 + y/2⌋

⌊x/2⌋

)

otherwise.

Intuitively, in the boundary of a cell, the points lying on two neighbouring vertical
lines come together onto the same vertical line. The coefficient P (x, y) gives a signed
count of the different ways to combine two sets of x and y points on a line.

2.2. Subcomplexes of A•
n

As P (x, y) = 0 for odd x and y, the complex A•
n can be written as a direct sum

A•
n = A•

n,0 ⊕ · · · ⊕A•
n,n

of subcomplexes A•
n,t generated by partitions with t odd entries.

Take any I ⊂ {1, . . . , s+ t} with t elements, say I = {i1, . . . , it} where i1 < · · · <
it. Then we insert 1′s at the positions i1 to it with alternating signs:

InsI [a1, . . . , as] = (−1)
∑

j
ij [a1, . . . , ai1−1, 1, ai1 , . . . , ai2−2, 1, ai2−1, . . . ].

The map

Inst = (−1)st
∑

I⊂{1,...,s+t},|I|=t

InsI

is actually a chain map

Inst : A
•
n,0 → A•

n+t,t

that induces isomorphisms [25, Prop. 1]

Hr(A•
n−t,0) ≃ Hr(A•

n,t).

Hence we get

H∗(A•
n) = H∗(A•

n,0)⊕H∗(An−1,0)⊕ · · · ⊕H∗(A•
0,0).

As Ar
n,0 = 0 if n > 2r, we can immediately deduce that the cohomology groups sta-

bilize

Hr(A•
n) = Hr(A•

n+1)

if n > 2r. Later, we will use the notation

Hr(C∞(C)) = Hr(Cn(C))

for any n > 2r.

Example 2.1. The cohomology group H0(Cn(C),Z) = Z is generated by the class of

(−1)n(n−1)/2[1, . . . , 1] = Insn([ ]).

For n > 2, the cohomology group H1(Cn(C),Z) = Z is generated by the class of

[2, 1, . . . , 1]− [1, 2, 1, . . . , 1] + · · · = (−1)(n−2)(n−3)/2+n Insn−2[2].
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2.3. Explicit basis of H∗(A•
n,0,Zp)

We will now present the description of the group Hr(A•
n,0,Zp) by Vainshtein and

work out some of the details and proofs omitted in [25].

Remark 2.2. In particular, the explicit formula for the base elements seems to be
stated in a misleading way in [25] (definition of morphism Φ, top of page 136).
There, the operator Perm is defined via transpositions and does not create a cycle
even for partitions of length 3, because different permutations show up with different
coefficients. Our definition of Perm seems to be the intended one.

Let [n1, . . . , ns] be any partition of n. Then the alternating sum of its permutations
∑

σ∈Ss

sign(σ)[nσ(1), . . . , nσ(s)]

is a cycle in A•
n. With Zp-coefficients, the following subset of permutations

Perm[n1, . . . , ns] =
∑

σ∈Ss where σ(i)<σ(j)
if i<j and ni=nj or
if i<j and P (ni,nj)=0 mod p

sign(σ)[nσ(1), . . . , nσ(s)]

will be used in the next paragraph to create special cycles in A•
n ⊗ Zp.

Take integers 1 6 i1 6 · · · 6 ik and 0 6 j1 < · · · < jl such that

t = n− 2(pi1 + · · ·+ pik + pj1 + · · ·+ pjl) > 0

and let

r = (2pi1 − 2) + · · ·+ (2pik − 2) + (2pj1 − 1) + · · ·+ (2pjl − 1).

Then we give the chain

Inst Perm[2pi1−1, 2pi1−1(p− 1), ..., 2pik−1, 2pik−1(p− 1), 2pj1 , ..., 2pjl ]

the name xi1 · · ·xikyj1 · · · yjl . It is a cycle in Ar
n,t ⊗ Zp (but not in A•

n if k > 0).
Vainshtein showed that all such cycles form a basis ofHr(A•

n,Zp). We call the quantity
n− t the size of the chain xi1 · · ·xikyj1 · · · yjl .

Theorem 2.3 ([25]). The group H∗(C∞,Zp) is the free graded commutative algebra
over Zp with generators

xi for i > 1 deg(xi) = 2pi − 2 size(xi) = 2pi,
yi for i > 0 deg(yi) = 2pi − 1 size(yi) = 2pi.

There is a surjection H∗(C∞(C),Zp) → H∗(Cn(C),Zp) whose kernel is generated by
the monomials xi1 · · ·xikyj1 · · · yjl such that size(xi1 · · ·xikyj1 · · · yjl) > n.

A equivalent formula was deduced by Cohen-Lada-May [8, Appendix to III].

Remark 2.4. For p = 2, the group H∗(C∞,Z2) can be identified with a polynomial
algebra with generators

zi for i > 1, deg(zi) = 2i − 1

via xi 7→ z2i and yi 7→ zi−1. This is the form stated in [8].



288 CHRISTOPH SCHIESSL

Corollary 2.5. Define

Bp(n, r) =

∣

∣

∣

∣

{

1 6 a1 6 a2 6 · · · 6 ag
0 6 b1 < b2 < · · · < bh

∣

∣
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j p
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Hence we have

dimHr(Cn(C),Zp) = Bp(n, r).

Remark 2.6. Paolo Salvatore (private communication) gave this representation as a
generating series:

∑

n,r>0

Bp(n, r)w
rzn =

1 + wz2

1− z

∏

i>0

1 + w2pi−1z2p
i

1− w2pi−2z2pi .

Remark 2.7. The notation suggests a product structure on H∗(C∞(C),Zp). It comes
from the map

Cn(C)× Cm(C) → Cn+m(C)

by adding the points far apart. However, in this paper we will use it only as a conve-
nient notation.

Remark 2.8. As
(

pa + pb

pa

)

≡

{

1 a 6= b

2 a = b
mod p

and
(

pa + pb(p− 1)

pa

)

≡

{

1 a 6= b

0 a = b
mod p

by Lucas’s Theorem [12], the order of all entries of the form 2pa, 2pa(p− 1) in our
basis elements is preserved by the operator Perm. All other entries are permuted.

Example 2.9. In order to give an example for all the constructions, we compute
H∗(C24(C),Z/3Z). The generators have degrees:

generators x1 x2 y0 y1 y2 . . .
degree 4 16 1 5 17 . . .
size 6 18 2 6 18 . . .

In Table 1, we write down the basis elements and the corresponding chains, however,
we will omit the application of the Inst-operators to lift the chains to sum 24.

2.4. Bockstein homomorphisms

The short exact sequences of coefficients

0 Z
p·

Z Zp 0

0 Zp
p·

Zp2 Zp 0
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Table 1: The cohomology group H∗(C24(C),Z3)

r basis of Hr(C24(C),Z3)

0 1 = []

1 y0 = [2]

2 –

3 –

4 x1 = [2, 4]

5 y1 = [6]
x1y0 = [2, 4, 2]

6 y0y1 = [2, 6]− [6, 2]

7 –

8 x2
1 = [2, 4, 2, 4]

9 x1y1 = [2, 4, 6]− [2, 6, 4] + [6, 2, 4]
x2
1y0 = [2, 4, 2, 4, 2]

10 x1y0y1 = [2, 4, 2, 6]− [2, 4, 6, 2] + [2, 6, 4, 2]− [6, 2, 4, 2]

11 –

12 x3
1 = [2, 4, 2, 4, 2, 4]

13 x2
1y1 = [2, 4, 2, 4, 6]− [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4]− [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]

x3
1y0 = [2, 4, 2, 4, 2, 4, 2]

14 x2
1y0y1 = [2, 4, 2, 4, 2, 6]− [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2]− [2, 4, 6, 2, 4, 2, ] + · · ·

15 –

16 x2 = [6, 12]
x4
1 = [2, 4, 2, 4, 2, 4, 2, 4]

17 y2 = [18]
x2y0 = [6, 12, 2]− [6, 2, 12] + [2, 6, 12]
x3
1y1 = [2, 4, 2, 4, 2, 4, 6]− [2, 4, 2, 4, 2, 6, 4] + · · ·

18 y0y2 = [2, 18]− [18, 2]

19 –

20 x1x2 = [2, 4, 6, 12]−[2, 6, 4, 12]+[6, 2, 4, 12]−[6, 2, 12, 4]+[2, 6, 12, 4]+[6, 12, 2, 4]

21 x1y2 = [2, 4, 18]− [2, 18, 4] + [18, 2, 4]
x2y1 = [6, 12, 6]

22 y1y2 = [6, 18]− [18, 6]

>23 –

induce long exact sequences

Hr−1(A•
n,Zp)

β̃
Hr(A•

n,Z)
p·

Hr(A•
n,Z) Hr(A•

n,Zp)
β̃

Hr+1(A•
n,Z)

Hr−1(A•
n,Zp)

β
Hr(A•

n,Zp)
p·

Hr(A•
n,Zp2) Hr(A•

n,Zp)
β

Hi+1(A•
n,Zp)

where the connecting morphisms are the Bockstein morphisms β and β̃ (compare [15,
Chap. 3.E]). The image of β̃ hence consists of all the elements of order p in H∗(A•

n,Z).
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Example 2.10. Let i 6= j. We determine the Bockstein on

xi = [2pi−1, 2pi−1(p− 1)]

and

xiyj = [2pi−1, 2pi−1(p− 1), 2pj ]− [2pi−1, 2pj , 2pi−1(p− 1)]+[2pj , 2pi−1, 2pi−1(p− 1)].

In A•
n, we get

δ(xi) =

(

pi

pi−1

)

[2pi] =

(

pi

pi−1

)

yi,

δ(xiyj) =

(

pi

pi−1

)

([2pi, 2pj ]− [2pj , 2pi]) =

(

pi

pi−1

)

yiyj .

Hence we can conclude

β̃(xi) =
1

p

(

pi

pi−1

)

yi, β̃(xiyj) =
1

p

(

pi

pi−1

)

yiyj .

The coefficient
1

p

(

pi

pi−1

)

=

(

pi − 1

pi−1 − 1

)

is an integer congruent to 1 mod p by Lucas’ Theorem [12].

Lemma 2.11. The differential δ on A•
n operates as follows:

δ(xa1

1 · · ·xak

k yb10 · · · ybll ) =
∑

i

(

pi

pi−1

)

xa1

1 · · ·xai−1
i · · ·xak

k yiy
b0
0 · · · ybll .

Hence the Bocksteins are given by

β̃(xa1

1 · · ·xak

k yb10 · · · ybll ) =
1

p

∑

i

(

pi

pi−1

)

xa1

1 · · ·xai−1
i · · ·xak

k yiy
b0
0 · · · ybll

and

β(xa1

1 · · ·xak

k yb10 · · · ybll ) =
∑

i

xa1

1 · · ·xai−1
i · · ·xak

k yiy
b0
0 · · · ybll .

Proof. Let m = xa1

1 · · ·xak

k yb10 · · · ybll . Take any term [. . . , n1, n2, . . . ] in m. It only
contributes [. . . , n1 + n2, . . . ] to δ(m) if [n1, n2] = [2pi−1, 2(p− 1)pi−1] or [n1, n2] =
[2(p− 1)pi−1, pi−1]. Otherwise, [. . . , n1 + n2, . . . ] is cancelled by δ([. . . , n2, n1, . . . ])
as [. . . , n2, n1, . . . ] shows up in m with opposite sign due to the definition of Perm.
Now

δ([. . . , 2pi−1, 2(p− 1)pi−1, . . . ]) = ±

(

pi

pi−1

)

[. . . , 2pi, . . . ] + · · · ,

and a tedious calculation of signs proves the formula.

As β2 = 0, we can look at the Bockstein cohomology groups

BH∗(A•
n,Zp) = Kerβ/ Imβ.

Lemma 2.12 ([15, Cor. 3E.4]). The group H∗(A•
n,Z) contains no element of order

p2 if and only if

dimZp
BHr(A•

n,Zp) = rkHr(A•
n,Z).
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In this case the map

H∗(A•
n,Z) → H∗(A•

n,Zp)

is injective on the p-torsion and its image is Imβ.

Vainshtein stated that H∗(A•
n,Z) has no elements of order p2:

Theorem 2.13 ([25]). The integral cohomology is given by

H0(Cn(C),Z) = Z, H1(Cn(C),Z) = Z if n > 2

and

Hr(Cn(C),Z) =
⊕

p

β̃pH
r−1(Cn(C),Zp) for r > 2.

Proof. Take any x ∈ Kerβ of the form

x = xk
j f + xk−1

j yjg

for k > 0, j > 0 where f, g do not contain xj or yj . We compute

β(x) = xk−1
j yjf + xk

jβ(f)− xk−1
j yjβ(g).

Hence we see β(g) = f and β(xk
j g) = x. So we have shown that

Kerβ/ Imβ = Zp ⊕ Zpy0.

Remark 2.14. The map β arises as the reduction mod p of the unique graded deriva-
tion β′ on the free divided power algebra [15, Ex 3.5C] on generators

x1, x2, . . . , y0, y1, . . . deg(xi) = 2pi − 2 deg(yi) = 2pi − 1,

with multiplication xj1
i ⋆ xj2

i =
(

j1+j2
j1

)

xj1+j2
i where β′ is given by the formulas

β′(Xi) = Yi, β′(Yi) = 0

and the rule (compare [11, Chap. 3])

β′(z1 ⋆ z2) = β′(z1) ⋆ z2 + (−1)deg z1z1 ⋆ β
′(z2).

Corollary 2.15. The p-Torsion of Hr+1(C∞(C),Z) is isomorphic to the degree r-
part of the free graded algebra over Zp with generators x1, x2, . . . , y1, y2, . . . 〉 for r > 0.

Proof. Write R for the free graded algebra over Zp with generators x1, x2, . . . , y1,
y2, . . . . Theorem 2.3 shows that

H∗(C∞(C),Zp) = R⊕ y0R.

By Lemma 2.11 we know that β(xy0) = β(x)y0 and β(R) ⊂ R. This shows

Imβ = β(R)⊕ y0β(R).

Decompose R = β(R)⊕R′. As Kerβ = Imβ ⊕ Zp ⊕ Zpy0, the map

β(R)⊕R′ → β(R)⊕ y0β(R) = Imβ, (z1, z2) 7→ β(z2) + y0z1

is a bijective map between the degree r part of R and the degree r + 1 part of Imβ
for r > 0.

However, it does not respect the size, so this isomorphism allows to describe the
p-Torsion of Hr+1(C∞(C),Z), but not of Hr+1(Cn(C),Z) for n < ∞.



292 CHRISTOPH SCHIESSL

Remark 2.16. The description of the dimension of the p-torsion of Hr(Cn(C),Z) in
[8, Appendix to III, Cor. A4] seems to be wrong. For example, we can compute that
H21(C∞(C),Z3) would be 5-dimensional, the 3-Torsion in H20(C∞(C),Z) would be
2-dimensional and the 3-Torsion in H21(C∞(C),Z3) would also be 2-dimensional.
This contradicts the universal coefficient theorem.

The description of H∗(Cn(C),Zp) and of the Bockstein homomorphism in [8,
Appendix to III] is correct, however, the image of the Bockstein is not given by
the subalgebra described there in Corollary A4. A simple formula for the dimension
of Hr(Cn(C),Z) probably does not exist.

Example 2.17. In Table 2, we compute H∗(C24(C),Z3)T3
by applying Theorem 2.13

and Formula 2.11 to our Example 2.9.

Table 2: The 3-torsion in the cohomology group H∗(C24(C),Z)

r basis of Hr(C24(C),Z)T3
as Z3-module

0 –
1 –
2 –
3 –
4 –
5 y1 = [6]
6 y0y1 = [2, 6]− [6, 2]
7 –
8
9 x1y1 = [2, 4, 6]− [2, 6, 4] + [6, 2, 4]
10 x1y0y1 = [2, 4, 2, 6]− [2, 4, 6, 2] + [2, 6, 4, 2]− [6, 2, 4, 2]
11 –
12 –
13 x2

1y1 = [2, 4, 2, 4, 6]− [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4]− [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]
14 x2

1y0y1 = [2, 4, 2, 4, 2, 6]− [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2]− [2, 4, 6, 2, 4, 2, ] + · · ·
15 –
16 –
17 y2 = [18]

x3
1y1 = [2, 4, 2, 4, 2, 4, 6]− · · ·

18 y0y2 = [2, 18]− [18, 2]
19 –
20 –
21 28x1y2 + x2y1 = 28([2, 4, 18]− [2, 18, 4] + [18, 2, 4]) + [6, 12, 6]
22 y1y2 = [6, 18]− [18, 6]

> 23 –

3. Configuration spaces of the sphere

We will describe a cellular decomposition of Cn(S
2)+ by Napolitano [18] and show

how it can be used to compute the cohomology of Cn(S
2).
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3.1. Cellular decomposition of Cn(S
2)+

The cellular decomposition of Cn(C)
+ can be extended to a cellular decomposition

of Cn(S
2)+. Using S2 = R2 ∪∞, we see that n points on S2 are either n points on

R2 or n− 1 points on R2 and the point ∞. So the cells of Cn(S
2) are the union of the

cells of Cn(R
2) and Cn−1(R

2). The resulting complex B•
n = (Br

n) with H∗(B•
n,Z) =

H∗(Cn(S
2),Z) has chains

Br
n = Ar

n ⊕Ar−2
n−1 = ZPart(n, n− r)⊕ ZPart(n− 1, n− r + 1).

The new boundary maps ∆ were computed by Napolitano [18]. We define a new
operator D : Ar

n → Ar−1
n−1 by

D[n1, . . . , ns] =

s
∑

i=1

Q(ni)(−1)
∑i−1

j=1
nj [n1, . . . , ni−1, ni − 1, ni+1, . . . , ns],

where

Q(ni) =

{

0 if ni ≡ 1 mod 2,

2 otherwise.

The differential ∆ of the complex B•
n is then given by

∆: Br
n → Br+1

n , (a, b) 7→ (δ(a), δ(b) + (−1)n−rD(a)).

Corollary 3.1. We have D ≡ 0 mod 2 and therefore B•
n ⊗ Z2 = (A•

n ⊕A•
n−1)⊗ Z2

and

Hr(Cn(S
2),Z2) = Hr(Cn(C),Z2)⊕Hr−2(Cn−1(C),Z2).

The groups Hr(Cn(S
2),Z2) have already been determined in [4].

· · ·
δ

Ar−1
n

δ

S
D

Ar
n

δ

S
D

Ar+1
n

δ

S

· · ·

· · ·
δ

Ar−3
n−1

δ
Ar−2

n−1
δ

Ar−1
n−1

δ
· · ·

3.2. Mapping cone complex

Lemma 3.2. We get a long exact sequence

· · · → Hr−1(A•
n)

D∗

−−→ Hr−2(A•
n−1) → Hr(B•

n) → Hr(A•
n)

D∗

−−→ Hr−1(A•
n−1) → · · · .

Proof. The relation

D ◦ δ = δ ◦D

is equivalent to ∆2 = 0. This means we can see D as a chain map

D : A•
n → A•

n−1[1]

and the complex B•
n can be interpreted as the mapping cone complex of the chain

map D. The short exact sequence of chain complexes

0 → A•
n−1[2] → B•

n → A•
n → 0

given by a2 7→ (0, a2) and (a1, a2) 7→ a1 induces a long exact sequence with a con-
necting homomorphism that can be identified with D∗.
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We can use this long exact sequence to compare the cohomology of B•
n, A

•
n and

A•
n−1. Next we will construct a map

S : Ar
n → Ar−2

n−1,

which is almost a chain homotopy D ≈ 2δS + 2Sδ between D and the zero map. This
allows us to compute the rank of D∗.

4. Construction of (almost) a null homotopy

As a motivation we first look at the case r = n− 1. We set S[n] = [1, n− 2]. Then
we have

2δS[n] = 2δ[1, n− 2] = 2[n− 1] = D[n]

if n is even and

2δS[n] = 2δ[1, n− 2] = 0 = D[n]

otherwise.
In general, we define S : Ar

n → Ar−2
n−1 by

S[n1, ..., ns] =
∑

16k6i6s

(−1)k+1+
∑k−1

m=1
nm [n1,. . .,nk−1,1,nk,. . .,ni−1, ni−2, ni+1,. . .,ns].

If ni − 2 6 0, we simply omit this summand. We remark, that all calculations in this
chapter are done on the chain level.

Lemma 4.1. Define E = D − 2δ ◦ S − 2S ◦ δ. For every partition [n1, . . . , ns] with
ns 6= 2 we have

E[n1, . . . , ns] = 0

and

E[n1, ..., ns−1, 2] = 2
∑

16k6s

(−1)s+k+
∑k−1

m=1
nm [n1, ..., nk−1, 1, nk, ..., ns−1]

otherwise.

Proof. For convenience we introduce the operators δl by

δl[m1, . . . ,mt] = (−1)l−1P (ml,ml+1)[m1, . . . ,ml−1,ml +ml+1,ml+2, . . . ,mt]

and the abbreviations

nk,i = (−1)k+1+
∑k−1

m=1
nm [n1, . . . , nk−1, 1, nk, . . . , ni−1, ni − 2, ni+1, . . . , ns].

Let us first assume that all ni > 2. We compute

δ ◦ S[n1, . . . nr] =
∑

16l6s
k6i

δl(nk,i)

by splitting up the index set

I = {1 6 l 6 s, 1 6 k 6 i 6 s}

into
I = I1 ⊔ · · · ⊔ I8,
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where
I1 = {1 6 l < k − 1, k 6 i}, I5 = {l = i+ 1, k 6 i},
I2 = {k + 1 6 l < i}, I6 = {l = k − 1, k 6 i},
I3 = {i+ 2 6 l 6 s, k 6 i}, I7 = {l = k, k < i},
I4 = {l = i, k < i}, I8 = {l = k = i}.

Now we look at the individual summands Tj =
∑

Ij
δl(nk,i) and expand them after

doing some index shifts. Write ind = k + l +
∑k−1

m=1 nm.

T1 =
∑

l<k−1
k6i

(−1)indP (nl, nl+1)[..., nl + nl+1, ..., nk−1, 1, nk, ..., ni−1, ni − 2, ni+1, ...]

T2 =
∑

k6l<i−1

(−1)ind+1P (nl, nl+1)[..., nk−1,1,nk, ..., nl+nl+1, ..., ni−1, ni−2, ni+1, ...]

T3 =
∑

k6i<l

(−1)ind+1P (nl, nl+1)[..., nk−1, 1, nk, ..., ni−1, ni−2, ni+1, ..., nl + nl+1, ...]

The next terms

T4 =
∑

k<i

(−1)k+i+
∑k−1

m=1
nmP (ni−1, ni − 2)[..., nk−1, 1, nk, ..., ni−1 + ni − 2, ni+1, ...]

T5 =
∑

k6i

(−1)k+i+1+
∑k−1

m=1
nmP (ni−2, ni+1)[..., nk−1, 1, nk, ..., ni−1, ni −2+ni+1, ...]

sum up to

T4+T5 =
∑

k6i

(−1)k+i+1+
∑k−1

m=1
nmP (ni, ni+1)[..., nk−1,1,nk, , ..., , ni−1, ni−2+ni+1, ...]

where we use the identity P (x− 2, y) + P (x, y − 2) = P (x, y). Altogether we have

T1 + T2 + T3 + T4 + T5 = −S ◦ δ[n1, . . . , ns].

The terms

T6 =
∑

k6i

(−1)2k−2+
∑k−1

m=1
nmP (nk−1, 1)[..., nk−2, nk−1+1, nk, ..., ni−1, ni−2, ni+1, ...],

T7 =
∑

k<i

(−1)2k−1+
∑k−1

m=1
nmP (1, nk)[..., nk−1, 1 + nk, nk+1, ..., ni−1, ni − 2, ni+1, ...]

contain the same summands with alternating signs and cancel each other. For the
remaining summand

T8 =
∑

i

(−1)
∑i−1

m=1
nmP (1, ni − 2)[..., ni−1, ni − 1, ni+1, ...],

the following equation holds

2T8 = D[n1, . . . , ns]

by the definition of D. Here we use P (1, ni − 2) = 1 if ni even and P (1, ni − 2) = 0
if ni odd. In the end we get

2δ ◦ S[n1, . . . , ns] = −2S ◦ δ[n1, . . . , ns] +D[n1, . . . , ns].

In case that nj = 2 with j < s, all contributions containing nj − 2 in T4, T5 and
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T8 are missing in δ ◦ S, but not in S ◦ δ and D. So we have to add

T ′
4 =

∑

k<j

(−1)k+j+
∑k−1

m=1
nmP (nj−1, 0)[..., 1, nk, ..., nj−2, nj−1, nj+1, ...],

T ′
5 =

∑

k6j

(−1)k+j+1+
∑k−1

m=1
nmP (0, nj+1)[..., 1, nk, ..., nj−1, nj+1, ...],

T ′
8 =(−1)

∑j−1

m=1
nmP (1, 0)[..., nj−1, 1, nj+1, ...],

which simplifies using P (x, 0) = 1 and P (0, y) = 1 to:

T ′
4 + T ′

8 =
∑

k6j

(−1)k+j+
∑k−1

m=1
nm [..., nk−1, 1, nk, nj−2, ..., nj−1, nj+1, ...],

T ′
5 =

∑

k6j

(−1)k+j+1+
∑k−1

m=1
nm [..., nk−1, 1, nk, ..., nj−1, nj+1, , ...].

Hence we have

(D − 2δ ◦ S − 2S ◦ δ)[n1, . . . , ns] = 2T ′
4 + 2T ′

5 + 2T ′
5 = 0,

if nj = 2 with j < s. In the case ns = 2, the contributions containing ns − 2 are
missing in δ ◦ S, S ◦ δ and D. So we get

(D − 2δ ◦ S − 2S ◦ δ)[n1, ..., ns−1, 2] = 2T ′
4 + 2T ′

8

= 2
∑

16k6s

(−1)s+k+
∑k−1

m=1
nm [n1, ..., nk−1, 1, nk, ..., ns−1].

A similar argument deals with the case that some nj = 1.

Lemma 4.2. For every partition [n1, . . . , ns] with all ni even, we have

(D − 2δ ◦ S − 2S ◦ δ) Inst[n1, . . . , ns−1, 2] = 2(t+ 1)(−1)t+1 Inst+1[n1, . . . , ns−1].

Proof. Take any I ⊂ {1, . . . , s+ t} with |I| = t+ 1. The term InsI [n1, ..., ns−1] is
created in (D − 2δ ◦ S − 2S ◦ δ) Inst[n1, ..., ns−1, 2] when the operator D − 2δ ◦ S −
2S ◦ δ inserts a 1 into the summand

Ins{j|j∈I,j<i}∪{j−1|j∈I,j>i}[n1, ..., ns−1, 2]

for any position i ∈ I. The coefficient of the summand InsI [n1, ..., ns−1] in
(D−2δ ◦ S − 2S ◦ δ) Inst[n1, ..., ns−1, 2] is

2(−1)st+(s+t)
∑

i∈I

(−1)i+
∑

j∈I,j<i
1+

∑
j∈I,j<i

j+
∑

j∈I,j>i
(j−1)

= 2(−1)s(t+1)(t+ 1)(−1)
∑

j∈I
j .

The contributions in the exponent are an st from Inst, (s+ t) + i+
∑

j∈I,j<i 1 from
(D−2δ ◦S−2S ◦δ) and

∑

j∈I,j<i j+
∑

j∈I,j>i(j−1) from Ins{j|j∈I,j<i}∪{j−1|j∈I,j>i}.
Altogether, this is the coefficient of InsI [n1, ..., ns−1] in

2(t+ 1)(−1)t+1 Inst+1[n1, . . . , ns−1].

Corollary 4.3. Let p > 2. Define the operator E = D − 2δ ◦ S − 2S ◦ δ. Take a
monomial xc1

1 · · ·xck
k yd1

1 · · · ydl

l y0 with size m. Then

E(xc1
1 · · ·xck

k yd1

1 · · · ydl

l ) = 0
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and

E(xc1
1 · · ·xck

k yd1

1 · · · ydl

l y0) = 2(−1)n−m+1(n−m+ 1)xc1
1 · · ·xck

k yd1

1 · · · ydl

l .

Proof. All entries in all partitions of xc1
1 · · ·xck

k yd1

1 · · · ydl

l are different from 2, so by

Lemma 4.1 we have E(xc1
1 · · ·xck

k yd1

1 · · · ydl

l ) = 0.

The chain xc1
1 · · ·xck

k yd1

1 · · · ydl

l y0 can be written as

Insn−m Perm[2pi1−1, 2pi1−1(p− 1), ..., 2pik−1, 2pik−1(p− 1), 2pj1 , ..., 2pjl , 2]

for some indices i1, . . . , ik, j1, . . . , jl. By Lemmas 4.1 and 4.2, the operator E cancels
all partitions not having a 2 as last entry, otherwise it removes the last entry. So
E(xc1

1 · · ·xck
k yd1

1 · · · ydl

l y0) is given by

2(n+m− 1)(−1)n+m−1 Insn−m+1 Perm[2pi1−1, 2pi1−1(p− 1), ..., , 2pj1 , ..., 2pjl ].

A similar proof deals with the case p = 2.

Corollary 4.4. Let p = 2. Take xc1
1 · · ·xck

k yd1

1 · · · ydl

l y0 with size m. Then

E(xc2
2 · · ·xck

k yd1

1 · · · ydl

l ) = 0

and if c1 > 0

E(xc1
1 · · ·xck

k yd1

1 · · · ydl

l ) = 2(−1)n−m+3(n−m+ 3)xc1−1
1 · · ·xck

k yd1

1 · · · ydl

l y0.

Furthermore,

E(xc1
1 · · ·xck

k yd1

1 · · · ydl

l y0) = 2(−1)n−m+1(n−m+ 1)xc1
1 · · ·xck

k yd1

1 · · · ydl

l .

This allows us to compute the map D∗ : Hi(A•
n) → Hi−1(A•

n−1) with both Z and
Zp-coefficients.

5. Proof of main theorem

Proof of Theorem 1.1. By Corollary 4.3 we can conclude that the rank of the map

D∗ : Hr(A•
n,Zp) → Hr−1(A•

n−1,Zp)

is given by the number of monomials

xc1
1 . . . xck

k y0y
d1

1 . . . ydl

l

of degree r and size m 6 n such that p ∤ 2(n−m+ 1). Equivalently, the rank is
B′

p(n, r). By the long exact sequence of Lemma 3.2 we have determined

dimHr(Cn(S
2),Zp) = Bp(n, r) +Bp(n− 1, r − 2)−B′

p(n, r)−B′
p(n, r − 1).

Remark 5.1 (Paolo Salvatore, personal communication). Let

Q =
∏

i>0

1 + w2pi−1z2p
i

1− w2pi−2z2pi .

Then we have for p > 2:

∑

r,n>0

dimHr(Cn(S
2),Zp)w

rzn =

(

1

1− z
+

wzp+1

1− zp
+

w3z3

1− z
+

w2z

1− zp

)

Q.



298 CHRISTOPH SCHIESSL

Corollary 5.2. The groups Hr(Cn(S
2),Zp) are eventually periodic:

dimHr(Cn+p(S
2),Zp) = dimHr(Cn(S

2),Zp)

if n > 2r + 2.

This is a special case of the general results of [17].

Proof. As
∑g

i=1 p
ai +

∑h
j=1 p

bj > 2g + h, we get the inequalities r > 2g + h and

2

g
∑

i=1

pai + 2

h
∑

j=1

pbj 6 2r.

Hence we have for n > 2r + 2 that

2

g
∑

i=1

pai + 2
h
∑

j=1

pbj + 2 6 n.

Hence

Bp(n, r) = Bp(n+ 1, r), B′
p(n+ p, r) = B′

p(n, r).

Proof of Theorem 1.3. For n 6 3, we can easily check the theorem by direct compu-
tation with A•

n. Take n > 4. We look at the beginning of the long exact sequence of
Lemma 3.2. We immediately read off

H0(B•
n) ≃ H0(A•

n) ≃ Z

since both spaces are connected. As H2(A•
n) = H2(A•

n−1) = 0 by application of The-
orem 2.13, we get the exact sequence

0 → H1(B•
n) → H1(A•

n)
D∗

−−→ H0(An−1) → H2(B•
n) → 0.

The group H1(A•
n) = Z is generated by the class of y0 and the group H0(A•

n−1) = Z
is generated by the class 1 with the map D∗(y0) = (2n− 2) · 1 by Corollary 4.3. Hence
we see

H1(B•
n) = 0, H2(B•

n) = Z/(2n− 2)Z.

If we had D = 2δ ◦ S + 2S ◦ δ, we would have a chain map

A•
n → B•

n, a 7→ (a,− 2(−1)n−rS(a)),

that would split the sequence

0 → A•
n−1[2] → B•

n → A•
n → 0, a2 7→ (0, a2), (a1, a2) 7→ a1

on the right.

In our case, the long exact sequence of Lemma 3.2 gives us short exact sequences

0 → CokerD∗ → Hr(B•
n) → KerD∗ → 0.

We want to construct a right splitting s : KerD∗ → Hr(B•
n). For r > 2, the cohomol-

ogy group Hr(A•
n) is finite and has no elements of order p2. For every prime p, we

can take a Zp-basis of the p-torsion in KerD∗ consisting of the classes bi of the chains
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bi =
1

p
δ(mi)

such that bi = β̃(mi) for some monomials mi = xa1

1 . . . xak

k yb11 . . . ybll yb00 ∈ A•
n. By

Corollaries 4.3 and 4.4, there are integers k′i and monomials m′
i such that

(D − 2S ◦ δ − 2δ ◦ S)(mi) = k′im
′
i.

As bi ∈ KerD∗, we see that p|pi. Write

(D − 2 ◦ δ − 2Sδ ◦ S)(mi) = kipm
′
i.

Define E = D − 2S ◦ δ − 2δ ◦ S. Observe that E ◦ δ = δ ◦ E. Hence we get

E(mi) = pkim
′
i, E(bi) = kiδ(m

′
i).

Define a map

s : KerD∗ → Hr(B•
n,Z)

by setting

s(b̄i) =
(

bi, −2(−1)n−rS(bi)− (−1)n−rkim
′
i

)

.

We see that

∆ ◦ s(b̄i) =
(

δ(bi), −2(−1)n−rδ ◦ S(bi) + (−1)n−rD(bi)− (−1)n−rkiδ(m
′
i)
)

=
(

δ(bi), 2(−1)n−rS ◦ δ(bi) + (−1)n−rE(bi)− (−1)n−rkiδ(m
′
i)
)

= 0

and hence s(b̄i) is a cycle in Hr(B•
n,Z). We have to show that ps(b̄i) is a boundary.

We have pbi = δ(mi) and can compute

ps(b̄i) =
(

pbi, −2(−1)n−rS(pbi)− (−1)n−rpkim
′
i

)

=
(

δ(mi), −2(−1)n−rS ◦ δ(mi)− (−1)n−rpkim
′
i

)

=
(

δ(mi), (−1)n−r(2δ ◦ S(mi)−D(mi) + E(mi)− pkim
′
i)
)

=
(

δ(mi), 2(−1)n−rδ ◦ S(mi)− (−1)n−rD(mi)
)

= ∆(mi, S(mi)) .

Hence s is a well-defined right splitting of the sequence

0 → CokerD∗ → Hr(B•
n) → KerD∗ → 0.

For r > 3, both KerD∗ and CokerD∗ have no elements of p2, thus the same is true
for Hr(B•

n).

Example 5.3. We want to compute the 3-torsion in the groups H6(C9(S
2),Z) and

H6(C10(S
2),Z). We use the long exact sequence

· · · → H5(A•
n)

D∗

−−→ H4(A•
n−1) → H6(B•

n) → H6(A•
n)

D∗

−−→ H5(A•
n−1) → · · ·

for n = 9 and n = 10.
For p = 3, the generators of H∗(A•

n,Z3) are:

generator x1 x2 y0 y1 y2 . . .
degree 4 16 1 5 17 . . .
size 6 18 2 6 18 . . .
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So

H6(A•
9,Z3) = H6(A•

10,Z3) = Z3y0y1.

and

H4(A•
9,Z3) = H4(A•

10,Z3) = Z3x1.

We have D∗(y0y1) = 2(n− 7)y1 and D∗(x1y0) = 2(n− 7)x1. Hence we get

H6(B•
9 ,Z3) = 0, H6(B•

10,Z3) = Z2
3.

The Bockstein β̃(x1y0) = y0y1 shows

H6(A•
9,Z)T3

= H6(A•
10,Z)T3

= Z3y0y1

and

H4(A•
9,Z)T3

= H4(A•
10,Z)T3

= 0.

We get

H6(B•
9 ,Z)T3

= 0, H6(B•
10,Z)T3

= Z3.

Example 5.4. Tables 3 and 4 were computed with the help of the computer algebra
systems Sage [20] and Magma [3]. The integral cohomology groups Hr(Cn(S

2),Z)
have already been determined for n 6 9 by Sevryuk [23] and Napolitano [18].

Remark 5.5. The whole argument of this paper is very specifically built for S2. Similar
cell structures exist for other surfaces [18]. However, a more conceptual argument
might be useful for these, more complex cases.
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