Homology, Homotopy and Applications, vol. 21(1), 2019, pp.283-302

INTEGRAL COHOMOLOGY OF CONFIGURATION SPACES OF THE SPHERE

CHRISTOPH SCHIESSL

(communicated by Nathalie Wahl)

Abstract

We compute the cohomology of the unordered configuration spaces of the sphere S^2 with integral and with $\mathbb{Z}/p\mathbb{Z}$ -coefficients using a cell complex due to Fox, Neuwirth, Fuks, Vainshtein and Napolitano.

Contents

1	Introduction												
	1.1 Conventions	285											
2	Configuration spaces of the plane	285											
	2.1 Cellular decomposition of $C_n(\mathbb{C})^+$	285											
	2.2 Subcomplexes of A_n^{\bullet}	286											
	2.3 Explicit basis of $H^*(A_{n,0}^{\bullet}, \mathbb{Z}_p)$	287											
	2.4 Bockstein homomorphisms	288											
3	Configuration spaces of the sphere	292											
	3.1 Cellular decomposition of $C_n(S^2)^+$	293											
	3.2 Mapping cone complex	293											
4	Construction of (almost) a null homotopy	29 4											
5	Proof of main theorem	297											

1. Introduction

For any topological space X, let

 $F_n(X) = \{(x_1, \dots, x_n) \in X^n | x_i \neq x_j\}$

be the ordered configuration space of n distinct points in X. The symmetric group S_n acts on $F_n(X)$ by permuting the points and the quotient

$$C_n(X) = F_n(X)/S_n$$

This is part of the author's PhD thesis.

The author was supported by the grant ERC-2012-AdG-320368-MCSK.

Received January 22, 2018, revised June 4, 2018, July 16, 2018; published on October 17, 2018. 2010 Mathematics Subject Classification: 55R80.

Key words and phrases: homology, configuration space.

Article available at http://dx.doi.org/10.4310/HHA.2019.v21.n1.a13

Copyright © 2018, Christoph Schiessl. Permission to copy for private use granted.

is the unordered configuration space.

Despite their simple definition, getting a grasp of their topology is hard. The cohomology of configuration spaces has been widely studied (e.g., [8, 27, 22, 1, 10, 24, 9]) but only few cases have been computed explicitly. Usually this is only possible if the space X is very simple or one restricts to rational or mod p coefficients. Aside from the Euclidean case due to Arnold [2], vanishingly few complete integral homology calculations are available.

On the other hand, the cohomology of many configuration spaces satisfies interesting properties, for example with rational coefficients homological stability [7] or eventual periodicity with mod p coefficients [17, 5, 16].

In this paper, we will completely compute $H^*(C_n(S^2), \mathbb{Z}/p\mathbb{Z})$ and $H^*(C_n(S^2), \mathbb{Z})$.

Theorem 1.1. Let

$$B_p(n,r) = \left| \begin{cases} 1 \leqslant a_1 \leqslant a_2 \leqslant \dots \leqslant a_g \\ 0 \leqslant b_1 < b_2 < \dots < b_h \end{cases} \left| \begin{array}{c} 2\sum_i p^{a_i} + 2\sum_j p^{b_j} - 2g - h = r \\ 2\sum_i p^{a_i} + 2\sum_j p^{b_j} \leqslant n \end{array} \right\} \right|$$

and

$$B'_{p}(n,r) = \left| \begin{cases} 1 \leqslant a_{1} \leqslant a_{2} \leqslant \dots \leqslant a_{g} \\ 1 \leqslant b_{1} < b_{2} < \dots < b_{h} \end{cases} \left| \begin{array}{c} 2\sum_{i} p^{a_{i}} + 2\sum_{j} p^{b_{j}} + 1 - 2g - h = r \\ 2\sum_{i} p^{a_{i}} + 2\sum_{j} p^{b_{j}} + 2 \leqslant n \\ p \nmid 2(n - 2\sum_{i} p^{a_{i}} - 2\sum_{j} p^{b_{j}} - 1) \end{array} \right|.$$

Then

$$\dim H^r(C_n(S^2), \mathbb{Z}/p\mathbb{Z}) = B_p(n, r) + B_p(n-1, r-2) - B'_p(n, r) - B'_p(n, r-1).$$

Corollary 1.2. We have

dim
$$H^r(C_n(S^2), \mathbb{Z}/2\mathbb{Z}) = B_2(n, r) + B_2(n - 1, r - 2).$$

Our main tool is a cellular decomposition of $C_n(S^2)$ due to Napolitano [18]. It is an extension of the Fox-Neuwirth cell structure for $C_n(\mathbb{R}^2)$ [13] used by Fuks [14] and Vainshtein [25] to compute the mod p cohomology of $C_n(\mathbb{R}^2)$.

Theorem 1.1 could also be deduced from [21, Th. 18.3]. However, our approach is more elementary and allows to determine the integral cohomology:

Theorem 1.3. The first cohomology groups $H^r(C_n(S_2), \mathbb{Z})$ are

$$H^{0}(C_{n}(S_{2}), \mathbb{Z}) = \mathbb{Z}, \qquad H^{1}(C_{n}(S_{2}), \mathbb{Z}) = 0,$$
$$H^{2}(C_{n}(S_{2}), \mathbb{Z}) = \mathbb{Z}/(2n-2)\mathbb{Z}, \qquad H^{3}(C_{n}(S_{2}), \mathbb{Z}) = \begin{cases} 0 & n = 1, 2, \\ \mathbb{Z} & n = 3, \\ \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & n \ge 4. \end{cases}$$

For $r \ge 4$, the cohomology groups $H^r(C_n(S^2), \mathbb{Z})$ are finite and contain no elements of order p^2 .

Hence we can reconstruct all integral cohomology groups by Theorem 1.1 and the universal coefficient Theorem. Previously, the cohomology of $C_n(S^2)$ was known with rational coefficients [23, 19, 21], for low degree cases [23, 18], for mod 2 coefficients [4] and for mod p coefficients [21]. The description of $H^r(C_n(S^2), \mathbb{Z})$ seems to be new.

We will first explain the computations of the cohomology of $C_n(\mathbb{C})$ with $\mathbb{Z}/p\mathbb{Z}$ coefficients by Fuks [14] and Vainshtein [25] and discuss the Fox-Neuwirth cell structure. Afterwards, we present the extension of this cell complex due to Napolitano [18] used to calculate $H^*(C_n(S^2), \mathbb{Z})$ for $n \leq 9$. The main idea of this paper is the construction of a very specific chain homotopy that simplifies Napolitano's complex.

1.1. Conventions

We write

$$Part(n,s) = \{ [n_1, \dots, n_s] \in \mathbb{Z}_{>0}^q | n_1 + \dots + n_s = n \}$$

for partitions of n into s positive summands, for example

 $Part(5,3) = \{ [3,1,1], [1,3,1], [1,1,3], [2,2,1], [2,1,2], [1,2,2] \}.$

We call s the length and n the size of the partition.

The residue ring $\mathbb{Z}/m\mathbb{Z}$ is from now on abbreviated by \mathbb{Z}_m . For any abelian group G and prime p, we write $G_{T_p} = \{g \in G | p^n g = 0 \text{ for some } n\}$ for the p-torsion subgroup.

Acknowledgments

I want to thank Frederick Cohen, Emanuele Delucchi, Emmanuel Kowalski, Paolo Salvatore, Johannes Schmitt, Junliang Shen for very helpful discussions and especially Rahul Pandharipande for his invaluable support.

2. Configuration spaces of the plane

2.1. Cellular decomposition of $C_n(\mathbb{C})^+$

The following construction comes from [14] and [25]. The projection

$$\mathbb{C} \to \mathbb{R}, x + iy \mapsto x$$

to the real line maps any configuration in $C_n(\mathbb{C})$ to a finite sets of points in \mathbb{R} . Counting the number of preimages of each of these points, we get a partition of n. Here we use that the one-dimensional line is ordered. The union of all points in $C_n(\mathbb{C})$ mapping to the same partition $n = n_1 + \cdots + n_s$ and the point ∞ is an n + s-dimensional cell in the one point compactification $C_n(\mathbb{C})^+$. We denote this cell by $[n_1, \ldots, n_s]$. All such cells together with the point ∞ are a cellular decomposition of $C_n(\mathbb{C})^+$. Using Poincaré-Lefschetz duality for Borel-Moore homology [6], [26, Chapter 13.2]

$$H^{i}(C_{n}(\mathbb{C})) = H_{2n-i}(C_{n}(\mathbb{C})^{+}),$$

this cell complex can be used to compute the cohomology of $C_n(\mathbb{C})$.

The (co)-chains of the resulting (cochain)-complex $A_n^{\bullet} = (A_n^r)$ with the property

$$H^*(C_n(\mathbb{C}),\mathbb{Z}) = H^*(A_n^{\bullet})$$

are the free \mathbb{Z} -modules

$$A_n^r = \mathbb{Z}\operatorname{Part}(n, n-r).$$

The basis elements are the partitions $[n_1, \ldots, n_s] \in Part(n, s)$ with s = n - r. The

boundary maps $\delta \colon A_n^r \to A_n^{r+1}$ are

$$\delta[n_1,\ldots,n_s] = \sum_{l=1}^{s-1} (-1)^{l-1} P(n_l,n_{l+1})[n_1,\ldots,n_{l-1},n_l+n_{l+1},n_{l+2},\ldots,n_s],$$

with coefficients

$$P(x,y) = \begin{cases} 0 & \text{if } x \equiv y \equiv 1 \mod 2, \\ \begin{pmatrix} \lfloor x/2 + y/2 \rfloor \\ \lfloor x/2 \rfloor \end{pmatrix} & \text{otherwise.} \end{cases}$$

Intuitively, in the boundary of a cell, the points lying on two neighbouring vertical lines come together onto the same vertical line. The coefficient P(x, y) gives a signed count of the different ways to combine two sets of x and y points on a line.

2.2. Subcomplexes of A_n^{\bullet}

As P(x, y) = 0 for odd x and y, the complex A_n^{\bullet} can be written as a direct sum

$$A_n^{\bullet} = A_{n,0}^{\bullet} \oplus \dots \oplus A_{n,n}^{\bullet}$$

of subcomplexes $A_{n,t}^{\bullet}$ generated by partitions with t odd entries.

Take any $I \subset \{1, \ldots, s+t\}$ with t elements, say $I = \{i_1, \ldots, i_t\}$ where $i_1 < \cdots < i_t$. Then we insert 1's at the positions i_1 to i_t with alternating signs:

$$\operatorname{Ins}_{I}[a_{1},\ldots,a_{s}] = (-1)^{\sum_{j} i_{j}}[a_{1},\ldots,a_{i_{1}-1},1,a_{i_{1}},\ldots,a_{i_{2}-2},1,a_{i_{2}-1},\ldots].$$

The map

$$Ins_t = (-1)^{st} \sum_{I \subset \{1, \dots, s+t\}, |I|=t} Ins_I$$

is actually a chain map

$$\operatorname{Ins}_t \colon A^{\bullet}_{n,0} \to A^{\bullet}_{n+t,t}$$

that induces isomorphisms [25, Prop. 1]

$$H^r(A^{\bullet}_{n-t,0}) \simeq H^r(A^{\bullet}_{n,t}).$$

Hence we get

$$H^*(A_n^{\bullet}) = H^*(A_{n,0}^{\bullet}) \oplus H^*(A_{n-1,0}) \oplus \dots \oplus H^*(A_{0,0}^{\bullet})$$

As $A_{n,0}^r = 0$ if n > 2r, we can immediately deduce that the cohomology groups stabilize

$$H^r(A_n^{\bullet}) = H^r(A_{n+1}^{\bullet})$$

if n > 2r. Later, we will use the notation

$$H^r(C_\infty(\mathbb{C})) = H^r(C_n(\mathbb{C}))$$

for any n > 2r.

Example 2.1. The cohomology group $H^0(C_n(\mathbb{C}), \mathbb{Z}) = \mathbb{Z}$ is generated by the class of $(-1)^{n(n-1)/2}[1, \ldots, 1] = \operatorname{Ins}_n([]).$

For $n \ge 2$, the cohomology group $H^1(C_n(\mathbb{C}), \mathbb{Z}) = \mathbb{Z}$ is generated by the class of $[2, 1, \ldots, 1] - [1, 2, 1, \ldots, 1] + \cdots = (-1)^{(n-2)(n-3)/2+n} \operatorname{Ins}_{n-2}[2].$

2.3. Explicit basis of $H^*(A_{n,0}^{\bullet}, \mathbb{Z}_p)$

We will now present the description of the group $H^r(A_{n,0}^{\bullet}, \mathbb{Z}_p)$ by Vainshtein and work out some of the details and proofs omitted in [25].

Remark 2.2. In particular, the explicit formula for the base elements seems to be stated in a misleading way in [25] (definition of morphism Φ , top of page 136). There, the operator Perm is defined via transpositions and does not create a cycle even for partitions of length 3, because different permutations show up with different coefficients. Our definition of Perm seems to be the intended one.

Let $[n_1, \ldots, n_s]$ be any partition of n. Then the alternating sum of its permutations

$$\sum_{\sigma \in S_s} \operatorname{sign}(\sigma)[n_{\sigma(1)}, \dots, n_{\sigma(s)}]$$

is a cycle in A_n^{\bullet} . With \mathbb{Z}_p -coefficients, the following subset of permutations

$$\operatorname{Perm}[n_1, \dots, n_s] = \sum_{\substack{\sigma \in S_s \text{ where } \sigma(i) < \sigma(j) \\ \text{if } i < j \text{ and } n_i = n_j \text{ or} \\ \text{if } i < j \text{ and } P(n_i, n_j) = 0 \text{ mod } p}} \operatorname{sign}(\sigma)[n_{\sigma(1)}, \dots, n_{\sigma(s)}]$$

will be used in the next paragraph to create special cycles in $A_n^{\bullet} \otimes \mathbb{Z}_p$.

Take integers $1 \leq i_1 \leq \cdots \leq i_k$ and $0 \leq j_1 < \cdots < j_l$ such that

$$t = n - 2(p^{i_1} + \dots + p^{i_k} + p^{j_1} + \dots + p^{j_l}) \ge 0$$

and let

$$r = (2p^{i_1} - 2) + \dots + (2p^{i_k} - 2) + (2p^{j_1} - 1) + \dots + (2p^{j_l} - 1).$$

Then we give the chain

Ins_t Perm[
$$2p^{i_1-1}, 2p^{i_1-1}(p-1), \dots, 2p^{i_k-1}, 2p^{i_k-1}(p-1), 2p^{j_1}, \dots, 2p^{j_l}$$
]

the name $x_{i_1} \cdots x_{i_k} y_{j_1} \cdots y_{j_l}$. It is a cycle in $A_{n,t}^r \otimes \mathbb{Z}_p$ (but not in A_n^{\bullet} if k > 0). Vainshtein showed that all such cycles form a basis of $H^r(A_n^{\bullet}, \mathbb{Z}_p)$. We call the quantity n-t the size of the chain $x_{i_1} \cdots x_{i_k} y_{j_1} \cdots y_{j_l}$.

Theorem 2.3 ([25]). The group $H^*(C_{\infty}, \mathbb{Z}_p)$ is the free graded commutative algebra over \mathbb{Z}_p with generators

$$\begin{array}{ll} x_i \ for \ i \ge 1 \\ y_i \ for \ i \ge 0 \end{array} \qquad \begin{array}{ll} \deg(x_i) = 2p^i - 2 \\ \deg(y_i) = 2p^i - 1 \end{array} \qquad \begin{array}{ll} \operatorname{size}(x_i) = 2p^i, \\ \operatorname{size}(y_i) = 2p^i. \end{array}$$

There is a surjection $H^*(C_{\infty}(\mathbb{C}), \mathbb{Z}_p) \to H^*(C_n(\mathbb{C}), \mathbb{Z}_p)$ whose kernel is generated by the monomials $x_{i_1} \cdots x_{i_k} y_{j_1} \cdots y_{j_l}$ such that $\operatorname{size}(x_{i_1} \cdots x_{i_k} y_{j_1} \cdots y_{j_l}) > n$.

A equivalent formula was deduced by Cohen-Lada-May [8, Appendix to III].

Remark 2.4. For p = 2, the group $H^*(C_{\infty}, \mathbb{Z}_2)$ can be identified with a polynomial algebra with generators

$$z_i \text{ for } i \ge 1,$$
 $\deg(z_i) = 2^i - 1$

via $x_i \mapsto z_i^2$ and $y_i \mapsto z_{i-1}$. This is the form stated in [8].

CHRISTOPH SCHIESSL

Corollary 2.5. Define

$$B_p(n,r) = \left| \begin{cases} 1 \leqslant a_1 \leqslant a_2 \leqslant \dots \leqslant a_g \\ 0 \leqslant b_1 < b_2 < \dots < b_h \end{cases} \left| \begin{array}{c} 2\sum_i p^{a_i} + 2\sum_j p^{b_j} - 2g - h = r \\ 2\sum_i p^{a_i} + 2\sum_j p^{b_j} \leqslant n \end{array} \right\} \right|$$

Hence we have

$$\dim H^r(C_n(\mathbb{C}), \mathbb{Z}_p) = B_p(n, r).$$

Remark 2.6. Paolo Salvatore (private communication) gave this representation as a generating series:

$$\sum_{n,r \ge 0} B_p(n,r) w^r z^n = \frac{1+wz^2}{1-z} \prod_{i>0} \frac{1+w^{2p^i-1}z^{2p^i}}{1-w^{2p^i-2}z^{2p^i}}.$$

Remark 2.7. The notation suggests a product structure on $H^*(C_{\infty}(\mathbb{C}), \mathbb{Z}_p)$. It comes from the map

$$C_n(\mathbb{C}) \times C_m(\mathbb{C}) \to C_{n+m}(\mathbb{C})$$

by adding the points far apart. However, in this paper we will use it only as a convenient notation.

Remark 2.8. As

$$\binom{p^a + p^b}{p^a} \equiv \begin{cases} 1 & a \neq b \\ 2 & a = b \end{cases} \mod p$$

.

and

$$\binom{p^a+p^b(p-1)}{p^a} \equiv \begin{cases} 1 & a \neq b \\ 0 & a=b \end{cases} \mod p$$

by Lucas's Theorem [12], the order of all entries of the form $2p^a$, $2p^a(p-1)$ in our basis elements is preserved by the operator Perm. All other entries are permuted.

Example 2.9. In order to give an example for all the constructions, we compute $H^*(C_{24}(\mathbb{C}), \mathbb{Z}/3\mathbb{Z})$. The generators have degrees:

generators

$$x_1$$
 x_2
 y_0
 y_1
 y_2
 ...

 degree
 4
 16
 1
 5
 17
 ...

 size
 6
 18
 2
 6
 18
 ...

In Table 1, we write down the basis elements and the corresponding chains, however, we will omit the application of the Ins_t -operators to lift the chains to sum 24.

2.4. Bockstein homomorphisms

The short exact sequences of coefficients

Table 1: The cohomology group $H^*(C_{24}(\mathbb{C}),\mathbb{Z}_3)$

r	basis of $H^r(C_{24}(\mathbb{C}),\mathbb{Z}_3)$
0	1 = []
1	$y_0 = [2]$
2	_
3	-
4	$x_1 = [2, 4]$
5	$y_1 = [6]$
	$x_1 y_0 = [2, 4, 2]$
6	$y_0 y_1 = [2, 6] - [6, 2]$
7	
8	$x_1^2 = [2, 4, 2, 4]$
9	$x_1y_1 = [2, 4, 6] - [2, 6, 4] + [6, 2, 4]$
	$x_1^2 y_0 = [2, 4, 2, 4, 2]$
10	$x_1y_0y_1 = [2, 4, 2, 6] - [2, 4, 6, 2] + [2, 6, 4, 2] - [6, 2, 4, 2]$
11	_
12	$x_1^3 = [2, 4, 2, 4, 2, 4]$
13	$x_1^2 y_1 = [2, 4, 2, 4, 6] - [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4] - [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]$
	$x_1^3 y_0 = [2, 4, 2, 4, 2, 4, 2]$
14	$x_1^2 y_0 y_1 = [2, 4, 2, 4, 2, 6] - [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2] - [2, 4, 6, 2, 4, 2,] + \cdots$
15	
16	$x_2 = [6, 12]$
1.7	$x_1^{\star} = [2, 4, 2, 4, 2, 4, 2, 4]$
17	$y_2 = [18]$
	$x_2y_0 = [0, 12, 2] - [0, 2, 12] + [2, 0, 12]$ $x_3u_1 = [2, 4, 2, 4, 2, 4, 6] - [2, 4, 2, 4, 2, 6, 4] + \dots$
18	$u_1 y_1 - [2, 4, 2, 4, 2, 4, 0] - [2, 4, 2, 4, 2, 0, 4] + \cdots$
10	$y_0y_2 = [2, 16] = [16, 2]$
20	$\frac{1}{r_{1}r_{2}} = \frac{[2\ 4\ 6\ 12] - [2\ 6\ 4\ 12] + [6\ 2\ 4\ 12] - [6\ 2\ 12\ 4] + [2\ 6\ 12\ 4] + [6\ 12\ 2\ 4] }{[6\ 12\ 2\ 4]}$
20	$x_1 x_2 = [2, 4, 0, 12] = [2, 0, 4, 12] + [0, 2, 4, 12] = [0, 2, 12, 4] + [2, 0, 12, 4] + [0, 12, 2, 4]$ $x_2 y_2 = [2, 4, 18] = [2, 18, 4] + [18, 2, 4]$
41	$x_{1y_2} = [2, 4, 10] [2, 10, 4] + [10, 2, 4]$ $x_{0y_1} = [6, 12, 6]$
22	$y_1y_2 = [6, 18] - [18, 6]$
${\geq 23}$	
/ = 5	

induce long exact sequences

$$\begin{split} H^{r-1}(A_n^{\bullet}, \mathbb{Z}_p) & \stackrel{\tilde{\beta}}{\longrightarrow} H^r(A_n^{\bullet}, \mathbb{Z}) \xrightarrow{p \cdot} H^r(A_n^{\bullet}, \mathbb{Z}) \longrightarrow H^r(A_n^{\bullet}, \mathbb{Z}_p) \xrightarrow{\tilde{\beta}} H^{r+1}(A_n^{\bullet}, \mathbb{Z}) \\ & \parallel & \downarrow & \downarrow & \parallel & \downarrow \\ H^{r-1}(A_n^{\bullet}, \mathbb{Z}_p) \xrightarrow{\beta} H^r(A_n^{\bullet}, \mathbb{Z}_p) \xrightarrow{p \cdot} H^r(A_n^{\bullet}, \mathbb{Z}_{p^2}) \longrightarrow H^r(A_n^{\bullet}, \mathbb{Z}_p) \xrightarrow{\beta} H^{i+1}(A_n^{\bullet}, \mathbb{Z}_p) \end{split}$$

where the connecting morphisms are the *Bockstein morphisms* β and $\tilde{\beta}$ (compare [15, Chap. 3.E]). The image of $\tilde{\beta}$ hence consists of all the elements of order p in $H^*(A_n^{\bullet}, \mathbb{Z})$.

Example 2.10. Let $i \neq j$. We determine the Bockstein on

$$x_i = [2p^{i-1}, 2p^{i-1}(p-1)]$$

and

$$\begin{split} x_i y_j = & [2p^{i-1}, 2p^{i-1}(p-1), 2p^j] - [2p^{i-1}, 2p^j, 2p^{i-1}(p-1)] + [2p^j, 2p^{i-1}, 2p^{i-1}(p-1)]. \\ \text{In } A_n^{\bullet}, \text{ we get} \end{split}$$

$$\delta(x_i) = \binom{p^i}{p^{i-1}} [2p^i] = \binom{p^i}{p^{i-1}} y_i,$$

$$\delta(x_i y_j) = \binom{p^i}{p^{i-1}} ([2p^i, 2p^j] - [2p^j, 2p^i]) = \binom{p^i}{p^{i-1}} y_i y_j.$$

Hence we can conclude

$$\tilde{\beta}(x_i) = \frac{1}{p} \binom{p^i}{p^{i-1}} y_i, \qquad \qquad \tilde{\beta}(x_i y_j) = \frac{1}{p} \binom{p^i}{p^{i-1}} y_i y_j.$$

The coefficient

$$\frac{1}{p} \binom{p^i}{p^{i-1}} = \binom{p^i - 1}{p^{i-1} - 1}$$

is an integer congruent to $1 \mod p$ by Lucas' Theorem [12].

Lemma 2.11. The differential δ on A_n^{\bullet} operates as follows:

$$\delta(x_1^{a_1}\cdots x_k^{a_k}y_0^{b_1}\cdots y_l^{b_l}) = \sum_i \binom{p^i}{p^{i-1}} x_1^{a_1}\cdots x_i^{a_i-1}\cdots x_k^{a_k}y_iy_0^{b_0}\cdots y_l^{b_l}.$$

Hence the Bocksteins are given by

$$\tilde{\beta}(x_1^{a_1}\cdots x_k^{a_k}y_0^{b_1}\cdots y_l^{b_l}) = \frac{1}{p}\sum_i \binom{p^i}{p^{i-1}} x_1^{a_1}\cdots x_i^{a_i-1}\cdots x_k^{a_k}y_i y_0^{b_0}\cdots y_l^{b_l}$$

and

$$\beta(x_1^{a_1}\cdots x_k^{a_k}y_0^{b_1}\cdots y_l^{b_l}) = \sum_i x_1^{a_1}\cdots x_i^{a_i-1}\cdots x_k^{a_k}y_iy_0^{b_0}\cdots y_l^{b_l}.$$

Proof. Let $m = x_1^{a_1} \cdots x_k^{a_k} y_0^{b_1} \cdots y_l^{b_l}$. Take any term $[\ldots, n_1, n_2, \ldots]$ in m. It only contributes $[\ldots, n_1 + n_2, \ldots]$ to $\delta(m)$ if $[n_1, n_2] = [2p^{i-1}, 2(p-1)p^{i-1}]$ or $[n_1, n_2] = [2(p-1)p^{i-1}, p^{i-1}]$. Otherwise, $[\ldots, n_1 + n_2, \ldots]$ is cancelled by $\delta([\ldots, n_2, n_1, \ldots])$ as $[\ldots, n_2, n_1, \ldots]$ shows up in m with opposite sign due to the definition of Perm. Now

$$\delta([\dots, 2p^{i-1}, 2(p-1)p^{i-1}, \dots]) = \pm \binom{p^i}{p^{i-1}}[\dots, 2p^i, \dots] + \cdots$$

and a tedious calculation of signs proves the formula.

As $\beta^2 = 0$, we can look at the Bockstein cohomology groups

$$BH^*(A_n^{\bullet}, \mathbb{Z}_p) = \operatorname{Ker} \beta / \operatorname{Im} \beta.$$

Lemma 2.12 ([15, Cor. 3E.4]). The group $H^*(A_n^{\bullet}, \mathbb{Z})$ contains no element of order p^2 if and only if

$$\dim_{\mathbb{Z}_p} BH^r(A_n^{\bullet}, \mathbb{Z}_p) = \operatorname{rk} H^r(A_n^{\bullet}, \mathbb{Z}).$$

290

In this case the map

$$H^*(A_n^{\bullet}, \mathbb{Z}) \to H^*(A_n^{\bullet}, \mathbb{Z}_p)$$

is injective on the p-torsion and its image is $\text{Im }\beta$.

Vainshtein stated that $H^*(A_n^{\bullet}, \mathbb{Z})$ has no elements of order p^2 :

Theorem 2.13 ([25]). The integral cohomology is given by

$$H^0(C_n(\mathbb{C}),\mathbb{Z}) = \mathbb{Z},$$
 $H^1(C_n(\mathbb{C}),\mathbb{Z}) = \mathbb{Z} \text{ if } n \ge 2$

and

$$H^{r}(C_{n}(\mathbb{C}),\mathbb{Z}) = \bigoplus_{p} \tilde{\beta}_{p} H^{r-1}(C_{n}(\mathbb{C}),\mathbb{Z}_{p}) \text{ for } r \geq 2.$$

Proof. Take any $x \in \operatorname{Ker} \beta$ of the form

$$x = x_j^k f + x_j^{k-1} y_j g$$

for $k \ge 0$, j > 0 where f, g do not contain x_j or y_j . We compute

$$\beta(x) = x_j^{k-1} y_j f + x_j^k \beta(f) - x_j^{k-1} y_j \beta(g).$$

Hence we see $\beta(g) = f$ and $\beta(x_j^k g) = x$. So we have shown that

$$\operatorname{Ker}\beta/\operatorname{Im}\beta = \mathbb{Z}_p \oplus \mathbb{Z}_p y_0.$$

Remark 2.14. The map β arises as the reduction mod p of the unique graded derivation β' on the free divided power algebra [15, Ex 3.5C] on generators

$$x_1, x_2, \dots, y_0, y_1, \dots$$
 $\deg(x_i) = 2p^i - 2$ $\deg(y_i) = 2p^i - 1,$

with multiplication $x_i^{j_1} \star x_i^{j_2} = {j_1+j_2 \choose j_1} x_i^{j_1+j_2}$ where β' is given by the formulas

$$\beta'(X_i) = Y_i, \qquad \qquad \beta'(Y_i) = 0$$

and the rule (compare [11, Chap. 3])

$$\beta'(z_1 \star z_2) = \beta'(z_1) \star z_2 + (-1)^{\deg z_1} z_1 \star \beta'(z_2).$$

Corollary 2.15. The *p*-Torsion of $H^{r+1}(C_{\infty}(\mathbb{C}),\mathbb{Z})$ is isomorphic to the degree *r*-part of the free graded algebra over \mathbb{Z}_p with generators $x_1, x_2, \ldots, y_1, y_2, \ldots$ for r > 0.

Proof. Write R for the free graded algebra over \mathbb{Z}_p with generators $x_1, x_2, \ldots, y_1, y_2, \ldots$. Theorem 2.3 shows that

$$H^*(C_\infty(\mathbb{C}),\mathbb{Z}_p)=R\oplus y_0R.$$

By Lemma 2.11 we know that $\beta(xy_0) = \beta(x)y_0$ and $\beta(R) \subset R$. This shows

$$\operatorname{Im} \beta = \beta(R) \oplus y_0\beta(R).$$

Decompose $R = \beta(R) \oplus R'$. As Ker $\beta = \operatorname{Im} \beta \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p y_0$, the map

$$\beta(R) \oplus R' \to \beta(R) \oplus y_0 \beta(R) = \operatorname{Im} \beta, \ (z_1, z_2) \mapsto \beta(z_2) + y_0 z_1$$

is a bijective map between the degree r part of R and the degree r + 1 part of $\text{Im }\beta$ for r > 0.

However, it does not respect the size, so this isomorphism allows to describe the *p*-Torsion of $H^{r+1}(C_{\infty}(\mathbb{C}),\mathbb{Z})$, but not of $H^{r+1}(C_n(\mathbb{C}),\mathbb{Z})$ for $n < \infty$.

Remark 2.16. The description of the dimension of the *p*-torsion of $H^r(C_n(\mathbb{C}), \mathbb{Z})$ in [8, Appendix to III, Cor. A4] seems to be wrong. For example, we can compute that $H^{21}(C_{\infty}(\mathbb{C}), \mathbb{Z}_3)$ would be 5-dimensional, the 3-Torsion in $H^{20}(C_{\infty}(\mathbb{C}), \mathbb{Z})$ would be 2-dimensional and the 3-Torsion in $H^{21}(C_{\infty}(\mathbb{C}), \mathbb{Z}_3)$ would also be 2-dimensional. This contradicts the universal coefficient theorem.

The description of $H^*(C_n(\mathbb{C}), \mathbb{Z}_p)$ and of the Bockstein homomorphism in [8, Appendix to III] is correct, however, the image of the Bockstein is not given by the subalgebra described there in Corollary A4. A simple formula for the dimension of $H^r(C_n(\mathbb{C}), \mathbb{Z})$ probably does not exist.

Example 2.17. In Table 2, we compute $H^*(C_{24}(\mathbb{C}), \mathbb{Z}_3)_{T_3}$ by applying Theorem 2.13 and Formula 2.11 to our Example 2.9.

Table 2: The 3-torsion in the cohomology group $H^*(C_{24}(\mathbb{C}),\mathbb{Z})$

,	$(C_{24}(C), Z_{13})_{13} \approx Z_{3} \text{ include}$
0	_
1	_
2	_
3	-
4	
5	$y_1 = [6]$
6	$y_0 y_1 = [2, 6] - [6, 2]$
7	
8	
9	$x_1y_1 = [2,4,6] - [2,6,4] + [6,2,4]$
10	$x_1y_0y_1 = [2, 4, 2, 6] - [2, 4, 6, 2] + [2, 6, 4, 2] - [6, 2, 4, 2]$
11	
12	
13	$x_1^2 y_1 = [2, 4, 2, 4, 6] - [2, 4, 2, 6, 4] + [2, 4, 6, 2, 4] - [2, 6, 4, 2, 4] + [6, 2, 4, 2, 4]$
14	$x_1^2 y_0 y_1 = [2, 4, 2, 4, 2, 6] - [2, 4, 2, 4, 6, 2] + [2, 4, 2, 6, 4, 2] - [2, 4, 6, 2, 4, 2,] + \cdots$
15	-
16	_
17	$y_2 = [18]$
	$x_1^3 y_1 = [2, 4, 2, 4, 2, 4, 6] - \cdots$
18	$y_0 y_2 = [2, 18] - [18, 2]$
19	-
20	-
21	$28x_1y_2 + x_2y_1 = 28([2,4,18] - [2,18,4] + [18,2,4]) + [6,12,6]$
22	$y_1y_2 = [6, 18] - [18, 6]$
$\geqslant 23$	-

r basis of $H^r(C_{24}(\mathbb{C}),\mathbb{Z})_{T_3}$ as \mathbb{Z}_3 -module

3. Configuration spaces of the sphere

We will describe a cellular decomposition of $C_n(S^2)^+$ by Napolitano [18] and show how it can be used to compute the cohomology of $C_n(S^2)$.

3.1. Cellular decomposition of $C_n(S^2)^+$

The cellular decomposition of $C_n(\mathbb{C})^+$ can be extended to a cellular decomposition of $C_n(S^2)^+$. Using $S^2 = \mathbb{R}^2 \cup \infty$, we see that *n* points on S^2 are either *n* points on \mathbb{R}^2 or n-1 points on \mathbb{R}^2 and the point ∞ . So the cells of $C_n(S^2)$ are the union of the cells of $C_n(\mathbb{R}^2)$ and $C_{n-1}(\mathbb{R}^2)$. The resulting complex $B_n^{\bullet} = (B_n^r)$ with $H^*(B_n^{\bullet}, \mathbb{Z}) =$ $H^*(C_n(S^2), \mathbb{Z})$ has chains

$$B_n^r = A_n^r \oplus A_{n-1}^{r-2} = \mathbb{Z}\operatorname{Part}(n, n-r) \oplus \mathbb{Z}\operatorname{Part}(n-1, n-r+1).$$

The new boundary maps Δ were computed by Napolitano [18]. We define a new operator $D: A_n^r \to A_{n-1}^{r-1}$ by

$$D[n_1,\ldots,n_s] = \sum_{i=1}^s Q(n_i)(-1)^{\sum_{j=1}^{i-1} n_j} [n_1,\ldots,n_{i-1},n_i-1,n_{i+1},\ldots,n_s],$$

where

$$Q(n_i) = \begin{cases} 0 & \text{if } n_i \equiv 1 \mod 2, \\ 2 & \text{otherwise.} \end{cases}$$

The differential Δ of the complex B_n^{\bullet} is then given by

$$\Delta \colon B_n^r \to B_n^{r+1}, (a,b) \mapsto (\delta(a), \delta(b) + (-1)^{n-r} D(a)).$$

Corollary 3.1. We have $D \equiv 0 \mod 2$ and therefore $B_n^{\bullet} \otimes \mathbb{Z}_2 = (A_n^{\bullet} \oplus A_{n-1}^{\bullet}) \otimes \mathbb{Z}_2$ and

$$H^{r}(C_{n}(S^{2}), \mathbb{Z}_{2}) = H^{r}(C_{n}(\mathbb{C}), \mathbb{Z}_{2}) \oplus H^{r-2}(C_{n-1}(\mathbb{C}), \mathbb{Z}_{2})$$

The groups $H^r(C_n(S^2), \mathbb{Z}_2)$ have already been determined in [4].

3.2. Mapping cone complex

Lemma 3.2. We get a long exact sequence

$$\cdots \to H^{r-1}(A_n^{\bullet}) \xrightarrow{D^*} H^{r-2}(A_{n-1}^{\bullet}) \to H^r(B_n^{\bullet}) \to H^r(A_n^{\bullet}) \xrightarrow{D^*} H^{r-1}(A_{n-1}^{\bullet}) \to \cdots$$

Proof. The relation

$$D \circ \delta = \delta \circ D$$

is equivalent to $\Delta^2 = 0$. This means we can see D as a chain map

$$D: A_n^{\bullet} \to A_{n-1}^{\bullet}[1]$$

and the complex B_n^{\bullet} can be interpreted as the mapping cone complex of the chain map D. The short exact sequence of chain complexes

$$0 \to A_{n-1}^{\bullet}[2] \to B_n^{\bullet} \to A_n^{\bullet} \to 0$$

given by $a_2 \mapsto (0, a_2)$ and $(a_1, a_2) \mapsto a_1$ induces a long exact sequence with a connecting homomorphism that can be identified with D^* .

We can use this long exact sequence to compare the cohomology of B_n^{\bullet} , A_n^{\bullet} and A_{n-1}^{\bullet} . Next we will construct a map

$$S\colon A_n^r \to A_{n-1}^{r-2},$$

which is almost a chain homotopy $D \approx 2\delta S + 2S\delta$ between D and the zero map. This allows us to compute the rank of D^* .

4. Construction of (almost) a null homotopy

As a motivation we first look at the case r = n - 1. We set S[n] = [1, n - 2]. Then we have

$$2\delta S[n] = 2\delta[1, n-2] = 2[n-1] = D[n]$$

if n is even and

$$2\delta S[n] = 2\delta[1, n-2] = 0 = D[n]$$

otherwise.

In general, we define $S \colon A_n^r \to A_{n-1}^{r-2}$ by

$$S[n_1, \dots, n_s] = \sum_{1 \le k \le i \le s} (-1)^{k+1+\sum_{m=1}^{k-1} n_m} [n_1, \dots, n_{k-1}, 1, n_k, \dots, n_{i-1}, n_i - 2, n_{i+1}, \dots, n_s].$$

If $n_i - 2 \leq 0$, we simply omit this summand. We remark, that all calculations in this chapter are done on the chain level.

Lemma 4.1. Define $E = D - 2\delta \circ S - 2S \circ \delta$. For every partition $[n_1, \ldots, n_s]$ with $n_s \neq 2$ we have

$$E[n_1,\ldots,n_s]=0$$

and

$$E[n_1, \dots, n_{s-1}, 2] = 2 \sum_{1 \le k \le s} (-1)^{s+k+\sum_{m=1}^{k-1} n_m} [n_1, \dots, n_{k-1}, 1, n_k, \dots, n_{s-1}]$$

otherwise.

Proof. For convenience we introduce the operators δ_l by

$$\delta_l[m_1, \dots, m_t] = (-1)^{l-1} P(m_l, m_{l+1})[m_1, \dots, m_{l-1}, m_l + m_{l+1}, m_{l+2}, \dots, m_t]$$

and the abbreviations

$$n_{k,i} = (-1)^{k+1+\sum_{m=1}^{k-1} n_m} [n_1, \dots, n_{k-1}, 1, n_k, \dots, n_{i-1}, n_i - 2, n_{i+1}, \dots, n_s].$$

Let us first assume that all $n_i > 2$. We compute

$$\delta \circ S[n_1, \dots n_r] = \sum_{\substack{1 \leqslant l \leqslant s \\ k \leqslant i}} \delta_l(n_{k,i})$$

by splitting up the index set

$$I = \{1 \leqslant l \leqslant s, 1 \leqslant k \leqslant i \leqslant s\}$$

into

$$I=I_1\sqcup\cdots\sqcup I_8,$$

where

$$\begin{array}{ll} I_1 = \{1 \leqslant l < k-1, k \leqslant i\}, & I_5 = \{l = i+1, k \leqslant i\}, \\ I_2 = \{k+1 \leqslant l < i\}, & I_6 = \{l = k-1, k \leqslant i\}, \\ I_3 = \{i+2 \leqslant l \leqslant s, k \leqslant i\}, & I_7 = \{l = k, k < i\}, \\ I_4 = \{l = i, k < i\}, & I_8 = \{l = k = i\}. \end{array}$$

Now we look at the individual summands $T_j = \sum_{I_j} \delta_l(n_{k,i})$ and expand them after doing some index shifts. Write ind $= k + l + \sum_{m=1}^{k-1} n_m$.

$$T_{1} = \sum_{\substack{l < k-1 \\ k \leq i}} (-1)^{\text{ind}} P(n_{l}, n_{l+1})[\dots, n_{l} + n_{l+1}, \dots, n_{k-1}, 1, n_{k}, \dots, n_{i-1}, n_{i} - 2, n_{i+1}, \dots]$$

$$T_{2} = \sum_{\substack{k \leq l < i-1}} (-1)^{\text{ind}+1} P(n_{l}, n_{l+1})[\dots, n_{k-1}, 1, n_{k}, \dots, n_{l} + n_{l+1}, \dots, n_{i-1}, n_{i} - 2, n_{i+1}, \dots]$$

$$T_{3} = \sum_{\substack{k \leq i < l}} (-1)^{\text{ind}+1} P(n_{l}, n_{l+1})[\dots, n_{k-1}, 1, n_{k}, \dots, n_{i-1}, n_{i} - 2, n_{i+1}, \dots, n_{l} + n_{l+1}, \dots]$$

The next terms

$$T_4 = \sum_{k < i} (-1)^{k+i+\sum_{m=1}^{k-1} n_m} P(n_{i-1}, n_i - 2) [\dots, n_{k-1}, 1, n_k, \dots, n_{i-1} + n_i - 2, n_{i+1}, \dots]$$

$$T_5 = \sum_{k \leqslant i} (-1)^{k+i+1+\sum_{m=1}^{k-1} n_m} P(n_i - 2, n_{i+1}) [\dots, n_{k-1}, 1, n_k, \dots, n_{i-1}, n_i - 2 + n_{i+1}, \dots]$$

sum up to

$$T_4 + T_5 = \sum_{k \leqslant i} (-1)^{k+i+1+\sum_{m=1}^{k-1} n_m} P(n_i, n_{i+1})[\dots, n_{k-1}, 1, n_k, \dots, n_{i-1}, n_i - 2 + n_{i+1}, \dots]$$

where we use the identity P(x-2,y) + P(x,y-2) = P(x,y). Altogether we have $T_1 + T_2 + T_3 + T_4 + T_5 = -S \circ \delta[n_1, \dots, n_s].$

$$T_{6} = \sum_{k \leq i} (-1)^{2k-2+\sum_{m=1}^{k-1} n_{m}} P(n_{k-1}, 1)[\dots, n_{k-2}, n_{k-1}+1, n_{k}, \dots, n_{i-1}, n_{i}-2, n_{i+1}, \dots],$$

$$T_{7} = \sum_{k < i} (-1)^{2k-1+\sum_{m=1}^{k-1} n_{m}} P(1, n_{k})[\dots, n_{k-1}, 1+n_{k}, n_{k+1}, \dots, n_{i-1}, n_{i}-2, n_{i+1}, \dots]$$

contain the same summands with alternating signs and cancel each other. For the remaining summand

$$T_8 = \sum_{i} (-1)^{\sum_{m=1}^{i-1} n_m} P(1, n_i - 2)[\dots, n_{i-1}, n_i - 1, n_{i+1}, \dots],$$

the following equation holds

$$2T_8 = D[n_1, \ldots, n_s]$$

by the definition of D. Here we use $P(1, n_i - 2) = 1$ if n_i even and $P(1, n_i - 2) = 0$ if n_i odd. In the end we get

$$2\delta \circ S[n_1,\ldots,n_s] = -2S \circ \delta[n_1,\ldots,n_s] + D[n_1,\ldots,n_s].$$

In case that $n_j = 2$ with j < s, all contributions containing $n_j - 2$ in T_4 , T_5 and

 T_8 are missing in $\delta \circ S$, but not in $S \circ \delta$ and D. So we have to add

$$T_{4}' = \sum_{k < j} (-1)^{k+j+\sum_{m=1}^{k-1} n_m} P(n_{j-1}, 0)[\dots, 1, n_k, \dots, n_{j-2}, n_{j-1}, n_{j+1}, \dots],$$

$$T_{5}' = \sum_{k \leq j} (-1)^{k+j+1+\sum_{m=1}^{k-1} n_m} P(0, n_{j+1})[\dots, 1, n_k, \dots, n_{j-1}, n_{j+1}, \dots],$$

$$T_{8}' = (-1)^{\sum_{m=1}^{j-1} n_m} P(1, 0)[\dots, n_{j-1}, 1, n_{j+1}, \dots],$$

which simplifies using P(x, 0) = 1 and P(0, y) = 1 to:

$$T_4' + T_8' = \sum_{k \leqslant j} (-1)^{k+j+\sum_{m=1}^{k-1} n_m} [\dots, n_{k-1}, 1, n_k, n_{j-2}, \dots, n_{j-1}, n_{j+1}, \dots],$$
$$T_5' = \sum_{k \leqslant j} (-1)^{k+j+1+\sum_{m=1}^{k-1} n_m} [\dots, n_{k-1}, 1, n_k, \dots, n_{j-1}, n_{j+1}, \dots].$$

Hence we have

$$(D - 2\delta \circ S - 2S \circ \delta)[n_1, \dots, n_s] = 2T'_4 + 2T'_5 + 2T'_5 = 0,$$

if $n_j = 2$ with j < s. In the case $n_s = 2$, the contributions containing $n_s - 2$ are missing in $\delta \circ S$, $S \circ \delta$ and D. So we get

$$(D - 2\delta \circ S - 2S \circ \delta)[n_1, \dots, n_{s-1}, 2] = 2T'_4 + 2T'_8$$
$$= 2\sum_{1 \le k \le s} (-1)^{s+k+\sum_{m=1}^{k-1} n_m} [n_1, \dots, n_{k-1}, 1, n_k, \dots, n_{s-1}].$$

A similar argument deals with the case that some $n_j = 1$.

Lemma 4.2. For every partition $[n_1, \ldots, n_s]$ with all n_i even, we have

$$(D - 2\delta \circ S - 2S \circ \delta) \operatorname{Ins}_t[n_1, \dots, n_{s-1}, 2] = 2(t+1)(-1)^{t+1} \operatorname{Ins}_{t+1}[n_1, \dots, n_{s-1}].$$

Proof. Take any $I \subset \{1, \ldots, s+t\}$ with |I| = t+1. The term $\text{Ins}_I[n_1, \ldots, n_{s-1}]$ is created in $(D - 2\delta \circ S - 2S \circ \delta) \text{Ins}_t[n_1, \ldots, n_{s-1}, 2]$ when the operator $D - 2\delta \circ S - 2S \circ \delta$ inserts a 1 into the summand

$$Ins_{\{j|j\in I, j< i\}\cup\{j-1|j\in I, j>i\}}[n_1, ..., n_{s-1}, 2]$$

for any position $i \in I$. The coefficient of the summand $\text{Ins}_I[n_1, ..., n_{s-1}]$ in $(D-2\delta \circ S - 2S \circ \delta) \text{Ins}_t[n_1, ..., n_{s-1}, 2]$ is

$$2(-1)^{st+(s+t)} \sum_{i \in I} (-1)^{i+\sum_{j \in I, j < i} 1 + \sum_{j \in I, j < i} j + \sum_{j \in I, j > i} (j-1)} = 2(-1)^{s(t+1)} (t+1)(-1)^{\sum_{j \in I} j}.$$

The contributions in the exponent are an st from Ins_t , $(s+t)+i+\sum_{j\in I,j<i}1$ from $(D-2\delta\circ S-2S\circ\delta)$ and $\sum_{j\in I,j<i}j+\sum_{j\in I,j>i}(j-1)$ from $\operatorname{Ins}_{\{j\mid j\in I,j< i\}\cup\{j-1\mid j\in I,j>i\}}$. Altogether, this is the coefficient of $\operatorname{Ins}_I[n_1,\ldots,n_{s-1}]$ in

$$2(t+1)(-1)^{t+1} \operatorname{Ins}_{t+1}[n_1, \dots, n_{s-1}].$$

Corollary 4.3. Let p > 2. Define the operator $E = D - 2\delta \circ S - 2S \circ \delta$. Take a monomial $x_1^{c_1} \cdots x_k^{c_k} y_1^{d_1} \cdots y_l^{d_l} y_0$ with size m. Then

$$E(x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l})=0$$

and

$$E(x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}y_0) = 2(-1)^{n-m+1}(n-m+1)x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}$$

Proof. All entries in all partitions of $x_1^{c_1} \cdots x_k^{c_k} y_1^{d_1} \cdots y_l^{d_l}$ are different from 2, so by Lemma 4.1 we have $E(x_1^{c_1} \cdots x_k^{c_k} y_1^{d_1} \cdots y_l^{d_l}) = 0$. The chain $x_1^{c_1} \cdots x_k^{c_k} y_1^{d_1} \cdots y_l^{d_l} y_0$ can be written as

$$\operatorname{Ins}_{n-m}\operatorname{Perm}[2p^{i_1-1}, 2p^{i_1-1}(p-1), \dots, 2p^{i_k-1}, 2p^{i_k-1}(p-1), 2p^{j_1}, \dots, 2p^{j_l}, 2]$$

for some indices $i_1, \ldots, i_k, j_1, \ldots, j_l$. By Lemmas 4.1 and 4.2, the operator E cancels all partitions not having a 2 as last entry, otherwise it removes the last entry. So $E(x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}y_0)$ is given by

$$2(n+m-1)(-1)^{n+m-1} \operatorname{Ins}_{n-m+1} \operatorname{Perm}[2p^{i_1-1}, 2p^{i_1-1}(p-1), \dots, 2p^{j_1}, \dots, 2p^{j_l}]. \square$$

A similar proof deals with the case $p = 2$.

Corollary 4.4. Let p = 2. Take $x_1^{c_1} \cdots x_k^{c_k} y_1^{d_1} \cdots y_l^{d_l} y_0$ with size m. Then

$$E(x_2^{c_2}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l})=0$$

and if $c_1 > 0$

$$E(x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}) = 2(-1)^{n-m+3}(n-m+3)x_1^{c_1-1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}y_0$$

Furthermore,

$$E(x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}y_0) = 2(-1)^{n-m+1}(n-m+1)x_1^{c_1}\cdots x_k^{c_k}y_1^{d_1}\cdots y_l^{d_l}y_0$$

This allows us to compute the map $D^* \colon H^i(A_n^{\bullet}) \to H^{i-1}(A_{n-1}^{\bullet})$ with both \mathbb{Z} and \mathbb{Z}_p -coefficients.

Proof of main theorem 5.

Proof of Theorem 1.1. By Corollary 4.3 we can conclude that the rank of the map

$$D^* \colon H^r(A_n^{\bullet}, \mathbb{Z}_p) \to H^{r-1}(A_{n-1}^{\bullet}, \mathbb{Z}_p)$$

is given by the number of monomials

$$x_1^{c_1} \dots x_k^{c_k} y_0 y_1^{d_1} \dots y_l^{d_l}$$

of degree r and size $m \leq n$ such that $p \nmid 2(n-m+1)$. Equivalently, the rank is $B'_p(n,r)$. By the long exact sequence of Lemma 3.2 we have determined

$$\dim H^r(C_n(S^2), \mathbb{Z}_p) = B_p(n, r) + B_p(n - 1, r - 2) - B'_p(n, r) - B'_p(n, r - 1).$$

Remark 5.1 (Paolo Salvatore, personal communication). Let

$$Q = \prod_{i>0} \frac{1 + w^{2p^i - 1} z^{2p^i}}{1 - w^{2p^i - 2} z^{2p^i}}$$

Then we have for p > 2:

$$\sum_{r,n \ge 0} \dim H^r(C_n(S^2), \mathbb{Z}_p) \, w^r z^n = \left(\frac{1}{1-z} + \frac{wz^{p+1}}{1-z^p} + \frac{w^3 z^3}{1-z} + \frac{w^2 z}{1-z^p}\right) Q.$$

Corollary 5.2. The groups $H^r(C_n(S^2), \mathbb{Z}_p)$ are eventually periodic:

$$\dim H^r(C_{n+p}(S^2), \mathbb{Z}_p) = \dim H^r(C_n(S^2), \mathbb{Z}_p)$$

if $n \ge 2r + 2$.

This is a special case of the general results of [17].

Proof. As $\sum_{i=1}^{g} p^{a_i} + \sum_{j=1}^{h} p^{b_j} \ge 2g + h$, we get the inequalities $r \ge 2g + h$ and

$$2\sum_{i=1}^{g} p^{a_i} + 2\sum_{j=1}^{h} p^{b_j} \leq 2r.$$

Hence we have for $n \ge 2r+2$ that

$$2\sum_{i=1}^{g} p^{a_i} + 2\sum_{j=1}^{h} p^{b_j} + 2 \leqslant n.$$

Hence

$$B_p(n,r) = B_p(n+1,r),$$
 $B'_p(n+p,r) = B'_p(n,r).$

Proof of Theorem 1.3. For $n \leq 3$, we can easily check the theorem by direct computation with A_n^{\bullet} . Take $n \geq 4$. We look at the beginning of the long exact sequence of Lemma 3.2. We immediately read off

$$H^0(B_n^{\bullet}) \simeq H^0(A_n^{\bullet}) \simeq \mathbb{Z}$$

since both spaces are connected. As $H^2(A_n^{\bullet}) = H^2(A_{n-1}^{\bullet}) = 0$ by application of Theorem 2.13, we get the exact sequence

$$0 \to H^1(B_n^{\bullet}) \to H^1(A_n^{\bullet}) \xrightarrow{D^*} H^0(A_{n-1}) \to H^2(B_n^{\bullet}) \to 0.$$

The group $H^1(A_n^{\bullet}) = \mathbb{Z}$ is generated by the class of y_0 and the group $H^0(A_{n-1}^{\bullet}) = \mathbb{Z}$ is generated by the class 1 with the map $D^*(y_0) = (2n-2) \cdot 1$ by Corollary 4.3. Hence we see

$$H^{1}(B_{n}^{\bullet}) = 0,$$
 $H^{2}(B_{n}^{\bullet}) = \mathbb{Z}/(2n-2)\mathbb{Z}.$

If we had $D = 2\delta \circ S + 2S \circ \delta$, we would have a chain map

$$A_n^{\bullet} \to B_n^{\bullet}, \ a \mapsto (a, -2(-1)^{n-r}S(a)),$$

that would split the sequence

$$0 \to A_{n-1}^{\bullet}[2] \to B_n^{\bullet} \to A_n^{\bullet} \to 0, \ a_2 \mapsto (0, a_2), \ (a_1, a_2) \mapsto a_1$$

on the right.

In our case, the long exact sequence of Lemma 3.2 gives us short exact sequences

$$0 \to \operatorname{Coker} D^* \to H^r(B_n^{\bullet}) \to \operatorname{Ker} D^* \to 0$$

We want to construct a right splitting $s : \text{Ker } D^* \to H^r(B^{\bullet}_n)$. For $r \ge 2$, the cohomology group $H^r(A^{\bullet}_n)$ is finite and has no elements of order p^2 . For every prime p, we can take a \mathbb{Z}_p -basis of the p-torsion in Ker D^* consisting of the classes $\overline{b_i}$ of the chains

$$b_i = \frac{1}{p}\delta(m_i)$$

such that $\overline{b_i} = \tilde{\beta}(m_i)$ for some monomials $m_i = x_1^{a_1} \dots x_k^{a_k} y_1^{b_1} \dots y_l^{b_l} y_0^{b_0} \in A_n^{\bullet}$. By Corollaries 4.3 and 4.4, there are integers k'_i and monomials m'_i such that

$$(D - 2S \circ \delta - 2\delta \circ S)(m_i) = k'_i m'_i.$$

As $b_i \in \text{Ker } D^*$, we see that $p|p_i$. Write

$$(D - 2 \circ \delta - 2S\delta \circ S)(m_i) = k_i pm'_i.$$

Define $E = D - 2S \circ \delta - 2\delta \circ S$. Observe that $E \circ \delta = \delta \circ E$. Hence we get

$$E(m_i) = pk_i m'_i, \qquad \qquad E(b_i) = k_i \delta(m'_i).$$

Define a map

$$s: \operatorname{Ker} D^* \to H^r(B_n^{\bullet}, \mathbb{Z})$$

by setting

$$s(\bar{b}_i) = (b_i, -2(-1)^{n-r}S(b_i) - (-1)^{n-r}k_im'_i)$$

We see that

$$\Delta \circ s(\bar{b_i}) = \left(\delta(b_i), -2(-1)^{n-r}\delta \circ S(b_i) + (-1)^{n-r}D(b_i) - (-1)^{n-r}k_i\delta(m'_i)\right)$$

= $\left(\delta(b_i), 2(-1)^{n-r}S \circ \delta(b_i) + (-1)^{n-r}E(b_i) - (-1)^{n-r}k_i\delta(m'_i)\right)$
= 0

and hence $s(\bar{b_i})$ is a cycle in $H^r(B_n^{\bullet}, \mathbb{Z})$. We have to show that $ps(\bar{b_i})$ is a boundary. We have $pb_i = \delta(m_i)$ and can compute

$$ps(\bar{b}_i) = (pb_i, -2(-1)^{n-r}S(pb_i) - (-1)^{n-r}pk_im'_i)$$

= $(\delta(m_i), -2(-1)^{n-r}S \circ \delta(m_i) - (-1)^{n-r}pk_im'_i)$
= $(\delta(m_i), (-1)^{n-r}(2\delta \circ S(m_i) - D(m_i) + E(m_i) - pk_im'_i))$
= $(\delta(m_i), 2(-1)^{n-r}\delta \circ S(m_i) - (-1)^{n-r}D(m_i))$
= $\Delta(m_i, S(m_i)).$

Hence s is a well-defined right splitting of the sequence

$$0 \to \operatorname{Coker} D^* \to H^r(B_n^{\bullet}) \to \operatorname{Ker} D^* \to 0.$$

For $r \ge 3$, both Ker D^* and Coker D^* have no elements of p^2 , thus the same is true for $H^r(B_n^{\bullet})$.

Example 5.3. We want to compute the 3-torsion in the groups $H^6(C_9(S^2), \mathbb{Z})$ and $H^6(C_{10}(S^2), \mathbb{Z})$. We use the long exact sequence

$$\cdots \to H^5(A_n^{\bullet}) \xrightarrow{D^*} H^4(A_{n-1}^{\bullet}) \to H^6(B_n^{\bullet}) \to H^6(A_n^{\bullet}) \xrightarrow{D^*} H^5(A_{n-1}^{\bullet}) \to \cdots$$

for n = 9 and n = 10.

For p = 3, the generators of $H^*(A_n^{\bullet}, \mathbb{Z}_3)$ are:

generator	x_1	x_2	y_0	y_1	y_2	• • •
degree	4	16	1	5	17	
size	6	18	2	6	18	

 So

$$H^{6}(A_{9}^{\bullet},\mathbb{Z}_{3}) = H^{6}(A_{10}^{\bullet},\mathbb{Z}_{3}) = \mathbb{Z}_{3}y_{0}y_{1}.$$

and

$$H^4(A_9^{\bullet}, \mathbb{Z}_3) = H^4(A_{10}^{\bullet}, \mathbb{Z}_3) = \mathbb{Z}_3 x_1$$

We have $D^*(y_0y_1) = 2(n-7)y_1$ and $D^*(x_1y_0) = 2(n-7)x_1$. Hence we get

$$H^{6}(B_{9}^{\bullet}, \mathbb{Z}_{3}) = 0, \qquad \qquad H^{6}(B_{10}^{\bullet}, \mathbb{Z}_{3}) = \mathbb{Z}_{3}^{2}.$$

The Bockstein $\tilde{\beta}(x_1y_0) = y_0y_1$ shows

$$H^{6}(A_{9}^{\bullet},\mathbb{Z})_{T_{3}} = H^{6}(A_{10}^{\bullet},\mathbb{Z})_{T_{3}} = \mathbb{Z}_{3}y_{0}y_{1}$$

and

$$H^4(A_9^{\bullet}, \mathbb{Z})_{T_3} = H^4(A_{10}^{\bullet}, \mathbb{Z})_{T_3} = 0.$$

We get

$$H^{6}(B_{9}^{\bullet},\mathbb{Z})_{T_{3}}=0, \qquad \qquad H^{6}(B_{10}^{\bullet},\mathbb{Z})_{T_{3}}=\mathbb{Z}_{3}.$$

Example 5.4. Tables 3 and 4 were computed with the help of the computer algebra systems Sage [20] and Magma [3]. The integral cohomology groups $H^r(C_n(S^2), \mathbb{Z})$ have already been determined for $n \leq 9$ by Sevryuk [23] and Napolitano [18].

Remark 5.5. The whole argument of this paper is very specifically built for S^2 . Similar cell structures exist for other surfaces [18]. However, a more conceptual argument might be useful for these, more complex cases.

References

- V. Arnold. The cohomology ring of the colored braid group. In Vladimir I. Arnold-Collected Works, pages 183–186. Springer, 1969.
- [2] V. Arnold. On some topological invariants of algebraic functions. In Vladimir I. Arnold-Collected Works, pages 199–221. Springer, 1970.
- [3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3–4):235–265, 1997. Computational algebra and number theory (London, 1993).
- [4] C. Büdigheimer, F. Cohen, and L. Taylor. On the homology of configuration spaces. *Topology*, 28:111–123, 1989.
- [5] F. Cantero and M. Palmer. On homological stability for configuration spaces on closed background manifolds. *Doc. Math.*, 20:753–805, 2015.
- [6] N. Chriss and V. Ginzburg. Representation theory and complex geometry. Mod. Birkhäuser Class. Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1997 edition.
- [7] T. Church. Homological stability for configuration spaces of manifolds. *Invent. Math.*, 188(2):465–504, 2012.
- [8] F. Cohen, T. Lada, and P. May. The homology of iterated loop spaces, Lecture Notes in Mathematics, volume 533. Springer-Verlag, 1976.

n i n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	\mathbb{Z}															
2, 3	\mathbb{Z}	\mathbb{Z}														
4, 5	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2												
6,7	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3										
8,9	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_6	\mathbb{Z}_3	\mathbb{Z}_2								
10, 11	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_6	\mathbb{Z}_6	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_5						
12, 13	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_6	\mathbb{Z}_6	\mathbb{Z}_2^2	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_2 \times \mathbb{Z}_5$					
14, 15	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_6	\mathbb{Z}_6	$\mathbb{Z}_2^{\tilde{2}}$	\mathbb{Z}_2^2	$\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	\mathbb{Z}_2	0	\mathbb{Z}_7		
16, 17	\mathbb{Z}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_6	\mathbb{Z}_6	\mathbb{Z}_2^{2}	$\mathbb{Z}_2^{ ilde{2}}$	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_2^{\hat{2}} \times \mathbb{Z}_3 imes \mathbb{Z}_5$	\mathbb{Z}_2^2	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_7$	\mathbb{Z}_7	\mathbb{Z}_2

Table 3: Cohomology groups $H^i(C_n(\mathbb{C}),\mathbb{Z})$

Table 4: Cohomology groups $H^i(C_n(S^2),\mathbb{Z})$

n i n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	\mathbb{Z}	0	\mathbb{Z}													
2	\mathbb{Z}	0	\mathbb{Z}_2													
3	\mathbb{Z}	0	\mathbb{Z}_4	\mathbb{Z}												
4	\mathbb{Z}	0	\mathbb{Z}_6	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$												
5	\mathbb{Z}	0	\mathbb{Z}_8	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	0	\mathbb{Z}_2										
6	\mathbb{Z}	0	\mathbb{Z}_{10}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_3$										
7	\mathbb{Z}	0	\mathbb{Z}_{12}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_{2} \times \mathbb{Z}_{3}$	\mathbb{Z}_2	\mathbb{Z}_3								
8	\mathbb{Z}	0	\mathbb{Z}_{14}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\!\mathbb{Z}_3$	\mathbb{Z}_2	\mathbb{Z}_2								
9	\mathbb{Z}	0	\mathbb{Z}_{16}	$\mathbb{Z} \times \mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\!\mathbb{Z}_3$	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_3	\mathbb{Z}_2						
10	\mathbb{Z}	0	\mathbb{Z}_{18}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2\!\!\times\!\!\mathbb{Z}_3$	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^2 \times \mathbb{Z}_3$	$\mathbb{Z}_2 \times \mathbb{Z}_3$	$\mathbb{Z}_2 \times \mathbb{Z}_5$						
11	\mathbb{Z}	0	\mathbb{Z}_{20}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^{\overline{2}} \! imes \! \mathbb{Z}_3$	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2 \times \mathbb{Z}_5$	\mathbb{Z}_2	\mathbb{Z}_5				
12	\mathbb{Z}	0	\mathbb{Z}_{22}	$\mathbb{Z} \times \mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\!\mathbb{Z}_3$	\mathbb{Z}_2^2	$\mathbb{Z}_2^{\overline{3}}$	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	\mathbb{Z}_2^2	0				
13	\mathbb{Z}	0	\mathbb{Z}_{24}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2\!\!\times\!\!\mathbb{Z}_3$	$\mathbb{Z}_2^2 \times \mathbb{Z}_3$	$\mathbb{Z}_2^3 \times \mathbb{Z}_3$	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	\mathbb{Z}_2^2	$\mathbb{Z}_2 \times \mathbb{Z}_3$	$\mathbb{Z}_2 \times \mathbb{Z}_5$			
14	\mathbb{Z}	0	\mathbb{Z}_{26}	$\mathbb{Z} \times \mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\!\mathbb{Z}_3$	\mathbb{Z}_2^2	\mathbb{Z}_2^3	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	\mathbb{Z}_2^3	\mathbb{Z}_2^2	$\mathbb{Z}_2 \times \mathbb{Z}_5$	\mathbb{Z}_7		
15	\mathbb{Z}	0	\mathbb{Z}_{28}	$\mathbb{Z} \times \mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\!\mathbb{Z}_3$	\mathbb{Z}_2^2	$\mathbb{Z}_2^{\overline{3}}$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	$\mathbb{Z}_2^{\overline{4}}$	\mathbb{Z}_2^2	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	$\mathbb{Z}_2 \! imes \! \mathbb{Z}_7$	0	\mathbb{Z}_7
16	\mathbb{Z}	0	\mathbb{Z}_{30}	$\mathbb{Z}\!\!\times\!\!\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}_2^2 \!\!\times \!\! \mathbb{Z}_3$	$\mathbb{Z}_2^2 \times \mathbb{Z}_3$	$\mathbb{Z}_2^3 \times \mathbb{Z}_3$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3$	$\mathbb{Z}_2^4 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	$\mathbb{Z}_2^4 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_2^3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$	$\mathbb{Z}_2^3 \!\!\times\!\! \mathbb{Z}_3 \!\!\times\!\! \mathbb{Z}_5$	$\mathbb{Z}_2^2 \!\!\times\!\! \mathbb{Z}_7$	0	\mathbb{Z}_2

CHRISTOPH SCHIESSL

- [9] G. Drummond-Cole and B. Knudsen. Betti numbers of configuration spaces of surfaces. *ArXiv e-prints*, August 2016.
- [10] E. Fadell and S. Husseini. Geometry and topology of configuration spaces. Springer, 2001.
- [11] Y. Felix, S. Halperin, and J. Thomas. *Rational homotopy theory, Graduate Texts in Mathematics*, 205 Springer-Verlag, New York, 2001.
- [12] N.J. Fine. Binomial coefficients modulo a prime. Amer. Math. Monthly, 54:589– 592, 1947.
- [13] R. Fox and L. Neuwirth. The braid groups. *Math. Scand.*, 10:119–126, 1962.
- [14] D.B. Fuks. Cohomology of the braid group mod 2. Funktsional. Anal. i Prilozhen., 4(2):62–73, 1970.
- [15] A. Hatcher. *Algebraic topology*. Cambridge University Press, 2002.
- [16] A. Kupers and J. Miller. Sharper periodicity and stabilization maps for configuration spaces of closed manifolds. Proc. Amer. Math. Soc., 144(12):5457–5468, 2016.
- [17] R. Nagpal. FI-modules and the cohomology of modular representations of symmetric groups. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.) – The University of Wisconsin-Madison.
- [18] F. Napolitano. On the cohomology of configuration spaces on surfaces. J. Lond. Math. Soc. (2), 68:477–492, 2003.
- [19] O. Randal-Williams. Topological chiral homology and configuration spaces of spheres. *Morfismos*, 17(2):57–69, 2013.
- [20] Sage Developers. Sage Mathematics Software (Ver. 8.2), 2018. sagemath.org.
- [21] P. Salvatore. Configuration spaces on the sphere and higher loop spaces. Math. Z., 248(3):527–540, 2004.
- [22] G. Segal. Configuration-spaces and iterated loop-spaces. Invent. Math., 21:213– 221, 1973.
- [23] M. Sevryuk. The cohomology of projectively compactified complex swallowtails and their complements. *Russian Math. Surveys*, 39(5):285, 1984.
- [24] B. Totaro. Configuration spaces of algebraic varieties. *Topology*, 35(4):1057–1067, 1996.
- [25] F.V. Vainshtein. The cohomology of braid groups. Funktsional. Anal. i Prilozhen., 12(2):72–73, 1978.
- [26] V.A. Vassiliev. Introduction to topology, volume 14 of Stud. Math. Libr. American Mathematical Society, Providence, RI, 2001. Translated from the 1997 Russian original by A. Sossinski.
- [27] V. Vershinin. Homology of braid groups and their generalizations. In Knot theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 421–446. Polish Acad. Sci. Inst. Math., Warsaw, 1998.

Christoph Schiessl christoph.schiessl@posteo.ch

ETH Zurich, Lindenstrasse 3, Steinmaur, 8162, Switzerland