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Abstract
In this paper we give an example of a linear group such that

its tensor square is not linear. Also, we formulate some sufficient
conditions for the linearity of non-abelian tensor products G⊗
H and tensor squares G⊗G. Using these results we prove that
tensor squares of some groups with one relation and some knot
groups are linear. We prove that the Peiffer square of a finitely
generated linear group is linear. At the end we construct faithful
linear representations for the non-abelian tensor square of a free
group and free nilpotent group.

1. Introduction

Brown and Loday [6, 7] introduced the non-abelian tensor product G⊗H for a
pair of groups G andH following works of Miller [16], and Lue [14]. They showed that
the third homotopy group of the suspension of an Eilenberg-MacLane space K(G, 1)
satisfies

π3SK(G, 1) ∼= J2(G),

where J2(G) is the kernel of the derived map κ : G⊗G −→ G′, g ⊗ h 7→ [g, h] =
g−1h−1gh. Hence there exists the short exact sequence

0 −→ π3SK(G, 1) −→ G⊗G −→ G′ −→ 1.

Also, the non-abelian tensor product is used to compute some homotopy 3-types [4]
and to describe the third relative homotopy group of a triad as a non-abelian tensor
product of the second homotopy groups of appropriate subspaces. More specifically,
let a CW -complex X be the union X = A ∪B of two pointed path-connected CW -
subspaces A and B whose intersection C = A ∩B is path-connected. If the canonical
homomorphisms π1(C) −→ π1(A), π1(C) −→ π1(B) are surjective, then, according
to [6],

π3(X,A,B) ∼= π2(A,C)⊗ π2(B,C),

where the groups π2(A,C) and π2(B,C) act on one another via π1(C).
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The investigation of the non-abelian tensor product from a group theoretical point
of view started with a paper by Brown, Johnson, and Robertson [5]. They compute
the non-abelian tensor square of all non-abelian groups of order up to 30 using Tietze
transformations.

One of the topics of research on the non-abelian tensor products has been to
determine which group properties are preserved by non-abelian tensor products. By
using homological arguments, Ellis [10] showed that if G andH are finite groups, then
G⊗H is also finite. Visscher [20] proved that if G, H are solvable (nilpotent), then
G⊗H is solvable (nilpotent) and gives a bound on the nilpotency class of G⊗H. In
[9] it was proved that the tensor product of groups of nilpotency class at most n is a
group of nilpotency class at most n, thereby improving the bound given by Visscher.
For other results in this direction see the survey of Nakaoka [18].

In this paper we study the linearity problem for non-abelian tensor products. Let
n be a positive integer and let P be a field. A group G is said to be linear of degree
n over P if it is isomorphic with a subgroup of GLn(P ), the group of all n× n non-
singular matrices over P or, equivalently, if it is isomorphic with a group of invertible
linear transformations of a vector space of dimension n over P (see [15]). We study
the following question.

Let G and H be linear groups. Are the groups G⊗H, G⊗G linear?

We show that in general the answer is negative. More accurately, we prove that
the tensor square SLn(Q)⊗ SLn(Q) of the special linear group SLn(Q) over the
field of rational numbers is not linear for n ⩾ 3. On the other side we formulate some
sufficient conditions under which the groups G⊗H, G⊗G are linear. Using these
conditions, we prove that the non-abelian tensor squares of some groups with one
defining relation and groups of fibered knots are linear. If G is a finitely generated free
group or finitely generated free nilpotent group, then we construct concrete faithful
linear representations for G⊗G.

The non-abelian tensor square G⊗G is connected to other group constructions:
exterior tensor square G ∧G and Peiffer square G ▷◁ G. We prove that if G is finitely
generated, then G ▷◁ G is linear.

We note that the following problems are still open:

1) Let G be a finitely generated linear group. Is the group G⊗G linear?

2) Let G be a linear group. Is the group G ▷◁ G linear?
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2. Preliminaries

In this paper we shall use the following notations. For elements x, y in a group
G, the conjugation of x by y is xy = y−1xy; and the commutator of x and y is
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[x, y] = x−1xy = x−1y−1xy. We write G′ for the derived subgroup of G, Gab for the
abelianized group G/G′.

Recall the definition of the non-abelian tensor product G⊗H of groups G and H
(see [6, 7]). This tensor product is defined for any pair of groups G and H where
each one acts on the other (on the right)

G×H −→ G, (g, h) 7→ gh; H ×G −→ H, (h, g) 7→ hg

and on itself by conjugation, in such a way that for all g, g1 ∈ G and h, h1 ∈ H,

g(h
g1 ) =

((
gg

−1
1

)h)g1
and h(g

h1 ) =
((
hh

−1
1

)g)h1

.

In this situation we say that G and H act compatibly on each other. The non-abelian
tensor product G⊗H is the group generated by all symbols g ⊗ h, g ∈ G, h ∈ H,
subject to the relations

gg1 ⊗ h = (gg1 ⊗ hg1)(g1 ⊗ h) and g ⊗ hh1 = (g ⊗ h1)(g
h1 ⊗ hh1)

for all g, g1 ∈ G, h, h1 ∈ H.

In particular, as the conjugation action of a group G on itself is compatible, then
the tensor square G⊗G of a group G may always be defined. Also, the tensor product
G⊗H is defined if G and H are two normal subgroups of some group M and actions
are conjugations in M .

Recall the main diagram for the non-abelian tensor square (see [6, 7]). Let G be
a group. One of the main tools for studying of the non-abelian tensor square G⊗G
is the following diagram:

0

��

0

��
H3(G) // Γ(Gab)

ψ // J2(G) / /

��

H2(G) //

��

0

H3(G) // Γ(Gab)
ψ // G⊗G //

��

G ∧G //

��

1

G′

��

G′

��
1 1

with exact rows and columns. Here:

1) H2(G), H3(G) are the second and the third homology groups of G with the
coefficients in the trivial ZG-module Z. The second homology group H2(G) for the
group G = F/R, where F is a free group, can be found by the Hopf formula:

H2(G) ∼= (F ′ ∩R)/[F,R].

2) G ∧G is the exterior product of G onto itself. For the group G = F/R it can
be presented in the form (see [2])

G ∧G ∼= F ′/[F,R].

In particular, if G is a free group, then G ∧G ∼= G′.
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3) J2(G) = π3SK(G, 1) is the kernel of the derived map κ : G⊗G −→ G′, which
on the generators of G⊗G is defined by the rule:

g1 ⊗ g2 7→ [g1, g2].

The group J2(G) lies in the center Z(G⊗G) and its elements are invariant under the
action of G onto G⊗G, which is defined by the formula

(g1 ⊗ g2)
g = gg1 ⊗ gg2 .

In particular, if g2 = g1, then

(g1 ⊗ g1)
g = g1 ⊗ g1

for any g, g1 ∈ G.
4) Γ(Gab) is Whitehead’s quadratic functor. The group Γ(Gab) is generated by

elements γ(gG′) and ψ is defined by the formula

γ(gG′) 7−→ g ⊗ g.

The image ψΓ(Gab) is not equal in the general case to the group J2(G) since
J2(G)/ψΓ(G

ab) ∼= H2(G).
For the functor Γ: A 7−→ Γ(A), where A is an abelian group it is known that:
a) Γ(A×B) ∼= Γ(A)× Γ(B)× (A⊗Z B), where A⊗Z B is the abelian tensor prod-

uct of abelian groups.

b) Γ(Zn) ∼=
{
Zn n ≡ 1 (mod 2),
Z2n n ≡ 0 (mod 2).

c) Γ(Z) ∼= Z.
In particular, Γ(Zn) ∼= Z

n(n+1)
2 .

3. Linearity problem

In this section we will use a result of Malcev [15] (see also [21, Chapter 2]) on the
linearity of abelian groups. To formulate it, recall some definitions. If G is any group
τ(G) is the subgroup of G generated by all the periodic normal subgroups of G; that
is τ(G) is the maximum periodic normal subgroup of G. G has finite rank at most
n if every finite subset of G is contained in an n-generator subgroup of G. If G is
abelian and periodic then G has finite rank at most n if and only if for each prime p
the Sylow p-subgroup of G is a direct product of at most n cyclic and Cp∞ -groups. If
π is any set of primes and G is a group with a unique maximal π-subgroup we denote
this maximal π-subgroup by Gπ.

Malcev proved:
i) An abelian group A has a faithful representation of degree n ⩾ 1 over some field

of characteristic zero if and only if τ(G) has rank at most n.
ii) An abelian group A has a faithful representation of degree n ⩾ 1 over some field

of characteristic p > 0 if and only if τ(G)p′ (here p
′ denotes all primes except p) has

finite rank r and τ(A)p has finite exponent pe satisfying

pe−1 +max{1, r} < n+ 1.

We are ready to prove the following
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Proposition 3.1. There is a linear group G such that G⊗G = G ∧G is not linear.

Proof. For a perfect group G = G′ it follows from the main diagram (see Section 2)
that G⊗G = G ∧G and the sequence

0 −→ H2(G, Z) −→ G⊗G −→ G −→ 0

is exact.
For n ⩾ 3 the group SLn(Q) is perfect and its second homology group coincides

with the K2-group of the field Q,

H2(SLn(Q), Z) = K2(Q),

see [17, Corollary 11.2].
Next,

K2(Q) = {±1} ×
∏

p odd prime

(Z/p)×

by [17, Theorem 11.6], so that K2(Q) contains an abelian 2-group of infinite rank
and unbounded exponent. Using Malcev’s criterion we conclude that such a group
can not be linear. Therefore the group

SLn(Q)⊗ SLn(Q) = SLn(Q) ∧ SLn(Q)

is not linear as well.

To study the linearity problem for the non-abelian tensor product we can use a
presentation of a tensor product as a central extension (see, for example, [9]). The
derivative subgroup of G by H is defined to be the following subgroup

DH(G) = [G,H] = ⟨g−1gh | g ∈ G,h ∈ H⟩.

The map κ : G⊗H −→ DH(G) defined by κ(g ⊗ h) = g−1gh is a homomorphism, its
kernel is the central subgroup of G⊗H and G acts on G⊗H by the rule (g ⊗ h)x =
gx ⊗ hx, x ∈ G. There exists the short exact sequence

1 −→ A −→ G⊗H −→ DH(G) −→ 1.

In this case, A can be viewed as a Z[DH(G)]-module via conjugation in G⊗H, i.e.
under the action induced by setting

a · g = x−1ax, a ∈ A, x ∈ G⊗H,κ(x) = g.

We can formulate some sufficient conditions for the linearity of G⊗H. It is well
known that the tensor product G⊗H with trivial actions is isomorphic to the abelian
tensor product Gab ⊗Z H

ab. Hence, in this case the question on the linearity of G⊗H
is equivalent to the question on the linearity of the abelian tensor product and the
answer follows from the Malcev theorem.

Further we will assume that the action of G on H or the action of H on G is
non-trivial. We have the following short exact sequence

0 −→ A −→ G⊗H −→ DH(G) −→ 1. (1)

Note that A is the kernel of the natural map G⊗H −→ DH(G), g ⊗ h −→ g−1gh,
g ∈ G, h ∈ H, and is a central subgroup of G⊗H.



274 VALERIY G. BARDAKOV, ANDREI V. LAVRENOV and MIKHAIL V. NESHCHADIM

Proposition 3.2. Let the following conditions hold:
1) A, DH(G) are linear groups.
2) H2(DH(G), A) = 0, in particular, this condition holds if A is divisible or DH(G)

is a free group.
Then G⊗H = A×DH(G) is a linear group.

Proof. It is well known (see, for example [3, Chapter IV]) that if H2(DH(G), A) = 0,
then the sequence

0 −→ A −→ G⊗H −→ DH(G) −→ 1

splits. In particular, this condition holds if A is divisible or DH(G) is a free group.
Since A is a central subgroup, then G⊗H ∼= A×DH(G) and is a linear group as

a direct product of linear groups.

The main problem in the use of this theorem is the description of the central
subgroup A. For the tensor square we can use another approach.

Let us formulate some sufficient conditions under which G⊗G is a direct product
of the commutator subgroup G′ and the Whitehead group Γ(Gab).

Theorem 3.3. Let H2(G) = H3(G) = H2(G
′) = 0 and one of the following condi-

tions hold:
1) H2(G′,Γ(Gab)) = 0;
2) Γ(Gab) is a divisible group;
3) G′/G′′ is a free abelian group.
Then

G⊗G ∼= Γ(Gab)×G′.

If, moreover, G is finitely generated and G′ is linear, then G⊗G is linear.

Proof. Since, H2(G) = H3(G) = 0, then the main diagram has the form

0

��

0

��
0 // Γ(Gab)

ψ // J2(G) //

��

0 //

��

0

0 // Γ(Gab)
ψ // G⊗G //

��

G ∧G //

��

1

G′

��

G′

��
1 1.

From this diagram J2(G) = Γ(Gab) and G ∧G = G′. Hence we have the short exact
sequence

0 −→ Γ(Gab) −→ G⊗G −→ G′ −→ 1.

If H2(G′,Γ(Gab)) = 0, then this sequence is splittable:

G⊗G = Γ(Gab)⋋G′.

As we know that Γ(Gab) is divisible or G′ is free, then H2(G′,Γ(Gab)) = 0. Let us
show that if G′/G′′ does not have torsion, then H2(G′,Γ(Gab)) = 0. Indeed, by the
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universal coefficient theorem there is the following short exact sequence

0 −→ ExtZ(H1(G
′),Γ(Gab)) −→ H2(G′,Γ(Gab)) −→ HomZ(H2(G

′),Γ(Gab)) −→ 0.

Since H2(G
′) = 0 we have the short exact sequence

0 −→ ExtZ(H1(G
′),Γ(Gab)) −→ H2(G′,Γ(Gab)) −→ 0.

Hence H2(G′,Γ(Gab)) = 0 if and only if ExtZ(H1(G
′),Γ(Gab)) = 0. It is known that

if H1(G
′) is free abelian, then ExtZ(H1(G

′),Γ(Gab)) = 0.

Since Γ(Gab) is a central subgroup, this product is the direct product:

G⊗G = Γ(Gab)×G′.

If G is a finitely generated, then Gab is finitely generated abelian group and Γ(Gab)
is also a finitely generated abelian group. Then G⊗G is linear as a direct product of
two linear groups.

As consequence we get the following result:

Corollary 3.4. [2] Let Fn be a free group of rank n. Then

Fn ⊗ Fn ∼= Zn(n+1)/2 × (Fn)
′.

4. Groups with one defining relation and knot groups

Let G be a group with one defining relation:

G = ⟨X ∥ r = 1 ⟩ ,

where r ̸∈ F ′, F = ⟨X ⟩. Then Hk(G) = 0, k ⩾ 2 (see [3, p. 49]). Hence, there exists
the following short exact sequence:

0 −→ Γ(Gab) −→ G⊗G −→ G′ −→ 1.

If Gab does not have torsion, then Gab is a free abelian group and Γ(Gab) is a free
abelian group. Then, if H2(G′) = 0, then H2(G′,Γ(Gab)) = 0, which follows from the
decomposition

Hk(S,A⊕B) = Hk(S,A)⊕Hk(S,B)

for every group S and all S-modules A and B.

From Theorem 3.3 follows

Proposition 4.1. Let G be a group with one defining relation:

G = ⟨X ∥ r = 1 ⟩ ,

where r ̸∈ F ′, F = ⟨X ⟩ such that H2(G′) = 0. If one from the following conditions
holds:

1) Gab does not have torsion,

2) G′/G′′ is a free abelian group,

then G⊗G = Γ(Gab)×G′. If, moreover, G is finitely generated and G is linear, then
G⊗G is linear.
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It is well known that if K is a tame knot in 3-sphere S3 and GK = π1(S3 \K) its
group, then Hn(GK) = 0 for n > 1 (see, for example [13, p. 5]). Recall that a knot
K is called fibered if there is a 1-parameter family Ft of Seifert surfaces for K, where
the parameter t runs through the points of the unit circle S1, such that if s is not
equal to t then the intersection of Fs and Ft is exactly K. The commutator subgroup
G′
K for the fibered knot K is a free group of finite rank [8] and GK is linear [1].

Proposition 4.2. Let K be a tame fibered knot in 3-sphere S3, then GK ⊗GK =
G′
K × Z and has a faithful linear representation into GL2(Z[t, t−1]).

Proof. It is well known that GabK = Z and then Γ(GabK ) = Z. From Theorem 3.3 it
follows that GK ⊗GK = Z×G′

K .
To construct a linear representation, use the fact that G′

K is a free group of finite
rank and by Sanov’s theorem [12, Chapter 5] it has a faithful linear representation
into SL2(Z) ⩽ GL2(Z[t, t−1]). Define a linear representation of GabK = Z = ⟨γ⟩ into
GL2(Z[t, t−1]) by the rule

γ 7−→
(

t 0
0 t

)
.

Since the image of γ is a scalar matrix, i.e. lies in the center of GL2(Z[t, t−1]), we
constructed a faithful linear representation of GK ⊗GK .

Example 4.3. 1) The braid group B3 on 3 strings has presentation

B3 = ⟨σ1, σ2 || σ1σ2σ1 = σ2σ1σ2⟩

and is the group of trefoil knot. The commutator subgroup B′
3 is a free group of rank 2.

Hence the tensor square B3 ⊗B3 = Z× F2 has a faithful linear representation into
GL2(Z[t, t−1]).

2) It is known that the group of the figure eight knot has a presentation

G = ⟨x, y || yx−1yxy−1 = x−1yxy−1x⟩

and is a fibered knot. Hence the tensor square G⊗G = Z×G′ has a faithful linear
representation into GL2(Z[t, t−1]).

In the first example we showed that B3 ⊗B3 = Z× F2. On the other side B3

contains the pure braid group P3, which is normal in B3, has index 6 and is the
direct product of the center, which is isomorphic to Z, and a free group of rank 2.
Hence, B3 ⊗B3 is isomorphic to P3 and we proved

Proposition 4.4. There is a non-trivial non-abelian group G such that the tensor
square G⊗G is isomorphic to a proper subgroup of G.

We note that the following problems are still open:
1) Is it true that Bn ⊗Bn, n > 3, is linear?
2) Is it true that for arbitrary tame knot K the group G(K)⊗G(K) is linear?

5. On the linearity of the Peiffer product

Recall the definition of the Peiffer product. Given G and H acting compatibly on
each other, in [22] the Peiffer product G ▷◁ H was defined their as the quotient of the
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free product G ∗H by the normal closure K of all elements of the form

h−1g−1hgh or g−1h−1ghg,

where g ∈ G and h ∈ H. Whitehead [22] posed a question on the asphericity of sub-
complexes of aspherical 2-complexes and reformulated it as part of the wider problem
of finding conditions under which the groups G and H are embedded in G ▷◁ H.

In [11] it was proved that if φ : G ∗H → G ▷◁ H, then modulo K = Ker(φ), hg ≡
ghg, so that every element of G ▷◁ H can be written as φ(g)φ(h) for suitable g, h.
Denote φ(g)φ(h) as ⟨g, h⟩. The relations

⟨g, h⟩⟨g1, h1⟩ = ⟨gg1, hg1h1⟩ = ⟨ggh
−1

1 , hh1⟩

are defining relations for G ▷◁ H on the generators ⟨g, h⟩ and so G ▷◁ H is a homo-
morphic image of both the semidirect products G⋉H and G⋊H. The group G ▷◁ H
is obtained from G⋉H (or from G⋊H) by imposing the relations

(g−1gh, 1) = (1, h−gh).

If G and H act on one another trivially, then G ▷◁ H is just the direct product
G×H and K = G□H, where G□H is the Cartesian subgroup of G ∗H (the kernel
of the canonical homomorphism G ∗H −→ G×H).

From [11, Proposition 2.1] follows

G ▷◁ G ∼= Gab ×Gab.

Using this isomorphism one can prove

Proposition 5.1. Let G be a linear group and G is finitely generated or G = G′,
then G ▷◁ G is linear.

From this proposition it follows that if G = SLn(Q), n ⩾ 2, then G ▷◁ G is linear.
On the other side, we know that SLn(Q)⊗ SLn(Q) and SLn(Q) ∧ SLn(Q) are not
linear for n ⩾ 3.

Note that this proposition is not true for arbitrary linear group G since there are
linear groups with nonlinear abelianization.

Example 5.2. 1) (O.V. Bryukhanov) Let G =
∞∗
i=2

Zi be the free product of cyclic

groups. Then G is linear as the free product of linear groups. On the other side,
by Malcev criteria (see Section 3) the abelianization Gab is not linear.

2) (J.O. Button) Take the set of matrices

Ai =

(
1 xi

0 1

)
∈ SL2(Z[x]), i ∈ N.

Then A = ⟨Ai | i ∈ N⟩ is a free abelian group of countable rank. Put

B =

(
3 0
0 1

)
∈ GL2(Q).

It is easily to check that these matrices satisfy the relations

BAiB
−1 = A3

i , i ∈ N.
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Hence the group generated by Ai and B has the presentation

G2 = ⟨Ai, i ∈ N, B || [Ai, Aj ] = 1, BAiB
−1 = A3

i , i, j ∈ N⟩,

which is a subgroup of GL2(Q[x]), but its abelianization Gab2
∼=

∞⊕
i=1

Z2 ⊕ Z does not

have a faithful linear representations over field of characteristic p ̸= 2.
Analogously, take the set of matrices

Ci =

(
1 yi

0 1

)
∈ SL2(Z[y]), i ∈ N.

Then C = ⟨Ci | i ∈ N⟩ is a free abelian group of countable rank. Put

D =

(
4 0
0 1

)
∈ GL2(Q).

It is easily to check that these matrices satisfy the relations

DCiD
−1 = C4

i , i ∈ N.

Hence the group generated by Ci and D has the presentation

G3 = ⟨Ci, i ∈ N, D || [Ci, Cj ] = 1, DCiD
−1 = C4

i , i, j ∈ N⟩,

which is a subgroup of GL2(Q[y]), but its abelianization Gab3
∼=

∞⊕
i=1

Z3 ⊕ Z does not

have a faithful linear representations over field of characteristic p ̸= 3.
Let us take G = G2 ⊕G3. Then G is metabelian and has a faithful linear repre-

sentation in GL4(Q[x, y]), but its abelianization Gab ∼=
∞⊕
i=1

(Z2 ⊕ Z3)⊕ Z⊕ Z is not

linear.

It is evident that the sequence

1 −→ 1×G′ −→ Gab ×G −→ Gab ×Gab −→ 1

is short exact. Since Gab ×G ∼= G ▷◁ G we can add the following new terms into the
main diagram.

Proposition 5.3. The following diagram holds:

0

��

0

��
H3(G) // Γ(Gab)

ψ // J2(G) //

��

H2(G) //

��

1

H3(G) // Γ(Gab)
ψ // G⊗G //

��

G ∧G //

��

1

G ▷◁ G

��

G ▷◁ G

��
Gab ×Gab

��

Gab ×Gab

��

H1(G)×H1(G)

1 1.
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6. Faithful linear representations

In the paper [2] it was proved:

1) If Fn is the free group of rank n, then

Fn ⊗ Fn ∼= Zn(n+1)/2 × (Fn)
′.

2) If Nn,c = Fn/γcFn is the free nilpotent group of rank n > 1 and class c ⩾ 1,
then

Nn,c ⊗Nn,c ∼= Zn(n+1)/2 × (Nn,c+1)
′.

Proposition 6.1. Let G be a free countable group. Then the exterior square G ∧G
has a faithful representation into SL2(Z) and the tensor square G⊗G has a faithful
representation into GL2(C).

Proof. As was proven in [7], for the free group G there are isomorphisms

G ∧G ∼= G′, G⊗G ∼= Γ(Gab)×G′.

Since G is free, its commutator subgroup G′ is free. Hence, by the Sanov result [12,
Chapter 5] there is a faithful representation of G′ into SL2(Z) and the first part of
the proposition holds.

Further, Γ(Gab) is a free abelian group. Let ak, k ∈ I be its free generators. Take
transcendental elements tk, k ∈ I in the field C, which are algebraically independent
over Q. Then the matrix group

T =

⟨(
tk 0
0 tk

)
∥ k ∈ I

⟩
is isomorphic to the group Γ(Gab). If φ : G′ −→ GL2(Z) is an embedding, then

⟨φG′, T ⟩ ∼= φG′ × T.

Hence, the group G⊗G has a faithful representation in the matrix group over the
ring Z[t±1

k , k ∈ I].

If G = F∞ is countably generated then it has a faithful representation into SL2(Z).
To prove that Γ(F ab∞ ) is linear we use the following property

Γ(F ab∞ ) = Γ(limF abn ) = lim(ΓF abn ).

For the finitely generated free groups from this theorem follows

Corollary 6.2. The tensor square Fn ⊗ Fn has a faithful representation into

GL2(Z[t±1
1 , . . . , t±1

m ]), where m =
n(n+ 1)

2
.

For the free nilpotent groups we can prove

Proposition 6.3. There is a faithful representation

Nn,c ⊗Nn,c −→ Tc+2(C)

into the group of triangular matrices Tc+2(C).
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Proof. We noted that

Nn,c ⊗Nn,c ∼= Zn(n+1)/2 × (Nn,c+1)
′.

Hence, we have to define faithful linear representations for Zn(n+1)/2 = ⟨a1, a2, . . . ,
am⟩, m = n(n+ 1)/2 and for (Nn,c+1)

′, where Nn,c+1 = ⟨x1, x2, . . . , xn⟩. Let

τ1, τ2, . . . , τm, tij , i = 1, 2, . . . , n, j = 1, 2, . . . , c+ 1

be complex numbers which are algebraically independent over Q. Define the following
maps

ak 7→ τkE ∈ Tc+2(C), k = 1, 2, . . . ,m,

which defines a faithful representation of Zn(n+1)/2 into Tc+2(C), and

xi 7→


1 ti1 0 0 · · · 0 0
0 1 ti2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 tic
0 0 0 0 · · · 0 1

 ∈ UTc+2(C) i = 1, 2, . . . , n.

As Romanovskii proved [19] the map, defined on xi is a faithful representation of
Nn,c+1 into UTc+2(C). Hence we have a faithful representation of Zn(n+1)/2 ×Nn,c+1

into Tc+2(C). Since Zn(n+1)/2 × (Nn,c+1)
′ is a subgroup of Zn(n+1)/2 ×Nn,c+1, we

have the needed representation.
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