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Abstract
We give a general framework of equivariant model category

theory. Our groups G, called Hopf groups, are suitably defined
group objects in any well-behaved symmetric monoidal cate-
gory V . For any V , a discrete group G gives a Hopf group,
denoted I[G]. When V is cartesian monoidal, the Hopf groups
are just the group objects in V . When V is the category of mod-
ules over a commutative ring R, I[G] is the group ring R[G] and
the general Hopf groups are the cocommutative Hopf algebras
over R. We show how all of the usual constructs of equivariant
homotopy theory, both categorical and model theoretic, gen-
eralize to Hopf groups for any V . This opens up some quite
elementary unexplored mathematical territory, while system-
atizing more familiar terrain.
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1. Introduction

The model theoretic role of presheaf categories in enriched contexts is studied in
general in [7]. This paper explores how that general theory plays out in equivariant
contexts. We begin with an exposition of uniform categorical foundations and then
turn to the homotopy theory. The context is more general and perhaps less familiar
than expected. It opens up some quite natural unexplored territory.

As a preamble, we start in §2 with a well understood motivating example, the
equivalence of model categories of G-spaces with presheaves of spaces defined on the
orbit category of G. We view that as a template for generalization. In §3, we ignore
model categories and develop a coherent categorical context. Briefly, following [18]
and other precursors, we identify Hopf groups G as the appropriate groups in a well-
behaved symmetric monoidal category V = (V ,⊗, I). For a well-behaved category M

enriched in V and a Hopf group G in V , we show how to develop a theory of G-objects
in M , including among other desiderata the fixed point and orbit objects associated
to G-objects. These lie in M , and then the most obvious presheaves in sight take
values in M rather than in the enriching category V , which is where it is usually
most useful to have them. We shall see that if the G-objects in M have a model as
presheaves with values in M and the objects of M are modeled as presheaves in V ,
then the G-objects in M also have a model as presheaves with values in V .

In any cartesian monoidal category V , every object is a cocommutative comonoid
in a unique way via the diagonal Δ. Therefore we may define group objects in V

exactly as we do in Set.
Now let V = (V ,⊗, I) be a cosmos, or a good enriching category. As we recall in

§3, the category CoV of cocommutative comonoids in V is cartesian monoidal. If C
and D are in CoV , then so is C ⊗D, and it is the categorical product of C and D in
CoV ; with its evident comultiplication and counit, the unit object I of V is the unit
object in CoV . We view groups in the symmetric monoidal category (CoV ,⊗, I) to
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be the most natural generalization of groups in cartesian monoidal categories, and
we introduce the term Hopf group as the generic name for CoV -groups. We shall be
more explicit in §3.1. If V is cartesian monoidal, then V = CoV and Hopf groups
are group objects in V , which we call V -groups. In general, we replace V by the
cartesian monoidal category CoV to define Hopf groups. When V = R-Mod for a
commutative ring R, these are the cocommutative Hopf algebras over R. We can
think of monoids in CoV as cocommutative V -bialgebras and Hopf groups in V as
cocommutative V -Hopf algebras.

Up to language, this much should be reasonably standard. What is not standard is
to see how thoroughly the usual constructions for G-objects in a category, where G is a
discrete group, generalize to give analogous constructions for G-objects in a category
M enriched in V , where G is a Hopf group in V . This suggests a generalization of
equivariant homotopy theory to the context of G-objects in M for any Hopf group
G and V -category M . The idea is that perspectives natural in equivariant homotopy
theory apply just as well to actions of Hopf groups in general. We have in mind
new directions in homological algebra and stable homotopy theory, starting with the
category V = R-Mod of R-chain complexes and a cocommutative Hopf algebra A
over R in the former case. For an example of particular interest to the authors, with
R = Fp we can take A to be the mod p Steenrod algebra.

This gives a broad generalization of classical group actions. In general, for a Hopf
group G, let GV be the category of G-objects in V and G-maps between them. In the
original version of this paper, by the first two authors, we treated several equivariant
contexts as different. The present more categorical vantage point, promulgated by the
third author, gives a common generalization.

One detail from the original paper argues persuasively for the change of perspec-
tive. For any cosmos V , there is an evident strong symmetric monoidal functor I[−]
from sets to V , given by I[S] = �SI. Applied to a discrete group G, it gives a Hopf
group I[G]. Starting from a discrete group G and its V -group ring I[G], the homo-
topically correct version of the fixed point V -orbit category of I[G] is the full V -
subcategory of GV with objects the I[G]/H, where H runs through the closed sub-
groups of I[G] as defined in §7.1 below; see Theorem 4.13. We could instead restrict
to the full V -subcategory of GV with objects of the form I[G/H], where H is an
ordinary subgroup of G. A third choice is to restrict to the non-full V -subcategory
with objects the I[G/H] and morphism objects I[GSet(G/K,G/H)], which is what
we might think of first. Here the set GSet(G/K,G/H) of G-maps G/K −→ G/H
can be identified with (G/H)K . The difference between the latter two choices is seen
in the inclusion

I[(G/H)K ] ⊂ I[G/H]K .

This is the identity in cartesian monoidal examples V , but in general it is not. For
example, it is not when V = R-Mod, in which case I = R and R[G] is the usual group
ring. In this example, the (closed) subgroups of R[G] are the sub Hopf algebras over
R, not just those of the form R[H] for a subgroup H of G. The present perspective
works for Hopf groups in any cosmos V with no more difficulty than the original
perspective on V -groups in cartesian monoidal categories V .

While this idea is elementary and natural, it suggests new and as yet unexplored
perspectives. In particular, in equivariant homotopy theory, the most natural weak
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equivalences are certainly not the mere underlying weak equivalences, which are alto-
gether too naive. We like the term Borel equivalences for these,1 since Borel homology,
in contrast to Bredon homology, is invariant under such naive equivalences. However,
in homological algebra for DG-modules over Hopf algebras or, more generally, over
DG-Hopf algebras, the weak equivalences used to date are the quasi-isomorphisms,
which are the mere underlying weak equivalences.

With the categorical perspective of §3 on hand, we turn to equivariant model
categories in §4. There we fix a set F of (closed) subgroups of a Hopf group G in V

and let OF be the full V -subcategory of GV whose objects are the orbits G/H in
GV . We assume that V and M have suitably related model structures. We then have
the evident analogues in GV and GM of the F -equivalences in G-spaces. We show
in Theorems 4.7, 4.11, and 4.13 that under quite general conditions the given model
structure on M induces Quillen equivalent F -model structures on GM and on the
functor (or presheaf) category Fun(Oop

F
,M ), in precise analogy with the comparison

of model categories of G-spaces dealt with in §2.
To model GM by a category of presheaves with values in V rather than in M , we

assume in §4.3 that M itself is Quillen equivalent to a presheaf category Fun(Dop,V )
and that the results of §4.2 apply to M . We show in Theorem 4.17 that GM is then
also Quillen equivalent to a presheaf model category, namely Fun((OF ⊗ D)op,V ).
In contrast to earlier results, the domain category OF ⊗ D for the presheaves in V

needed to model GM is generally not a full subcategory of GV .
We show how the general theory specializes to DG Hopf algebras in §5. Letting

A denote a cocommutative DG Hopf algebra over a commutative ring R, we show
that the results of §4 apply to give a Quillen equivalence between A-Mod with its
F -model structure and the presheaf category Fun(Oop

F
, R-Mod), where OF is the

category of orbits, denoted A//B, for B in some chosen set F of sub Hopf-algebras
of A. The theory here seems especially intriguing, and we hope to see it followed up
in later work.

We take V to be the category of simplicial sets in §6. Here Hopf groups are sim-
plicial groups G, but we can say little in that generality. Our theory necessarily must
focus on commutation relations between orbits and fixed points. This only works well
simplicially when G is a discrete group viewed as a constant simplicial set. For such
a G, taking V = M = sSet, the results of §4 apply to give the well-known Quillen
equivalence between GsSet with its F -model structure and the presheaf category
Fun(Oop

F
, sSet), where OF is the category of orbits G/H for H ∈ F . As we explain

in §6.3, to generalize M to a suitable category enriched in sSet is more problem-
atic. Restricting to a finite group G, we obtain a general theorem under appropriate
assumptions on M that ensures the required commutation of orbits and fixed points.

The reader will likely notice that other examples in algebraic geometry and cat-
egory theory will work in much the same way as in the two quite different contexts
just described.

We give several categorical elaborations in §7. We give a general definition of
a “closed” subgroup of a Hopf group in §7.1, we explain when F deserves to be

1Quote from the referee: ‘Borel equivalences’ is excellent terminology, but I haven’t heard it much
used before. Since many of the more common alternatives are actively confusing, perhaps the authors
could be more open about suggesting it.
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called a “family” of subgroups in §7.2, we elaborate on the double enrichment present
in equivariant contexts in §7.3, and we give alternative perspectives on the basic
adjunction (T,U) relating functor categories to categories of G-objects in §7.5.

Acknowledgments

We thank Emily Riehl for catching errors and for many helpful comments, and we
thank a helpful referee for wading through a less satisfactory earlier draft.

2. Preamble: enriched model categories of G-spaces

We describe the motivating example [4, 15, 17] for a general theory relating equiv-
ariant categories to presheaf categories. Since the example is specified topologically,
we use topological enrichments. We work in U , the category of compactly generated
weak Hausdorff spaces.

Let G be a topological group. We understand subgroups of G to be closed. Let
F be a nonempty family of subgroups of G, so that {e} ∈ F and subconjugates of
groups in F are in F .

Remark 2.1. While it is standard to restrict attention to families, for the theory here
F could be any (nonempty) set of subgroups of G.

Specializing the general theory in [7], take V there to be the cartesian monoidal
category U with its standard Quillen model structure. The generating cofibrations I
are the cells Sn−1 −→ Dn and the generating acyclic cofibrations J are the inclusions
i0 : D

n −→ Dn × I, where n � 0.
To be pedantically precise, we let GU (X,Y ) denote the space of G-maps X −→ Y

and let GU (X,Y ) denote its underlying set. The spaces GU (X,Y ) are the hom
objects that give GU its enrichment in U .

We may viewGU as a closed cartesian monoidal category, withG acting diagonally
on cartesian products. Its objects are the G-spaces. For G-spaces X and Y , the
internal hom G-space U G(X,Y ) is the G-space of all maps X −→ Y , with G acting
by conjugation. We emphasize that although U G(X,Y ) is defined using all maps
X −→ Y , with our understanding that it is a functor taking values in G-spaces it
is only functorial with respect to G-maps X −→ X ′ and Y −→ Y ′. These G-spaces
give the internal hom for the closed structure on GU . We let UG(X,Y ) denote the
underlying set of U G(X,Y ), but we emphasize that this notion of underlying set is
of no great mathematical interest and will not generalize to our new context.

Observe that for any G-space X, the space XG can be identified with the space
GU (∗, X). We have identifications

GU (X,Y ) = U G(X,Y )G (1)

and therefore

GU (X,Y ) = U (∗,U G(X,Y )G). (2)

That much will generalize to arbitrary V . Here, visibly, we can rewrite this as

GU (X,Y ) = UG(X,Y )G. (3)

However, as explained in §7.4, (3) will only generalize under hypotheses on V that
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are not usually satisfied.

It is usual to regard GU (X,Y ) as the space rather than just the set of G-maps
X −→ Y , and to write UG(X,Y ) for the G-space rather than just the G-set of maps
X −→ Y . When we enrich a category in spaces or G-spaces, as here, it seems reason-
able to use the same notation for sets and spaces of maps, since the latter are just
given by prescribing a topology on the given sets. However, the notational distinction
is vital in the general context we are headed towards. Formally, (1) and (2) describe
a double enrichment of the underlying category GU : it is enriched in spaces, but
as a closed symmetric monoidal category it is also enriched over itself, that is, it is
enriched in G-spaces. We shall be categorically precise when we generalize.

With the notations of the general theory in [7], we take D to be OF , the full
U -subcategory of GU whose objects are the orbit G-spaces G/H with H ∈ F . The
most important example is F = A ��, the set of all subgroups of G, and we write OG

for this orbit category. We have the adjunction

Fun(Oop
F
,U )

T

GU .
U

For a G-space Y , GU (G/H, Y ) can be identified with the fixed point space Y H , so
that U(Y ) is the presheaf of fixed point spaces Y H for H ∈ F . As is easily checked,
the left adjoint T takes a presheaf X to the G-space X(G/e). Therefore it takes the
represented presheaf Y(G/H) (see §7.5) to the G-space G/H. Clearly ε : TU −→ Id
is a natural isomorphism, hence U is full and faithful.

Define the F -equivalences in GU to be the G-maps f such that the fixed point
map fH is a weak equivalence for H ∈ F . These are the weak G-equivalences when
F = A ��, and the G-Whitehead theorem says that a weak G-equivalence between G-
CW complexes is a G-homotopy equivalence. When F = {e}, a weak F -equivalence
is just a G-map which is a nonequivariant weak equivalence, giving the naive or
Borel version of equivariant homotopy theory. Similarly, define the F -fibrations to
be the G-maps f such that fH is a (Serre) fibration for H ∈ F . The following three
theorems are proven in [14, 15, 17]. As we shall indicate, they are special cases of
general results in [7]. Compactly generated model categories are discussed in [7, 16].

Theorem 2.2. The category GU is a compactly generated proper U -model category
with respect to the F -equivalences, F -fibrations, and the resulting cofibrations. The
sets of maps IF = {G/H × i} and JF = {G/H × j}, where H ∈ F , i ∈ I, and j ∈
J , are generating sets of cofibrations and acyclic cofibrations.

For H ∈ F , we have the functor FG/H : GU −→ Fun(Oop
F
,U ) from [7, 1.5]; for a

G-space Y , it is given by (FG/HY )(G/K) = OF (G/K,G/H)× Y . If G acts trivially
on Y , this is

(G/H)K × Y ∼= (G/H × Y )K = U(G/H × Y )(G/K),

and then

FG/HY ∼= U(G/H × Y ).

We apply this identification with Y replaced by the maps in I and J .
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Theorem 2.3. The category Fun(Oop
F
,U ) is a compactly generated proper V -model

category with respect to the level equivalences, level fibrations, and the resulting cofi-
brations. The sets of maps FG/H i and FG/Hj, where H ∈ F , i ∈ I, and j ∈ J , gen-
erate the cofibrations and acyclic cofibrations, and these sets are isomorphic to UIF

and UJF .

Theorem 2.4. The pair (T,U) is a Quillen U -equivalence between the categories
GU and Fun(Oop

F
,U ).

In light of Theorem 2.4, we refer to the weak equivalences and fibrations of the
presheaf category Fun(Oop

F
,U ) as level F -equivalences and level F -fibrations.

Theorem 2.3 holds by [7, 4.30]. The only point requiring verification is that, in the
language of [7, 4.13], JF satisfies the acyclicity condition for the level F -equivalences.
This means that any relative cell complex A −→ X constructed from UJF is a level
F -equivalence. By definition, U creates the F -equivalences and F -fibrations in GU ,
as in [7, 1.16], and [7, 1.17] applies to prove Theorems 2.2 and 2.4. In this example,
its acyclicity condition means that any relative JF -cell complex is an F -equivalence.

As observed in [14, p. 40], U carries IF -cell complexes and JF -cell complexes in
GU to corresponding cell complexes in Fun(Oop

F
,U ), mapping relative cell complexes

with source Y bijectively to relative cell complexes with source UY . This is not for-
mal but rather depends on the fact that U preserves certain pushouts [14, III.1.10].
Therefore the acyclicity condition needed to prove Theorem 2.2 follows from that
needed to prove Theorem 2.3. However, since the maps in J are inclusions of defor-
mation retracts, the maps in JF are inclusions of G-deformation retracts, hence the
maps in UJF are levelwise deformation retracts. The acyclicity of relative UJF -cell
complexes follows by passage to coproducts, pushouts, and sequential colimits.

To prove Theorem 2.4, we observe that, for a G-space Y and a space V , the maps
η of [7, 1.12] are the evident homeomorphisms Y H × V ∼= (Y × V )H . This implies
that η : X −→ UTX is an isomorphism when X is the domain or codomain of a map
in IF . Again using that U preserves the relevant colimits, it follows (as in [7, 1.20])
that η : X −→ UTX is an isomorphism in Fun(Oop

F
,U ) for all cofibrant X.

Using smash products instead of cartesian products and giving orbit G-spaces
disjoint basepoints, everything above works just as well using the categories T and
GT of nondegenerately based spaces and nondegenerately based G-spaces instead of
U and GU .

3. Hopf groups and their actions

3.1. Hopf groups

We shall take the summary of the previous section as a template for generalization,
and we must first generalize the notion of a topological group. As in the introduction,
we take V to be a cosmos, that is, a bicomplete closed symmetric monoidal category
with product ⊗ and unit object I. We fix V throughout the paper. We write V (X,Y )
for the set of maps X −→ Y in V , and we write V for the internal hom in V . Then

V (X,Y ) = V (I,V (X,Y )). (4)

The V -functor V is characterized by the enriched adjunction

V (X ⊗ Y, Z) ∼= V (X,V (Y, Z)).
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Applying V (I,−) we obtain the ordinary (set level) adjunction

V (X ⊗ Y, Z) ∼= V (X,V (Y, Z)).

As a starting point, we would like generalizations of fixed point G-spaces and
generalizations of (1) and (2) for group actions in a general cosmos V , namely

GV (X,Y ) = V G(X,Y )G (5)

and therefore

GV (X,Y ) = V (I,GV (X,Y )) = V (I,V G(X,Y )G) = GV (I,V G(X,Y )). (6)

Once we understand the category GV of G-objects and G-maps as a cosmos, with
internal hom objects V G(X,Y ) in GV , the agreement of the first and last terms
in (6) will be a special case of (4). There is no problem when V is cartesian monoidal,
so that ⊗ = × and I is a terminal object ∗ in V . In that case, a V -group is just a
group in V , defined via the usual diagrams, and (5) holds. In general, we must first
define what we mean by a group object in V .

Definition 3.1. A comonoid C in V is a monoid in the opposite category V op.
Thus it is an object of V together with a comultiplication ψ : C −→ C ⊗ C and an
augmentation ε : C −→ I such that the duals of the diagrams defining a monoid in
V commute. We say that C is cocommutative if γψ = ψ, where γ is the symmetry
isomorphism in V . Let CoV denote the category of cocommutative comonoids in V .
Note that I is a cocommutative comonoid with ψ the unit isomorphism and ε the
identity. A unit for a comonoid C is a map of comonoids η : I −→ C.

The following elementary and quite standard categorical observations explain the
relevance of CoV .

Lemma 3.2. If V is cartesian monoidal, then the forgetful functor CoV −→ V is
an isomorphism of categories.

Proof. For an object X of V , the diagonal map Δ and the unique map ε : X −→ ∗
specify the unique comonoid structure on X, and it is cocommutative.

Lemma 3.3. The bifunctor ⊗ in V extends to a bifunctor on CoV .

Proof. The comultiplication on C ⊗D is the composite

C ⊗D
ψ⊗ψ

C ⊗ C ⊗D ⊗D
id⊗γ⊗id

C ⊗D ⊗ C ⊗D,

and it is cocommutative. The augmentation is

C ⊗D
ε⊗ε

I ⊗ I ∼= I.

Lemma 3.4. A comonoid C in V is cocommutative if and only if ψ : C −→ C ⊗ C
is a morphism of comonoids.

Proof. The dual statement about monoids is standard. Writing a diagrammatic proof
of that and reversing all the arrows gives the proof for comonoids.
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Lemma 3.5. The category CoV is cartesian monoidal under the product ⊗. The
object I is terminal in CoV , the cartesian diagonal map Δ: C −→ C ⊗ C is the
comultiplication on C, and the cartesian product of two maps is their tensor product.

Proof. The coordinate projections are

C ∼= C ⊗ I C ⊗D
id⊗ε ε⊗id

I ⊗D ∼= D

and the universal property is easily checked.

More generally, CoV also has pullbacks, but it is not a cosmos since it is neither
closed nor cocomplete. Ignoring CoV , we have the notion of a monoid G in V , given
by a product φ and unit η. When G is in CoV , with comultiplication ψ and counit
ε, we have the notion of a CoV -monoid, for which φ and η are required to be maps
of comonoids. For φ, this means that the following familiar diagram must commute,
where γ is the symmetry isomorphism in V .

G⊗G
φ

ψ⊗ψ

G
ψ

G⊗G

G⊗G⊗G⊗G
id⊗γ⊗id

G⊗G⊗G⊗G

φ⊗φ

Since CoV is cartesian monoidal, we can define CoV -groups as well as CoV -
monoids. A CoV -monoid G is a CoV -group if there is map χ : G −→ G in V , which
we call an antipode (as is standard for Hopf algebras), such that the following dia-
grams commute.

G⊗G
χ⊗id

G⊗G

φ

G

ψ

ε
I

η
G

and G⊗G
id⊗χ

G⊗G

φ

G

ψ

ε
I

η
G

The following result is proven exactly as in the special case of cocommutative Hopf
algebras (e.g. [16, §21.3]).

Lemma 3.6. The antipode χ is unique if it exists; it is an antihomomorphism, that
is, a morphism of V -groups G −→ Gop; and it is an involution, χ2 = id.

Definition 3.7. A Hopf group in V is a CoV -group.

Remark 3.8. We map the category of sets into V via the functor I[−] that sends a
set S to the coproduct of copies of I indexed on S. This functor is left adjoint to the
functor V (I,−). Regarding the category of sets as cartesian monoidal, the functor
I[−] is strong symmetric monoidal. If G is a discrete group, then I[G] is a Hopf group
in V . We think of it as the V -group ring of G.

To sum up, a Hopf group in V is a cocommutative V -comonoid (G,ψ, ε) with an
extension of structure (G,ψ, ε, φ, η, χ) satisfying the group axioms. Ignoring χ, the
definition encodes asymmetrically the usual defining properties of bialgebras:

• η is a unit for (G,ψ, ε) or, equivalently, ε is a counit for (G,φ, η), and

• φ is a map of V -comonoids or, equivalently, ψ is a map of V -monoids.
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When V = Set is the category of sets, G is just a discrete group. When V = U ,
G is a topological group. When V = sSet is the category of simplicial sets, G is a
simplicial group. When V = R-Mod,G is a cocommutative Hopf algebra over R. This
puts these examples and many others on an equal categorical footing. As illustrated
in Remark 3.8, any strong symmetric monoidal functor V −→ W between cosmoi
sends Hopf groups in V to Hopf groups in W .

Remark 3.9. In a cartesian monoidal category, such as CoV , a Hopf group is the
same data as a group object (cf. Lemma 3.2). Since the forgetful functor CoV −→ V

is strong monoidal, it follows that every Hopf group is the strong monoidal image of
a cartesian group object. Conversely, strong monoidal functors preserve Hopf groups,
and hence every such image of a cartesian group object is a Hopf group.

Remark 3.10. We can generalize the definition of a Hopf group by allowing V to
be braided monoidal and by not requiring cocommutativity. The resulting objects
are studied in categorical combinatorics, where they are called Hopf monoids; see for
example [1]. In that generality, Hopf monoids are not monoids in a cartesian monoidal
category, even if we do require the comultiplication to be cocommutative. As pointed
out to us by Marcelo Aguiar, when V is only braided monoidal, the product C ⊗D
of cocommutative comonoids need not be cocommutative.

3.2. Actions of Hopf groups on objects of V -categories

Fix a Hopf group G in V and let M be a category enriched in V , or a V -category
for short. We write M (X,Y ) for the object in V of morphisms X −→ Y in M and we
assume that M is V -bicomplete. The standard exposition is [12], but we shall review
briefly the summary in [7, §4.1]. The reader may prefer to focus on M = V but the
generality is essential to the applications; if V is a common enriching category, such
as U , R-Mod, or sSet, one does not want to focus just on V .

Before describing the actions of a Hopf group G in a V -category M , we review
the generalization of the tensor-hom adjunction to M . Recall the ⊗-product of V -
categories M and N , which is a V -category with the same objects as M × N . For
objects X,X ′ ∈ M and Y, Y ′ ∈ N ,

(M ⊗ N )
(
(X,Y ), (X ′, Y ′)

)
= M (X,X ′)⊗ N (Y, Y ′),

with the obvious units and composition defined in terms of those of M and N .
In addition to being bicomplete in the usual sense, M has tensor and cotensor V -
bifunctors

	 : M ⊗ V −→ M and F : V
op ⊗ M −→ M

that take part in V -adjunctions

M (M 	 V,N) ∼= V (V,M (M,N)) ∼= M (M,F (V,N)).

These imply ordinary unenriched adjunctions

M (X 	 V, Y ) ∼= V (V,M (X,Y )) ∼= M (X,F (V, Y )).

By the discussion in [7, §4.1], we are free to take tensors in the opposite order, V 	M
instead of M 	 V . That is convenient for our purposes when we take V = G. With
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that convention, we have transitivity isomorphisms

(V ⊗W )	X ∼= V 	 (W 	X) (7)

for V,W ∈ V and X ∈ M .
We can define a left G-action on an object X ∈ M in three equivalent ways. The

first one is perhaps most familiar, but to make sense of it we must use (7) with
V = W = G.

• A map G	X −→ X in M such that the evident diagrams commute.

• A map G −→ M (X,X) of V -monoids.

• A V -functor X : G −→ M such that X(∗) = X.

Here G denotes G regarded as a V -category with a single object ∗. From a categorical
point of view, the last definition is particularly convenient since it allows us to describe
all standard equivariant constructions in terms of Kan extension.

A fundamental reason for focusing on Hopf groups G and not just V -monoids is
that the enrichments we saw when M = V = U generalize. For G-objects X and
Y in M , we let MG(X,Y ) denote the object M (X,Y ) of V with the conjugation
action by G given by the functor

G
ψ

G⊗G
χ⊗id

Gop ⊗G
Xop⊗Y

M op ⊗ M
M

V .

Then MG(X,Y ) is a bifunctor from G-objects in M to G-objects in V .
Analogously, for G-objects V ∈ V and Y ∈ M , we write FG(V, Y ) for the object

F (V, Y ) of M with the conjugation action given by the functor

G
ψ

G⊗G
χ⊗id

Gop ⊗G
V op⊗Y

V op ⊗ M
F

M .

This is again a bifunctor to G-objects in M .
If V and W are G-objects in V , then so is V ⊗W ; the action is given by the

V -functor

G
ψ

G⊗G
V⊗W

V ⊗ V
⊗

V .

This gives a bifunctor to G-objects in V . For G-objects Z in V we have the natural
isomorphism

V G(V ⊗W,Z) ∼= V G(V,V G(W,Z))

of G-objects in V . More generally, if V is a G-object in V and X is a G-object in
M , then V 	X is a G-object in M and, for G-objects Y in M we have the natural
isomorphisms of G-objects in V

MG(V 	X,Y ) ∼= V G(V,MG(X,Y )) ∼= MG(X,FG(V, Y )).

3.3. Categories of G-objects and functors relating them

Retaining the assumptions on V and M from the first paragraphs of §3.1 and
§3.2, define GM to be the category of G-objects in M and G-maps between them.
In particular, we have the category GV . Remember that V is a cosmos; that is, a
bicomplete closed symmetric monoidal category with product ⊗, unit object I, and
internal hom V , and that M is a bicomplete V -category. Our equivariant categories
have double enrichment, in both V and GV , just as we saw in the case of GU .
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First, GM is enriched in V . For G-objects X and Y in M , we define the object
GM (X,Y ) in V to be the equalizer of two maps

λ, ρ : M (X,Y ) V (G,M (X,Y )).

Thinking of (left) actions as functors G −→ M , λ and ρ are the adjoints of

G
Y

M
M (X,−)

V and Gop Xop

M op
M (−,Y )

V ,

respectively. Unravelling this, one checks that it is an enriched encapsulation of the
desired equivariance relation f(gx) = gf(x).

For an object X ∈ M , we let ε∗X denote X with the trivial G-action

G	X
ε�id

I 	X ∼= X.

In particular we agree to regard I as the G-trivial G-object ε∗I in V . We have
already defined MG(X,Y ) to be the object of GV obtained by giving M (X,Y ) ∈ V

its conjugation G-action, and we define

MG(X,Y )G = GV (I,GM (X,Y )).

Now V G(V,W ) gives the internal hom required to make sense of the following crucial,
but elementary, result.

Theorem 3.11. For any Hopf group G, the category GV is a cosmos. It has double
enrichment, in V and GV , related by a canonical natural isomorphism

V G(V,W )G ∼= GV (V,W ).

The product is ⊗ with diagonal G-action, the unit is I with trivial G-action, the
internal hom is V G and the hom in V is GV . The isomorphism is a comparison of
equalizers. Limits and colimits are constructed in V and given G-actions induced by
the actions on inputs. Similarly, we have the following result.

Theorem 3.12. The category GM is a bicomplete GV -category with double enrich-
ment in GV and V related by a canonical natural isomorphism

MG(X,Y )G ∼= GM (X,Y ).

The tensors are V 	X with diagonal G-action and the cotensors are FG(V,X).
We shall discuss the double enrichment, in V and GV , a little more categorically and
say a bit about the proofs in §7.3.

The essential starting point for enriched equivariant homotopy theory is an under-
standing of the fixed point objects XH and orbit objects H\X in M for objects
X ∈ GM and subgroups H of G.2 We also need induction and coinduction functors
HM −→ GM for inclusions ι : H ⊂ G. Just as for spaces, inclusions are understood
to be “closed”. We give an appropriate categorical meaning of closed in Definition 7.2.

2In [4], the authors start with a simplicially enriched category N and a set O of objects, which they
call ‘orbits’, in N . For O ∈ O and N ∈ N , they view the simplicial sets N (O,N) as analogues
of fixed point objects. When N = G-sSet, their context leads to the simplicial analogue of §2.
However, their general context is not relevant to the equivariant theory discussed here since the
natural fixed point objects NH are in N and not sSet, so play no role in their theory.
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If we view G as a V -category with a single object, the needed functors can be
specified as suitable (weighted) limits and colimits induced from change of group
homomorphisms, by which we understand morphisms of Hopf groups. In fact, they
are all left or right Kan extensions along obvious change of group functors induced by
group homomorphisms. However, we want a more concrete categorical perspective,
and we leave it to the categorically minded reader to check that the definitions we
give are indeed the Kan extensions we indicate.

Let ι : H ⊂ G be an inclusion. We first define “orbit tensors” V 	H X for left H-
objects X ∈ M and right H-objects V ∈ V and “fixed point cotensors” HF (V,X) for
leftH-objectsX ∈ M and V ∈ V . These are objects of M , and they specialize to give
change of group functors that are entirely analogous to those in familiar examples.

Definition 3.13. Let V be a right H-object in V and X be a left H-object in M .
Using the associativity isomorphism (7) implicitly, define V 	H X in M to be the
coequalizer

V ⊗H 	X V 	X V 	H X.

Dually, for left H-objects V in V and X in M , define HF (V,X) in M to be the
equalizer

HF (V,X) F (V,X) F (H ⊗ V,X).

One of each of the parallel pairs of arrows is induced by the action of H on V and
the other is induced by the action of H on X.

We have the obvious universal properties, given in Lemma 3.14 below. If we spe-
cialize by taking V = G, then the left action of G on G induces a left action on
G	H X and the right action of G on G induces a left action of G on HF (G,X).
Composition of ι : H −→ G with actions G −→ M gives the restriction V -functor
ι∗ : GM −→ HM . Definition 3.13 gives explicit identifications of the left and right
Kan extensions along ι, hence we have the following enriched adjunctions.

Lemma 3.14. There are V -adjunctions

GM (G	H Y,X) ∼= HM (Y, ι∗X) and HM (ι∗X,Y ) ∼= GM (X,HF (G,Y )),

where X ∈ GM and Y ∈ HM .

Thinking of ι∗ as a restriction functor RG
H , we can think of G	H − and HF (G,−)

as induction and coinduction. In particular, applying this to η : I −→ G, we obtain
free and cofree H-objects in M .

Just as for V , we write ε∗X for an object X of M with the trivial action of G,
which is induced by applying −	X to the counit ε : G −→ I.

Definition 3.15. For Y ∈ HM , such as Y = ι∗X for X ∈ GM , define the orbit
objects H\Y and fixed point objects Y H in M to be

H\Y = ε∗I 	H Y and Y H = HF (ε∗I, Y ).

Specializing to M = V and using the right action of G on itself rather than the left
action, define orbit G-objects in V by

G/H = G⊗H ε∗I.
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These functors can be identified as the left and right Kan extensions along ε, hence
we have the following enriched adjunctions.

Lemma 3.16. There are V -adjunctions

HM (Y, ε∗Z) ∼= M (H\Y, Z) and HM (ε∗Z, Y ) ∼= M (Z, Y H),

where Y ∈ HM and Z ∈ M .

Remark 3.17. When Y = ∅ is an initial object of HM (with trivial H-action), H\Y
and Y H are also initial objects. For the left adjoint, H\Y , this is automatic. For the
right adjoint, Y H , it holds because the equalizer ∅H −→ ∅ is a monomorphism with
a section (because ∅ is initial), hence ∅

H ∼= ∅.

Just as in familiar examples, for X ∈ GM we have a natural isomorphism

G	H ι∗X
∼=

G/H 	X

in GM , where the diagonal G-action is used on the right. It is the adjoint of the
H-map ι∗X −→ ι∗(G/H 	X) induced by the canonical H-map I = H/H −→ G/H,
and its inverse is the composite

G	X
Δ�id

(G⊗G)	X ∼= G	 (G	X)
id�α(χ� id)

G	X
π

G	H ι∗X,

where α is the action of G on X and π is the canonical map. Composing adjunctions
and omitting ι∗ from the notation, for Z ∈ M we obtain

GM (G/H 	 ε∗Z,X) ∼= M (Z,XH). (8)

Specializing to M = V and Z = I, (8) gives

GV (G/H, V ) ∼= V H

for V ∈ V . A further comparison of definitions gives the usual identifications

H\X ∼= H\G	G X and XH ∼= GF (G/H,X). (9)

4. Equivariant enriched model and presheaf categories

4.1. Standing assumptions and technical hypotheses

We turn to model category theory. As in the previous section, we fix a Hopf group
G in a cosmos V and a bicomplete V -category M . Subgroups of G are understood
to be Hopf subgroups that are closed in the sense defined in §7.1.

As in [7, §1.1], we now add in standing model theoretic assumptions. To avoid
interrupting exposition with technicalities later, we then give supplements. In partic-
ular, as discussed generally in [7], the assumption that I is cofibrant can be weakened
as in Remark 4.12, but we find it convenient to assume it as the default.

• We assume that V is a cofibrantly generated proper monoidal model category.

• We assume that the unit I of V is cofibrant.

• We assume that M is a cofibrantly generated V -model category with generating
cofibrations IM and generating acyclic cofibrations JM .
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Of course, we can take M = V . We can place discrete groups G in this context by
specializing to the V -Hopf group I[G] and here we certainly want I to be cofibrant
in V ; compare [7, §4.5].

We work with a general set F of subgroups of G. While we shall define the appro-
priate notion of a family F in §7.2, we shall not restrict attention to families here.
We always assume that the trivial subgroup e is in F ; we can think of it as the unit
η : I −→ G.

Remark 4.1. For a discrete group G, we have the family of (closed) subgroups H of
I[G], as defined in §7.1, and the set of those subgroups of the form I[H], where H
is an ordinary subgroup of G. The latter is not a family in general, and our theory
applies to both.

As in [7] properness will play little role in this paper, but the following notions
will be needed to prove that left properness is inherited equivariantly, and it can also
be used to prove that V -model structures exist when the unit of V is not cofibrant.

Definition 4.2. The set F is M -good if the functors (G/H)K 	 (−) : M −→ M

preserve cofibrations for any subgroups H,K ∈ F . The set F is very M -good if, in
addition, the functor (−)H commutes with the tensors, coproducts, pushouts, and
directed colimits that appear in the construction of relative FIM -cell complexes.

Remark 4.3. Since M is a V -model category, F is M -good if every (G/H)K is
cofibrant in V .

Example 4.4. Consider M = U and a topological group G.

(a) If G is discrete, then every (G/H)K is discrete and every F is U -good.

(b) If G is a compact Lie group and K and H are closed subgroups, then (G/H)K

is a closed submanifold of G/H. Here again every F is U -good.

(c) For a general topological group G, F is rarely U -good. Despite this fact, the
categories GTop and Fun(Oop

F
,U ) are left proper in full generality. One proof

plays the Hurewicz and Quillen model structures on U off of each other (cf.
[13, Theorem 6.5]), but we have not tried to formalize these techniques.

Example 4.5. Let G be a discrete group and V be a cosmos. The natural set map

I[−] : GSet(G/K,G/H) −→ (GV )(I[G/K], I[G/H])

transposes to a V -map I[GSet(G/K,G/H)] −→ GV (I[G/K], I[G/H]). Assume that
this map is an isomorphism in V for all H,K ⊂ G. Then (I[G]/I[H])I[K] ∼=
I[(G/H)K ] is cofibrant (assuming that I is cofibrant). Therefore a set F of sub-
groups of I[G] is V -good if all elements of F are of the form I[H] for a subgroup H
of G.

4.2. Equivariant model categories and functor categories in M

As in §2, we view F = A �� as the most interesting example. It leads to “genuine”
equivariant homotopy theory. The example F = {e} leads to “naive” or “Borel”
equivariant homotopy theory. Since these notions of genuine and naive are different
from the ones now standard in equivariant stable homotopy theory, we make little
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use of the terms, but they express our point of view. We say that a G-map f is a G-
equivalence if each fH is a nonequivariant weak equivalence. We might say that f is an
e-equivalence if fe, the underlying nonequivariant map, is a weak equivalence. These
extremes are the special cases F = A �� and F = {e} of the following definition.

Definition 4.6. A G-map f : M −→ N between objects of GM is an F -equivalence
or F -fibration if fH : MH −→ NH is a weak equivalence or fibration in M for all
H ∈ F ; f is an F -cofibration if it satisfies the LLP with respect to all acyclic F -fi-
brations. Define FIM and FJM to be the sets of maps obtained by applying the
functors G/H 	 (−) to the maps in IM and JM , where H ∈ F .

Specializing [7, 4.16], we obtain the following result.

Theorem 4.7. If the sets FIM and FJM admit the small object argument and
FJM satisfies the acyclicity condition for the F -equivalences, then GM is a cofi-
brantly generated V -model category with generating cofibrations FIM and acyclic
cofibrations FJM . If M is right proper, then so is GM . If F is very M -good and
M is left proper, then so is GM .

Here we have omitted condition (ii) of [7, 4.16] since it follows formally from (8),
and (8) also reduces the small object argument to a question about colimits of (trans-
finite) sequences in M that are obtained by passing to H-fixed points from relative
cell complexes in GM . In practice, the small object argument always applies.

The acyclicity condition, which is condition (i) of [7, 4.16], will hold provided that
passage to H-fixed points from a relative FJM -cell complex gives a weak equivalence
in M for each H ∈ F . In the topological situation of §2, the essential point is that
passage to H-fixed points commutes with pushouts, one leg of which is a closed
inclusion. This implies that the fixed point presheaf of an FJM -cell complex is an
acyclic cell complex.

To show that GM is a V -model category, we must show that for every cofibration
i : A −→ X and fibration p : E −→ B in GM , the map

GM (i∗, p∗) : GM (X,E) −→ GM (A,E)×GM (A,B) GM (X,B)

is a fibration and is an F -equivalence if either i or p is an F -equivalence. It is
enough to consider the case of a generating cofibration i : G/H 	M −→ G/H 	N ,
where H ∈ F . The map in question then takes the form

GM (G/H 	N,E)

GM (G/H 	M,E)×GM (G/H�M,B) GM (G/H 	N,B).

This map is isomorphic to the map

M (N,EH) −→ M (M,EH)×M (M,BH) M (N,BH).

The conclusion holds since EH −→ BH is a fibration and M is a V -model category.
Since F -fibrations and F -equivalences are determined on fixed points and (−)H

preserves pullbacks, GM automatically inherits right properness from M . When F is
very M -good, one can check that (−)H preserves cofibrations and preserves pushouts
one leg of which is a cofibration, hence GM also inherits left properness from M .
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We can compare the model structures on GM of Theorem 4.7 to model categories
of presheaves in M , generalizing Theorem 2.4. We have the V -category Fun(G,M ) of
V -functors G −→ M , alias G-objects in M . The underlying category of Fun(G,M )
is GM . Since G = Oop

e , this puts us in the case F = {e}. Evaluation at the single
object of our domain category forgets the G-action, and its left adjoint, FG/e, sends an
object M ∈ M to the free G-object G	M in GM . Here the level V -model structure
of [7, 4.30] coincides with the {e}-model structure on GM of Theorem 4.7. We regard
this as a naively equivariant model structure, rather than a truly equivariant one.

For larger sets F , such as A ��, we replace G by the orbit category OF .

Definition 4.8. The orbit category OG of G is the full V -subcategory of GV whose
objects are the orbits G/H. Given a set F of subgroups of G, the V -category OF is
the full V -subcategory of OG whose objects are the G/H for H ∈ F .

Remark 4.9. To alleviate potential confusion, consider the Hopf group I[G] in V for
a discrete group G. Then the definition above refers to a set F of Hopf subgroups of
I[G] and the orbit category OF ⊂ OI[G], which is a full V -subcategory of GV . One
can instead consider a set F of ordinary subgroups of G and its classical orbit cate-
gory of orbits G/H, which are just G-sets. Then one also has the full V -subcategory
of OI[G] with objects the I[G/H] and the possibly non-full V -subcategory with mor-
phism objects I[(G/H)K ]. We shall restrict attention to full subcategories of OI[G]

for simplicity. Much of the theory generalizes, but we won’t usually get Quillen equiv-
alences as in Theorem 2.4 in the non-full case. When V is cartesian monoidal and G
is discrete, there is an isomorphism

I[GSet(G/K,G/H)] ∼= GV (I[G/K], I[G/H])

in reasonable cases, and then the full subcategory OF is the only relevant subcategory
of OI[G] in sight.

For a set F of Hopf subgroups of a general Hopf group G, we described the F -
model structure on GM in Theorem 4.7. For comparison, using the level F -classes
of weak equivalences and fibrations as in [7, 4.29], [7, 4.30] gives a level F -model
structure on Fun(Oop

F
,M ). Let FG/H denote the presheaf in V represented by the

object G/H. Its value on G/K is

GV (G/K,G/H) ∼= (G/H)K . (10)

As observed in [7, §5.1], for a (small) V -category D , a presheafX in Fun(Dop,V ), and
an objectM ∈ M , application of 	 levelwise gives a functorX 	M in Fun(Dop,M ),
and this construction is functorial.

Definition 4.10. Let FFIM and FFJM denote the sets of presheaves FG/H 	 i and
FG/H 	 j in Fun(Oop

F
,M ), where H ∈ F , i ∈ IM , and j ∈ JM .

Theorem 4.11. If the sets FFIM and FFJM admit the small object argument and
every relative FFJM -cell complex is a level F -equivalence, then Fun(Oop

F
,M ) is

a cofibrantly generated V -model category with generating cofibrations FFIM and
acyclic cofibrations FFJM . If M is right proper, then so is Fun(Oop

F
,M ). If F

is M -good and M is left proper, then so is Fun(Oop
F
,M ).
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The small object argument condition is generally inherited from M , often reducing
to a compactness observation in contexts of compactly generated model categories.
In the cartesian monoidal case, the acyclicity condition is often an elaboration of
the simple argument that applied to spaces in §2. The verification of the V -model
category structure is similar to that given in Theorem 4.7. We must show that the
map Fun(Oop

F
,M )(i, p) of [7, 4.19] is a fibration and is acyclic if i or p is so, where

i : FG/H 	M −→ FG/H 	N is a generating cofibration and p : E −→ B is a fibration.
The map in question is isomorphic to

M (N,E(G/H)) −→ M (M,E(G/H))×M (M,B(G/H)) M (N,B(G/H)).

The conclusion holds since p : E(G/H) −→ B(G/H) is a fibration and M is a V -
model category. The inheritance of right and left properness is proven in the same
way as for Theorem 4.7.

Remark 4.12. If I is not cofibrant, it is natural to assume that there is a cofi-
brant replacement q : QI −→ I such that q 	 id : QI 	X −→ I 	X ∼= X is an F -
equivalence for every cofibrant X ∈ M and the functor (−)H commutes with tensor-
ing with q for each H ∈ F . Then Fun(Oop

F
,M ) inherits a V -model structure from

M if F is good, and GM inherits a V -model structure if F is very good.

Assuming the hypotheses of Theorems 4.7 and 4.11, we have the F -model cate-
gories GM and Fun(Oop

F
,M ).

Theorem 4.13. There is a Quillen V -adjunction

Fun(Oop
F
,M )

T

GM
U

and it is a Quillen equivalence if the functors (−)H preserve the tensors, coprod-
ucts, pushouts, and directed colimits that appear in the construction of FIM -cell
complexes.

Proof. We have displayed the adjunction on underlying categories; on the enriched
level, the corresponding adjunction is a comparison of equalizer diagrams. We shall
elaborate a bit in §7.5. ForN ∈ GM , U(N)G/H = NH . ForX ∈ Fun(Oop

F
,M ), TX =

XG/e. Since U creates the F -equivalences and F -fibrations in GM , the pair (T,U) is
a Quillen adjunction, and it is a Quillen equivalence if and only if η : X −→ UTX is a
level equivalence whenX ∈ Fun(Oop

F
,M ) is cofibrant. First considerX = FG/H 	M ,

where M ∈ M (not GM ). Evaluated at G/e, this gives G/H 	M , by (10). Now
take K-fixed points. The assumption that (−)K preserves tensors means that the
result is (G/H)K 	M . This agrees with XG/K , and η is an isomorphism. This last
sentence explains why we require OF to be a full subcategory of GV . The assumed
commutation of passage to K-fixed points and the relevant colimits ensures that U

maps relative cell complexes to relative cell complexes bijectively and that η is an
isomorphism for any cell complex X, just as for topological spaces in §2. Note that
this implicitly uses Remark 3.17 to begin the induction.

Remark 4.14. When M is compactly generated [16, §15.2], only sequential colimits
(over ω) need be considered in the last statement.
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4.3. Equivariant model categories and presheaf categories in V

Now that we understand equivariant model categories as functor categories in M ,
we can understand them as presheaf categories in V whenever we can understand
M itself as a presheaf category in V . That is, if we have an answer to one of [7,
Questions 0.1–0.4] for M , then we have an answer to an analogous question with M

replaced by GM . This is immediate from the standard observation that a functor
category in a functor category is again a functor category.

Proposition 4.15. Let D and E be small V -categories and let N be any V -category.
Then there is a canonical isomorphism of V -categories

Fun(D ,Fun(E ,N )) ∼= Fun(D ⊗ E ,N ).

If we have level V -model structures induced by a V -model structure on N on all
functor categories in sight, then this is an isomorphism of V -model categories.

Now return to the equivariant context. Suppose that we have a V -model category
M with V -functorial factorizations together with a V -functor δ : D −→ M that gives
rise to a Quillen equivalence Fun(Dop,V ) M .3 Conditions ensuring this are
discussed in [7, §1], in answer to Questions 0.2 and 0.3 there. Retaining the assump-
tions of the previous section, for any family of subgroups F we also have a Quillen
equivalence Fun(Oop

F
,M ) GM . These give a composite Quillen equivalence

Fun(Oop
F
,Fun(Dop,V )) Fun(Oop

F
,M ) GM

since the following lemma ensures that the first pair is a Quillen equivalence.

Lemma 4.16. Suppose that L : M N : R is a Quillen V -equivalence and that
M has V -functorial factorizations. Let O be a small V -category, and suppose that
Fun(O,M ) and Fun(O,N ) have projective V -model structures. Then the func-
tors L∗ : Fun(O,M ) Fun(O,N ) : R∗ induced by composition give a Quillen
V -equivalence.

Proof. It is clear that (L∗, R∗) is a Quillen V -adjunction. To show it is a Quillen
equivalence, it suffices to verify Quillen’s condition that for every cofibrant X ∈
Fun(O,M ) and fibrant Y ∈ Fun(O,N ), a map f : L∗X −→ Y is a weak equiva-
lence if and only if its adjoint f̃ : X −→ R∗Y is a weak equivalence.

It is often the case that the cofibrant objects in Fun(O,M ) are levelwise cofibrant,
and then the Quillen condition for (L∗, R∗) follows by applying the Quillen condition
for (L,R) levelwise (as in [10, 11.6.5]). That argument applies when F is M -good,
but, in fact, essentially the same argument still works in general. By [5, §45.1], it
suffices to check the Quillen condition on any left L∗-deformation4 of the domain and
right R∗-deformation of the codomain, and the objectwise cofibrant X ∈ Fun(O,M )
form a left L∗-deformation because we have a V -functorial factorization on M .

Proposition 4.15 allows us to rewrite this, giving the following general conclusion.

3Defining the adjunction (T,U) when δ is not necessarily the inclusion of a full subcategory presents
no difficulty. See [7, §1] and §7.5 below.
4For a functor Φ: M −→ N of homotopical categories, a left Φ-deformation is an equivalence-

preserving functor r : M −→ M together with a natural weak equivalence r
∼

−→ idM such that Φ
preserves those weak equivalences that are in the image of r.
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Theorem 4.17. When Theorem 4.13 applies to gives a Quillen equivalence between
the F -model category GM and the functor category Fun(Oop

F
,M ), GM is also

Quillen equivalent to the presheaf category Fun(Oop
F

⊗ D ,V ).

We have a canonical V -functor τ : OF ⊗ D −→ GM that sends the pair (G/H, d)
to G/H 	 δd. The maps of enriched hom objects are given by the tensor bifunctor

	 : GV (G/H,G/K)⊗ D(d, e) −→ GM (G/H 	 δd,G/K 	 δe).

Let FD denote the full V -subcategory of GM whose objects are the G/H 	 δd with
H ∈ F . Since τ lands in FD , it specifies a V -functor

τ : OF ⊗ D −→ FD .

Even when δ is the inclusion of a full subcategory, it is unclear to us whether or not
τ is a weak equivalence in the sense defined in [7, Definition 2.3(iii)].

In any case, this is an important example where the domain of the presheaf category
that arises most naturally in answering [7, Question 0.2 or 0.4] is not a full V -
subcategory. We have Quillen adjunctions of F -model categories

Fun(Oop
F

⊗ D ,V )
τ∗

Fun(FDop,V )
τ∗

and Fun(FDop,V )
T

GM .
U

A check of definitions using (9) shows that the composite Quillen adjunction is the
Quillen equivalence of Theorem 4.17, but we do not know whether or not these Quillen
adjunctions themselves can also be expected to be Quillen equivalences.

5. Modules over cocommutative DG Hopf algebras

5.1. The general context

Let R be a commutative ring. We specialize the general theory to the category
V = R-Mod of Z-graded chain complexes over R. It is a cosmos with product ⊗,
unit R, and internal hom HomR. Differentials lower degree; replacing Xn by X−n

would reverse this convention. To avoid distraction, the reader may prefer to restrict
R to be a field.

In this setting, a Hopf group A in V is a cocommutative differential graded R-
Hopf algebra.5 From the point of view of §2 and §3, we take V = M to be R-Mod.
Then GV becomes the category A-Mod of left DG A-modules. Note that we have
successively simpler cases where we take the differential on A to be trivial and when
we take A to be concentrated in degree 0. We can specialize by taking A to be the
group ring of a discrete group, but our context is much more general.

We give R-Mod the model structure whose weak equivalences, fibrations, and cofi-
brations are the quasi-isomorphisms, the degreewise epimorphisms, and the degree-
wise split monomorphisms with cofibrant cokernel. Cofibrant objects are degreewise
projective, and the converse holds for bounded below objects. This model structure
is compactly generated. Canonical generating sets IR and JR are given by the inclu-
sions Sn−1

R −→ Dn
R and 0 −→ Dn

R for n ∈ Z. Here Sn
R is R-free on one generator of

5We change notation from G to A for psychological rather than mathematical reasons.
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degree n, with zero differential, and Dn
R is R-free on generators of degrees n and n− 1,

with dn = id. See for example [16, §18.4] for details and alternative model structures.
Ignoring the Hopf algebra structure and thus generalizing to DGAs over R, we

can give A-Mod the model structure whose weak equivalences and fibrations are the
maps which are weak equivalences and fibrations when regarded as maps in R-Mod.
That is, we take the model structure induced by the underlying R-module functor
R : A-Mod −→ R-Mod. Then (F,R) is a Quillen adjunction, where F : R-Mod −→
R-Mod is the extension of scalars functor that sends X to A⊗R X. This model
structure is also compactly generated. Generating sets IA and JA are obtained by
applying F to the maps in IR and JR. Other model structures defined in [2] could also
be used. From the point of view of this paper, we are here taking F = {e} and thus
describing naive or Borel equivariant homotopy theory, for which the Hopf algebra
structure is irrelevant.

Now return to our Hopf group A. As in §2 and §3, we have the categories:

• A-Mod of A-modules and A-maps;

• (R-Mod)A of A-modules and R-maps, with A acting by conjugation.

Since the HomA(M,N) are chain complexes of R-modules, A-Mod is enriched over
R-Mod, and (R-Mod)A is enriched over A-Mod.

Let F be a set, not necessarily a family, of sub-Hopf algebras B of A that con-
tains R = S0

R. Let OF be the full subcategory of A-Mod whose objects are the
“orbits” A//B = A⊗B R for B ∈ F . The A-module A//B is A/A · IB where IB =
Ker(ε : B −→ R) is the augmentation ideal of B. Thus we set ab = 0 if deg(b) 
= 0
and ab = aε(b) if deg(b) = 0.

Remark 5.1. IfR is a field andA is concentrated in nonnegative degrees, then (A//B)C

is also concentrated in nonnegative degrees for any sub-Hopf algebras B,C ⊂ A. Since
we are working over a field, they are all cofibrant in R-Mod. Therefore every F is
A-Mod-good.

The general theory specializes to give results analogous to those in the topological
context of §2, but we now need the more general context that we have developed to
deal with the R-Mod-category A-Mod. We shall prove a version of Theorem 4.13
for categories of modules over general A.

5.2. Colimits and passage to fixed points

In order to set up model structures and to establish the Quillen equivalence between
Fun(Oop

F
, R-Mod) and A-Mod, we must show that taking fixed points commutes

with enough colimits. We first describe the “fixed points” of an A-module M . For
any sub Hopf-algebra B ⊂ A, we have

MB = {m | (b− εb)m = 0 for all b ∈ B}.

Thus (MB)n is the intersection of the kernels of the maps Mn −→ Mn+p given by
multiplication by b− εb for b ∈ Bp. Of course, εb = 0 unless b ∈ B0.

Lemma 5.2. Let A be a cocommutative DG Hopf algebra over R. For any sub-Hopf
algebra B ⊂ A, the fixed point functor (−)B : A-Mod −→ R-Mod preserves arbitrary
coproducts, and sequential colimits of monomorphisms (indexed over any ordinal).
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The proof is straightforward. Note that coproducts here are direct sums, whereas
sequential colimits are constructed by taking colimits of underlying sets.

For M ∈ A-Mod and N ∈ R-Mod, we have

(M ⊗ ε∗N)B ∼= MB ⊗N

whenN is a degreewise freeR-module, such as the domain or codomain of a generating
cofibration or acyclic cofibration. In particular, we have the following observation.

Lemma 5.3. Let A be a cocommutative DG Hopf algebra over R. For any sub-Hopf
algebras B,C ⊂ A, and for any integer n ∈ Z, we have isomorphisms

(A//B ⊗ Sn
R)

C ∼= (A//B)C ⊗ Sn
R and (A//B ⊗Dn

R)
C ∼= (A//B)C ⊗Dn

R.

We now consider pushouts. In general, commuting (−)B with pushouts in A-Mod

is difficult, but we need only consider pushouts where one leg is a generating cofibra-
tion A//B ⊗ Sm−1

R −→ A//B ⊗Dm
R since relative cell complexes can be constructed

one cell at a time.

Lemma 5.4. Let A be a cocommutative DG Hopf algebra over R. If the diagram

A//B ⊗ Sm−1
R

f

i

X

j

A//B ⊗Dm
R g

Y

is a pushout in A-Mod, then applying the functor (−)C to it gives a pushout in
R-Mod for any sub-Hopf algebra C of A.

Proof. Fix an integer n ∈ Z and consider what happens in degree n. Writing Rk for
a copy of R in degree k, we see that this pushout square can be identified with

(A//B)n−m+1 ⊗Rm−1
fn

Xn

(
(A//B)n−m+1 ⊗Rm−1

)
⊕

(
(A//B)n−m ⊗Rm

)
fn⊕id

Xn ⊕
(
(A//B)n−m ⊗Rm

)
where the vertical maps are the inclusions of summands. Moreover, the A-action
respects both splittings, since the original pushout was taken in A-Mod. Thus, this
pushout is preserved when we pass to the square of submodules on which C acts
through the augmentation, and therefore the “fixed point” functor (−)C preserves
the pushout of A-modules.

Remark 5.5. We have an analogous result when the left leg is the (unique) map
A//B ⊗ 0 −→ A//B ⊗Dm

R . In that case, Y ∼= (A//B ⊗Dm
R )⊕X, and we already

know that (−)C preserves direct sums.

5.3. Model categorical results

We prove Theorem 4.13 for A-modules. Let T : Fun(Oop
F
, R-Mod) � A-Mod : U

be the usual adjunction, and recall the definitions of the level F -model structure on
Fun(Oop

F
, R-Mod) and the F -model structure on A-Mod given in §4.2.
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Theorem 5.6. The level F -equivalences, level F -fibrations, and the resulting cofi-
brations give Fun(Oop

F
, R-Mod) a compactly generated, right proper R-Mod-model

structure with generating cofibrationsFFIR and generating acyclic cofibrationsFFJR.
If F is a good set of sub-Hopf algebras, then Fun(Oop

F
, R-Mod) is also left proper

and every cofibration in Fun(Oop
F
, R-Mod) is a levelwise cofibration.

Proof. The model structure is created by the adjunction (U(A//B)⊗ (−), evA//B). In
more detail, since evA//B preserves colimits, the smallness of Sm

R and 0 with respect
to relative {(A//B)C ⊗ i} and {(A//B)C ⊗ j}-cell complexes implies that the small
object argument applies. The acyclicity condition is inherited from the acyclicity
condition for relative {(A//B)C ⊗ j}-cell complexes in R-Mod.

Theorem 5.7. The F -equivalences, F -fibrations, and the resulting cofibrations give
A-Mod a compactly generated, right proper R-Mod-model category structure with
generating cofibrations FIR and generating acyclic cofibrations FJR. If F is a good
set of sub-Hopf algebras, then A-Mod is also left proper, and the functors (−)B

preserve cofibrations.

Proof. The argument is similar to the proof of Theorem 5.6. One uses the adjunction
(A//B ⊗ (−), (−)B) and the non-formal fact that (−)B preserves sequential colimits
of monomorphisms to reduce the smallness of FIR and FJR to the smallness of
Sm
R and 0. Then, since U takes relative FJR-cell complexes to relative FFJR-cell

complexes, the acyclicity condition for FJR is inherited from FFJR.

Remark 5.8. For left properness, recall from Remark 5.1 that the goodness hypothesis
in the above results holds quite generally.

Remark 5.9. Since A-Mod is a cosmos, one may ask whether it is a monoidal model
category. We do not believe this is true in general, but it is true when A is commutative
and we use F = {R} [2, Theorem 3.3].

Theorem 5.10. The functors

Fun(Oop
F
, R-Mod)

T

A-Mod
U

give an R-Mod-enriched Quillen equivalence.

Proof. The argument for G-spaces discussed in §2 transposes verbatim.

Remark 5.11. An example the authors find interesting but have not yet pursued is
to take A to be the mod p Steenrod algebra for any prime p and to take F to
be the standard set of sub Hopf algebras An. The An are finite dimensional and
are therefore Frobenius algebras. This should be relevant to periodicity in chromatic
stable homotopy theory.

Remark 5.12. We can generalize the theory of this section by demanding an action
of a discrete group G on our Hopf group A through automorphisms of algebras and
using twisted modules (e.g. [8, 9]). A quite different generalization would replace
equivariant DG algebras by equivariant DG categories. This section can be viewed as
a modest contribution to the nascent field of equivariant homological algebra.
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6. Equivariant simplicial model categories

Since simplicial enrichment is the one most commonly used, we would be remiss
not to show how our theory applies to equivariant simplicial model categories. Here
we take V to be the closed cartesian monoidal category sSet of simplicial sets. We
give sSet its usual Quillen model structure and write I = {∂Δn −→ Δn} and J =
{Λn

k −→ Δn} for its sets of generating cofibrations and acyclic cofibrations; other
choices are possible. We take G to be a simplicial group. Less generally, we can take a
group G and regard it as a discrete simplicial group, that is, a discrete group regarded
as a constant simplicial set; according to our general theory, it should be denoted I[G].

Let F be a set, not necessarily a family, of simplicial subgroups H of G that
contains e. Let OF be the full simplicial subcategory of GsSet whose objects are
the orbits G/H = G×H ∗ for H ∈ F . Since every simplicial set is cofibrant, every
such set of subgroups is automatically sSet-good. Since the colimits appearing in the
definition of F -cell complexes are colimits of inclusions, F is very sSet-good when
passage to fixed points preserves inclusions. We shall see that this always holds when
G is discrete. As usual, the most interesting examples of F are A �� and {e}.

For now, we take M = V = sSet, and consider the actions of G on simplicial
sets T . We shall consider more general M in §6.3. We have the sSet-categoryGsSet of
G-actions and G-maps and the GsSet-category sSetG of G-actions and all simplicial
maps, with G acting by conjugation on hom objects. Then

sSetG(T, T
′)G ∼= GsSet(T, T ′).

6.1. Colimits and passage to fixed points

As usual, we consider the interaction between colimits and fixed-point functors.
We begin with a description of the simplices of TH for a G-action T and a simplicial
subgroup H ⊂ G:

(TH)n =
{
x ∈ Tn

∣∣∣φ∗(x) ∈ (Tq)
Hq for all q � 0 and φ : [q] −→ [n]

}
.

Specializing to q = n and φ = id: [n] −→ [n], we see that (TH)n ⊂ (Tn)
Hn , but equal-

ity need not hold in general. Indeed, if x ∈ (Tn)
Hn , then for every φ : [q] −→ [n], we

are guaranteed that φ∗(x) ∈ (Tq)
φ∗(Hn), but elements of Hq \ φ

∗(Hn) need not fix
φ∗(x). However, the equality (TH)n = (Tn)

Hn does hold if all φ∗ for G are surjective.
In particular, this is true if G is a discrete simplicial group, and in this case

GsSet(G/K,G/H) = [G/H]K ,

regarded as a constant simplicial set.
The following lemma is straightforward.

Lemma 6.1. Let G be an arbitrary simplicial group. For any simplicial subgroup H ⊂
G, the fixed point functor (−)H : GsSet −→ sSet preserves coproducts and sequential
colimits of monomorphisms (indexed over any ordinal). Moreover, for any simplicial
set X regarded as a G-trivial G-simplicial set,

(T ×X)H ∼= TH ×X.

We also have the following analogue to Lewis’ observation for G-spaces.
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Lemma 6.2. Let G be a discrete simplicial group. If

A
f

i

X

j

B
g

Y

is a pushout in GsSet in which i is a monomorphism, then the square obtained by
applying (−)H is a pushout in sSet for any subgroup H of G.

Proof. In every dimension n � 0, we have a splitting Yn
∼= (Bn \An) �Xn. The

action of Hn = H respects this splitting, but the simplicial structure on Y does not.
However, since H is discrete, it follows that (TH)n = THn

n = TH
n , and hence

(Y H)n ∼= Y H
n

∼= (BH
n \AH

n ) �XH
n =

(
(BH)n \ (AH)n

)
� (XH)n.

Counterexample 6.3. We indicate what can go wrong in the preceding argument
when G is not discrete, using a specific example. Consider the problem of attaching
an equivariant 1-cell to a point,

G/H × ∂Δ1

i

∗

G/H ×Δ1 Y

and look at the 1-simplices of Y . The splitting of Y1 is Y1
∼= (G1/H1 × {id}) � ∗,

where id : [1] −→ [1] in the simplex category. Now let K be a simplicial subgroup of
G, and take Y K . Then (Y K)1 consists of the point ∗ and those pairs (gH1, id) such
that φ∗(gH1) ∈ (Gk+1/Hk+1)

Kk+1 for every iterated degeneracy map

φ = si1 ◦ · · · ◦ sik : [k + 1] −→ [1].

Indeed, any simplicial operator φ with target [1] can be written as a composite φ =
dj1 ◦ · · · ◦ djl ◦ si1 ◦ · · · ◦ sik . If any face map dj appears in this decomposition, then

φ∗(gH1, id) = ∗ and hence φ∗(gH1, id) is automatically in Y
Kq
q . If no dj appears, then

φ∗(gH1, id) is in Y
Kq
q if and only if φ∗(gH1) is in (Gq/Hq)

Kq since φ preserves the
complement of the image of the inclusion i : G/H × ∂Δ1 −→ G/H ×Δ1.

On the other hand, the set (G/H ×Δ1)K1 \ (G/H × ∂Δ1)K1 consists of those pairs
(gH1, id) such that for any φ : [q] −→ [1], we have φ∗(gH1) ∈ (Gq/Hq)

Kq . It follows

that we have an inclusion
(
(G/H ×Δ1)K1 \ (G/H × ∂Δ1)K1

)∐
∗K1 ⊂ (Y K)1, and by

making suitable choices of G, H, and K, we can make it a proper inclusion.

6.2. Model categorical results

We now prove an analogue of Theorem 4.13 for a discrete simplicial group G. Let

T : Fun(Oop
F
, sSet) � GsSet : U

be the usual adjunction, and recall the definitions of the level F -model structure on
Fun(Oop

F
, sSet) and the F -model structure on GsSet given in §4.2. The proofs of

the following statements are essentially identical to those given in §5.3.
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Theorem 6.4. Suppose G is a discrete simplicial group. The level F -equivalences,
level F -fibrations, and the resulting cofibrations give Fun(Oop

F
, sSet) a compactly

generated, proper simplicial model structure with generating cofibrations FFI and
generating acyclic cofibrations FFJ . Every cofibration of Fun(Oop

F
, sSet) is a level-

wise cofibration.

Observe that every cofibration inGsSet is a monomorphism, and hence U preserves
pushouts, provided one of its legs is a cofibration. Thus, we have the following result.

Theorem 6.5. Suppose G is a discrete simplicial group. The F -equivalences, F -
fibrations, and the resulting cofibrations give GsSet a compactly generated, proper
simplicial model structure, with generating cofibrations FI and generating acyclic
cofibrations FJ . Moreover, the functors (−)H preserve cofibrations.

We do not believe that GsSet is a monoidal model category in general.

Theorem 6.6. Suppose that G is a discrete simplicial group. Then the functors

Fun(Oop
F
, sSet)

T

GsSet
U

give a simplicial Quillen equivalence.

Remark 6.7. For a general simplicial group G one might try to prove the preceding
theorem using a bar construction, as in Elmendorf’s argument [6]. In such a proof,
one would have to prove that taking H-fixed points commutes with geometric real-
ization, and one again runs into problems. Indeed, (−)H is an enriched right Kan
extension, and while the geometric realization functor for bisimplicial sets is isomor-
phic to pullback along the diagonal Δ −→ Δ×Δ as an unenriched functor, this is
not true when we enrich.

6.3. Actions in more general simplicial model categories M

We now partially generalize some of our results for simplicial sets to categories
M enriched over simplicial sets. We require some rather annoying assumptions to do
this. The reason is that orbits and fixed points are colimits and limits. Commuting
them in special cases is central to our philosophy, and things that work trivially for
simplicial sets cannot be expected to work at all in general categories enriched in
simplicial sets.

Assumptions 6.8. We assume the following conditions:

(i) G is a finite group, regarded as a discrete simplicial group.

(ii) M is a locally finitely presentable, cofibrantly generated, simplicial model cat-
egory with generating cofibrations I and generating acyclic cofibrations J .

(iii) the Lewis condition holds: for any subgroup H ∈ F , the fixed point functor
(−)H : GM −→ M preserves pushouts one leg of which is in FI or FJ .

(iv) The following two conditions hold:

(a) finite coproducts in M are “disjoint”: for any finite set I and objects (Mi)i∈I
in M , each inclusion Mi −→

∐
i∈I Mi is a monomorphism, and if i 
= j,

then the pullback (“intersection”) of Mi −→
∐

i∈I Mi and Mj −→
∐

i∈I Mi

is the initial object ∅ in M , and
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(b) equalizers split over finite coproducts in M : for any finite set I, objects
(Ai)i∈I and B in M , and morphisms fi : Ai −→ B and gi : Ai −→ B, the
dashed map in the diagram∐

i∈I eq(fi, gi) eq([fi]i∈I , [gi]i∈I)

∐
i∈I Ai

B

∼=

[fi]i∈I [gi]i∈I

is an isomorphism.

Remark 6.9. Condition (iv.a) holds in the most interesting cases, but a counterex-
ample can be obtained by considering the coproduct of F2 and F3 in the category
of commutative rings. On the other hand, we only expect condition (iv.b) to hold
in sufficiently “space-like” categories. It fails for modules over a ring R: consider the
equalizer of the identity and twist maps id, γ : A⊕A A⊕A.

Under these assumptions and our standard model theoretic assumptions, we shall
prove a version of Theorem 4.13.

6.3.1. Colimit preservation lemmas

The conditions in Assumptions 6.8 ensure that certain hom functors hom(A,−) pre-
serve filtered colimits, but we must relate our assumptions to the colimit preservation
properties of (−)H . To start, observe that for any M ∈ GM and subgroup H ⊂ G:

MH = eq

(
M

Δ

(h)

∏
h∈H

M

)
,

where (h) is the composite of Δ and the morphism given by multiplication by h on
the hth copy of M . This description makes essential use of the fact that G is discrete.

Lemma 6.10. The functor (−)H : GM −→ M preserves directed colimits.

Proof. The fixed point functor is a finite limit sinceH is finite, so this holds since finite
limits and filtered colimits commute in any locally finitely presentable category.

Next, we clarify the role of (iv.a) and (iv.b) of Assumptions 6.8. Note that since
the orbit G/H is also discrete, we have

G/H 	M ∼=
∐

gH∈G/H

M

for M ∈ M . The G-action is obtained by permuting the copies of M , and the point
is that if coproducts are disjoint and taking fixed points splits over them, then the
K-fixed summands of G/H 	M correspond to K-fixed elements of G/H.

Lemma 6.11. Conditions (iv.a) and (iv.b) imply that

(G/H 	M)K ∼= (G/H)K 	M

for any subgroups H,K ⊂ G and any object M ∈ M .
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Proof. By (iv.b), we may compute the equalizer (
∐

G/H M)K one copy of M at a

time. Write ιgH : M −→
∐

G/H M for the inclusion, and consider the gH-summand.
We must compute the equalizer

eq
e

M
〈ιgH〉k

〈ιkgH〉k

∏
k∈K

( ∐
G/H

M
)
.

If gH ∈ (G/H)K , then the two parallel morphisms are equal, and then eq ∼= M . If
gH /∈ (G/H)K , then we may choose k ∈ K such that kgH 
= gH, and after projecting

along πk :
∏

k∈K

(∐
G/H M

)
−→

∐
G/H M , we see that e : eq −→ M must equalize

the pair ιgH , ιkgH : M
∐

G/H M . Thus eq is a subobject of ιgH ∩ ιkgH = ∅,
hence eq ∼= ∅.

Remark 6.12. In what follows, let us agree to only use cell complexes for which

• a single cell is attached at each successor stage, and

• the final (transfinite) sequential colimit is taken over an infinite ordinal.

With this convention, we see that Assumptions 6.8 imply that the fixed point functors
(−)H : GM → M preserve all tensors and colimits appearing in the construction of
relative FI and relative FJ -cell complexes.

Warning 6.13. If we had only assumed that M is locally presentable, say for some
regular cardinal λ > |G|, then the same line of argument would show that (−)H

preserves λ-filtered colimits. However, this does not imply that (−)H preserves all
colimits used to construct relative cell complexes, because when we form transfinite
composites, we must take a sequential colimit at every limiting stage.

6.3.2. Model categorical results

Fix a set F of subgroups of G that contains e. As promised, we prove a version of
Theorem 4.13. Let (T,U) be the usual adjunction, and recall the definitions of the
level F -model structure on Fun(Oop

F
,M ) and the F -model structure on GM given

in §4.2. As above, we assume Assumptions 6.8 and we only use cell complexes as
described in Remark 6.12.

Theorem 6.14. The level F -equivalences, level F -fibrations, and the resulting cofi-
brations give Fun(Oop

F
,M ) a locally finitely presentable, cofibrantly generated, sim-

plicial model structure with generating cofibrations FFI and generating acyclic cofi-
brations FFJ . Every cofibration of Fun(Oop

F
,M ) is a levelwise cofibration, and if

M is left or right proper, then so is Fun(Oop
F
,M ).

Proof. The local finite presentability of M implies that the sets FFI and FFJ
admit the small object argument. Since every (G/H)K is cofibrant in sSet, it follows
that FG/H 	 j is a levelwise acyclic cofibration for every j ∈ J and H ∈ F . Thus,
FFJ satisfies the acyclicity condition, and the level F -model structure exists. To
see that the presheaf category inherits local finite presentability, note that the under-
lying category FunsSet(O

op
F
,M )0 of FunsSet(O

op
F
,M ) is isomorphic to the ordinary

functor category FunSet((O
op
F
)0,M0), because O

op
F

is discrete. Finally, every set F

of subgroups is good under simplicial enrichment, hence Fun(Oop
F
,M ) inherits left

and right properness from M .
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Theorem 6.15. The F-equivalences, F-fibrations, and the resulting cofibrations give
GM a locally finitely presentable, cofibrantly generated, simplicial model structure
with generating cofibrations FI and generating acyclic cofibrations FJ . Moreover,
for every H ∈ F , the functor (−)H preserves cofibrations, and if M is left or right
proper, then so is GM .

Proof. Local finite presentability of M and the fact that (−)H preserves directed
colimits imply that FI and FJ admit the small object argument. Assumptions 6.8
guarantee that U takes relative FJ -cell complexes to relative FFJ -cell complexes,
and hence FJ inherits the acyclicity condition from FFJ . Thus the F -model struc-
ture exists on GM . The category GM inherits local finite presentability and proper-
ness from M as above.

Theorem 6.16. The functors

Fun(Oop
F
,M )

T

GM
U

give a simplicial Quillen equivalence.

Proof. Given our conventions on cell complexes, the argument for G-spaces discussed
in §2 transposes verbatim.

7. Appendix: Categorical explanations and amplifications

7.1. Closed subgroups

In homotopy theory, it is standard to restrict attention to closed subgroups. We
give that some categorical perspective and suggest a definition of closed subgroups of
Hopf groups.

Recall that a monomorphism m : X −→ Y in any category is regular if it is an
equalizer of some pair of arrows Y Z, and it is effective if it is an equalizer
of the pair Y Y ∪X Y . Every split monomorphism m is regular since if r is a
retraction for m, then m is an equalizer of id and mr. When working in U , we have
the following categorical identification of the closed inclusions.

Lemma 7.1. Let H be a subgroup of a topological group G, with the subspace topology.
The following are equivalent:

(i) H is closed in G.

(ii) The inclusion ι : H −→ G is an effective monomorphism in U .

(iii) The inclusion ι : H −→ G is a regular monomorphism in U .

Therefore, if m : H −→ G is a homomorphism and a regular monomorphism in U ,
then m is isomorphic in U /G to the inclusion of a closed subgroup of G.

Proof. For the implication (i) ⇒ (ii), since the equivalence relation E ⊂ (G�G)2

that defines the quotient q : G�G −→ G ∪H G is closed in (G�G)2, the quotient in
U is the set theoretic quotient with the quotient topology. Therefore the equalizer
of G G ∪H G is the inclusion ι : H −→ G. (ii) ⇒ (iii) is clear. The implication
(iii) ⇒ (i) follows since equalizers are computed by pulling back a diagonal and diag-
onals are closed when we work in U . For the last statement, let ι : m(H) −→ G be the
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inclusion of the image of m. Then m factors through ι via a map m̃ : H −→ m(H).
Since m is regular, it is an equalizer of some pair f, g : G X in U . Then, since
m̃ is epimorphic and ι is monomorphic, it follows that ι : m(H) G is also an
equalizer of f and g. Thus ι : m(H) G is a regular monomorphism, hence is
the inclusion of the closed subgroup m(H) of G, and m̃ is a homeomorphism by the
uniqueness of equalizers.

This motivates the following definition.

Definition 7.2. A closed inclusion ι : H −→ G of Hopf groups in V is a morphism
of Hopf groups which is a regular monomorphism in V .

Note that the inclusion η : I −→ G is closed in this sense since it is split by ε. If
we had only required closed inclusions to be effective, this would not be automatic.
Pedantically, we should only consider subgroups up to equivalence of monomorphisms
(each factors through the other). To stay closer to the classical orbit category and
to obviate size issues, we agree to choose representatives of equivalence classes when
defining the orbit subcategory OG of V .

7.2. Families of subgroups

The categorical notion of a sieve suggests a definition of a family of closed sub-
groups of a Hopf group. A subcategory S of a category C is called a sieve if for any
object S ∈ S and any morphism f : C −→ S in C , the object C and the morphism
f are in the subcategory S . It follows that S is a full subcategory of C .

The use of families of subgroups of a topological group G pervades equivariant
homotopy theory.

Lemma 7.3. A set of subgroups of a topological group G is a family if and only if
the orbit category OF is a sieve in OG.

Proof. Families F are closed under subconjugacy, and subconjugacy relations give
all morphisms between orbits.

Definition 7.4. A family F of subgroups of a Hopf group G in V is a nonempty set
of closed subgroups H such that the orbits G/H are the objects of a sieve.

Remark 7.5. The sieve condition on a family does not play an important role in our
present work, and we anticipate that there will be examples in which the sets F of
interest will not form a family in the preceding sense. However, it is essential that we
work with sets F that contain e, and that we take OF to be a full V -subcategory of
GV . Briefly, these two conditions ensure that:

(i) every F -equivalence is a nonequivariant weak equivalence,

(ii) the left adjoint in the adjunction (T,U) may be identified with the functor that
restricts a presheaf P to its G/e component and, most importantly,

(iii) for any M ∈ M , the unit η : FG/H 	M −→ UT(FG/H 	M) is an isomorphism
whenever U commutes with (−)	M .

7.3. Double enrichment of equivariant categories

We assume given a cosmos V , a bicomplete V -category M , and a Hopf group G
in V . As indicated briefly earlier, we have doubly enriched categories in this context.
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We explain the relevant categorical framework in more detail here.6

We have a V -functor category GM = Fun(G,M ) whose objects are the V -func-
torsX,Y : G M , and whose V -object of morphisms fromX to Y is the equalizer

GM (X,Y ) := eq
(
M (X,Y ) F (G,M (X,Y ))

)
.

The two maps being equalized are obtained by transposing the two actions of G on
M (X,Y ), and the morphisms of the underlying Set-enriched category (GM )0 are
the V -natural transformations. Similar statements hold with G replaced by any small
V -category D .

Using the Hopf structure on G, we define diagonal actions on products V ⊗W and
tensors V 	M and conjugation actions on homs MG(X,Y ) and cotensors FG(V, Y ),
as in §3.2. The following lemma indicates that the fixed points of conjugation actions
are as one would expect.

Lemma 7.6. For any V ∈ GV and X,Y ∈ GM , there are natural isomorphisms

MG(X,Y )G ∼= GM (X,Y ) and FG(V, Y )G ∼= GF (V, Y ).

Proof. The objects on both sides of these isomorphisms are equalizers, but the pairs
of maps being equalized are distinct. However, one may use various adjunctions to
show that the same maps equalize both pairs.

It is also easy to check that the tensor, hom, and cotensor adjunctions between M

and V lift to analogous adjunctions between diagonal and conjugation actions.

Lemma 7.7. For any V ∈ GV and X,Y ∈ GM , there are natural isomorphisms

MG(V 	X,Y ) ∼= V G(V,MG(X,Y )) ∼= MG(X,FG(V, Y )).

Proof. This follows from the coassociativity of ψ and the fact that χ is a homomor-
phism of cocommutative comonoids.

Applying the functor (−)G : GV −→ V gives the following result.

Proposition 7.8. For any V ∈ GV and X,Y ∈ GM , there are natural V -isomor-
phisms

GM (V 	X,Y ) ∼= GV (V,MG(X,Y )) ∼= GM (X,FG(V, Y ))

and set bijections

GM (V 	X,Y ) ∼= GV (V,MG(X,Y )) ∼= GM (X,FG(V, Y )).

Now specialize to the case M = V . Then 	 = ⊗ and we take I = G/G. We deduce
that GV is a cosmos.

Theorem 7.9. The data ((GV )0,⊗, I) specifies a cosmos structure on the underlying
category of GV .

Proof. The symmetric monoidal structure on V , combined with the cocommutative
comonoid structure on G, gives rise to a symmetric monoidal structure on (GV )0
with the same coherence data as V . The preceding proposition shows that V G(V,W )

6We use the notational conventions of [16, 16.3] for enriched categories, rather than the notations
of the categorical literature as in [12].
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is the internal hom. The unenriched bicompleteness of (GV )0 follows from the V -
bicompleteness of GV .

Thus it makes sense to enrich over GV . In particular, GV is enriched over itself
using the internal homs V G(V,W ), and we write V G for this GV -enrichment. More
generally, we may enrich (GM )0 over GV using the internal homs MG(X,Y ).

Theorem 7.10. For any V -bicomplete V -category M , the underlying category
(GM )0 is enriched over GV . Its hom objects are the conjugation actions MG(X,Y ),
and we write MG for this enrichment. The category MG is GV -bicomplete.

Proof. The construction of a W -enrichment from a tensoring over W , such as we have
here, is essentially folklore, but see [11] for a systematic discussion. A more general
formulation of this result is given in [3, Theorem 3.6].

7.4. Relationships between the enrichments

The category GM = Fun(G,M ) is enriched in two ways: it has a V -enrichment
GM by standard enriched category theory, and it has a GV -enrichment MG com-
ing from the Hopf structure on G. We recover GM from GM and MG by taking
underlying sets and G-fixed points, respectively.

As expected, we have M
G
G
∼= GM . That is, the V -enrichment of GM is obtained

by taking the G-fixed points of the GV -enrichment: this is precisely Lemma 7.6.
However, we can make a further compatibility statement. There are V -isomorphisms

GM (X,Y ) ∼= MG(X,Y )G ∼= GV (I,MG(X,Y ))

and hence set bijections

GV (I,MG(X,Y )) ∼= GM (X,Y ) ∼= V (I,GV (I,MG(X,Y ))).

Thus, the construction of GM = (MG)0 from MG factors into two steps: first we
apply (−)G to remove the G-action, and then we take V (I,−) to remove the V -
structure. Here we are writing I for both the unit object of V and, with trivial action
by G, the unit object of GV .

Our experience with G-spaces indicates that we may sometimes reverse the order
of these operations, as in (3) in §2. That is, we may recover the set of all G-maps
f : X −→ Y by first ignoring the topology on U G(X,Y ), and then taking the fixed
points of the resulting G-set. This is not always possible in our present setting, but
it is if either

(i) the enriching category V is cartesian closed with terminal object ∗, and the
functor V (∗,−) : V → Set is faithful, or

(ii) G is discrete, i.e. the image of a group in Set under the functor I[−] : Set → V .

In the first case, the faithfulness of V (∗,−) implies that one can check naturality on
underlying categories. In the second case, one uses the adjunction (I[−],V (∗,−)).

7.5. The basic adjunction (T,U)
Suppose F is a set of subgroups of G that contains e. We describe two different,

but equivalent, constructions of the adjunction

Fun(Oop
F
,M )

T

GM
U
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considered in Theorem 4.13. Our second description is quite similar to the construc-
tion considered in [7], but its equivalence with the first accounts for the usual descrip-
tion of T : Fun(Oop

F
,Top) GTop : U in terms of restriction and fixed points.

Let G be a Hopf V -group G regarded as a V -category with a single object ∗.
We have the Yoneda embedding Y : C −→ Fun(C ,V )op that sends C ∈ C to the
represented functor C (C,−) : C −→ V . Specializing to the case C = G yields a V -
functor Y : G −→ GV op that sends ∗ ∈ G to G(∗,−). The Yoneda lemma implies that
represented functors are free, hence we may identify G(∗,−) with G/e. It follows that
Y factors through the orbit category O

op
F
, and we obtain a V -adjunction

T = Y
∗ : Fun(Oop

F
,M ) Fun(G,M ) = GM : RanY = U.

The left adjoint Y
∗ restricts a presheaf P : O

op
F

−→ M to the G-action on P (G/e),
and by abstract nonsense the right adjoint is defined by the equalizer

(RanYM)(G/H) = eq
(
F (G/H,M) F (G,F (G/H,M))

)
∼= MH ;

that is, it sends M ∈ GM to its fixed point presheaf.
Alternatively, we may construct (T,U) using the techniques in [7], taking the

functor δ : OF → GV there to be the inclusion. The right adjoints are visibly equal,
hence the left adjoints also coincide.

In general, given “tensor” and “hom” V -functors

� : P ⊗ M −→ N and M ←− P
op ⊗ N : hom

satisfying a V -adjunction N (P �M,N) ∼= M (M, hom(P,N)), and a small test dia-
gram δ : D −→ P, we may construct a (T,U) adjunction by taking

T = δ �
Dop

(−) : Fun(Dop,M ) N : hom(δop,−) = U.

In this paper, the (T,U) adjunction is obtained from

	 : GV ⊗ M −→ GM and M ←− GV
op ⊗GM : GF (•,−)

and δ : OF −→ GV . In [7], the (T,U) adjunction is obtained from

	 : M ⊗ V −→ M and V ←− M
op ⊗ M : M (•,−)

and a test diagram δ : D −→ M . In §4.3 we define the adjunction

T : Fun(FD
op,V ) GM : U

by taking δ to be the inclusion FD −→ GM . Thus the tensor-hom pairings being
considered are different, and the test objects are drawn from different categories. Here
they are usually objects of GV , but in [7], they are objects of M .
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