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Abstract
We develop a generalization of Goodwillie–Weiss manifold

calculus to the setting of simplicial complexes. We consider
functors from the category of open subsets of a fixed simplicial
complex into the category of topological spaces and prove that
in many cases such a functor can be approximated by a tower
of polynomial functors. Applications include the study of con-
figuration spaces and other complements, spaces of immersions
with prescribed singularities or embeddings of singular spaces.

1. Introduction

We develop a theory which parallels Goodwillie–Weiss manifold calculus [15], with
a range of new applications and considerable technical challenges in setting up the
theory. Let K be a simplicial complex – that is, the geometric realization of an
abstract simplicial complex. Let O(K) be the category of open subsets of K and
inclusions between open subsets, and consider contravariant functors F from O(K) to
the category of topological spaces. Such a functor F is called good if it takes stratified
isotopy equivalences to weak equivalences and if it fulfils the (co)limit axiom. Roughly
speaking, a stratified isotopy equivalence is a simplexwise smooth isotopy equivalence
(see Definition 2.2) which emphasizes the smooth structure on strata. But note that
when K comes from a smooth triangulation of a smooth manifold, stratified isotopy
equivalence does not agree with (ambient) isotopy equivalence.

We will define (see Definition 3.14) the Taylor approximations TkF of a good con-
travariant functor F and show that they are effective approximations to F under some
additional conditions. As in the manifold setting, such approximations are defined by
taking homotopy limits of F over subcategories of special open subsets, but instead
of being disjoint unions of open balls these special open subsets are isotopy equivalent
to disjoint unions of open star neighbourhoods in K. The theory translates faithfully
to this setting: such approximations are k-polynomial (Corollary 3.13); polynomial
functors are determined by their restriction to these categories (Theorem 2.17); and
we have the following approximation theorem.
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Theorem 1.1. Let ρ > dim(K) be an integer. If the functor F is good and ρ-analytic
as in Definition 4.6, the canonical map

F (V ) → T∞F (V ) = holim
U∈∪kOk(K),U⊂V

F (U)

is a weak equivalence for all V ∈ O(K).

Our main result thus gives such a strong parallel to the manifold calculus that we
feel compelled to clarify both significant new applications and indicate substantial
technical issues needed to establish them.

Our primary application is to the study of occupants in simplicial complexes [13].
Let M be a smooth manifold and K ⊂ M be a simplicial complex where each closed
simplex is smoothly embedded in M . Understanding the homotopy type of M \K is
difficult in general (consider for example classical knot theory). We give a homotopical
formula for M \K in terms of spaces M \ T where T is a finite subset of “occupants”
of K. This generalizes our work [14], where similar decomposition is given for the
complement of a smooth submanifold L ⊂ M , but our generalization here allows one
to study key examples such as smooth thickenings of simplicial complexes. The proofs
in our work on occupants rely on relating manifold calculus for simplicial complexes
to Goodwillie’s homotopy functor calculus, in particular, studying the composition of
a good functor F with a homotopy functor G from spaces to spaces. Such arguments
may be of independent interest. Our work also leads to generalizations of results on
homotopy automorphisms [16] and Pontryagin classes [17].

Here we also study spaces of stratified embeddings from a simplicial complex K
into a smooth manifold M , which are smooth when restricted to closed simplices.
Such embeddings are functorial and in Section 5.1 we prove that this functor is
(dim(M)− 2)-analytic, so the approximation theorem can be applied if the codimen-
sion dim(M)− dim(K) is at least 3. This allows us to study embeddings of graphs in
m-dimensional manifolds with m � 4, much as spaces of knots have successfully been
studied [2, 4, 8, 11].

We envision two more applications. Let M and N be smooth manifolds with
dim(M) � dim(N). In [10] the space rImm(M,N) of r-immersions (that is, immer-
sions without r-fold self-intersections) is studied using Goodwillie–Weiss manifold
calculus methods. Such study leads to the space of almost r-immersions, which
are continuous maps f : K → N where K is a choice of triangulation of M and
f(σ1) ∩ · · · ∩ f(σr) = ∅ for any pairwise disjoint faces σ1, . . . , σr ofK. Thus in [10] the
authors emphasize that the theory developed in the present paper could be relevant.
Another potential application is described in [1]. Here movable sensor networks and
evasion paths are studied. Evasion paths are specific embeddings where the spaces
involved are usually not equipped with a smooth manifold structure, so the authors
explicity ask for an extension of the Goodwillie–Weiss manifold calculus to the setting
of non-manifold spaces [1, §7].

While many applications include generalizing applications of manifold calculus,
and in Section 3.3 we prove a comparison theorem for our tower and the usual smooth
tower, our proofs are substantially different at places, and may be of independent in-
terest. The analogue of Theorem 1.1 in the setting of Goodwillie–Weiss is proven
by induction on the (relative) handle index of a compact, smooth codimension zero
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submanifold of M . In order to find an appropriate analogue of the handle index, we
have to introduce the notion of a compact codimension zero subobject in a simplicial
complex. To this end, we use the smooth structure of each (open) simplex. So roughly
speaking, we define a codimension zero subobject as well as its handle index simplex-
wise. In particular, we get a handle index function which assigns to each simplex
its handle index. The handle index of a codimension zero subobject in a simplicial
complex is then defined as the maximum of this function over its simplices. We will
show that this notion is different from its analogue in a smooth manifold.

Our applications require a full theory. In order to apply Theorem 1.1 to homo-
topy types of complements, we have to consider standard thickenings of the finite
subset T ⊂ K. This leads to an interesting category – the configuration category
(see Section 5.2). Naively, one could suggest applying the Theorem 1.1 to the func-
tor V �→ M \ V for V ∈ O(K) and the maximal choice V = K. Unfortunately, this
functor is not good, e.g. it does not take stratified isotopy equivalences to weak equiv-
alences. But the main results in [13] can be proven by applying Theorem 1.1 to the
rectification V �→ holimCM \ C where the homotopy limit is taken over all compact
subsets C of the open set V .

We are confident that the methods developed and results proved in this paper could
also be adapted for stratified manifolds more generally. At the moment we have no
applications of such an extended theory, and it is not immediately clear how to make
the correct definitions in more general settings, so we restrict ourselves to the case of
simplicial complexes.

Notation: The category (Top) is the category of topological spaces. By a sim-
plex S of a simplicial complex, we mean a nondegenerate closed simplex. For such
a simplex S, we denote by op(S) the open simplex. For an integer k � 0, we set
[k] := {0, 1, . . . , k}.
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2. Polynomial functors

We start to adapt the basic definitions. We introduce good and k-polynomial func-
tors as well as the category Ok of special open subsets and study the relationship
between them. To this end, we will also introduce a concept of handle index in a
simplicial complex.

2.1. Basic definitions
Let K be a simplicial complex. We define the category O = O(K) as follows: The

objects are the open subsets of K and the morphisms are inclusions, i.e. for U, V ∈ O
there is exactly one morphism U → V if U ⊂ V and there are no morphisms otherwise.

Definition 2.1. Let U, V ∈ O be open subsets and let f0, f1 : U → V be two maps
such that fi|U∩S is a smooth embedding from U ∩ S into V ∩ S for all simplices S
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of K and i = 0, 1. We call f0 and f1 stratified isotopic if there is a continuous map
H : U × [0, 1] → V such that

H|(U∩S)×[0,1] : (U ∩ S)× [0, 1] → (V ∩ S)

is a smooth isotopy from f0|U∩S to f1|U∩S for all simplices S of K.
Note: For an n-dimensional simplex S, we regard U ∩ S as a subspace in the

euclidean space R
n+1.

Definition 2.2. Let U, V ∈ O be two open subsets of K with U ⊂ V . The inclusion
i : U → V is a stratified isotopy equivalence if there is a map e : V → U such that
e|V ∩S is an embedding from V ∩ S into U ∩ S for all simplices S of K and i ◦ e,
respectively e ◦ i, is stratified isotopic to idV , respectively idU .

Definition 2.3. A contravariant functor F : O → (Top) is good if

(i) F takes stratified isotopy equivalences to weak homotopy equivalences,

(ii) for every family {Vi}i∈N
of objects inO with Vi ⊂ Vi+1 for all i ∈ N, the following

canonical map is a weak homotopy equivalence:

F (∪iVi) → holimiF (Vi).

Recall: For a positive integer k, let P([k]) be the power set of [k]. Then a functor
from P([k]) to (Top) is a k-cube of spaces.

Definition 2.4. Let χ be a cube of spaces. The total homotopy fiber of χ is the
homotopy fiber of the canonical map

χ(∅) → holim
∅�=T⊂[k]

χ(T ).

If this map is a weak homotopy equivalence, we call the cube χ (weak homotopy)
cartesian.

Now we are going to define polynomial functors. Therefore let F be a good functor,
let V ∈ O be an open subset of K, and let A0, A1, . . . , Ak be pairwise disjoint closed
subsets of V (for a positive integer k). Define a k-cube by

T �→ F (V \ ∪i∈TAi). (1)

Definition 2.5. The functor F is polynomial of degree � k if the k-cube defined
in (1) is cartesian for all V ∈ O and pairwise disjoint closed subsets A0, A1, . . . , Ak

of V .

Proposition 2.6. Let F : O → (Top) be a good contravariant functor which is poly-
nomial of degree � k. Then F is also polynomial of degree � k + 1.

Proof. Let V ∈ O be an open subset and let A0, A1, . . . , Ak+1 be pairwise disjoint
closed subsets of V . We have to show that the canonical map

F (V ) → holim
∅�=T⊂[k+1]

F (V \AT )

is a weak equivalence where AT := ∪i∈TAi. This is equivalent (see Section 1 of [5])
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to saying that the following commutative diagram is a homotopy pullback:

F (V )

��

�� holim
∅�=T⊂[k]

F (V \AT )

��
F (V \Ak+1) �� holim

∅�=T⊂[k]

F (V \ (AT ∪Ak+1))

By assumption, the horizontal arrows are weak equivalences. Therefore, the diagram
is a homotopy pullback.

Manifold calculus assigns a Taylor tower to each good contravariant functor (see
[15]). More precisely: For a good functor F there is a k-polynomial functor TkF for
all k which coincides with F on a full subcategory of special open sets (depending
on k). Our aim is to construct an analogous theory for simplicial complexes. To this
end, we need the notation of a special open set.

For a point x ∈ K, let Sx be the open star of the open simplex containing x, i.e.

Sx := ∪S op(S)

where the union ranges over all closed simplices S of K such that x ∈ S.

Definition 2.7. For a positive integer k, we define a full subcategory Ok(K) = Ok
of O. Its objects are the open subsets V ⊂ K with the following properties: V has at
most k connected components and for each component V0 of V , there is an x ∈ K
such that V0 ⊂ Sx and the inclusion V0 → Sx is a stratified isotopy equivalence. An
element of Ok (for some k) is called a special open set.

Remark 2.8. By definition, up to stratified isotopy equivalence the category O1 has
as many objects as the simplicial complex K has simplices.

We will work out the relationship between the categoryOk and polynomial functors
of degree � k.

2.2. Handle index in a simplicial complex
For a compact manifold, there is a concept of relative handle index (see [6]).

Reminder: Given a manifold triad Q, there are boundary sets ∂0Q and ∂1Q and a
corner set ∂0Q ∩ ∂1Q. The relative handle index of Q is the smallest integer q such
that Q can built from a collar on ∂0Q by attaching handles of index � q. If Q is a
collar on ∂0Q, then the handle index is −∞.

Example 2.9. (1) Let Dn := {x ∈ R
n | ‖x‖ � 1} be the n-disk. Then, the product

Q := Dq ×Dj−q is a manifold triad with boundary sets ∂0Q := Sq−1 ×Dj−q and
∂1Q := Dq × Sn−q−1. The relative handle index is q.

(2) Let M be a smooth manifold with boundary and f : M → R be a smooth map
such that 0 is a regular value for f and f |∂M . Then Q := f−1 ([0,∞)) is a manifold
triad with ∂0Q = ∂M ∩Q. Every Q ⊂ M which can be obtained in this way will be
called codimension zero subobject in a manifold (compare [6, §0]).

We need an analogous concept of codimension zero subobjects in simplicial com-
plexes:
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Definition 2.10. A subset P ⊂ K is called a codimension zero subobject if there is
a map f : K → R such that

(i) f |S : S → R is smooth for all simplices S of K,

(ii) P := f−1 ([0,∞)),

(iii) for all simplices S of K: 0 is a regular value for f |op(S).

Note that for every simplex S, P ∩ S is a manifold triad (in a non-smooth sense) with
∂0(P ∩ S) = ∂S ∩ P .

Definition 2.11. An open subset V ∈ O of K is called tame if it is the interior of a
codimension zero compact subobject C of K.

Notation: Let Kn ⊂ K be the n-skeleton of K, i.e. Kn is the union of all m-
simplices of K with m � n. For a subset U ∈ K we set Un := U ∩Kn.

Remark 2.12. Let V ∈ O be tame. Then V satisfies the following condition: For all
simplices Su and all subsimplices Sv ⊂ Su, we have

cl(V ∩ Sv) = cl(V ∩ Su) ∩ Sv

where for a subset U of K, cl(U) is the closure of U in K. This statement emphasizes
an important property of tame open subsets. In particular, the set op(S) ⊂ K where
S is a simplex of K need not be tame in K, even if it is open in K.

Now we define the handle index function fV : N → N ∪ {−∞} for a tame open set
V ∈ O. By definition, V is the interior of a compact codimension zero subobject C
of K. Define Cu := Su ∩ C for all simplices Su of K and let I be the finite set of all
u with Cu �= ∅. Note: Every Cu is a manifold triad.

In more detail: Let u ∈ I be given and let Su be an n-simplex. A closed simplex
is a manifold with boundary. Therefore, Cu is a compact manifold with corners. The
boundary sets are given by ∂0Cu = ∂Su ∩ Cu and ∂1Cu is the closure of ∂Cu ∩ op(Su)
in Cu. Therefore, the corner set is given by ∂0Cu ∩ ∂1Cu = ∂(Cu ∩ ∂Su).

Choose a handle decomposition for Cu relative to ∂0Cu and let qu be the handle
index of Cu relative to ∂0Cu. Note:

∂0Cu = ∂Su ∩ Cu = Kn−1 ∩ Cu = Cn−1
u

Definition 2.13. We set fV (j) := maxu∈I(j) qu where I(j) ⊂ I is the subset of all
u ∈ I such that Su is a j-simplex. If I(j) = ∅, we set fV (j) := −∞.

The function fV : N → N ∪ {−∞} is called the handle index function of V and the
integer qV := maxj∈N fV (j) is called the handle index of V .

Example 2.14. Let K be an 1-dimensional simplicial complex with four 0-simplices
S0, S1, S2, S3 and three 1-simplices I1, I2, I3 which are defined by Ik := {Sk−1, Sk} for
k = 1, 2, 3. Then K is identified with the interval [0, 3] by the identifications Sl = l
for l = 0, 1, 2, 3 and Ik = [k − 1, k] for k = 1, 2, 3. Let V ∈ O be a tame open set and
fV be the handle index function. By definition, we have fV (j) = −∞ for all j � 2.

Let V := [0; 0.5) ∈ O. The handle index function of V is then given by fV (0) = 0
and fV (1) = −∞ because V is a collar of the 0-simplex S0.

For V := (1.2; 1.8) we have fV (0) = −∞ and fV (1) = 0 because V ∩K0 = ∅.
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Now we consider a more interesting example. Up to now we only considered special
open sets, i.e. elements of Ok for some k. Now we define the open set W := (0.5; 2.5)
so that W is not a special open set. Then the handle index function is given by
fW (0) = 0, fW (1) = 1.

Example 2.15. Let K be an n-simplex. Then K ∈ O is a tame open set. Therefore, we
can consider the handle index function fK . It is defined by fK(j) = j for all 0 � j � n
and fK(j) = −∞ for all j > n.

2.3. Polynomial functors and special open sets
In manifold calculus it is shown that a polynomial functor is determined by its

restriction to a selection of special open sets [15, Theorem 5.1]. We can verify an
analogous result by extending the proof of [15, 5.1]. Therefore, we need the following
concept of a collar.

Remark 2.16. Let V ∈ O be a tame set such that there is an integer j � dim(K) with
fV (m) � 0 for all m > j, let S′ be a j-simplex of K and let A ⊂ op(S′) be compact in
the open simplex op(S′). By definition of the handle index function, there is a closed
subset colV (A) in V – the collar of A in V – such that there are diffeomorphisms

colV (A) ∩ S ∼= A× [0, 1)
n−j

for each n-simplex S with S′ ⊂ S, compatibly as S runs through the simplices of K
with S′ ⊂ S. What does compatibly mean? If S1 is a n1-simplex and S2 is a n2-simplex
of K with S′ ⊂ S1 ⊂ S2, then the following diagram commutes

colV (A) ∩ S1

incl.
��

∼= �� A× [0, 1)
n1−j

��
colV (A) ∩ S2

∼= �� A× [0, 1)
n2−j

where the right vertical arrow is the canonical inclusion, in particular, it is the identity
in the first coordinate.

Note that we constructed the collar colV (A) of A in V uniquely up to stratified
isotopy equivalence.

Theorem 2.17. Let F1 → F2 be a natural transformation between k-polynomial func-
tors. If F1(V ) → F2(V ) is a weak equivalence for all V ∈ Ok, it is a weak equivalence
for all V ∈ O.

Proof. Using the (co)limit axiom (the second property in Definition 2.3) it is enough
to consider the tame open subsets. The general case follows by an inverse limit argu-
ment and by the goodness of F1, F2.

Let V ∈ O be a tame open subset of K and let fV : N → N ∪ {−∞} be the handle
index function of V . We induct on the following statement depending on j: The map
F1(V ) → F2(V ) is a weak equivalence for all tame open sets V ∈ O with fV (m) � 0
for all m > j.

The induction starts with the statement for j = 0, i.e. fV (m) � 0 for all m ∈ N.
This means that there is an integer r such that V ∈ Or. If r � k, then we have a weak
equivalence F1(V ) → F2(V ) by assumption. If r = k + 1, we can find exactly k + 1
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components A0, . . . , Ak of V . For T ⊂ [k] we define VT := V \ ∪i∈TAi. By assumption,
the maps

Fi(V ) → holim
∅�=T⊂[k]

Fi(VT )

are weak equivalences for i = 1, 2. We consider the following commutative diagram

F1(V )

��

�� holim
∅�=T⊂[k]

F1(VT )

��
F2(V ) �� holim

∅�=T⊂[k]

F2(VT )

The map F1(VT ) → F2(VT ) is a weak equivalence for every ∅ �= T ⊂ [k] and thus we
have proven that F1(V ) → F2(V ) is a weak equivalence for all V ∈ O(k + 1). Likewise,
we get weak equivalences F1(V ) → F2(V ) for all V ∈ Or and for all integers r.

Now we assume that the statements 0, 1, 2, . . . , j − 1 are proven and we suppose
that fV (j) = q for a fixed integer q > 0 and fV (m) � 0 for all m > j.

Since V is tame, there is a codimension zero compact subobject C ⊂ K such that
V = int(C). For every handle Qu of index q which is a subset of a j-simplex Su,
choose a diffeomorphism

hu : D
q ×Dj−q → Qu ⊂ C ∩ Su ⊂ C ∩Kj

Since q > 0, there are distinct points xu
0 , . . . , x

u
k in the interior of Dq. We set

Au
i := hu(x

u
i ×Dj−q) ∩ V

Define Ai to be the union of all collars colV (A
u
i ) of A

u
i for arbitrary u.

By definition, Ai is a closed subset of V for each i. If we set VT := V \ ∪i∈SAi for
∅ �= T ⊂ [k], then VT is a tame open set with fV (j) < q and fV (m) = 0 for all m > j.
We can use the induction hypothesis and we deduce that the map F1(VT ) → F2(VT )
is a weak equivalence for all ∅ �= T ⊂ [k]. Consider the commutative square

F1(V )

��

�� holim
∅�=T⊂[k]

F1(VT )

��
F2(V ) �� holim

∅�=T⊂[k]

F2(VT )

We have shown that the right vertical arrow is a weak equivalence. The horizontal
arrows are also weak equivalences since F1 and F2 are k-polynomial. By the commu-
tativity of the diagram, the left vertical arrow is a weak equivalence. By induction on
q, the statement j is proven. And again by induction (on j), the map F1(V ) → F2(V )
is a weak equivalence for all tame open sets V ∈ O.

3. Taylor tower

Let F be a good contravariant functor from O to (Top). In this section we will
define the Taylor tower of F by analogy with the Taylor tower in manifold calculus.
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Most of the ideas of the proof are not new and can be found in [15, §3 and §4]. After
introducing it, we will show that the new Taylor tower generalizes the Taylor tower
in the sense of manifold calculus.

3.1. Double categories
Here we give a brief introduction on double categories, for more details we refer

to [9, 12.1]. A double category (often called internal category) C = (C0, C1, i, s, t, ◦)
consists of two categories C0 and C1 and four functors i : C0 → C1 (inclusion functor),
s : C1 → C0 (source), t : C1 → C0 (target) and ◦ : C1 ×C0

C1 → C1 (composition functor)
where C1 ×C0

C1 denotes the pullback of the pullback square

C1 ×C0
C1

��

�� C1
s
��

C1 t �� C0
The four functors have to fulfil various relations.

If C is a double category, its nerve |C| is defined to be a bisimplicial set in the
obvious way.

Let C = (C0, C1, i, s, t, ◦) and C′ = (C′
0, C′

1, i
′, s′, t′, ◦′) be two double categories.

A double functor (or internal functor) F : C → D is a pair of functors F0 : C0 → D0

and F1 : C1 → D1 that fulfil the expected relations.

Example 3.1. We consider [p] as a category: The objects are the elements of [p].
For p1, p2 ∈ [p], there is exactly one morphism p1 → p2 if p1 � p2, otherwise the
morphism-set is empty. Then we can consider [p]× [q] as a double category: C0 is
the category where the objects are the elements of [p]× [q] and the morphisms are
the horizontal arrows, i.e. they do not change the second coordinate. The objects of
C1 are the vertical morphisms in [p]× [q] which do not change the first coordinate
and the morphisms of C1 are commutative squares

(p1, q1)

��

�� (p2, q1)

��
(p1, q2) �� (p2, q2)

where p1 � p2 and q1 � q2, i.e. the vertical arrows are morphisms in C0.

Example 3.2. Let C be an arbitrary category and let ar(C) be the arrow category of C.
More precisely, the objects of the arrow category of C are the morphisms in C and
a morphism between two objects f : x → y and g : z → w of ar(C) is a commutative
square in C

x

��

f �� y

��
z

g �� w

Now we have a double category (C, ar(C), i, s, t, ◦) where i maps an object of C to its
identity morphism and s, t, ◦ are the usual source-, target- and composition functor.

More generally, given a category C and subcategory D containing all objects of C.
We define the category arD(C) as follows: The objects are the morphisms in C and a
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morphism between two objects f : x → y and g : z → w of arD(C) is a commutative
square

x

��

f �� y

��
z

g �� w

where the vertical arrows are morphisms in D. Then we have a double category
(D, arD(C), i, s, t, ◦) where i maps an object of C to its identity morphism and s, t, ◦
are the usual source-, target- and composition functor. We denote this double category
by DC.

The next two lemmas are proven in [15, Lemmas 3.3 + 3.4].

Lemma 3.3. The inclusions of nerves |C| → |DC| is a weak equivalence.

Remark 3.4. We will need the totalization of a bicosimplicial space. Firstly, we would
like to remind the reader that the totalization of a cosimplicial space C• is just the
space of natural transformations from the cosimplicial space Δ• to C•.

Let B•,• be a bicosimplicial space. Then the totalization of B•,• is the space of
natural transformations from the bicosimplicial space Δ• ×Δ• to B•,•.

Let F be a double functor from a double category A to the double category
(Top)(Top) (compare Example 3.2). Then we define the homotopy limit holimAF
as the totalization of the bicosimplicial space

(p, q) �→
∏

H : [p]×[q]→A
F (H(p, q))

where the product ranges over all double functors H from [p]× [q] to A.

Now let F be a functor from the category C to (Top). Then F can also be considered
as a double functor from the double category DC to (Top)(Top).

Lemma 3.5. If F takes all morphisms in D to weak equivalences, the projection map

holimDCF → holimCF

is a weak equivalence.

Let C be a small category and D be a subcategory containing all objects of C. Then
for every p � 0, we introduce a new category DCp: the objects are functors G : [p] → C
and the morphisms are double functors [1]× [p] → DC.

Lemma 3.6. Let F be a double functor from DC to (Top)(Top). There is an isomor-
phism between holimDCF and the totalization of the cosimplicial space

p �→ holim
G : [p]→C

F (G(p))

where the homotopy limit ranges over all G ∈ DCp.



MANIFOLD CALCULUS ADAPTED FOR SIMPLICIAL COMPLEXES 171

Proof. We just need to compare the definitions:

holimDCF = Tot

⎛
⎝(p, q) �→

∏
H : [p]×[q]→A

F (H(p, q))

⎞
⎠

∼= Tot

⎛
⎝p �→ Tot

⎛
⎝q �→

∏
H : [p]×[q]→A

F (H(p, q))

⎞
⎠
⎞
⎠

= Tot

(
p �→ holim

G : [p]→C
F (G(p))

)

Note that in the first line we consider the totalization of a bicosimplicial space, while
the other totalizations are built out of cosimplicial spaces.

3.2. The Homotopy Kan extension is polynomial
In this section we will prove that the homotopy Kan extension of a good functor

along the inclusion Ok ↪→ O is k-polynomial. Most parts of the proof follow similar
lines as its analogue in Goodwillie–Weiss calculus. For the sake of completeness, we
also provide these parts.

Definition 3.7. Let X be a topological space and r be a positive integer. We define
the space F (X, r) of ordered configurations of X by

F (X, r) := {(x1, . . . , xr) ∈ Xr | xi �= xj for all i �= j}
The symmetric group Σr acts freely on F (X, r). Let

B(X, r) := F (X, r)/Σr

be the space of unordered configurations.

Let ε be an open cover of K.

Definition 3.8. Let V ∈ Ok be given. Then V is ε-small if for each connected com-
ponent V0 of V , there is an U ∈ ε such that V0 ⊂ U .

Notations: Let Ik be the subcategory of Ok consisting of the same objects and all
morphisms that are stratified isotopy equivalences. Let εOk be the full subcategory
of Ok consisting of the ε-small objects. Similarly, we define εIk to be the full subcat-
egory of Ik consisting of the ε-small objects. For V ∈ O(K), we introduce εOk(V ),
respectively εIk(V ), to be the full subcategory of εOk, respectively εIk, with all
objects which are subsets of V .

The next lemma gives us the homotopy type of |εIk(V )|.
Lemma 3.9. For all V ∈ O(K), the following spaces are (weakly) equivalent:

|εIk(V )| �
∐

(S1,k1),...,(Sl,kl)

B(op(S1) ∩ V, k1)× · · · ×B(op(Sl) ∩ V, kl)

The disjoint union ranges over all pairs (Si, ki), 1 � i � l, where op(Si), 1 � i � l,

are disjoint open simplices of K and
∑l

i=1 ki � k.
In particular, the functor V �→ |εIk(V )| takes stratified isotopy equivalences to weak

equivalences.
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Note: As a set the above disjoint union is equal to the disjoint union of all configura-
tion spaces B(V, j) with 0 � j � k. The complicated topology comes from morphisms
in εIk(V ), i.e. from the definition of stratified isotopy equivalences.

Proof. For 0 � j � k, let εI(j)(V ) be the full subcategory of εIk(V ) where the objects
are all open subsets in εIk(V ) which have exactly j components. Then εIk(V ) is a
coproduct

∐
0�j�k εI(j)(V ). We have to determine the homotopy type of

∣∣εI(j)
∣∣. For

j = 0, this is obvious, thus let j = 1. In this case, there is a one-one correspondence
between the components of

∣∣εI(1)
∣∣ and the open simplices of K (see Remark 2.8).

Claim: For V ∈ O, ∣∣∣εI(1)(V )
∣∣∣ � ∐

S

∣∣∣εI(1)(op(S) ∩ V )
∣∣∣

where the disjoint union ranges over all simplices S such that op(S) ∩ V �= ∅. Here
op(S) ∩ V can be considered as a manifold (without boundary). Obviously,

∣∣εI(1)(V )
∣∣

has one component for each simplex S of Kwith op(S) ∩ V �= ∅ – namely the clas-
sifying space of all U ∈ εI(1)(V ) with U ∩ op(S) �= ∅ and U ∩ ∂S = ∅. Therefore, we
can concentrate on one simplex S with this property. If op(S) is open in K, it is also
obvious that the corresponding component of

∣∣εI(1)(V )
∣∣ is (weakly) equivalent to∣∣εI(1)(op(S) ∩ V )

∣∣ (it is even equal). If S is a subsimplex of another simplex, each el-

ement U of εI(1)(V ) with U ∩ op(S) �= ∅ and U ∩ ∂S = ∅ is a collar of U ∩ op(S). But
this is (weakly) equivalent to

∣∣εI(1)(op(S))
∣∣: There is a homotopy terminal functor{

U ∈ εI(1)(V ) | U ∩ op(S) �= ∅, U ∩ ∂S = ∅
}
→ εI(1)(op(S))

which is given by U �→ U ∩ op(S) (this is not obvious). Therefore, the corresponding
map of classifying spaces is a weak equivalence. Now we can use the analogue in
(smooth) manifold calculus [15, 3.5] and we get∣∣∣εI(1)(V )

∣∣∣ � ∐
S

(op(S) ∩ V )

The case j > 1 follows similar lines, but is even more complicated. Therefore, we will
provide another proof.

There is another approach to verify the weak equivalence

Φ(1) :=
∣∣∣{U ∈ εI(1)(V ) | U ∩ op(S) �= ∅, U ∩ ∂S = ∅

}∣∣∣ � op(S) ∩ V

which is similar to the proof of [15, Lemma 3.5] and does not use that the above
functor is homotopy terminal. Let

E ⊂ Φ(1) × (op(S) ∩ V )

be the space of all pairs (x, y) such that the open cell containing x corresponds to
the simplex

U0 → · · · → Ur

and y ∈ op(S) ∩ Ur. We consider the projection maps

Φ(1) ← E → (op(S) ∩ V )

We have to verify that these maps are weak equivalences. We skip the verification
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because it is analogous to the proof of [15, Lemma 3.5].
For j > 1, there is a one-one correspondence between the components of

∣∣εI(j)
∣∣

and the set Ω(j) of all collections of pairs (Si, ki), 1 � i � l, where op(Si), 1 � i � l,

are disjoint open simplices of K and
∑l

i=1 ki = j. Next, we have to prove that there
is an equivalence∣∣∣εI(j)(V )

∣∣∣ � ∐
Ω(j)

∣∣∣εI(k1)(op(S1) ∩ V )
∣∣∣× · · · ×

∣∣∣εI(kl)(op(Sl) ∩ V )
∣∣∣

This can be shown in the following way: Let (Si, ki), 1 � i � l, be an element of Ω(j).
Then we define Φ(j) to be the following component of

∣∣εI(j)(V )
∣∣: it is the classifying

space of all U ∈ εI(j)(V ) such that for every 1 � i � l, U has exactly ki components
which have nonempty intersection with op(Si) and empty intersection with ∂Si. Then
we consider the space

E ⊂ Φ(j) × (B(op(S1) ∩ V, k1)× · · · ×B(op(Sl) ∩ V, kl))

of all pairs (x, T ) such that the open cell containing x corresponds to the simplex

U0 → · · · → Ur

where each component of Ur contains exactly one point of T . Analogously to the case
j = 1, we can prove that the projection maps

Φ(j) ← E → (B(op(S1) ∩ V, k1)× · · · ×B(op(Sl) ∩ V, kl))

are weak equivalences.

Let C be the category εOk and D be the subcategory εIk. Now we consider the
double category εIkOk := DC (compare Example 3.2).

Notation: The category εIkOkp(V ) is a full subcategory of εIkOkp with all
objects

(U0 ⊂ U1 ⊂ · · · ⊂ Up) ∈ εIkOkp

such that Ui ⊂ V for all i ∈ [p]. There is a functor from εIkOkp(V ) to εIk(V ) given by
G �→ G(p) where G : [p] → Ok(V ) is an element of εIkOkp(V ). The following lemma
gives an idea of the homotopy type of εIkOkp(V ).

Lemma 3.10. The following two conditions are fulfilled:

(i) Given U, V ∈ εIk(K) with U ⊂ V , there is a homotopy equivalence between
|εIkOkp−1(U)| and the homotopy fiber over the point (which is identified with)
U of the map

|εIkOkp(V )| → |εIk(V )|
induced by G �→ G(p).

(ii) The functor V �→ |εIkOkp(V )| takes stratified isotopy equivalences to weak
equivalences.

Proof. We prove these two statements parallelly by induction on p. For p = 0, we can
use Lemma 3.9.

By induction, we assume that the functor V �→ |εIkOkp−1(V )| takes stratified iso-
topy equivalences to weak equivalences. Using Thomason’s homotopy colimit theorem
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[12], the map under investigation which is induced by G �→ G(p) corresponds to the
canonical map

hocolim
U∈εIk(V )

|εIkOkp−1(U)| → |εIk(V )|

By Proposition 6.1, this map is a quasifibration. Therefore, the homotopy fiber co-
incides (up to homotopy) with the fiber. The fiber of this map over U is evidently
|εIkOkp−1(U)|. Using the resulting (homotopy) fiber sequence, it follows that the
functor V �→ |εIkOkp(V )| takes stratified isotopy equivalences to weak equivalences,
too.

Notation: Let F : εOk → (Top) be a contravariant functor which takes all strat-
ified isotopy equivalences to weak equivalences. Then we define the contravariant
functor εF ! : O → (Top) by

εF !(V ) := holim
U∈εOk(V )

F (U)

By definition, εF ! is the homotopy right Kan extension along the inclusion functor
εOk → O.

Lemma 3.11. The functor εF ! is good.

Proof. By Lemma 3.5, the projection map

holim
U∈εIkOk(V )

F (U) → holim
U∈εOk(V )

F (U)

is aweak equivalence. ByLemma 3.6, we have an isomorphismbetween holimεIkOk(V )F
and the totalization of the cosimplicial space

p �→ holim
(G : [p]→εOk)∈εIkOkp(V )

F (G(p))

Note that the functor from εIkOkp(V ) to (Top) given by G �→ F (G(p)) takes all
morphisms to weak equivalences. Therefore, the canonical map

hocolim
(G : [p]→εOk)∈εIkOkp(V )

F (G(p)) → |εIkOkp(V )|

is a quasifibration (Proposition 6.1). Using Proposition 6.2, the section space of the
associated fibration is weakly equivalent to

holim
(G : [p]→εOk)∈εIkOkp(V )

F (G(p))

Now let V0 → V1 be a morphism in εIk. Using Lemma 3.10, the inclusion of cate-
gories εIkOkp(V0) → εIkOkp(V1) induces a weak equivalence of classifying spaces.
Therefore, the map

hocolim
(G : [p]→εOk)∈εIkOkp(V0)

F (G(p)) → hocolim
(G : [p]→εOk)∈εIkOkp(V1)

F (G(p))

is also a weak equivalence (use Proposition 6.3). We have shown that

V �→ holim
(G : [p]→εOk)∈εIkOkp(V )

F (G(p))

is a good functor for all p. Therefore, εF ! is a good functor.
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Notation: If ε = {K}, then εOk(V ) = Ok(V ) for all V ∈ O(K). We define

F !(V ) := holim
U∈Ok(V )

F (U)

Theorem 3.12. The induced map F !(V ) → εF !(V ) is a weak equivalence.

Proof. Using Lemma 3.5 and Lemma 3.6, it suffices to show that there are weak
equivalences

holim
U∈IkOkp(V )

F (U) → holim
U∈εIkOkp(V )

F (U)

for all p. We consider the following composition of maps:

holim
U∈IkOkp(V )

F (U)

���{
s : |IkOkp(V )| → hocolim

G∈IkOkp(V )
F (G(p)) | pr ◦ s = id|IkOkp(V )|

}

��{
s : |εIkOkp(V )| → hocolim

G∈εIkOkp(V )
F (G(p)) | pr ◦ s = id|εIkOkp(V )|

}

�
��

holim
U∈εIkOkp(V )

F (U)

The (weak) equivalences are the equivalences given by Theorem 6.2. The map be-
tween the section spaces is given by restriction (note that |εIkOkp(V )| is a subset of
|IkOkp(V )|). Therefore, the composition is the canonical map (up to homotopy). In
order to verify that the second map is a weak equivalence, we use Theorem 6.3 (by
Lemma 3.9 and Lemma 3.10, the inclusion of categories

εIkOkp(V ) → IkOkp(V )

induces a weak equivalence of classifying spaces).

Corollary 3.13. The functor F ! : O → (Top) is polynomial of degree � k.

Proof. We have to show that the condition in Definition 2.5 is satisfied. Let V ∈ O
be an open set and A0, A1, . . . , Ak be pairwise disjoint closed subsets of V . Without
loss of generality, we assume V = K (the general proof follows similar lines).

Now we define KT := ∩i∈T (K \Ai) for T ⊂ [k] = {0, 1, . . . , k} and then, we define
the open cover ε := {KT | k = |T |} of K. For each U ∈ εOk, there is an i ∈ [k] such
that U ∩Ai = ∅ (pigeonhole principle: each component of U meets at most one of the
Aj , but U has at most k components). It follows

εOk(K) =
⋃
i∈[k]

εOk(K{i})
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Now we can use [15, Lemma 4.2] and follow that the canonical map

εF !(K) = holim
εOk

F → holim
T �=∅

holim
εOk(KT )

F = holim
T �=∅

F !(KT )

is a weak equivalence. We have shown that the k-cube

S �→ εF !(KT )

is homotopy cartesian. By Theorem 3.12, the functor F ! is polynomial of degree � k.

3.3. The tower
Let F be a contravariant good functor from O to (Top). In order to define the

Taylor tower of F , we introduce the following notation.

Definition 3.14. For every k � 0, we define the functor TkF from O to (Top) by

TkF (V ) := holim
U∈Ok(V )

F (U)

which is called the k-th Taylor approximation of F .

By definition, there is a canonical transformation ηk : F → TkF . The following
proposition follows from Theorem 2.17 and Corollary 3.13.

Proposition 3.15. If F is k-polynomial, the canonical map

ηk(V ) : F (V ) → TkF (V )

is a weak equivalence for every open set V ∈ O.

By analogy with the manifold case [15] we can define a Taylor tower. More pre-
cisely, there are forgetful transformations

rk : TkF → Tk−1F

for all k which make up a tower. The functor F maps into this tower in a natural
way:

rkηk = ηk−1 : F → Tk−1F

Therefore, the transformations ηk induce a transformation

η∞ : F → holimkTkF

In the next section we will ask about convergence, i.e. we will ask whether the map
η∞ : F (V ) → holimkTkF (V ) is a weak equivalence for some V ∈ O.

Now we want to compare this new Taylor tower with the old one constructed in
[15]. Therefore, let M be a smooth manifold of dimension m, let K be a triangulation
ofM and let F : O(M) → (Top) be a good (contravariant) functor in the sense of [15].

Now let Ok(M) be the set of special open subsets of M with no more than k
components. More precisely, Ok(M) is a full subcategory of O(M) where the objects
are all open subsets U ofM such that U is diffeomorphic to a disjoint union of r copies
of Rm for a positive integer r � k. By definition, we have an inclusion of categories
Ok(K) → Ok(M) which induces a canonical projection of homotopy limits.
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Theorem 3.16. For all V ∈ O(K) = O(M), the canonical map

holim
U∈Ok(M),U⊂V

F (U) → holim
U∈Ok(K),U⊂V

F (U)

is a weak equivalence. Therefore, the Taylor tower in the sense of manifold calculus
[15] coincides with the Taylor tower in this new setting.

Proof. For simplicity we assume that V = M = K. We have to distinguish between
the special open sets in the two calculus versions. As indicated, Ok(K) is the set
of special open subsets in this new setting (which was denoted by Ok up to now).
The category Ik(K) is the subcategory with the same objects and stratified isotopy
equivalences as morphisms. The category Ik(M) is the subcategory of Ok(M) with
the same objects and isotopy equivalences in the sense of [15, Definition 1.1] as
morphisms.

Let Uk be the full subcategory of Ik(M) where the objects are all special open
sets U ∈ Ik(K) ⊂ Ik(M). We get inclusions

Ik(K) → Uk → Ik(M)

of categories. By Lemma 3.5 and Lemma 3.6, we have weak equivalences

Tot

(
p �→ holim

(Uk)Ok(K)p

F

)
∼= holim

(Uk)Ok(K)

F → holim
Ok(K)

F

Similarly, we get weak equivalences

Tot

(
p �→ holim

Ik(M)Ok(M)p

F

)
∼= holim

Ik(M)Ok(M)

F → holim
Ok(M)

F

By [15, Lemma 3.5], we know the homotopy type of |Ik(M)|. The same proof gives
us the homotopy type of |Uk|: The inclusion of classifying spaces |Uk| → |Ik(M)| is
a weak equivalence. Now we can use Lemma 3.10 and we conclude

|(Uk)Ok(K)p| → |Ik(M)Ok(M)p|
is a weak equivalence for every p. Note that F maps all morphisms of Ik(M) and Uk
to weak equivalences. By Proposition 6.3, the canonical map

hocolim
(Uk)Ok(K)p

F → hocolim
Ik(M)Ok(M)p

F

of homotopy colimits is also a weak equivalence, too. Then the canonical map of
homotopy limits is a weak equivalence (use Proposition 6.2), too. Using the homotopy
invariance of the totalization the canonical map

holim
Ok(M)

F → holim
Ok(K)

F

is a weak equivalence.

4. Convergence

We will investigate the transformations F → TkF for a good functor F . We need
to introduce analytic functors and the relative handle index.
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4.1. Relative handle index in a simplicial complex
In order to define the relative handle index function, we will need the following

definition.

Definition 4.1. Let P be a codimension zero subobject of K. A subset

A ⊂ K \ int(P )

is called a codimension zero subobject of K \ int(P ) if there is any map f : K → R

such that

(i) f |S\int(P ) : S \ int(P ) → R is smooth for all simplices S of K,

(ii) A := f−1 ([0,∞)),

(iii) for all simplices S of K: 0 is a regular value for f |op(S)\int(P ).

Then for every simplex S of K, A ∩ S is a manifold triad (in a non-smooth sense)
with ∂0(A ∩ S) = (∂S ∩A) ∪ (∂(P ∩ S) ∩A).

Let P be compact codimension zero subobjects of K, let A be a compact codimen-
sion zero subobject ofK \ int(P ) and let Su be a j-simplex in K. We set Pu := P ∩ Su

and Au := A ∩ Su and let I be the finite set of all u with Au �= ∅. Then Pu and Au

are manifolds with boundary. We want to define a handle index function of A which
is relative to P . Therefore, we consider Au as a manifold triad with

∂0Au := (∂Su ∩Au) ∪ (∂Pu ∩Au)

and ∂1Au is the closure of ∂Au ∩ int(Su \ Pu) in Au.
Now we choose a handle decomposition for all Au with u ∈ I. Let qu be the handle

index of Au relative to ∂0Au. Then we define the relative handle index function
f : N → N ∪ {−∞} (relative to P ) by

fA(j) := maxu∈I(j) qu

where I(j) ⊂ I is the subset of all u ∈ I such that Su is a j-simplex. Furthermore, we
call

qA := maxj∈N fA(j)

the relative handle index of A (relative to P ).
The reader might find it confusing that we work with the relative handle index

function (relative to P ) and the handle index function in parallel. Note that we defined
the relative handle index function fA of a codimension zero subobject A (which is
closed by definition). In particular, the boundary ∂A – or more precisely the boundary
set ∂0A = A ∩ P – is important if we consider the relative handle index. On the other
hand, the handle index function fV was defined for a tame open subset V and it
depends just on V . See Example 4.2.

Example 4.2. Let K be a 1-dimensional simplicial complex with four 0-simplices
S0, S1, S2, S3 and four 1-simplices I1, I2, I3, I4 which are defined by Ik := {Sk−1, Sk}
for k ∈ {1, 2, 3} and I4 := {S3, S0}. Then we can identify the simplicial complex

K with the circle S1 =
{
eit ∈ C | t ∈ [0, 2π)

}
using the identifications Sl = e

1
2 it for

l ∈ {0, 1, 2, 3} and Ik =
{
eit ∈ C | t ∈ [

k−1
2 π, k

2π
]}

for k ∈ {1, 2, 3, 4}. Let P be the
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compact set

P :=

{
eit ∈ C | t ∈

[
π

4
,
5π

4

]}

Let A be a codimension zero subobject of K \ int(P ) and fA be the relative handle
index function. By definition, we have fA(j) = −∞ for all j � 2.

Now we set A :=
{
eit ∈ C | t ∈ [

7π
4 , 15π

8

]}
and determine the relative handle index

function of A in this case. It is given by fA(0) = −∞ and fA(1) = 0 because A has
empty intersection with P and is the closure of a special open set contained in the
interior of the 1-simplex I4.

Let us consider a more interesting example. We define

B :=

{
eit ∈ C | t ∈

[
0,

π

4

]
∪
[
7π

4
, 2π

]}

The relative handle index function is given by fB(0) = 0 and fB(1) = 1. Note that
the nonzero intersection of B and P leads to fB(1) = 1.

4.2. Analytic functors
Let F : O → (Top) be a good functor. In the previous subsection we defined the

relative handle index for compact codimension zero subobjects of K. Now we can
define analyticity for F .

Let P be a compact codimension zero subobject of K and let ρ be a fixed integer.
Suppose A0, A1, . . . , Ar are pairwise disjoint compact codimension zero subobjects of
K \ int(P ) with relative handle index qAi � ρ (relative to P ). For T ⊂ {0, 1, . . . , r},
we set AT := ∪i∈TAi and assume r � 1.

Definition 4.3. The functor F is called ρ-analytic with excess c if the cube

T �→ F (int (P ∪AT )) , T ⊂ {0, 1, . . . , r}
is c+

∑r
i=0(ρ− qAi

)-cartesian for some integer c.

Definition 4.4. The homotopy dimension hodim(V ) of V ∈ O is the smallest integer
q with the following property: there is a sequence {Vi | i � 0} of tame open sets in
K with Vi ⊂ Vi+1 and V = ∪i�0Vi such that q � qVi

for all i � 0, where qVi
is the

handle index of Vi.
Reminder (compare Section 2.2): For Vi ∈ O, the handle index of Vi was defined

by qVi := maxj∈N fVi(j) where fVi is the handle index function of Vi.

Example 4.5. Let V ∈ O be a tame set. Then the homotopy dimension hodim(V ) of
V equals the handle index qV of V .

Theorem 4.6. Let F be a ρ-analytic functor with excess c. Let V ∈ O be an open
subset with hodim(V ) =: q < ρ. Then the map

ηk−1(V ) : F (V ) → Tk−1F (V )

is (c+ k(ρ− q))-connected for every k > 1.

Proof. Since the functor F is good, we only have to consider the case where V is a
tame open subset.
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We induct on the following statement depending on j: The map of spaces ηk−1(V )
is (c+ k(ρ− q))-connected for all tame open sets V ∈ O with fV (m) � 0 for allm > j.
Here fV : N → N ∪ {−∞} is the handle index function of V .

If j = 0, the proof is essentially the same as in [6, Theorem 2.3]: By definition, V
is an element of Ol where l is the number of the components V1, . . . , Vl of V . If l < k,
then V is a terminal object in O(k − 1)(V ) and thus ηk−1 is a weak equivalence.

Now we assume l � k. For T ⊂ {1, . . . , l}, we define VT := ∪i∈TVi. For a positive
integer t � l, let Zt be the full subcategory of Ot where the objects are all VT with
|T | � t. Then there is a commutative square of inclusions of subcategories

Z(t− 1)

��

�� Zt

��
O(t− 1) �� Ot

If we set Jt(V ) := holim
U∈Zt

F (U), we obtain a commutative square of spaces

TtF (V )

��

rt �� Tt−1F (V )

��
Jt(V ) �� Jt−1(V )

The vertical arrows are weak equivalences because the category Zt is a homotopy
terminal subcategory of the category Ot.

In order to show that the bottom horizontal arrow is a weak equivalence, we
consider the following pullback square

Jt(V )

��

�� Jt−1(V )

��∏
{T⊂[l]|t=|T |} holimR⊂TF (VR) �� ∏{T⊂[l]|t=|T |} holimR⊂T,R �=TF (VR)

where the vertical maps are the canonical maps and the horizontal map in the bottom
row is induced by the canonical maps

pT : holim
R⊂T

F (VR) → holim
R⊂T,R �=T

F (VR)

for all T ⊂ [l] with |T | = t. We observe that the horizontal arrows are fibrations since
the maps are canonical projection maps. Now we use the analyticity assumption to
verify that the map pT is (c+ tρ)-connected for every |T | = t. Using Theorem 6.4,
it follows that the map Jt(V ) → Jt−1(V ) is also (c+ tρ)-connected. If we summarize
the previous results, we conclude that the composition

TlF (V )
rl−→ Tl−1F (V )

rl−1−→ · · · rk−→ Tk−1F (V )

is (c+ kρ)-connected. Since the map ηl(V ) is a weak equivalence, the map

ηk−1(V ) = (ηl ◦ rl ◦ rl−1 ◦ · · · ◦ rk)(V ) : F (V ) → Tk−1F (V )

is also (c+ kρ)-connected.
Now assume that the statements 0, 1, . . . , j − 1 are proven. We have to verify state-

ment j. We suppose that fV (j) = q for an integer q > 0 and fV (m) � 0 for all m > j.
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Since V is tame, there is a compact codimension zero subobject C with int(C) = V .
For all simplices S of K, we choose a handle decomposition of the compact codimen-
sion zero manifold C ∩ S.

For all handles Qu of index q and dimension j, we can choose (by definition)
a diffeomorphism e : Dq ×Dj−q → Qu ⊂ C ∩Kj such that e−1(∂(C ∩Kj)) = Dq ×
∂Dj−q. Since q > 0, there are pairwise disjoint closed q-disks Bu

0 , . . . , B
u
k−1 in Dq.

For an integer i ∈ [k − 1], we set

Au
i := e(Bu

i ×Dj−q) ∩ V

Define Ai to be the union of all collars colV (A
u
i ) of A

u
i in V (see Definition 2.16) for

arbitrary u. By definition, Ai is a closed subset of V . If we set VT := V \ ∪i∈TAi for
∅ �= T ⊂ [k − 1], then VT is a tame open set with fVT

(j) < q and fVT
(m) � 0 for all

m > j. We consider the following commutative square:

F (V )

��

�� holim
∅�=T⊂[k−1]

F (VT )

��
Tk−1F (V ) �� holim

∅�=T⊂[k−1]

Tk−1F (VT )

We supposed that F is ρ-analytic with excess c. Therefore, the map

F (V ) → holim
∅�=T⊂[k−1]

F (VT )

is c+ k(ρ− q)-connected because the relative handle index of Ai is q (relative to the
closure of V[k−1]). By the induction hypothesis, we deduce that F (VT ) → Tk−1F (VT )
is c+ k(ρ− (q − 1))-connected. By [5, 1.22], the induced map

holim
∅�=T⊂[k−1]

F (VT ) → holim
∅�=T⊂[k−1]

Tk−1F (VT )

is (c+ k(ρ− q − 1)− k + 1)-connected. Since Tk−1F is (k − 1)-polynomial, the map

Tk−1F (V ) → holim
∅�=T⊂[k−1]

Tk−1F (VT )

is a weak equivalence. We have proven that the map F (V ) → Tk−1F (V ) is c+ k(ρ−
q)-connected.

Remark 4.7. In the definition of analyticity there appear codimension zero subobjects
P and Ai, 0 � i � r. We could impose stronger conditions on these subobjects which
would weaken the definition of analyticity, but the last theorem would still hold.
What are these conditions? To answer this question we have to ask where we used
the analyticity assumption in the proof of the last theorem. We used it twice and
we can summarize that we can assume that the relative handle index functions fAi

(relative to P ), 0 � i � r, have one of the following two forms:

(i) We can assume that P is empty and fAi(m) � 0 for all m ∈ N and i ∈ [r].

(ii) There exists j ∈ N such that fAi(j) = q and fAi(m) = −∞ for all m �= j and
i ∈ [r]. In addition, fint(P )(m) = −∞ for all m > j where fint(P ) is the handle
index function of int(P ) – the interior of P .
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Therefore, we could assume that the codimension zero subobjects in the definition
of analyticity (Definition 4.3) fulfil either (i) or (ii). We get a weaker condition for
analyticity, but Theorem 4.6 would still hold.

Corollary 4.8. Let F be a ρ-analytic functor with ρ > dim(K). For all open sets
V ∈ O(K), the canonical map

F (V ) → T∞F (V ) = holimkTkF (V )

is a weak equivalence.

5. Examples

Now we consider first applications of the theory which we developed in this paper.

5.1. Spaces of embeddings
Let N be a smooth manifold without boundary such that dim(K) � dim(N) and

let V be an open subset of K. We define the space emb(V,N) to be the space of topo-
logical embeddings e : V → N such that e|S∩V : (S ∩ V ) → N is a smooth embedding
for all simplices S of K. Now we can introduce the contravariant functor

emb(−, N) : O(K) → (Top)

by V �→ emb(V,N). The verification of goodness (in the sense of Definition 2.3) is an
easy exercise which is left to the reader. It is similar to its analogue in the setting
where K is replaced by a smooth manifold [15, Proposition 1.4].

Theorem 5.1. If dim(K) + 3 � dim(N), then emb(−, N) is analytic (i.e. it fulfils
the condition in Remark 4.7).

Proof. We will not give all details of the proof since many of them are equal to the
arguments of [6, 1.4]. Let P be a codimension zero subobject of K and let A0, . . . , Ar

be pairwise disjoint codimension zero subobjects of K \ int(P ) fulfilling the follow-
ing conditions: For each i ∈ [r], let fAi

: N → N be the relative (to P ) handle index
function. We assume that there exists a j ∈ N such that fAi(m) = −∞ for all m �= j
and i ∈ [r]. (In addition, we can desire that fint(P )(m) = −∞ for all m > j where
fint(P ) is the handle index function of int(P ).) For T ⊂ [r], we set AT := ∪i∈TAi and
VT := int(AT ∪ P ).

We start with the following observation: By definition, the restriction map

emb(int(Ai), N) → emb(int(Ai) ∩Kj , N) (2)

is a weak equivalence. Here emb(V ∩Kj , N) is a subspace of emb(Kj , N) for all
V ∈ O(K).

Similarly to the proof in the case of manifold calculus [6, 1.4], we have to show
that the k-cube

T �→ (ho)fiber
[
emb(cl(VT ) ∩Kj , N) → emb(cl(V∅) ∩Kj , N)

]
is (3− n+

∑r
i=0(n− qAi − 2))-cartesian. Here cl(VT ) is the closure of VT in Kj and

emb(cl(VT ), N) is the homotopy limit of emb(U,N) where the homotopy limit ranges
over all neighbourhoods U of cl(VT ) in Kj .
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Why is it enough to show that this cube is highly cartesian? First of all, we observe
that the restriction map from emb(cl(VT ), N) to emb(VT , N) is a weak equivalence
(since VT is a tame open subset of K). In addition, we observe that the restriction
maps from emb(cl(VT ), N) to emb(cl(V∅), N) are fibrations. This follows from the
Isotopy Extension Theorem for manifolds which can be applied because of the special
assumptions on the codimension zero subobjects Ai where i ∈ [k]. Then we can use
[6, Lemma 1.2] and the weak equivalence given in (2).

Why is the cube highly cartesian? We define D(cl(V∅)) to be the normal disc
bundle for cl(V∅) in N . This is the union of the normal disc bundles of cl(V∅) ∩ S for
all simplices S of K. They have to be compatible in the following sense: D(cl(V∅)) is
a smooth codimension zero submanifold of N with corners.

We set Y as the closure of N \D(cl(V∅)) in N , then Y is a manifold with boundary.
Since for every i ∈ [k], Ai ∩Kj is a j-dimensional manifold by assumption, we are
exactly in the situation of proof [6, 1.4]. Now we can proceed with the same arguments,
in particular, we can apply [6, 1.3].

Now let L be another simplicial complex. Let S(K) be the set of all simplices of K
and let S(L) be the set of all simplices of L. Let Ψ: S(K) → S(L) be a map of sets.
Then we define embΨ(K,L) to be the space of all topological embeddings f : K → L
such that for every simplex S of K, the restricted map f |S takes S to Ψ(S) and f |S is
a smooth embedding of manifolds with f |−1

S (∂Ψ(S)) ⊂ ∂S. Note: In many cases this
space will be empty because the choice of Ψ does not always allow continuous maps
K → L with these additional properties.

More generally, let V ∈ O(K) be an open subset of K. Then we define embΨ(V, L)
to be the space of all topological embeddings f : V → L such that for every simplex
S of K, the restricted map f |S∩V takes S ∩ V to Ψ(S) and f |S∩V : S ∩ V → Ψ(S) is
a smooth embedding of manifolds with f |−1

S∩V (∂Ψ(S)) ⊂ ∂S ∩ V .
There is a contravariant functor

embΨ(−, L) : O(K) → (Top)

given by V �→ embΨ(V, L). The following theorem can be proven in the same way.

Theorem 5.2. If the codimension dim(Ψ(S))− dim(S) � 3 for all simplices S of K,
the functor embΨ(−, L) is analytic (i.e. it fulfils the condition in Remark 4.7).

5.2. Occupants in simplicial complexes
Let M be a smooth manifold without boundary and let K be a subset of M . We

can ask: Is it possible to recover the homotopy type of M \K from the homotopy
types of the spaces M \ T where T is a finite subset of K? In some cases it is possible
if we allow thickenings of the finite subsets T and allow inclusions between them.

In a joint paper with Michael Weiss [14], we investigated the case where L is a
submanifold of a Riemannian manifoldM (also with empty boundary) of codimension
� 3. Let con(L) be the configuration category of L. The objects of con(L) are pairs
(T, ρ) where T is a finite subset of L and ρ : T → (0,∞) is a function which assigns to
each element t ∈ T the radius ρ(t) of the corresponding thickening. These pairs have
to fulfil different conditions (for a precise definition, see [14]). For each object (T, ρ)
in con(L), there exists a corresponding open subset VL(T, ρ) ⊂ L which is a canonical
thickening of the finite subset T ⊂ L. It is a disjoint union of the open balls of radius
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ρ(t) about the points t ∈ T . For each element (T, ρ) of the configuration category, we
get an inclusion

M \ L → M \ VL(T, ρ)

The main result of [14] is the following theorem:

Theorem 5.3. In these circumstances, the canonical map

M \ L → holim
(T,ρ)∈con(L)

M \ VL(T, ρ)

is a weak equivalence.

The paper also includes many variants of this result, e.g. a variant with restricted
cardinalities and we considered manifolds with boundaries and corners. I would like
to emphasize the following variant: Let M be a manifold with boundary ∂M . Then
we want to recover the homotopy type of ∂M from the homotopy types of the spaces
M \ T where T is a finite subset ofM \ ∂M . Again, we need to allow thickenings of the
finite subsets T and inclusions between them. Therefore, we consider the configuration
category con(M \ ∂M) of the interior of M . For each object (T, ρ) in con(M \ ∂M),
there is a corresponding open set V (T, ρ) defined in the known way and an inclusion

∂M → M \ V (T, ρ)

Theorem 5.4. The canonical map

∂M → holim
(T,ρ)∈con(M\∂M)

M \ V (T, ρ)

is a weak equivalence if the following condition holds: There exists a smooth disc
bundle M → L over a smooth closed manifold L with fibers of dimension c � 3.

Now let K ⊂ M be a simplicial complex such that S is smoothly embedded in M
for each (closed) simplex S of K. We do not go into detail, but there is also a category
of canonical thickenings of finite subsets of K – denoted by con(K). The objects of
con(K) are again pairs (T, ρ) where T is a finite subset of K and ρ : T → (0,∞) is a
function such that some expected conditions hold. We have again corresponding open
subsets VK(T, ρ) and inclusion M \K → M \ VK(T, ρ). In my paper [13], I prove the
following generalization of Theorem 5.3:

Theorem 5.5. If the codimension of K and M is at least three, the canonical map

M \K → holim
(T,ρ)∈con(K)

M \ VK(T, ρ)

is a weak equivalence.

We can use this theorem to weaken the conditions in Theorem 5.4: The canonical
map in Theorem 5.4 is a weak equivalence if M is a regular neighbourhood of a
compact simplicial complex of codimension c � 3.

Theorem 5.5 is the technical main result of [13] and it is an application of the
approximation theorem (Theorem 4.6). The configuration category con(K) is very
reminiscent of the category ∪kOk(K) of all special open subsets. In fact, for every
(T, ρ) in con(K), we get a special open subset VK(T, ρ) and the functor (T, ρ) �→
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VK(T, ρ) can be regarded as an inclusion con(K) ↪→ ∪kOk(K) of categories. We get
a factorization of the map in Theorem 5.5:

M \K → holim
U∈∪kOk(K)

M \ U → holim
(T,ρ)∈con(K)

M \ VK(T, ρ)

Using standard homotopy methods, we prove that the second map is a weak equiva-
lence. So it is enough to show that the first map is also a weak equivalence which is an
application of the theory developed in this paper. Naively, one could suggest to apply
the approximation theorem to the functor V �→ M \ V for V ∈ O(K). Unfortunately,
this functor is not good, e.g. it does not take stratified isotopy equivalences to weak
equivalences. We have to find a rectification of this functor. In [13] we prove that the
functor V �→ holimC M \ C where the homotopy limit is taken over all compact sub-
sets C of V is an appropriate candidate. In fact, we prove Theorem 5.5 by applying
the approximation theorem to this rectification.

6. Appendix

6.1. Theorems for the homotopy (co-)limit
Let S be the category of topological spaces or simplicial sets. The following two

propositions are proven in [15, 8.6].

Proposition 6.1. Let C be a small category and F : C → S be a functor which takes
all morphisms in C to homotopy equivalences. Then the canonical map

hocolimCF → |C|
is a quasifibration.

Proposition 6.2. Let C be a small category and F : C → S be a functor which takes
all morphisms in C to homotopy equivalences. Then there is a homotopy equivalence
between holimCF and the section space of the associated fibration of the quasifibration
hocolimCF → |C|.
Proposition 6.3. Let F : J → S be a functor which takes all morphisms to weak
equivalences. If i : I → J is an inclusion of small categories such that |I| → |J | is a
homotopy equivalence, then we have a weak equivalence

hocolimIF ◦ i∗ → hocolimJF

Proof. Let x be an element of |I|. Using the inclusion |I| → |J |, we can also consider
x as an element of |I|. The fibers under the projection maps hocolimJF → |J | and
hocolimIF ◦ i∗ → |I| of x coincide. By Proposition 6.1, the homotopy fibers also co-
incide (up to homotopy). Then the assertion follows from the Five lemma (compare
the long exact fiber sequences).

Theorem 6.4. Suppose we have a pullback square

A

��

f �� B

��
C

g �� D

where g is an n-connected Serre fibration. Then the map f is also n-connected.
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Proof. Since g is a fibration, the pullback square is also a homotopy pullback square
[7, 13.3]. Therefore, the map f is also n-connected.
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