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Abstract
Generalizing degree one twisting of Deligne cohomology, as

a differential refinement of integral cohomology, from previous
work, here we consider higher degree twists. The Rham complex,
hence de Rham cohomology, admits twists of any odd degree.
However, in order to consider twists of integral cohomology we
need a periodic version. Combining the periodic versions of both
ingredients leads us to introduce a periodic form of Deligne
cohomology. We demonstrate that this theory indeed admits a
twist by a gerbe of any odd degree. We present the main proper-
ties of the new theory and illustrate its use with examples and
computations, mainly via a corresponding twisted differential
Atiyah-Hirzebruch spectral sequence.

1. Introduction

There has been a lot of recent activity on modifying generalized cohomology the-
ories to include twists and geometric refinements, in order to account for automor-
phisms and include geometric data. Twisted differential generalized cohomology the-
ories are established at the general axiomatic level [15]. However, working out these
theories explicitly is in practice not a straightforward task. Twisting the simplest case
of a differential cohomology theory, namely Deligne cohomology, proved to be non-
trivial [44] and is closely related to taking coefficients in variations of mixed Hodge
structures (see [19, 45]). Even at the topological level, while twisting of generalized
cohomology theories is axiomatically well-established [62, 2, 1], spelling out explicit
constructions requires considerable work (see [1, 72, 54] for recent illustrations). The
goal of this paper is to generalize the degree one twists of Deligne cohomology from
[44] to include twists of higher degrees. These will be in the form of higher gerbes, or
n-bundles, with connections (see [29, 71, 74, 25, 27] for constructions and related
applications).

Deligne cohomology (see [22, 6, 37, 51, 24, 35]) is a differential refinement of
ordinary, i.e. integral, cohomology. As such it has various realizations [22, 21, 35, 9,
23, 50, 14, 5, 74], which are (expected to be) equivalent (see [75, 17]). Consider
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the sheaf of positively graded chain complexes associated with real-valued differential
forms1

D(n) :=
(
· · · 0 Z Ω0 d

Ω1 d
· · ·

d
Ωn−1

)
, (1.1)

where we place differential (n− 1)-forms in degree 0 and locally constant integer-
valued functions in degree n. Given a smooth manifold M , the Deligne cohomology
group of degree n is defined to be the sheaf (hyper)cohomology group2 Ĥn(M ;Z) :=
H0(M ;D(n)). Čech resolutions allow for explicit calculation of these groups. If {Uα}
is a good open cover of M , then one can form the Čech-Deligne double complex (see
[8, 9]). The operator on the totalization of the double complex is the Čech-Deligne
operator D := d+ (−1)pδ, with d and δ the de Rham and Čech differentials, respec-
tively, acting on elements of total degree p. The sheaf cohomology groupH0(M ;D(n))
can then be identified with the group of diagonal elements η

k,k
in the double complex

which are D-closed, Dη
k,k

= 0, modulo those which are D-exact.
At a more general level, and from a homotopy theory point of view, given a spec-

trum E the canonical data for the corresponding differential theory is comprised of the
following (see [13, Example 4.49]). Let H be the Eilenberg-MacLane functor and take
A := π∗E ⊗ R the ‘realified’ coefficients of the theory. Let c : E → H(A) be the map
uniquely determined up to homotopy such that it induces the map ‘realifying’ the coef-
ficients π∗(E)→ π∗(A) ∼= π∗(E)⊗ R, x 7→ x⊗ 1. Indeed, for E = H(Z) the integral
Eilenberg-MacLane spectrum, A = Z⊗ R ∼= R, and c : H(Z)→ H(R) uniquely deter-
mined by Z→ R ∼= Z⊗ R, x 7→ x⊗ 1. This data determines a differential extension of
HZ, which in degree n takes the form (ΣnHZ,R, c). Applying the Eilenberg-MacLane
functor H to the Deligne complex D(n) from expression (1.1) gives a natural equiv-
alence of differential spectra (see [13])

H(D(n)) ∼= (Σn
HZ,R, c) .

Which degrees should the twists H or ĥ have? The twists of the Deligne complex,
a priori naturally arise in degree one [44]. Note that for the underlying topological
theory, a representation of the fundamental group π1(X) of a space X on Aut(Z) ∼=
Z/2 gives Z the structure of a module over the group ring Z[π1(X)], which is used in
[12] to describe π1(X)-twisted integral cohomology. On the other hand, one can twist
the de Rham complex by differential forms of any odd degree, not just degree one
(see [65, 7, 76, 68, 69, 59]). At first glance, this might appear to give an inherent
incompatibility of twisted de Rham cohomology and twisted integral cohomology.
However, if one takes a closer look, one realizes that twisted de Rham cohomology is
really about Z/2-graded, periodic de Rham cohomology. Thus, one does not expect
compatibility with integral cohomology, but rather with periodic integral cohomology.
Hence we consider twists of the latter theory in Section 2. This then paves part of
the way for us to go towards a general twisted Deligne cohomology. However, as
both ingredients, namely de Rham and integral cohomology, were made periodic, we
define a periodic version of Deligne cohomology in Section 3. We characterize its main

1This is sometimes also denoted Z
∞

D (n) or Z(n)∞D . We are in the smooth setting throughout, so we
will not need extra decorations.
2This would be Hn(M ;D(n)) if we use the opposite convention. However, the one we use is posi-
tively graded, hence better adapted for stacks.
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properties via sheaf cohomology and differential spectra, including the ring structure
arising from the Deligne-Beilinson cup product [22, 6] (see [25, 27]). Periodic integral

differential cohomology groups Ĥ(X;Z[u, u−1]) have been considered from an index
theoretic point of view briefly in [55], [34, Sec. 8.4].

We discuss the twists of periodic Deligne cohomology in Section 4. We approach
twisting of periodic Deligne cohomology using simplical presheaves and smooth stacks
[29, 25, 49, 27, 74], as we did in [44]. This approach is very well-suited to the higher
twists and allows for the use of powerful algebraic machinery. We will show that the
twists indeed refine the twists of both integral cohomology and the de Rham complex.
Smooth stacks will arise naturally in twisting periodic Deligne cohomology. Just as we
can twist periodic integral cohomology by odd degree singular cocycles (Section 2),
we will see that periodic Deligne cohomology can be twisted by higher gerbes of odd
degree (Section 4). The appearance of gerbes naturally leads us into the world of
smooth stacks, and we will find it useful to recall some of the constructions in this
setting (see [9, 29, 25, 27]). This requires us to understand in detail exactly what we
mean by twisting a periodic differential cohomology theory. We give a characterization
of the twists via moduli stacks of higher bundles with connections.

In twisting Deligne cohomology by gerbes of odd degree, it is interesting to see
where the gerbe data appears. In fact, as observed in [15], a crucial ingredient in
defining twisted differential theories is the analogue of the de Rham isomorphism
theorem for twisted cohomology. In the untwisted case, recall that the locally constant
sheaf R admits an acyclic resolution via the de Rham complex

R Ω0 d
Ω1 d

Ω2 · · · ,

and the de Rham Theorem is manifestly a corollary of this fact. Indeed, for a smooth
manifoldM , the sheaf cohomologyH∗(M,R) can be calculated both as Čech cohomol-
ogy and via this resolution. The isomorphism between singular and Čech cohomology
then recovers de Rham’s classical theorem.

Just as multiplicative cohomology theories have topological spaces of twists (the
Picard spaces) [60, 62, 2], differential refinements of such theories have smooth stacks

of twists. Indeed, the stack of twists T̂w
R̂

for any differentially refined cohomology

theory R̂ = (R, c, A) was introduced in [15]. This was defined by the pullback3 (in
the notation of [43])

T̂w
R̂

PicformR

Pictop
R

PicdRR

(1.2)

• where Pictop
R

is the ordinary Picard ∞-groupoid of twists for the ring spectrum
R, embedded as a constant smooth stack,

• PicdRR is the Picard stack of sheaves of invertible module spectra over the smash
product R ∧HR (embedded as a constant sheaf of spectra), and

3We will be dealing with (∞, 1)-categories, so that whenever we talk about pullbacks, pushouts,
or any other universal construction, we mean it in the (∞, 1)-sense, i.e., up to higher coherence
homotopy.
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• PicformR is the smooth stack which (after evaluation on a smooth manifold M)
comes as the nerve of the groupoid whose objects are weakly locally constant,
K-flat, invertible modules over Ω∗(−;A)|M (see [15] for details).

An element of the pullback (1.2) can be identified with a triple R̂τ̂ = (Rτ , t,L), where
Rτ is an underlying twisted cohomology theory with a topological twist τ , L is an
invertible module over Ω∗(−;A) and t is an equivalence

t : Rτ ∧HR
≃
−→ H(L) ,

exhibiting a twisted de Rham theorem. This stack will be important in identifying
the twists for periodic Deligne cohomology in Section 4. The situation is summarized
in the following tables; first on the untwisted case:

Untwisted cohomology Ordinary Periodic

Underlying theory Locally constant sheaf R Sheaf of graded alg. R[u, u−1]

de Rham complex Ordinary de Rham complex Ω∗ Periodic complex Ω∗[u, u−1]

In [43] we highlighted the close analogies between twisted spectra and line bundles,
in that twisted differential spectra are closely related to bundles of spectra equipped
with a flat connection. Replacing with twisted analogues:

Twisted cohomology Ordinary Periodic

Underlying theory Locally constant sheaf L Sheaf of DGA-modules L•

Twist degree One Any odd degree

Geom. twisting object Line bundle w. flat conn. d+H1 Gerbe with curvature H2k+1

de Rham complex (Ω∗
⊗ L, d+H1∧) (Ω∗

⊗ L•, d+H2k+1∧)

The theories that we consider are related schematically as follows:

Periodic Deligne Ĥ∗(M ;D[u, u−1])

forget
connection

forget

periodicity
Deligne Ĥ∗(M ;Z) = H0(M ;D(∗))

forget
connection

Periodic integral H∗(M ;Z[u, u−1])
forget

periodicity
Integral H∗(M ;Z)

(1.3)
where the top row, bottom row, left column and right column represent geometric the-
ories, topological theories, periodic theories, and non-periodic theories, respectively.
The relations between the corresponding spaces of twists are in turn summarized in
the schematic diagram

B(Z/2)∇ ×
∏

k>0 B
2kU(1)∇

| · |

u=0
B(Z/2)∇

| · |

K(Z/2, 1)×
∏

k>0 K(Z, 2k + 1)
u=0

K(Z/2, 1)

(1.4)

Here | · | is geometric realization, which reduces a geometric theory down to the
corresponding topological theory, and B(Z/2)∇ is the stack of twists for Deligne
cohomology [44]. To twist the theories displayed in the first schematic diagram (1.3)
one would consider maps from the manifold M to the corresponding space of twists
in the second schematic diagram (1.4).
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Explicit Čech cocycles for Deligne cohomology are described in [35, 10, 11, 39].
While we do not do this in full generality in the twisted case, we do explain how the
Čech cocycle data appear as part of the trivializing data for twisted periodic Deligne
cohomology in Section 4.1 (see Lemmas 4.6, 4.7, and 4.8). This involves Chern-Simons
type trivialization of Čech-Deligne cocycles, packaged succinctly as in [43]. Extensive
discussions of such trivializations relating to Chern-Simons theory can be found in
[10, 11, 38, 32, 20, 29, 78, 36, 26, 70, 27, 28, 77]. In contrast, cocycles arising
from chain complexes would involve an abstract higher local system resulting from
the twists of periodic integral cohomology. While this is doable, it does not make the
description any more transparent in comparison to the description via spectra; hence
we do not consider it in this paper.

Making use of the general constructions in [42, 43], we then consider the Atiyah-
Hirzebruch spectral sequence for twisted periodic integral cohomology as well as for
twisted periodic Deligne cohomology in Section 5. We provide explicit constructions
and characterizations in Section 5.1 and then illustrate the computations via examples
in Section 5.2.

We note that there are other approaches to studying the Čech-de Rham double
complex. Explicit description of cocycles via the cohomology of the total operator D
of the double complex is provided in [63]. Using the notion of Cheeger-Simons cochain
sparks [21], a homological machine for the study of secondary geometric invariants
called spark complexes is described in [47, 46]. This seems to be an appropriate
setting for twisting differential cohomology in its incarnation as differential charac-
ters. While we do not address this, we expect that the resulting twisted versions
would be equivalent; our approach places the complication in the coefficients of the
(hyper)cohomology while that more homologically flavored approach would place it
in the cycles, e.g., via spark complexes.

2. Twisted periodic integral cohomology

In this section, we describe the twisted periodic cohomology with both real and
integral coefficients. This generalizes twists of integral cohomology [60], also described
in modern categorical terms in [1] and geometrically in [31]. This will be a precursor
for the de Rham theorem needed to define twisted Deligne cohomology. Throughout
the remainder of this paper, we will follow the ∞-categorical treatment of twisted
cohomology theories [1, 2, 72] and their differential refinements [15, 43].

2.1. Twists via bundles of spectra

The starting point for periodic integral cohomology is the differential graded alge-
bra (DGA) Z[u, u−1], equipped with the trivial differential. There is a functor

H : Ch −→ Sp ,

from the category of unbounded chain complexes to the category of spectra, called
the Eilenberg-MacLane functor. This functor was defined in [73], where it was shown
to exhibit an equivalence between HZ-module spectra and differentially graded Z-
algebras. Applying H to Z[u, u−1] we get a spectrum HZ[u, u−1] which represents



134 DANIEL GRADY and HISHAM SATI

periodic integral cohomology, in the sense that

H∗(X;Z[u, u−1]) ∼= H∗(X;Z)[u, u−1] ,

where the right hand side is the graded algebra whose elements are formal Lau-
rent polynomials with coefficients in H∗(X;Z) graded by homogeneous degree. The
ring structure on the right is induced from the cup product structure on H∗(X;Z),
while on the left it is induced from the algebra structure on Z[u, u−1]. This the-
ory is naturally Z/2-graded, as we have canonical isomorphisms H∗(X;Z[u, u−1]) ∼=
H∗+2(X;Z[u, u−1]). For this reason, we will usually refer to the degree of a class as
either even or odd.

Remark 2.1 (Action of units on periodic integral cohomology). Being an HZ-module
spectrum, the spectrum HZ[u, u−1] receives an action by HZ. This action manifests
itself simply by the action of the cup product in integral cohomology. More precisely,
we have an obvious commutative diagram of unbounded chain complexes

Z⊗ Z[2n]
µ

id⊗i

Z[2n]

i

Z⊗ Z[u, u−1]
µ′

Z[u, u−1]

(2.1)

where µ : Z⊗ Z[2n]→ Z is induced by the standard multiplication of integers, µ̃ is the
left unitor map for the monoidal structure and in : Z[2n] →֒ Z[u, u−1] is the canonical
map sending the generator 1 ∈ Z[2n], in degree 2n, to un ∈ Z[u, u−1]. The map µ
induces the cup product operation in integral cohomology

H(µ) : HZ ∧ Σ2n
HZ −→ Σ2n

HZ .

We have a canonical equivalence of spectra HZ[u, u−1] ≃
∨

k Σ
2kHZ and, by the

commutativity of Diagram (2.1),HZ acts on each factor by the cup product operation.

We now characterize the space of twists of periodic integral cohomology, the first
summand of which is the space of twists in the non-periodic case described in [44].
For an A∞-ring spectrum R, defined in the classical sense [61], the grouplike A∞

space of units can be defined as the pullback

GL1(R) Ω∞R

π0(Ω
∞R)× π0(Ω

∞R)

More modern presentations of the symmetric monoidal model category of spectra
have a well defined space of automorphisms which agree4 with the classical space
GL1(R) (see [2, Proposition 2.3]). The classifying space of twists for a ring spectrum
is given by the space BGL1(R). For R = HZ[u, u−1], we have the following.

Proposition 2.2 (Space of twists for periodic integral cohomology). The space of
twists for periodic integral cohomology is

BGL1(HZ[u, u−1]) ≃ K(Z/2, 1)×
∏

k>0

K(Z, 2k + 1) .

4In the sense that there is a zig-zag of weak equivalences between the two.
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Proof. We will show that we have an equivalence of grouplike A∞-spaces

Z/2×
∏

k>0

K(Z, 2k) ≃ GL1(HZ[u, u−1]) .

The connected cover of HZ[u, u−1] is given by HZ[u] and the infinite loop space is
the Dold-Kan image of the positively graded complex Z[u] ∼=

∏
k Z[2k], which is a

model for
∏

k K(Z, 2k). Since the group of units of Z are Z/2 ∼= {−1, 1}, we see that
GL1(HZ[u, u−1]) is as claimed and delooping gives the desired equivalence.

We now describe the twists via module spectra. In what follows we fix a sym-
metric monoidal, ∞-category of spectra (for example, the presentation by symmetric
spectra). For a ring spectrum R, let us recall the Picard ∞-groupoid Pictop

R
from

[43], following [15]. This is the infinity groupoid whose objects are invertible R-
module spectra. The corresponding geometric realization decomposes in the category
of spaces as

|Pictop
R
| ≃ BGL1(R)× π0Pic

top
R

.

For the spectrum HZ[u, u−1], Proposition 2.2 then gives a canonical map

K(Z/2, 1)×
∏

k>0 K(Z, 2k + 1) |Pictop
HZ[u,u−1]|

given by the inclusion at the identity component of the Picard space. This indeed
allows us to twist periodic integral cohomology by any odd degree integral class
(Z/2-class in deg. 1).

We now would like to describe the actual module spectra which exhibit the twisted
theory. One of the most systematic ways to describe the resulting module spectra was
presented in [43]. There, we defined a canonical bundle of spectra over the Picard∞-
groupoid which lives in the tangent∞-topos T (Space) (see [57] and [58, section 7.3]).
The pullbacks of this universal bundle by a map h : X → Pictop

R
gave a bundle of

spectra representing the twisted theory. Since we would like to be as concrete as
possible, and relying on as little abstract machinery as possible, we note that in
the present case this universal bundle will take on a relatively simple form; see the
map (2.3).

In the absence of any geometry, bundles of spectra behave more like covering spaces
than like smooth vector bundles. The next example illustrates this point.

Example 2.3 (Bundle of spectra over the circle). Let Z → S1 be the disconnected
cover of S1, splitting as the disjoint union Z =

∐
k W , where W is the connected

cover classified by the subgroup 2Z ⊂ Z ∼= π1(S
1). This cover can be viewed as a Z-

subbundle of the Möbius bundle given by restricting to integers. Viewing S1 as the
unit circle in the complex plane and removing the points −1 and 1 from S1, we get
corresponding open sets U and V , respectively, covering S1. Over U and V , we have
equivalences

φU : Z|U ≃ Z× U and φV : Z|V ≃ Z× V ,

which can be chosen so that the transition functions act by multiplication by −1
on the fibers, i.e., φUV (n, x) = (−n, x). The map −1× : Z→ Z extends to a map
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−1× : H(Z[u, u−1])→ H(Z[u, u−1]) degreewise. Gluing by this automorphism gives





Z

S1




≃ colim





H(Z[u, u−1])×U ∩V
−i1

i2
H(Z[u, u−1])×U

∐
H(Z[u, u−1])×V

U ∩ V U
∐

V





where i2 is induced by the usual inclusion into the second factor and the top map
−i1 applies the automorphism −1 and then includes into the first factor. This colimit
takes place in the category T (Space). As part of the data of the colimit, we have local
trivializations

φU : Z|U ≃ H(Z[u, u−1])× U and φV : Z|V ≃ H(Z[u, u−])× V ,

turning Z into a corresponding bundle of spectra, with fiber H(Z[u, u−1]), over S1.
The transition functions take the form φUV (x,−) = −1, where −1 is the automor-
phism of the fiber H(Z[u, u−1]) induced by multiplication by −1.

In Example 2.3, the automorphisms φUV (x,−) had degree zero, in that they
were genuine 1-morphisms and not higher simplices in the space of automorphisms
GL1(H(Z[u, u−1)). Now we give an instance where we do have higher simplices.

Example 2.4 (Bundle of spectra over the 3-sphere). Consider the 3-sphere S3,
equipped with the cover {U, V } obtained by removing the north and south poles,
respectively. The intersection U ∩ V ≃ S2 and, given our identification of the units
in (the proof of) Proposition 2.2, we have

π2(GL1(HZ[u, u−1])) ≃ π2(K(Z, 2)) ≃ Z ,

with generator u. Then the homotopy class of a map U ∩ V ≃ S2 → GL1(HZ[u, u−1])
is represented by an integer n times the generator u. Via the action of GL1(HZ[u,
u−1]), such a representative gives rise to a map

nu : S2 −→ Map
(
HZ[u, u−1], HZ[u, u−1]

)
, (2.2)

and we would like to take the map as supplying the transition data for a bundle on
S3. Acting by this map and then by the usual inclusion map U ∩ V →֒ U

∐
V into

the second factor gives the two top arrows (that is, ×nui1 and i2), respectively, in





Z

S3




≃ colim





H(Z[u, u−1])×U ∩V

×nui1

i2

H(Z[u, u−1])×U
∐

H(Z[u, u−1])×V

U ∩ V U
∐

V





The fact that this diagram has nontrivial homotopies filling it, i.e., the ones provided
by the map (2.2), is what separates it from Example 2.3. The homotopy class of
sections of the bundle Z → S3 computes the twisted cohomology groups.

In the same way that ordinary vector bundles with G-structure are classified by
maps to the classifying space BG, bundles of spectra with fiber R are classified by
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maps to BGL1(R). There is a universal bundle of spectra over this space. In the
present case (i.e. for periodic integral cohomology) it takes the following form. The
action of each factor K(Z, 2k) on the spectrum HZ[u, u−1] gives rise to a quotient5

HZ[u, u−1]//K(Z, 2k). This leads to the following bundle

HZ[u, u−1]//K(Z, 2k) −→ K(Z, 2k + 1) , (2.3)

which we can think of as a universal bundle. Given a map h : X → K(Z, 2k + 1), we
consider the pullback diagram

Zh HZ[u, u−1]//K(Z, 2k)

X
h

K(Z, 2k + 1)

Then Zh → X is itself a bundle of spectra with fiber HZ[u, u−1]. Indeed, the Pasting
Lemma for pullbacks implies that we have a double pullback square

HZ[u, u−1] Zh HZ[u, u−1]//K(Z, 2k)

∗ X
h

K(Z, 2k + 1)

so that HZ[u, u−1] is identified as the fiber. Next, suppose that X admits a good open
cover {Uα}. Then, by the Borsuk Nerve Theorem (see, e.g., [64, Theorem 3.21]), X is
homotopy equivalent to the colimit over the Čech nerve of a good open cover {Uα}.
By iterating pullbacks, we therefore get induced homotopy commutative simplicial
diagrams

· · ·
∐

αβ HZ[u, u−1]× Uαβ

∐
α HZ[u, u−1]× Uα Zh HZ[u, u−1]//K(Z, 2k)

· · ·
∐

αβ Uαβ

∐
α Uα X

h
K(Z, 2k + 1)

(2.4)
where the bottom simplicial diagram is induced by the Čech nerve and there are
chosen homotopies filling the diagram (which we have left implicit). Via the axiom
of descent,6 the top simplicial diagram in (2.4) is homotopy colimiting and this says
that (up to homotopy equivalence) we can recover the total space Zh by gluing
together local trivializations via compatibility maps defined on various intersections.
This association gives the following correspondence.

Proposition 2.5 (Characterization of twisted periodic integral cohomology). There
is a bijective correspondence between homotopy classes of maps h : X → K(Z, 2k + 1)
and equivalence classes of bundles of spectra with fiber HZ[u, u−1], which admit a

5Since we are in an (∞, 1)-category, quotients are taken in the (∞, 1)-sense, i.e., up to coherence
homotopy.
6The tangent ∞-category of spaces is an example of an ∞-topos and such infinity categories are
characterized axiomatically via the Giraud-Rezk-Lurie axioms [56, Sec. 6.1.5]. One of these axioms
is that of descent, which asserts that whenever we have a diagram of the above form with the bottom
simplicial diagram being colimiting, and all squares being Cartesian, then the top simplicial diagram
is also colimiting.
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K(Z, 2k)-structure, i.e., a reduction of the structure ∞-group from GL1(HZ[u, u−1])
to K(Z, 2k).

Example 2.6 (Classifying map for bundles of spectra over S3.). In Example 2.4 the
transition data specified by the map ×nu : S2 ≃ U ∩ V → K(Z, 2) →֒ GL1(HZ[u,
u−1]) corresponds to a map h : S3 → K(Z, 3) →֒ BGL1(HZ[u, u−1]) by the loop-
suspension adjunction. This map is the classifying map of the bundle constructed
there.

Note that the sections of the map p : Zh → X form a spectrum. Given that, locally,
Zh trivializes as HZ[u, u−1]× Uα when {Uα} is a good open cover of a space X, we
can calculate the spectrum via the local data as the limit of spectra7

Γ(X;Zh) = lim
{
· · ·

∐
αβ HZ[u, u−1]

∐
α HZ[u, u−1]

}
,

where again the simplicial homotopy commutative diagram is determined by the
transition functions and higher transition data. In practice, this can aid in calculation;
however, it is more useful to develop some of the basic properties of the spectrum of
sections. Indeed, we will do this in Section 2.2.

We finish our current discussion by defining the underlying twisted cohomology
groups for twisted periodic Z-cohomology. Notice that, since the fibers HZ[u, u−1] are
2-periodic, in the sense that Σ2HZ[u, u−1] ≃ HZ[u, u−1], and the action by K(Z, 2k)
commutes with this shift, the sections of Zh are also 2-periodic.

Definition 2.7 (Twisted periodic integral cohomology). Let h : X → K(Z, 2k + 1)
be a twist for periodic integral cohomology. We define the h-twisted integral cohomol-
ogy as the Z/2-graded group

H̃∗(X;h) := π−∗Γ(X,Zh) .

We will refer to the degree of a class as either even or odd, corresponding to the
identity and nonidentity elements in Z/2, respectively.

2.2. Properties of twisted periodic integral cohomology
In this section, we state some of the basic properties of twisted periodic coho-

mology, which we generalize to twisted periodic smooth Deligne cohomology in Sec-
tion 4.2. The following proposition holds more generally for any twisted cohomology
theory and is well known (see [62, section 22.1]). We will only state this in the present

case for the reduced theory H̃∗(X;h) and omit the proof.

Proposition 2.8 (Properties of twisted periodic integral cohomology). Let X be a
space and fix a twist as a map h : X → K(Z, 2k + 1). Consider the category of such
pairs (X,h), with morphisms (f, φ) : (X,h)→ (Y, ℓ) given by maps f : X → Y and

equivalences φ : f∗ℓ⇒ h. The assignment (X,h) 7→ H̃∗(X;h) satisfies the following:

1. H̃∗(M ;h) is functorial with respect to the maps f : (X,h)→ (Y, ℓ).

2. The functor H̃∗(−;h) satisfies the Eilenberg-Steenrod axioms for a reduced gen-
eralized cohomology theory (i.e., modulo the dimension axiom). In particular,

7Again, the diagram commutes up to homotopy coherence and the limit is understood in the ∞-
sense.
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we have a Mayer-Vietoris sequence

H̃ev(M ;h) H̃ev(U ;h)⊕ H̃ev(V ;h) H̃ev(U ∩ V ;h)

∂

H̃odd(U ∩ V ;h)

∂

H̃odd(U ;h)⊕ H̃odd(V ;h) H̃odd(M ;h)

where ∂ is the connecting homomorphism, and the sequence is exact at each
entry.

3. For h : X → K(Z, 2k + 1) a trivial twist (i.e. h ≃ ∗) we have an isomorphism

H̃∗(X;h) ∼= H̃∗(X;Z[u, u−1]) .

3. Periodic smooth Deligne cohomology

In this section, we introduce the notion of periodic Deligne cohomology. This will
set the stage for the next section, where we identify the twists of this theory.

3.1. Construction as a cohomology theory

Just as the Deligne complex D(n) is indexed by an integer n ∈ Z, here we have
complexes indexed by elements in Z/2, which we will call either even or odd, depend-
ing on parity. We let Z denote the locally constant sheaf of Z-valued functions.

Definition 3.1 (Even and odd Deligne complexes). For ev, odd ∈ Z/2, corresponding
to the identity and nonidentity components, respectively, we have the two complexes:

D(ev) :=
(
· · · −→ Z⊕

∏

k

Ω2k+1−→
∏

k

Ω2k −→Z⊕
∏

k

Ω2k+1

︸ ︷︷ ︸
deg>0

−→ 0 −→ Z −→ · · ·

︸ ︷︷ ︸
deg<0

)
,

D(odd) :=
(
· · · −→

∏

k

Ω2k −→ Z⊕
∏

k

Ω2k+1 −→
∏

k

Ω2k

︸ ︷︷ ︸
deg>0

−→ 0 −→ Z −→ · · ·

︸ ︷︷ ︸
deg<0

)
,

where the Z’s sit in even degrees in the first complex and in odd degrees in the second.
In positive degrees, the differential in both complexes is the usual exterior derivative
term-wise and on the copies of Z it is given by the inclusion map Z →֒ Ω0 →֒

∏
k Ω

2k.
In negative degrees the differential is trivial.

The complexes D(ev) and D(odd) are sheaves of chain complexes on the category of
all smooth manifolds, topologized as a site via good open covers. Alternatively, both
complexes can be regarded as sheaves of chain complexes on any fixed manifold M
simply by evaluating on the open subsets of M . This is the familiar setting in which
ordinary smooth Deligne cohomology takes place (e.g. [9]). We have the following
natural definition.

Definition 3.2 (PeriodicDeligne cohomology). WedefineZ/2-graded periodicDeligne
cohomology groups of a smooth manifold M as the sheaf hypercohomology groups8
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Ĥev(M ;Z[u, u−1]) := H0(M ;D(ev)) and Ĥodd(M ;Z[u, u−1]) := H0(M ;D(odd)) .

The following shows that periodic Deligne cohomology can be calculated easily
from the ordinary Deligne cohomology groups of a manifold.

Proposition 3.3 (Calculating periodic Deligne cohomology groups). Let M be a
smooth manifold. There are natural isomorphisms

Ĥev(M ;Z[u, u−1]) ∼=
⊕

k

Ĥ2k(M ;Z) and Ĥodd(M ;Z[u, u−1]) ∼=
⊕

k

Ĥ2k+1(M ;Z) .

Proof. We will prove the claim for Ĥev(M ;Z[u,u−1]). The case for Ĥodd(M ;Z[u,u−1])
is proved similarly. To this end, we organize the sheaf of chain complexes D(ev) as

4 Z Ω1
d Ω3

d Ω5
d · · ·

3 Ω0
d Ω2

d Ω4
d Ω6

d · · ·
2 Z Ω1

d Ω3
d Ω5

d · · ·
1 Ω0

d Ω2
d Ω4

d Ω6
d · · ·

0 Z Ω1 Ω3 Ω5 · · ·
−1 0 0 0 0 · · ·
−2 Z 0 0 0 · · ·

where the numbers on the vertical axis index the degree of the complex. The diagonal
arrows represent the differential on each component of the product taken over a given
row. The diagonal complexes are easily seen to be the usual Deligne complex and,
therefore, we have a splitting

D(ev) ∼=
∏

k

D(2k)⊕
∏

k

Z[−2k] , (3.1)

where the second summand comes from the negative degrees of the complex. The lat-
ter do not contribute to the hypercohomology of the complex, as the Čech resolution
of the complex necessarily vanishes in negative degrees. Thus, the hypercohomology
groups split as desired.

From Proposition 3.3, it follows immediately that the periodic Deligne cohomology
groups fit into a differential cohomology diamond diagram and into exact sequences
similar to those for ordinary Deligne cohomology, as an instance of differential integral
cohomology [75].

Proposition 3.4 (Periodic Deligne cohomology diamond). Wehave an exact diagram

Ωodd(M)/im(d)
a

d
Ωev

cl (M)

Hodd(M ;R[u, u−1]) Ĥev(M ;Z[u, u−1])
I

R

Hev(M ;R[u, u−1])

Hodd(M ;R[u, u−1]/Z[u, u−1])
β

Hev(M ;Z[u, u−1])

j

for the even Deligne complex and a similar diamond for the odd one, given by

8The cohomological degrees on both right hand sides is 0, due to the shift in the complexes in
Definition 3.1, in analogy to the usual Deligne case, i.e., expression (1.1).
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switching ev and odd. Here Ωodd(M) and Ωev(M) are the groups of differential forms
of odd and even degrees, respectively. For example, an element ω ∈ Ωev(M) is a formal
combination ω = ω0 + ω2 + ω4 + · · · , with ω2i a differential form of degree 2i.

Remark 3.5 (Extension of the diamond to a long exact sequence). One of the diag-
onals in the diamond diagram in Proposition 3.4 can be extended to a long exact
sequence. Depending on parity, the relevant segments of this long exact sequence are

Hev(M ;Z[u, u−1])→Ωev(M)/im(d)→ Ĥodd(M ;Z[u, u−1])→Hodd(M ;Z[u, u−1])→0,

Hodd(M ;Z[u, u−1])→Ωodd(M)/im(d)→ Ĥev(M ;Z[u, u−1])→Hev(M ;Z[u, u−1])→0.

The map into the quotient Ωev(M)/im(d) takes a periodic integral class and maps
it to the class of its corresponding de Rham representative (i.e. a form with integral

periods). Note also that the map R : Ĥev(M ;Z[u, u−1])→ Ωev
cl (M) is not surjective;

its image is the subgroup of closed forms with integral periods.

3.2. Ring structure and examples

Eventually, we would like to consider the twists of this theory and, to do this,
we need a ring structure on this periodic Deligne complex. Recall that for ordinary
Deligne cohomology, the Deligne-Beilinson cup product gives a collection of mor-
phisms of sheaves of chain complexes [22, 6] (see also [25, 27])

∪DB : D(n)⊗D(m) −→ D(n+m) . (3.2)

At the level of local sections, it is defined by the formula

α ∪DB β =





αβ, deg(α) = n ,
α ∧ dβ, deg(β) = 0, deg(α) 6= n ,

0, otherwise .

Since the even periodic Deligne complex split as the product (3.1) (and similarly for
the odd), there are multiplication maps

∪DB :




D(ev)⊗D(ev) −→ D(ev) ,
D(ev)⊗D(odd) −→ D(odd) ,
D(odd)⊗D(odd) −→ D(ev) ,

(3.3)

induced by the cup product ∪DB from (3.2) in positive degrees and the multiplication
of integers in negative degrees. It is immediate that these maps descend to a graded
commutative cup product which is compatible with the Deligne-Beilinson cup product
term-wise. We summarize these observations as follows.

Proposition 3.6 (Superalgebra structure on periodic Deligne cohomology). With the
multiplication maps (3.3) induced by the Deligne-Beilinson cup product, the complex
D(ev)⊕D(odd) admits the structure of a sheaf of differentially graded superalgebras.
At the level of hypercohomology, it gives

Ĥev / odd(M ;Z[u, u−1]) := Ĥev(M ;Z[u, u−1])⊕ Ĥodd(M ;Z[u, u−1])
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the structure of a commutative superalgebra. Moreover, we have

Ĥev / odd(M ;Z[u, u−1])⊗ Ĥev / odd(M ;Z[u, u−1])
∪DB

Ĥev / odd(M ;Z[u, u−1])

Hev / odd(M ;Z[u, u−1])⊗Hev / odd(M ;Z[u, u−1])
∪

Hev / odd(M ;Z[u, u−1]) ,

Ĥev / odd(M ;Z[u, u−1])⊗ Ĥev / odd(M ;Z[u, u−1])
∪DB

Ĥev / odd(M ;Z[u, u−1])

Ω
ev / odd
cl (M)⊗ Ω

ev / odd
cl (M)

∧
Ω

ev / odd
cl (M)

where Hev / odd(M ;Z[u, u−1]) is periodic integral cohomology, endowed with the super-
algebra structure inherited from the cup product, and Ωev / odd(M) is the superalgebra
of graded differential forms.

Example 3.7 (Periodic Deligne cohomology of even spheres). The underlying periodic
integral cohomology of the smooth 2k-sphere is readily computed as

Hev(S2k;Z[u, u−1]) ∼= Z⊕ Z and Hodd(S2k;Z[u, u−1]) ∼= 0 .

Given the two long exact sequences in Remark 3.5, we easily compute

Ĥev(S2k;Z[u, u−1]) ∼= Ωodd(S2k)/im(d)⊕ Z⊕ Z ,

Ĥodd(S2k;Z[u, u−1]) ∼= Ωev(S2k)/Ωev
cl,Z(S

2k) ,

where Ωev
cl,Z(S

2k) is the subgroup of closed even forms with integral periods (i.e., each
component of an element ω = ω0 + ω2 + · · · has integral periods).

Example 3.8 (Periodic Deligne cohomology of odd spheres). Similarly, we calculate
for odd spheres using the same two sequences above, to get in this case

Ĥodd(S2k+1;Z[u, u−1]) ∼= Ωev(S2k+1)/im(d)⊕ Z ,

Ĥev(S2k+1;Z[u, u−1]) ∼= Ωodd(S2k+1)/Ωodd
cl,Z(S

2k+1)⊕ Z ,

where one of the Z factors has moved, in comparison to the case of even spheres, due
to parity reasons.

4. Twisted periodic smooth Deligne cohomology

In this section we turn to twisting periodic Deligne cohomology constructed above.
Just as twisted periodic integral cohomology in Section 2.1 takes the form of a bundle
of spectra over a parametrizing space, here we will have a smooth bundle of spec-
tra, parametrized over a smooth manifold M . In the smooth setting, our starting
point is no longer the category of spaces and its tangent infinity category T (Space),
but rather the category of smooth stacks Sh∞(Mf) and its tangent infinity category
T (Sh∞(Mf)).

4.1. The parametrized spectrum and gerbes via smooth stacks
Let M be a smooth manifold and consider the site of open subsets Open(M),

topologized via the good open covers {Uα →M}. Smooth stacks on M are similar to
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smooth sheaves, but instead of assigning a set of elements to an object U ∈ Open(M),
we assign a space (usually modeled combinatorially by a simplicial set). The sheaf
gluing condition is replaced by a weaker condition, where we only require gluing up
to equivalence.

There is a large ∞-category of smooth stacks Sh∞(Mf) which does not depend on
a choice of underlying smooth manifold. The site for this ∞-category is the site of
all smooth manifolds Mf, topologized via good open covers. Any object in Sh∞(Mf)
can be restricted to a single manifold by simply considering its value on open subsets
U →֒M . One of the benefits of working in this larger ∞-category is that one can
define moduli stacks X which represent objects of interest over M via maps M → X.
For example, the moduli stack of higher gerbes with connection BnU(1)∇ was studied
in [29, 71, 74, 27, 28]. One way to present this stack is by applying the Dold-Kan
functor to the sheaf of chain complexes

BnU(1)∇ = DK
(
· · · 0 U(1)

d log
Ω1 d

Ω2 d
· · · Ωn

)
,

where the sheaf U(1) := C∞(−;U(1)) sits in degree n. The sheaf in the argument
of DK is quasi-isomorphic (via the exponential map) to the smooth Deligne com-
plex D(n). The Dold-Kan functor sends quasi-isomorphisms to weak equivalences
and (since we are working up to equivalence) this justifies the uniform notation
BnU(1)∇ for both resulting stacks (i.e. upon applying DK to either complex). The
stack BnU(1)∇ sits in a Cartesian square

BnU(1)∇ Ωn+1
cl

Bn+1
Z B2k+1

R ≃ Ω6n+1
cl

(4.1)

where Ω6n+1
cl is the stack presented by the sheaf of chain complexes

(
· · · 0 Ω0 Ω1 d

Ω2 d
· · · Ωn+1

cl

)
.

In [29], it was shown that the homotopy classes of maps M → BnU(1)∇ is in bijective

correspondence with the Deligne cohomology group Ĥn(M ;Z).

Example 4.1 (Stack of 2-bundles with connections/gerbes with connections). The
smooth stack B2U(1)∇ can be presented via the Dold-Kan correspondence by the
sheaf of positively graded chain complexes

B2U(1)∇ = L ◦DK
(
U(1)

d log
−−−→ Ω1 d

−→ Ω2
)
,

where L is the stackification functor.9 Let φ : R
n →M be a local chart. For a convex

open subset U ⊂ R
n, this stack can be evaluated on the corresponding open subset

V = φ(U) via

Map(V,B2U(1)∇)
φ
≃ DK

(
C∞(U,U(1))

d log
−−−→ Ω1(U)

d
−→ Ω2(U)

)
.

More generally, descent for the stack B2U(1)∇ implies that, for any choice of good

9This is a functor which turns a prestack into a stack, analogously to the way a sheafification functor
turns a presheaf into a sheaf. See [56, Sec. 6.5.3] for details.



144 DANIEL GRADY and HISHAM SATI

open cover {Uα} of M , the space of maps Map(M,B2U(1)∇) can be identified by
replacing M with the Čech nerve Č({Uα}) of {Uα} and considering instead the space

Map
(
Č({Uα}),DK

(
U(1)

d log
−−−→ Ω1 d

−→ Ω2
))

.

By the basic properties of the Dold-Kan correspondence we have an isomorphism10

π0

(
Map

(
Č({Uα}),DK

(
U(1)

d log
−−−→ Ω1 d

−→ Ω2
)))
∼= H2(M ;U(1)

d log
−−−→ Ω1 d

−→ Ω2
)
.

By [9, Theorem 5.3.11], the elements on the right parametrize the homotopy classes
of the gerbes with connective structure and curving.

Definition 4.2 (Smooth parametrized spectrum). A smooth parametrized prespec-
trum is a collection of morphisms pn : En →M between smooth stacks in Sh∞(Mf),
n ∈ Z, with a choice of section, equipped with morphisms ΣMEn → En+1, making
certain diagrams commute up to a choice of equivalence in Sh∞(Mf). A smooth
parametrized prespectrum {pn : En →M} for which the adjoint maps En → ΩMEn+1

are equivalences is called smooth parametrized spectrum.

Remark 4.3 (Identifying the proper category as a setting). Note that Definition 4.2
is almost verbatim the same as one has for parametrized spectra, the only difference
being where the objects En and M live (i.e. smooth stacks instead of spaces). In this
context we still have a mapping spectrum11 between two smooth spectra. The result-
ing structure is again an ∞-category and we denote this category by T (Sh∞(Mf)).

Definition 4.4 (Smooth bundle of spectra). Let M be a smooth manifold. A smooth
bundle of spectra π : E →M over M with fiber the sheaf of spectra R is an object in
T (Sh∞(Mf))M satisfying the same properties of the underlying topological bundles
of spectra, with M replacing X.

We now wish to focus our scope to the case of periodic Deligne cohomology. Con-
sider the sheaf of ring spectra given by applying the Eilenberg-MacLane functor H

to the sheaf of chain complexes D(ev) and D(odd). In Section 3.1, we saw that this
ring spectrum represents periodic Deligne cohomology, in the sense that

Ĥev(M ;Z[u, u−1]) ∼= π0Map
(
M ;H(D(ev))

)
,

Ĥodd(M ;Z[u, u−1]) ∼= π0Map
(
M ;H(D(odd))

)
.

We would like to identify a large class of twists for this theory. To this end, let us
consider the stack of twists in diagram (1.2) with R̂ the periodic differential ring spec-
trum given by both H(D(ev)) and H(D(odd)), separately. At first, it might appear
that we get two stacks of twists corresponding to both the even and odd degrees;
however, this is not the case.

10The shift in degree occurs because on the left we consider the complex U(1)
d log
−−−→ Ω1 d

−→ Ω2 as

being shifted up two degrees relative to the complex appearing on the right.
11Note that the mapping spectra are not smooth or parametrized; they are ordinary topological
spectra.
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Proposition 4.5 (Equivalence of stacks of even and odd twists for periodic Deligne
cohomology). We have a canonical equivalence of smooth stacks

T̂wH(D(odd)) ≃ T̂wH(D(ev)) ,

induced by shifting both the ring spectrum H(Z[u, u−1]) and the invertible periodic de
Rham complex Ω∗[u, u−1] up by one degree each.

Proof. Shifting a module spectrum Rτ up by one degree is again a module spec-
trum over the ring spectrum R, i.e., the module maps µ : Rm ∧ Rn

h → R
m+n
h give

rise to maps Rm ∧ R
n+1
h → R

m+n+1
h , and the higher coherence homotopies in the

ring structure give rise to coherence homotopies by shifting. Similarly, shifting a K-
flat invertible module L is again a K-flat invertible module. Moreover, given any
equivalence H(L) ≃ Rτ ∧HR, we get a corresponding equivalence at the level of
the shifts. By the universal property of the pullback, we have an induced map at
the level of the twists. For smooth periodic Deligne cohomology this takes the form
T̂wH(D(odd)) → T̂wH(D(ev)). It is immediate that this map admits an inverse induced
by shifting down.

Proposition 4.5 implies that we do not have to consider the even and odd degrees
separately, but we can view a given twist as corresponding to either spectrum. Hence-
forth, we will only refer to the stack of twists of periodic Deligne cohomology and
denote it by T̂w.

The main goal of this section is to show that periodic Deligne cohomology can be
twisted by odd degree gerbes with connection, i.e., we want to construct a map (or
representation)

ρ : B2n+1U(1)∇ −→ T̂w .

Although the existence of such twists follows from [15, proposition 11.4], the argument
used there is rather abstract, and does not reveal precisely how the topological and
geometric twists combine to form a twist of the differential theory. For this reason,
we present an alternative proof which makes these relationships more manifest.

We now proceed with the construction, in which the above representation is essen-
tially provided by Chern-Simons type data associated to a Čech de Rham cocycle.
Consider a Čech de Rham cochain η = (ηα, ηα0α1

, . . . , ηα0α1···α2k+1
) on a smooth man-

ifold M , where ηα0···αi
is the cocycle data on the i-fold intersections of a fixed good

open cover {Uα}, i.e., ηα is a 2k-form defined on open sets, ηα0α1
is a (2k − 1) form

defined on intersections, etc. We can regard this cochain as an element in degree 1 of
the total complex Tot•({Uα}; Ω

62k+1), where

Ω62k+1 :=
(
· · · 0 Ω0 Ω1 · · · Ω2k+1

cl

)
,

with Ω0 in degree (2k + 1). Choose this cochain such that D(η) = H − (hα0···α2k+1
)

with D = d+ (−1)iδ the total differential, H a closed globally defined (2k + 1)-form
and (hα0···α2k+1

) a real valued Čech cocycle.
To the above data we will associate an equivalence of sheaves of spectra

CS(η) ∧ (−) : H(R[u, u−1])h(M)
≃
−→ H(Ω∗[u, u−1], dH)(M) ,

where (Ω∗[u, u−1], dH)(M) is the H-twisted de-Rham complex. Consider the local
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forms

CSα(η) = eηα = 1 + ηα + 1
2!ηα ∧ ηα + 1

3!ηα ∧ ηα ∧ ηα + · · · ,

CSα0α1
(η) = ηα0α1

+ 1
2!ηα0α1

∧ dηα0α1
+ 1

3!ηα0α1
∧ dηα0α1

∧ ηα0α1
+ · · · ,

CSα0α1α2
(η) = ηα0α1α2

+ 1
2!ηα0α1α2

∧ dηα0α1
+ 1

3!ηα0α1α2
∧ dηα0α1

∧ dηα0α1
+ · · · ,

and so on, with CSα0α1···αi
being defined on the i-fold intersection.

Lemma 4.6 (CS inducing a morphism). For a periodic form ω in Ω∗[u, u−1]|Uαβ
, the

assignment ω 7→ CSα(η) ∧ ω defines a morphism of restricted sheaves of complexes

CSα(η) ∧ (−) : (Ω∗[u, u−1], dH)|Uα
−→ Ω∗[u, u−1]|Uα

, (4.2)

which induces a morphism of sheaves of spectra

H(CSα(η) ∧ (−)) : H(Ω∗[u, u−1], dH)|Uα
−→ H(Ω∗[u, u−1])|Uα

.

Proof. This follows immediately from the calculation

d(eηα ∧ ω) = H ∧ eηα ∧ ω + eηα ∧ dω = eηα ∧ (H ∧ ω + dω) = eηα ∧ dH(ω)

and that H is functorial.

We can think of (4.2) as the map on local sections induced by a local trivialization
of the bundle of spectra corresponding to the module spectrum H(Ω∗[u, u−1], dH).
Since dηα0α1

= δηα, by construction, it follows that dCSα0α1
(η) = edηα0α1 = eδηα =

δCSα(η), where δCSα(η) should be understood as the alternating wedge product.

Lemma 4.7 (CS defining a chain homotopy). The assignment ω 7→ CSα0α1
(η) ∧ ω

defines a chain homotopy trivializing the degree zero element

δCSα(η) ∧ (−) ∈ hom
(
Ω∗[u, u−1]|Uαβ

,Ω∗[u, u−1]|Uαβ

)
.

Proof. For X and Y two complexes, the differential on hom(X,Y ) acts on an element
fn in degree n by dY fn(x)− (−1)nfn(dXx). For X = Y = Ω∗[u, u−1]|Uαβ

, the assign-

ment ω 7→ CS(1) ∧ ω manifestly gives an element in degree 1 and the differential thus
acts by

d(CSα0α1
(η) ∧ ω) + CSα0α1

(η) ∧ dω = d(CSα(η)) ∧ ω = δCSα(η) ∧ ω .

The Eilenberg-MacLane functor is a fully faithful∞-functor and we have a natural
equivalence of mapping spaces

Map
(
Ω∗[u, u−1]|Uαβ

,Ω∗[u, u−1]|Uαβ

)
:= Ω∞

H
(
hom

(
Ω∗[u, u−1]|Uαβ

,Ω∗[u, u−1]|Uαβ

))

≃ Map
(
H(Ω∗[u, u−1]|Uαβ

),H(Ω∗[u, u−1]|Uαβ
)
)
.

Hence, in particular, chain homotopies are mapped to homotopies between sheaves
of spectra. From Lemma 4.7, it immediately follows that CSα0α1

(η) gives rise to a
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homotopy filling the diagram

∨
αβ H(Ω∗[u, u−1])|Uαβ

∨
α H(Ω∗[u, u−1])|Uα

i∗α

∨
α H(Ω∗[u, u−1])|Uα

i∗β

∨
α H(Ω∗[u, u−1], dH)|Uα

(eηα ) (eηα )

CSαβ(η)
(4.3)

Lemma 4.8 (Čech differential of CS). The assignment ω 7→ CSα0···αi
(η) ∧ ω gives a

degree 0 < i 6 2k element

CSα0···αi
(η) ∧ (−) ∈ homi

(
Ω∗[u, u−1]|Uα0···αi

,Ω∗[u, u−1]|Uα0···αi

)

trivializing δCSα0···αi−1
(η) ∧ (−). Moreover, in degree 2k, we have

δCSα0···α2k
(η) = hα0α1···α2k+1

+ 1
2!hα0α1···α2k+1

∧ dηα0α1
+

+ 1
3!hα0α1···α2k+1

∧ dηα0α1
∧ dηα0α1

+ · · ·

= hα0···α2k+1
· CS′(η) ,

where CS′α(η) := 1 + 1
2!dηα + 1

3!dηα ∧ dηα · · · .

Proof. Again, by construction we have dCSα0···αi
(η) = (−1)i+1δ(CSα0···αi−1

(η)). The
same computation as in Lemma 4.7 with n = i shows that CSα0···αi

(η) ∧ (−) indeed
trivializes CSα0···αi−1

(η) ∧ (−). The second claim follows immediately from the fact
that η was chosen so that δ(ηα0···α2k

) = hα0···α2k+1
.

The combinatorial data provided by the cochain CS(η) is precisely what is needed
to specify an ∞-cone over the cosimplicial diagram

· · ·
∨

αβ H(Ω∗[u, u−1])|Uαβ

∨
α H(Ω∗[u, u−1])|Uα

i∗α

i∗β
H(Ω∗[u, u−1], dH) ,

CSα(η)

where all homotopies in the cosimplicial diagram are degenerate except at the (2k +
1)-stage, where we fill the diagram by a nontrivial homotopy determined by the
equation δi∗α0···α2k

= hα0···α2k+1
∪ (−). This is equivalent to specifying a map

hα0···α2k+1
: ∆2k+1 Map(H(Ω∗[u, u−1])|Uα

,H(Ω∗[u, u−1])|Uα0···α2k+1
) ,

where the top face acts as a higher homotopy via the cup product and the restriction
to the faces are degenerate on the restriction to (2k + 1)-fold intersections.

Example 4.9. Note that the homotopy commutative diagram (4.3) gives homotopy
commutativity at the first stage. We can organize the homotopies at the next stage
diagrammatically as

i∗αi∗αγCSαγ(η) i∗αβCSαβ(η)

CSαβγ(η)

i∗γ i∗γβCSγβ(η)
i∗β

The only nontrivial step is on the (2k + 1)-intersection. The pattern continues and
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at the (2k + 1)-stage Lemma 4.8 gives the compatibility

δi∗α0···α̂i···α2k+1
CSα0···α̂i···α2k+1

(η) = hα0···α2k+1
· CS′α(η) .

From the universal property for ∞-limits, such a cone gives rise to a canonical map

H(Ω∗[u, u−1], dH)→ lim

{
· · ·

∨
αβ H(Ω∗[u, u−1])|Uαβ

∨
α H(Ω∗[u, u−1])|Uα

i∗α

i∗β

}
.

Moreover, since the maps CSα(η) are local equivalences, it follows from descent that
this map is an equivalence.

Now consider the canonical inclusion ι : R[u, u−1] →֒ Ω∗[u, u−1] induces a morphism
of sheaves of spectra

ι : H(R[u, u−1]) −→ H(Ω∗[u, u−1]) .

Consider the induced homotopy commutative diagram

· · ·
∨

αβγ H(R[u, u−1])|Uαβγ

ι

∨
αβ H(R[u, u−1])|Uαβ

ι

∨
α H(R[u, u−1])|Uα

i∗α

i∗β

ιi

· · ·
∨

αβγ H(Ω∗[u, u−1])|Uαβγ

∨
αβ H(Ω∗[u, u−1])|Uαβ

∨
α H(Ω∗[u, u−1])|Uα

i∗α

i∗β

where again the cup product with cocycle hα0···α2k+1
gives a nontrivial homotopy

filling the top cosimplicial diagram via the corresponding map

hα0···α2k+1
: ∆2k+1 Map(H(R∗[u, u−1])|Uα

,H(R∗[u, u−1])|Uα0···α2k+1
) .

The diagram manifestly commutes up to homotopy (with degenerate homotopies fill-
ing the squares). This induces a map on corresponding ∞-limits, which is an equiv-
alence since ι is an equivalence at each stage. By construction, we identify the top
limit with the module spectrum H(R[u, u−1])h. Combining this with the equivalence
constructed above, we have a zig-zag of equivalences

H(R[u, u−1])
∼
−→ limi∈∆op(H(Ω∗[u, u−1]|α0···αi

))
∼
←− H(Ω∗[u, u−1], dH) , (4.4)

which gives rise to the desired equivalence.

Remark 4.10. The equivalence (4.4) depends on the choice of Čech-de Rham cochain
trivializing the difference H − hα0···α2k+1

. Such a cochain is an element in degree 1

of the totalization Tot•({Uα}; Ω
62k+1
cl ). Given the previous construction, it is tedious

but straight forward to check further that elements of degree 2 gives rise to zig-zags
between zig-zags (a 2-simplex in PicdR(M)), so on and so forth.

Theorem 4.11 (Twisting periodic Deligne cohomology by odd degree gerbes with

connection). Let T̂w(M) denote the stack of twists, evaluated on a smooth mani-
fold M . Then every Čech-Deligne cocycle of degree 2k + 1 defines a twist of periodic
Deligne cohomology. In fact, there is a morphism of smooth stacks

B2kU(1)∇ −→ T̂w ,

refining the map K(Z, 2k + 1)→ BGL1(HZ[u, u−1]) →֒ Pictop
HZ[u,u−1].
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Proof. The stack B2kU(1)∇ fits into the Cartesian square (4.1). This pullback in
smooth stacks can be computed by the stackification of the corresponding pullback
in prestacks, which is computed objectwise. Moreover, a morphism of prestacks into
a stack is, equivalently, a morphism of stacks out of the stackification.12 It there-
fore suffices to construct the map objectwise out of the three stacks Ω2k+1

cl , B2k+1
Z

and Ω62k+1
cl and for every (1-)homotopy filling the diagram, a corresponding homo-

topy filling diagram (1.2). To that end, fix an arbitrary manifold M and define the
homotopy commutative diagram

Ω2k+1
cl (M) Picform(M)

B2k+1U(1)∇ Ω62k+1
cl (M) PicdR(M)

B2k+1
Z(M) Pictop(M)

2

1

as follows. The top horizontal map in the diagram sends a closed odd-degree form
to the invertible module over the periodic de Rham complex, (Ω∗[u, u−1](M), dH),
where the differential dH = d+H∧ acts on a differential form as

dH(ω) = dH(ω0 + ω2 + · · · ) = dω0 + dω2 + · · ·+ (H ∧ ω0 + dω2k) + · · · . (4.5)

The middle horizontal takes a Čech de Rham cochain and maps it to the ∞-limit
over the corresponding cosimplicial diagram

· · · H(Ω∗[u, u−1])|Uαβγ
H(Ω∗[u, u−1])|Uαβ

H(Ω∗[u, u−1])|Uα
i∗β

i∗α

considered in the discussion preceding the theorem. The bottom horizontal map
assigns an integral Čech cocycle in degree (2k + 1) to the sheaf of module spectra
H(Z[u, u−1])h, where the simplicial maps are completely determined by

hα0···α2k+1
: ∆2k+1 Map(H(Z[u, u−1]|Uα0···α2k+1

,Z[u, u−1]|Uα0···α2k+1
)) .

Then the homotopies 1 and 2 are given by the two equivalences in the zig-zag (4.4), the
homotopy labeled by 1 (respectively, 2) given by the equivalence on the right (resp.,

left). By the universal property, we have an induced map B2k+1U(1)∇ → T̂w.

Remark 4.12 (Bundle of spectra approach). Twisting periodic Deligne cohomology
via gerbes can also be described using the framework of bundles of spectra. We now
sketch this construction (which can be regarded as dual to the approach we have
taken). Consider the sheaf of complexes (Ω∗[u, u−1], dH) on a smooth manifold M ,
which is degreewise identical to the periodic complex of forms, but which is equipped
with the differential dH := d+H∧, acting by (4.5). Here, H a closed form of degree
2k + 1. Applying the Eilenberg-MacLane functor H to (Ω∗[u, u−1], dH) gives a sheaf
of spectra on M . Now (Ω∗[u, u−1], dH) is an invertible module over (Ω∗[u, u−1], d)
which is locally equivalent (by the Poincaré Lemma) to the constant sheaf R[u, u−1].

12This follows from the adjunction i ⊢ L, with L the stackification functor and i the inclusion
functor.
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Thus H(Ω∗[u, u−1], dH) gives a sheaf of spectra which is a module over HR[u, u−1].
Pulling back the universal bundle of spectra

λ −→ PicdR
HR[u,u−1]

(see [43] for this construction) by the map τ : M → PicdR
HR[u,u−1], which picks out

the twisted sheaf of spectra H(Ω∗[u, u−1], dH), gives a smooth bundle of spectra
E →M . The sheaf of local sections of the latter evaluated on U is, by definition,
H(Ω∗[u, u−1], dH)(U). Choose local potentials Bα for H on each element of a good
open cover {Uα} of M (i.e. dBα = H). Then, on each patch Uα, we have quasi-
isomorphisms of sheaves of complexes

eBα∧ : (Ω∗[u, u−1], dH)|Uα

≃
−→ Ω∗[u, u−1]|Uα

,

which send a local section ω to the wedge product with the formal exponential

eBα = 1 +Bα + 1
2!B

2
α + · · · .

These quasi-isomorphisms correspond to local trivializations

eBα∧ : H(Ω∗[u, u−1])|Uα
× Uα −→ E|Uα

.

In fact, dual to the discussed above, a choice of representative of H in the Čech-de
Rham double complex gives rise to an ∞-cocone

· · ·
∐

αβ H(Ω∗[u, u−1])|Uαβ
× Uαβ

∐
α H(Ω∗[u, u−1])|Uα

× Uα E ,

where the homotopies at each stage are determined by the Čech-de Rham data for H.
By descent, one concludes that E is, in fact, an ∞-colimit over this diagram. Notice
also that, since the global sections of E are H(Ω∗[u, u−1](M), dH), we immediately
have that the twisted cohomology represented by the bundle E is the H-twisted de
Rham cohomology of M . If H has integral periods, then working dually as in the
proof of Theorem 4.11, we see that the pullback of the universal bundle λ→ T̂w by
a gerbe ĥ : M → B2k+1U(1)∇ → T̂w gives a bundle of spectra whose sections are the
module spectrum represented by the twist.

Definition 4.13 (Twisted periodic Deligne cohomology). Let H be a closed differ-
ential form of odd degree which has integral periods. Then H can be lifted to

ĥ : M −→ B2kU(1)∇ .

According to Proposition 4.5, we can regard this as either twisting H(D(ev)) or
H(D(odd)). Let Zev

ĥ
→M and Zodd

ĥ
→M be the corresponding smooth bundles of

spectra. We define the twisted periodic Deligne cohomology to be the homotopy classes

of sections of the corresponding bundle Z
ev / odd

ĥ
→M , i.e.,

Ĥev(M ; ĥ) := π0Γ(M ;Zev
ĥ
) and Ĥodd(M ; ĥ) := π0Γ(M ;Zodd

ĥ
) .

Just as one can define tensor product and direct sum of vector bundles, one can
similarly define the wedge product and smash product of bundles of spectra (see
[43] for the definition of the smash product; the wedge product is defined similarly).
In the present case, we have a Z/2-graded bundle of spectra Eev ∨ Eodd →M . The
local sections of this bundle are given by evaluating the wedge product of spectra
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H(D(ev)) ∨H(D(odd)) ≃ H(D(ev)⊕D(odd)) on open subsets U ⊂M . Given the
multiplicative structure of periodic Deligne cohomology from Section 3.2, we have:

Proposition 4.14 (Module structure of twisted periodic Deligne cohomology). The
sheaf of sections of the bundle Eev ∨ Eodd →M is a module spectrum over the sheaf
of ring spectra given by H(D(ev)) ∨H(D(odd)). The module action descends to

µ : Ĥev / odd(M ;Z[u, u−1])⊗ Ĥev / odd(M ; ĥ) Ĥev / odd(M ; ĥ) ,

turning Ĥev / odd(M ; ĥ) into a module over the superalgebra Ĥev / odd(M ;Z[u, u−1]).

4.2. Properties of twisted periodic smooth Deligne cohomology
In this section, we list several properties of twisted periodic Deligne cohomology.

Proposition 4.15 (Properties of twisted periodic Deligne cohomology). Let M be a

smooth manifold and fix a twist ĥ : M → B2kU(1)∇. Consider the category of such

pairs (M, ĥ), with morphisms (f, φ) : (M, ĥ)→ (M, ℓ̂) given by smooth maps f : M →

N and equivalences φ : f∗ℓ̂⇒ ĥ. The assignment (M, ĥ) 7→ Ĥ∗(M ; ĥ) satisfies:

1. Ĥ∗(M ; ĥ) is functorial with respect to the maps f : (M, ĥ)→ (N, ℓ̂).

2. The functor Ĥ∗(−; ĥ) satisfies the Eilenberg-Steenrod axioms (modulo the di-
mension axiom and homotopy invariance!) for a reduced cohomology theory. In
particular, we have a Mayer-Vietoris sequence which takes the form

· · · H∗−2
R/Z (U ;h)⊕H∗−2

R/Z (V ;h) H∗−2
R/Z (U ∩ V ;h)

Ĥ∗(M ; ĥ) Ĥ∗(U ; ĥ)⊕ Ĥ∗+1(V ; ĥ) Ĥ∗(U ∩ V ; ĥ)

H∗+1(M ;h) H∗+1(U ;h)⊕H∗+1(V ;h) · · ·

3. For ĥ : M → B2kU(1)∇ a trivial twist (i.e. ĥ ≃ ∗ in smooth stacks) we have

Ĥ∗(M ; ĥ) ∼= Ĥ∗(M ;Z[u, u−1]) . (4.6)

Even more strongly, we still have an isomorphism (4.6) if just the underlying
topological twist h : M → K(Z, 2k + 1) is trivial.

Proof. (i) Given a map f : M → N satisfying the desired compatibility, we have an
induced double pullback diagram

Zf∗ĥ Zĥ λ̂

M
f

N
ĥ

B2kU(1)∇ T̂w

and φ induces the identification Zf∗ĥ ≃ Zℓ̂. As a consequence, we have an induced

morphism of sections f∗ : Γ(N ;Zĥ)→ Γ(M ;Zℓ̂). Passing to homotopy groups yields

a map f∗ : Ĥ∗(N ; ℓ̂)→ Ĥ∗(M ; ĥ).
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(ii) Additivity. Let M =
∐

α Mα with each Mα a smooth manifold. A map ĥ : M →
B2kU(1)∇ is equivalently a collection of maps hα : Mα → B2kU(1)∇. Then the
spectrum of sections Γ(M,Zĥ) splits as a product

∏
α Γ(Mα,Zĥα

). Since taking

homotopy groups commutes with products, we have an isomorphism Ĥ∗(M, ĥ) ∼=∏
α Ĥ∗(Mα, ĥα).

Exactness. This follows verbatim as in proof of Proposition 2.8, with the space
X replaced by a smooth manifold M , A ⊂M a submanifold, and the map h : X →
K(Z, 2k + 1) replaced by the refinement ĥ : M → B2kU(1)∇.

(iii) Finally, if the twist ĥ : M → B2kU(1)∇ is topologically trivial, i.e., its geomet-
ric realization h : |M | ≃M → |B2kU(1)∇| ≃ K(Z, 2k + 1) is homotopic to the con-
stant map induced by 0→ Z. In this case, the underlying twisted spectrum HZ[u,
u−1]h is equivalent to HZ[u, u−1] and we have the diagram

H(Z[u, u−1])
≃

∧HR

H(Z[u, u−1])h

∧HR

H(R[u, u−1])

≃ c

≃
H(R[u, u−1])h

≃t

H(Ω∗[u, u−1])
≃

H(Ω∗[u, u−1], dH)

where the bottom equivalence depends on a choice of homotopy inverse for c and
is defined as the obvious composition in the diagram. By the basic properties of the
functor H (see [15, pp. 17–18] for discussion), the existence of the bottom equivalence
implies that Ω∗[u, u−1] and (Ω∗[u, u−1], dH) are connected by a zig-zag of quasi-
isomorphisms. This is manifestly the data needed to define an equivalence in the
∞-groupoid T̂w(M).

5. The spectral sequence ÂHSSh and examples

In this section, we apply the twisted Atiyah-Hirzebruch spectral sequence (both
the classical [66, 67, 4] and the differential refinement [43]) to calculate the twisted
periodic integral and Deligne cohomology of spheres.

5.1. The sequence in twisted periodic smooth Deligne cohomology

In [4], the first nonvanishing differential for the twisted AHSS (applied to K-
theory) on a space X was identified by observing that the only degree three increasing
operations for spaces equipped with maps X → K(Z, 3) are given by

Hn+3(K(Z, n)×K(Z, 3)) ∼= Hn+3(K(Z, n))⊕Hn+3(K(Z, 3))⊕ Z .

The third factor on the right hand side is generated by the product of the generators
for Hn(K(Z, n)) and H3(K(Z, 3)). From this, one deduces that

d3(x) = Sq3
Z
(x)− [h] ∪ x ,

with [h] the twisting integral class and Sq3
Z
the third integral Steenrod square, which

comes from the untwisted AHSS for K-theory [3].
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For integral cohomology, considering again a degree three twist h, we then find
that13 d3(x) = −[h] ∪ x. The same argument applies not only in the degree three
case, but also in higher odd degrees. This is due to the fact that for spaces equipped
with maps X → K(2k + 1;Z), we again have the identification

Hn+2k+1(K(Z, n)×K(Z, 2k + 1))∼=Hn+2k+1(K(Z, n))⊕Hn+2k+1(K(Z, 2k + 1))⊕Z,

with the last factor being generated by the product of the generator of Hn(K(Z, n))
and the generator of H2k+1(K(Z, 2k + 1)). We, therefore, have the following.

Proposition 5.1 (First differential for AHSSh for twisted periodic integral cohomol-
ogy). Let h : X → K(Z, 2k + 1) be a twist of periodic integral cohomology. Then the
first nonvanishing differential in the associated AHSS occurs on the E2k+1-page and
is given by d2k+1(x) = −[h] ∪ x.

We will illustrate this in Examples 5.5 and 5.6 below. In [43], we developed an
AHSS for twisted differential cohomology theories, in turn generalizing that of a
differential theory [42]. In the case of periodic Deligne cohomology, there are two
spectral sequences corresponding to the even and odd degrees (separately).

Lemma 5.2 (The E2-page for even degrees in ÂHSSĥ for twisted periodic Deligne
cohomology). The E2-page for the even case looks as follows:

1

0 Ωev
dH-cl,Z(M)

d2

−1 H1(M ;U(1)) H2(M ;U(1))

−2 0 0 0

−3 H4(M ;U(1))

−4

where Ωev
dH-cl,Z(M) is the subgroup of those even forms on M which are twisted-closed

and whose degree zero component is given by an integer, i.e. ω = n0 + ω2 + ω4 + · · · .

Lemma 5.3 (The E2-page for odd degrees in ÂHSSĥ for twisted periodic Deligne
cohomology). The spectral sequence for the odd degrees looks as follows:

1

0 U(1)× Ωodd
dH-cl(M)

−1 0 0

−2 0 H2(M ;U(1)) H3(M ;U(1))

−3 0

−4 H4(M ;U(1))

where Ωodd
dH-cl(M) is the group of twisted-closed odd forms on M .

13This can be deduced, for example, from the K-theory differential and the fact that (on spheres)
the Chern character lands in integral cohomology.
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For twisted differential K-theory, in [43] we identified the first nonzero differential
in the spectral sequence as

d3(x) = Ŝq
3

Z
(x) + [ĥ] ∪DB x ,

where Ŝq
3

Z
is a torsion operation in differential cohomology inherited from Sq3 (see

[41]), and [ĥ] ∪DB (−) is the Deligne-Beilinson cup product operation. The same
argument used in [43, Proposition 25] applies to the case of differential refinements
of the higher degree twists for periodic integral cohomology. As a result we have:

Proposition 5.4 (First differential for ÂHSSĥ for twisted Deligne cohomology). Let
h : M → B2kU(1)∇ be a twist of periodic Deligne cohomology. Then the differential

in the associated AHSS on the E2k+1-page
14 is given by d2k+1(x) = −[ĥ] ∪DB x.

We will illustrate this in Examples 5.7 and 5.8 below.

5.2. Examples via the spectral sequence
We now proceed with our examples illustrating the AHSS that we developed in

Section 5.1 to both twisted periodic integral cohomology (Section 2) and twisted
periodic Deligne cohomology (Section 4).

Example 5.5 (Twisted periodic integral cohomology of even spheres). For even
spheres, the class of the twist vanishes for parity reasons. Therefore, the AHSS degen-
erates at the E2-page and we immediately identify

Hev(S2k;Z[u, u−1]) = Z⊕ Z and Hodd(S2k,Z[u, u−1]) = 0 .

Example 5.6 (Twisted periodic integral cohomology of odd spheres). For an odd-
dimensional sphere S2k+1, the only interesting twist occurs in degree 2k + 1. Conse-
quently, the only nonzero differential in the AHSS occurs on the E2k+1-page, giving

the sequence Z
−[h]∪

H2k+1(S2k+1;Z) ∼= Z 0 . Thus, with h also denoting the

integer corresponding to the topological twist h, we get

Hodd(S2k+1;Z[u, u−1]) ∼= Z/h and Hev(S2k+1;Z[u, u−1]) ∼= 0 .

Example 5.7 (Twisted periodic Deligne cohomology of even spheres). Let ĥ : M →
B2kU(1)∇ be a twist for periodic Deligne cohomology. For parity reasons, the class
of the underlying topological twist h ∈ H2k+1(S2k;Z) vanishes. By property (iii) of
Proposition 4.15, it follows that we have an isomorphism

Ĥev/odd(S2k; ĥ) ∼= Ĥev/odd(S2k;Z[u, u−1]) ,

with the underlying untwisted theory. We computed the corresponding groups earlier
in Example 3.7 (Section 3.2), which immediately yields

Ĥev(S2k; ĥ) = Ωodd(S2k)/im(d)⊕ Z⊕ Z and Ĥodd(S2k, ĥ) = Ωev(S2k)/Ωev
cl,Z(S

2k) .

The case of odd spheres is more involved.

14Note that there is also a differential on the E2k-page; but we do not use this.
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Example 5.8 (Twisted periodic Deligne cohomology of odd spheres). For the odd
spheres, the only interesting twist are the differential refinements of the topological
twists [h]∈H2k+1(S2k+1;Z). Choose such a differential refinement ĥ : M→B2kU(1)∇.
Then the spectral sequence has one nontrivial differential

d2k+1 : U(1)× Ωodd
dH-cl(S

2k+1) U(1) ∼= H2k+1(S2k+1;U(1)) ,

occurring on the (2k + 1)-page. Here Ωodd
dH-cl denotes those odd forms which are closed

under the twisted differential dH . The restriction to the factor U(1) is given by the

Deligne-Beilinson cup product with [ĥ]. This can be computed as follows. As above,
let h be the integer representing the topological class h ∈ Z. For θ ∈ U(1), we have

[ĥ] ∪DB θ = hθ. The kernel of d2k+1 restricted to this factor is the subgroup of h-
roots of unity which is isomorphic to Z/h. Since the map θ 7→ hθ is surjective the
First Isomorphism Theorem implies that the factor Ωodd

dH-cl(S
2k+1) is killed by d2k+1.

It remains to solve the extension problem

0 Z/h Ĥodd(S2k+1; ĥ) Ωodd
dH-cl(S

2k+1) 0 .

Now for any abelian group A and any divisible group B the Ext group Ext(A,B)
vanishes. Since the group Ωodd

dH-cl(S
2k+1) is divisible, we then have

Ext1
(
Z/h,Ωodd

dH-cl(S
2k+1)

)
∼= Ωodd

dH−cl(S
2k+1)/hΩodd

dH-cl(S
2k+1) ∼= 0 .

Thus, the extension must be the trivial one and we conclude that

Ĥodd(S2k+1; ĥ) ∼= Z/h⊕ Ωodd
dH-cl(S

2k+1) .
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