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Abstract
We use the dimension and the Lie algebra structure of the

first Hochschild cohomology group to distinguish some alge-
bras of dihedral, semi-dihedral and quaternion type up to stable
equivalence of Morita type. In particular, we complete the classi-
fication of algebras of dihedral type that was mostly determined
by Zhou and Zimmermann.

Introduction

Erdmann has given a description, up to Morita equivalence, of some families of
tame symmetric algebras, which include the blocks of finite group algebras of tame
representation type, and that are defined essentially in terms of their Auslander-
Reiten quivers. They are separated into three types, dihedral, quaternion and semi-
dihedral (generalising tame blocks whose defect groups are dihedral, semi-dihedral or
generalised quaternion). Holm then classified them up to derived equivalence in [11].
It is then natural to try to classify them up to stable equivalence, but there are many
properties that are not preserved under stable equivalences. However, Rickard in [17]
and Keller and Vossieck in [12] proved that a derived equivalence between selfinjective
algebras induces a stable equivalence of a particular form, called stable equivalence
of Morita type because it is induced by tensoring with some bimodules; since then,
such stable equivalences (even for algebras that are not selfinjective) have been much
studied. In particular, in [22] and in [23], Zhou and Zimmermann used various tech-
niques (including Külshammer invariants and stable Hochschild cohomology) in order
to distinguish most of the algebras of dihedral, semi-dihedral and quaternion type up
to stable equivalence of Morita type, but some questions remain. Our aim is to use
the first Hochschild cohomology group and its Lie structure to answer some of these
questions.

It was shown by Xi in [21] that if A and B are two selfinjective algebras and
if there is a stable equivalence of Morita type between them, then for n ⩾ 1, the
Hochschild cohomology groups HHn(A) and HHn(B) are isomorphic. Moreover, as a
consequence of a result of König, Le and Zhou in [13], if A is a symmetric algebra,
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the Lie algebra structure of HH1(A) is also preserved under such an equivalence. We
shall use these facts to distinguish some of the algebras above up to stable equivalence
of Morita type. As a result, we are able to complete the classification for the algebras
of dihedral type, and to improve it for the algebras of quaternion and semi-dihedral
types.

The Lie algebra structure of the first Hochschild cohomology group has been
described by Strametz in [20], where she studied the Lie algebra HH1(A) for a mono-
mial algebra A. Her results were then used by Sánchez-Flores in [18] to study the
Gerstenhaber algebra structure of the Hochschild cohomology ring HH∗(A) of a mono-
mial algebra A. Strametz’ description has also been used by Bessenrodt and Holm
in [1]. The Lie algebra HH1(A) has also been studied for instance in [9], and used for
example in [14] to retrieve information on some blocks of a group algebra. We shall
describe Strametz’ construction in Section 2.1 and use it in this paper.

After summarising in Section 1 the results known on stable equivalence of Morita
type of algebras of dihedral, semi-dihedral and quaternion type, as well as proving
our main result for algebras of quaternion type with two simple modules, we give
some general tools that we will use in Section 2: we first describe the Lie algebra
structure on the first Hochschild cohomology group. Moreover, the usual algorithmic
methods to compute a minimal projective resolution of an algebra given by quiver and
relations relies on the fact that we have a minimal set of relations, which is not the
case here. Therefore we describe our method to determine the beginning of a minimal
projective resolution of a finite-dimensional associative algebra in order to compute
the first Hochschild cohomology group. Finally, we shall use some constructions that
are invariant under Lie algebra isomorphisms, which we recall in the last part of
Section 2. We then study the cases of algebras of dihedral type in Section 3, of semi-
dihedral type in Section 4, and of quaternion type in Section 5.

Throughout, K is an algebraically closed field. Set ⊗ = ⊗K .
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1. The questions studied in this paper

In [22], Zhou and Zimmermann proved that if A and B are algebras that are
stably equivalent of Morita type, then A is of dihedral (respectively semi-dihedral,
respectively quaternion) type if and only if B is also. Moreover, if A and B are of
dihedral, semi-dihedral or quaternion type, then A and B have the same number of
simple modules.

Since our methods did not enable us to improve on the existing results for algebras
with three simple modules (the only question being for the algebras Q(3A)2,21 (d) of
quaternion type for which the Lie algebra structure of HH1(Q(3A)2,21 (d)) does not
depend on d), we shall restrict our study to the algebras with one or two simple
modules.
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1.1. The algebras involved
Let us first define the K-algebras that we are going to study, by quiver and rela-

tions. We shall need the following quivers:
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We shall only consider the local algebras when char(K) = 2, and they are defined
as follows.

The quiver of all the local algebras is 1A. Moreover, the relations ideal of

• the algebras D(1A)k2(d) of dihedral type, where k ⩾ 2 is an integer and d ∈
{0, 1}, is generated by

x2 − (xy)k, y2 − d(xy)k, (xy)k − (yx)k, (xy)kx and (yx)ky,

• the algebras SD(1A)k2(c, d) of semi-dihedral type, where k ⩾ 2 is an integer and
(c, d) ∈ K2, (c, d) ̸= (0, 0), is generated by

(xy)k − (yx)k, (xy)kx, y2 − d(xy)k and x2 − (yx)k−1y + c(xy)k,

• the algebras Q(1A)k1 of quaternion type, where k ⩾ 2 is an integer, is generated
by

(xy)k − (yx)k, (xy)kx, y2 − (xy)k−1x, x2 − (yx)k−1y,

• the algebras Q(1A)k2(c, d) of quaternion type, where k ⩾ 2 is an integer and
(c, d) ∈ K2, (c, d) ̸= (0, 0), is generated by

x2 − (yx)k−1y− c(xy)k, y2 − (xy)k−1x− d(xy)k, (xy)k − (yx)k, (xy)kx, (yx)ky.

These algebras all have dimension 4k with basis the elements

(xy)t, (yx)t+1, y(xy)t, x(yx)t

for 0 ⩽ t ⩽ k − 1, and the centres of all these algebras have dimension (k + 3).
We no longer assume that char(K) = 2. The quiver of all the algebras with two

simple modules is 2B and they are the following:

• the algebras SD(2B)k,s1 (c) of semi-dihedral type, where k ⩾ 2 and s ⩾ 1 are
integers and c ∈ {0, 1}, whose relations ideal is generated by

γβ, ηγ, βη, α2 − (βγα)k−1βγ − c(αβγ)k, ηs − (γαβ)k and (αβγ)k − (βγα)k.

• the algebras SD(2B)k,s2 (c) of semi-dihedral type, where k ⩾ 2 and s ⩾ 1 are
integers with k + s ⩾ 4 and c ∈ {0, 1}, whose relations ideal is generated by

βη− (αβγ)k−1αβ, ηγ− (γαβ)k−1γα, γβ− ηs−1, α2 − c(αβγ)k, βη2 and η2γ12.

• the algebras Q(2B)k,s1 (a, c) of quaternion type, where k ⩾ 1 and s ⩾ 3 are inte-
gers and (a, c) ∈ K2 with a ̸= 0 (and a ̸= 1 if k + s = 4), whose relations ideal
is generated by

γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

γα2, α2β, α2 − a(βγα)k−1βγ − c(βγα)k.



22 RACHEL TAILLEFER

The algebras with two simple modules (of semi-dihedral and quaternion type) all
have dimension 9k + s, and the following elements, where 0 ⩽ t ⩽ k − 1 and 1 ⩽ r ⩽
s, form a basis of each algebra:

(αβγ)t, (βγα)t+1, (αβγ)tα, (βγα)tβγ, (βγα)tβ,

(αβγ)tαβ, (γαβ)tγ, (γαβ)tγα, (γαβ)t+1, ηr.

Moreover, their centres have dimension k + s+ 2.

1.2. Algebras of dihedral type

In the case of algebras of dihedral type, Zhou and Zimmermann proved that the
classification up to stable equivalence of Morita type mostly coincides with the clas-
sification up to derived equivalence, but a few questions in the classification remain.
As they stated in [22, Remark 4.2 and Remark 7.2], in order to complete the clas-
sification of the algebras of dihedral type we must determine whether the algebras
D(1A)k2(0) and D(1A)k2(1) are stably equivalent of Morita type or not. We shall prove
that they are not in Corollary 3.3.

1.3. Algebras of semi-dihedral type

The remaining question for the local algebras of semi-dihedral type is whether the
stable equivalence of Morita type classes for the algebras SD(1A)k2(c, d) depend on
(c, d) or not. We shall give a partial answer to this question in Theorem 4.1.

In the case of algebras of semi-dihedral type with two simple modules, it was

proved in [22] that if two such algebras SD(2B)k,si (c) and SD(2B)k
′,s′

i′ (c′) are stably
equivalent of Morita type, then the sets {k, s} and {k′, s′} are equal. Moreover, if

char(K) = 2 and k = 2 and s ⩾ 3 is odd then SD(2B)k,s1 (0) and SD(2B)k
′,s′

1 (1) are
not stably equivalent of Morita type, and if k and s are both odd, and if {k′, s′} =

{k, s}, then SD(2B)k,s2 (0) and SD(2B)k
′,s′

2 (1) are not stably equivalent of Morita
type.

We go further in this classification in Theorem 4.13.

1.4. Algebras of quaternion type

For local algebras of quaternion type, the remaining questions are whether, for a
fixed k, two algebras among Q(1A)k1 and the Q(1A)k2(c, d) can be stably equivalent
of Morita type or not. We shall study this situation in Section 5, whose main result
is Corollary 5.6.

We now turn to the algebras of quaternion type with two simple modules.

Zhou and Zimmermann showed in [22] that if Q(2B)k,s1 (a, c) and Q(2B)k
′,s′

1 (a′, c′)
are stably equivalent, then the sets {k, s} and {k′, s′} are equal. There remained some
questions however.

First assume that char(K) ̸= 2. If k + s > 4, the problem relating to the param-
eters a and c was solved recently by Zimmermann in [23], where he proved that

Q(2B)k,s1 (a, c) ∼= Q(2B)k,s1 (1, 0) (recall that the field K is algebraically closed). There-
fore, using [3, Lemma 5.7 (ii)], we need only consider the algebras Q(2B)1,31 (a, 0) with
a ∈ K∗, a ̸= 1. However, the methods in this paper do not provide any information
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to distinguish the stable equivalence classes of Morita type, therefore we shall assume
that char(K) = 2. In this case, then by [3, Lemma 5.7], if k + s > 4 we need only

consider the algebras Q(2B)k,s1 (1, c) for c ∈ K.

Theorem 1.1 below can be obtained from the Lie algebra structure of
HH1(Q(2B)k,s1 (a, c)) and the techniques in this paper, using a minimal projective
resolution from [3] and computing the dimensions of the Hochschild cohomology
groups as in Proposition 5.1 and the Lie algebra structure of the first Hochschild
cohomology group as in the other cases. However, we shall give a more elegant proof
here using a result from [23].

Theorem 1.1. Let K be an algebraically closed field of characteristic 2. Let k ⩾ 1
and s ⩾ 3 be integers, and let c be in K∗.

If k + s > 4, then the algebras Q(2B)k,s1 (1, c) and Q(2B)k,s1 (1, 0) are not stably
equivalent of Morita type.

If k = 1 and s = 3 then, for any a, a′ in K\ {0, 1}, the algebras Q(2B)k,s1 (a, c) and

Q(2B)k,s1 (a′, 0) are not stably equivalent of Morita type.

Before we prove this result, let us define the objects that we shall use. Let A be
a symmetric algebra over a field of characteristic p, endowed with a non-degenerate
symmetric associative bilinear form (, ). Let K(A) be the subspace of A generated by
the commutators ab− ba of elements a, b in A. Define Tn(A) = {x ∈ A, xp ∈ K(A)}
and let Tn(A)

⊥ be the orthogonal space with respect to (, ), which is an ideal in the
centre Z(A), called Külshammer ideal.

The algebra Z(A)/T⊥
1 (A) is a stable invariant of Morita type. Indeed, let Zst(A) =

EndAe(A) be the stable centre of A (the endomorphisms of A in the stable Ae-module
category, where Ae = A⊗Aop is the enveloping algebra of A) and let Zpr(A) =
Ker(EndAe(A) → EndAe(A)) be the projective centre of A. Then the ideals Zst(A)
and T⊥

1 (A)/Zpr(A) are invariants of stable equivalences of Morita type for symmetric
algebras (see [15, 13]), and, moreover, Z(A)/T⊥

1 (A) ∼= Zst(A)/(T⊥
1 (A)/Zpr(A)).

Proof. In [23, Theorem 7 (2)], Zimmermann describes the quotient Z(Q(2B)k,s1 (a,

c))/T⊥
1 (Q(2B)k,s1 (a, c)) in all cases depending on the values and parity of k and s

and on whether c = 0 or c ̸= 0, and it follows that the algebras Z(Q(2B)k,s1 (a, c))/

T⊥
1 (Q(2B)k,s1 (a, c)) and Z(Q(2B)k,s1 (a′, 0))/T⊥

1 (Q(2B)k,s1 (a′, 0)) are not isomorphic
when c ̸= 0 (see the proof of [23, Corollary 10]). Theorem 1.1 follows.

Remark 1.2. The same result when k ⩾ 2 can be obtained as a consequence of the
algebra structure of the whole Hochschild cohomology computed in [7]. We note that

although the algebras HH∗(Q(2B)k,s1 (1, c)) and HH∗(Q(2B)s,k1 (1, c)) in [7] appear to
be different, there is an explicit isomorphism between them.

Remark 1.3. We should mention that the first Hochschild cohomology group does not
separate algebras with different parameter a.

Therefore, in Section 5 we shall only consider local algebras of quaternion type.
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2. General facts on the first Hochschild cohomology group and
its computation and on invariants of Lie algebras

2.1. Lie algebra structure on HH1(A)
König, Le and Zhou proved in [13, Theorem 10.7] that the Batalin-Vilkoviskyi

structure of the stable Hochschild cohomology HH∗
st(A) (that is, the Hochschild coho-

mology HH∗(A) =
⊕

n∈N HHn(A) modulo the projective centre of A) of a symmetric
algebra A is invariant under stable equivalences of Morita type. In particular, the Lie
algebra structure of HH1(A) is preserved under such an equivalence.

The Lie structure on HH1(A) is usually described on the Hochschild complex
(obtained from the bar resolution). However, we will be working with minimal reso-
lutions, so we will need a description of the Lie bracket when HH1(A) is computed
from a minimal projective resolution. This is based on [20].

Let A = KΓ/I be a finite dimensional algebra, where Γ is a quiver and I is an
admissible ideal. Let Γ0 be the set of vertices in Γ and Γ1 be the set of arrows.

Using the bar resolution Bar(A), we get HH1(A) = Ker d1/ Im d0 where

0 → A
d0−−→ HomK(A,A)

d1−−→ HomK(A⊗K A,A)

and d0(λ)(p) = λp− pλ and d1(f)(a⊗ b) = af(b)− f(ab) + f(a)b.
The space HH1(A) is then endowed with a Lie bracket defined by

[f, g] = f ◦ g − g ◦ f.
For all the algebras A we shall consider in this paper, there is a minimal projective

resolution P of A that starts with

A⊗E KZ ⊗E A
∂1

−−−→ A⊗E KΓ1 ⊗E A
∂0

−−−→ A⊗E A→ A→ 0,

where E = KΓ0, Z is a set of relations in I and

∂0(1⊗E a⊗E 1) = a⊗E 1− 1⊗E a for a ∈ Γ1,

∂1

(
1⊗E

(
n∑

i=1

cia1,i · · ·asi,i

)
⊗E 1

)
=

n∑
i=1

si∑
j=1

cia1,i · · ·aj−1,i⊗E aj,i⊗E aj+1,i · · ·ai,si ,

where the ci are in K, the aj,i are in Γ1 and z =
∑si

j=1 ciaj,i ∈ Z.
As Bar(A) and P are projective resolutions of the A-bimodule A, there exist, by

the Comparison Theorem, chain maps ξ : Bar(A) → P and ϱ : P → Bar(A). As in
[20], these maps induce inverse linear isomorphisms ξ∗1 and ϱ∗1 at the cohomology
level between HH1(A,A) = Ker d1/ Im d0 and HH1(A,A) = Ker ∂1/ Im ∂0 given by
the classes of

ξ1 : HomE−E(KΓ1, A) −→ HomK(A,A),
f 7−→ [a1 · · · an 7→

∑n
i=1 a1 · · · ai−1f(ai)ai+1 · · · an] ,

ϱ1 : HomK(A,A) −→ HomE−E(KΓ1, A),
h 7→ h|KΓ1

.

This allows us to transfer the Lie algebra structure of Ker d1/ Im d0 to Ker ∂1/ Im ∂0,
where the bracket is given by

[f, g] : = ϱ1
∗([ξ∗1(f), ξ

∗
1(g)]) = ξ∗1(f) ◦ g − ξ∗1(g) ◦ f

for all f, g in HomE−E(KΓ1, A).
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2.2. Method used to determine the beginning of a minimal projective
resolution of an algebra A as an A-A-bimodule

Given a finite-dimensional K-algebra A = KΓ/I defined by quiver Γ and relations
I, Happel’s theorem [10] gives the modules in a minimal projective resolution of an
algebra A as an A-A-bimodule, but not the maps. The general methods to determine
the beginning of a minimal projective resolution of an algebra A as an A-A-bimodule
usually rely on the fact we have a minimal set of generators for the algebra I. However,
most of the algebras of dihedral, semi-dihedral and quaternion type are not defined
with a minimal set of relations, and it is not easy to extract such a minimal set.
Therefore, we shall repeatedly use the following result of [8, Proposition 2.8] (see also
[19, Theorem 1.6] for a more detailed proof).

Lemma 2.1 ([8]). Let A = KΓ/I be a finite-dimensional K-algebra defined by quiver
Γ and relations I. For i in the set of vertices Γ0 of Γ, denote by ei the corresponding
idempotent and by Si the corresponding simple right A-module. Let (P •, d•) be a
minimal projective right A-module resolution of A/ radA.

Let (Q•, ∂•) be a complex of A-A-bimodules with Q−1 = A and Qn =
⊕

i∈Q0
(Aei ⊗

ejA)
dimExtnA(Si,Sj) for n ⩾ 0. Assume that ((A/ radA)⊗A Q

•, id⊗A∂
•) = (P •, d•).

Then (Q•, ∂•) is a minimal projective resolution of A as an A-A-bimodule.

Remark 2.2. Note that once a space Q2 satisfying the conditions in the Lemma is
found, a minimal set of relations for the ideal I is then given by (A/ radA)e ⊗Ae Q2.

2.3. Some Lie algebra invariants
Let g be a finite dimensional Lie algebra over K with bracket [, ]. We briefly recall

here a few objects associated to g that we will use throughout the paper.
The lower central series of g, whose i-th term is denoted by Li(g), is defined

inductively by

L0(g) = g, L1(g) = [g, g] and Li(g) = [g,Li−1(g)] for i ⩾ 2.

If Li(g) = 0 for i large enough, the Lie algebra g is nilpotent.
The derived series of g, whose i-th term is denoted by Di(g), is defined induc-

tively by

D0(g) = g, D1(g) = [g, g] and Di(g) = [Di−1(g),Di−1(g)] for i ⩾ 2.

The nilradical of g is the maximal nilpotent ideal in g.
The lower central series, derived series and nilradical are clearly preserved under

isomorphisms of Lie algebras.
We now recall the Killing form of g. This is the bilinear form κ : g× g → K

defined by

κ(x, y) = trace([x, [y,−]]).

If g and g′ are isomorphic Lie algebras, then their Killing forms are equivalent. In
particular, they have the same rank.

Finally, we introduce generalised derivations of g, that were defined in [16] and that
we will use in the proof of Proposition 4.35. Let λ, µ, ν be three elements in K that
are not all zero. A (λ, µ, ν)-derivation of g is a linear map D : g → g that satisfies

λD([x, y]) = µ[D(x), y] + ν[x,D(y)] for all x, y, z in g.
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Let derg(λ, µ, ν) denote the space of (λ, µ, ν)-derivations of g.
As was mentioned by Novotný and Hrivnák in [16, Proposition 3.1], if g and g′

are isomorphic Lie algebras, then derg(λ, µ, ν) and derg′(λ, µ, ν) are isomorphic vector
spaces.

3. Algebras of dihedral type

The only remaining question in the classification of the algebras of dihedral type
up to stable equivalence of Morita type is whether the local algebras D(1A)k2(d) with
d ∈ {0, 1} in characteristic 2 are equivalent or not.

Fix an integer k ⩾ 2. Consider the local tame symmetric algebras of dihedral
type Λ := D(1A)k2(d) = K⟨x, y⟩/Ikd where Ikd is the ideal generated by {x2 − (xy)k;
y2 − d(xy)k; (xy)k − (yx)k; (xy)kx; (yx)ky} for d ∈ {0, 1}. As we explained in Sub-
section 1.2, we must determine whether these two algebras are equivalent or not. We
shall see that the first cohomology group HH1(D(1A)k2(d)) enables us to do this.

Lemma 3.1. Consider the sequence of Λ-Λ-bimodules

Q2 =

2⊕
i=0

(Λ ⊗
i
Λ)

∂2

−−−→ Q1 = (Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ)

∂1

−−−→ Q0 = Λ⊗ Λ
∂0

−−−→ Λ → 0,

with the maps determined by

∂1(1 ⊗
δ
1) = δ ⊗ 1 + 1⊗ δ for δ ∈ {x, y},

∂2(1 ⊗
0
1) = x ⊗

x
1 + 1 ⊗

x
x+

k−1∑
t=0

(
(xy)t ⊗

x
y(xy)k−1−t + (xy)tx ⊗

y
(xy)k−1−t

)
,

∂2(1 ⊗
1
1) =

k−1∑
t=0

(
(xy)t ⊗

x
y(xy)k−1−t + (xy)tx ⊗

y
(xy)k−1−t

+(yx)t ⊗
y
x(yx)k−1−t + (yx)ty ⊗

x
(yx)k−1−t

)
,

∂2(1 ⊗
2
1) = y ⊗

y
1 + 1 ⊗

y
y + d

k−1∑
t=0

(
(yx)t ⊗

y
x(yx)k−1−t + (yx)ty ⊗

x
(yx)k−1−t

)
,

where the subscripts under the tensor product symbols ⊗ denote the component of the
free Λ-Λ-bimodule Qn for n = 1, 2.

Then this is the beginning of a minimal projective Λ-Λ-bimodule resolution of Λ.

Proof. It is easy to check that it is a complex, and that applying (Λ/ radΛ)⊗Λ? gives
the beginning of a minimal projective right Λ-module resolution of K = Λ/ radΛ.
From this resolution, we may determine dimExtnΛ(K,K) for n = 0, 1 and 2 and check
that Qn is the module in Happel’s theorem [10]. We then apply Lemma 2.1.

We shall now determine HH1(Λ). Recall that the centre of Λ has dimension k + 3
and that it is isomorphic to HH0(Λ) = Ker(? ◦ ∂1). Therefore the dimension of the
image of the map ? ◦ ∂1 : HomΛ−Λ(Q

0,Λ) → HomΛ−Λ(Q
1,Λ) is equal to

dimHomΛ−Λ(Λ⊗ Λ,Λ)− dimHH0(Λ) = 4k − (k + 3) = 3k − 3.
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In order to determine the kernel of themap?◦ ∂2: HomΛ−Λ(Q
1,Λ)→HomΛ−Λ(Q

2,Λ),

we note that an element in HomΛ−Λ(Q
1,Λ) =

⊕
i∈{x,y}

HomΛ−Λ(Λ ⊗
i
Λ,Λ) is deter-

mined by

f(1 ⊗
i
1) =

k−1∑
t=0

(
λ
(i)
t (xy)t + µ

(i)
t (yx)t+1 + τ

(i)
t y(xy)t + σ

(i)
t x(yx)t

)
for i ∈ {x, y}, where λ(i)t , µ

(i)
t , σ

(i)
t and τ

(i)
t are scalars. Note that f ◦ ∂2(1 ⊗

1
1) = 0

for any f .
We then determine the conditions on the coefficients for f ◦ ∂2 to vanish, using

standard linear algebra. We obtain

dimKer(? ◦ ∂2) =


4k + 3 if k is even and d = 0,

4k + 2 if k is odd and d = 0

or if k is even and d = 1,

4k + 1 if k is odd and d = 1.

Hence we have the following result.

Proposition 3.2. The first cohomology group HH1(D(1A)k2(d)) has dimension{
k + 6− d if k is even,

k + 5− d if k is odd.

Corollary 3.3. There is no stable equivalence of Morita type between the algebras
D(1A)k2(0) and D(1A)k2(1).

Remark 3.4. This completes the classification of the algebras of dihedral type up to
stable equivalence of Morita type.

4. Algebras of semi-dihedral type

As we mentioned in Subsection 1.3, the classification is complete for algebras of
semi-dihedral type with three simple modules. We shall start with the local algebras.

4.1. Local algebras of semi-dihedral type

4.1.1. Dimension of the first Hochschild cohomology group
We assume here that the field K has characteristic 2. Fix an integer k ⩾ 2. For
(c, d) ∈ K2, let Ik(c, d) be the ideal in K⟨x, y⟩ generated by {(xy)k + (yx)k;x2 +
(yx)k−1y + c(yx)k; y2 + d(xy)k; (xy)kx)}. For any local tame symmetric algebra of
semi-dihedral type Λ, there is a stable equivalence of Morita type with one of
the algebras SD(1A)k1 = K⟨x, y⟩/Ik(0, 0) and SD(1A)k2(c, d) = K⟨x, y⟩/Ik(c, d) for
(c, d) ∈ K2\ {(0, 0)} (see [22, Theorem 7.1]). However, for a fixed k, it is not known
whether these algebras are stably equivalent of Morita type or not.

Using isomorphisms of the form (x, y) 7→ (λx, µy), we can assume that (c, d) ∈
{(1, 0); (c, 1); with c ∈ K}. Note that in all these algebras, we have the following
identities:

xy2 = 0 = y2x; y(xy)k = 0; x2y = 0 = yx2; x3 = (xy)k = (yx)k; x4 = 0; y3 = 0.
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The aim of this section is to prove the following theorem.

Theorem 4.1. The algebras SD(1A)k1 ,SD(1A)k2(1,0), SD(1A)k2(0,1) and SD(1A)k2(c,1)
for c ̸= 0 are in four different stable equivalence of Morita type classes.

Remark 4.2. We cannot say whether SD(1A)k2(c, 1) and SD(1A)k2(c
′, 1) for c ̸= c′

non-zero are stably equivalent of Morita type or not.

In the rest of the section, Λ is one of the algebras SD(1A)k1 or SD(1A)k2(c, d).

Lemma 4.3. Consider the sequence of Λ-Λ-bimodules

Q2 =

1⊕
i=0

(Λ ⊗
i
Λ)

∂2

−−−→ Q1 = (Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ)

∂1

−−−→ Q0 = Λ⊗ Λ
∂0

−−−→ Λ → 0,

with the maps determined by

∂1(1 ⊗
δ
1) = δ ⊗ 1 + 1⊗ δ for δ ∈ {x, y} ,

∂2(1 ⊗
0
1) = x ⊗

x
1 + 1 ⊗

x
x+

k−2∑
t=0

(yx)ty ⊗
x
y(xy)k−2−t

+

k−1∑
t=0

(
(yx)t ⊗

y
(xy)k−1−t + c(yx)ty ⊗

x
(yx)k−1−t + c(yx)t ⊗

y
x(yx)k−1−t

)
,

∂2(1 ⊗
1
1) = y ⊗

y
1 + 1 ⊗

y
y + d

k−1∑
t=0

(
(xy)tx ⊗

y
(xy)k−1−t + (xy)t ⊗

x
y(xy)k−1−t

)
,

where the subscripts on the tensor product symbols ⊗ denote the component of the
free Λ-Λ-bimodule Qn for n = 1, 2.

Then this is the beginning of a minimal projective Λ-Λ-bimodule resolution of Λ.

Proof. The proof is the same as that of Lemma 3.1.

Using this resolution, we may compute the Hochschild cohomology groups.
As in the case of the dihedral algebrasD(1A)k2(d), we have dim Im(? ◦ ∂1) = 3k − 3

(we give a generating set explicitly in the proof of Lemma 4.7). Moreover, it is easy
to check that

dimKer(? ◦ ∂2) =


4k + 3 if k is even and d = 0 or if k is odd and c = 0 = d,

4k + 2 if k is even and d ̸= 0 or if k is odd, c ̸= 0 and d = 0,

4k + 1 if k is odd and d ̸= 0.

Therefore we get the following dimensions for the first Hochschild cohomology
group.

Proposition 4.4. Let Λ be one of the algebras SD(1A)k1 or SD(1A)k2(c, d). Then

dimHH1(Λ) =


k + 6 if k is even and d = 0 or if k is odd and c = 0 = d,

k + 5 if k is even and d ̸= 0 or if k is odd, c ̸= 0 and d = 0,

k + 4 if k is odd and d ̸= 0.
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Corollary 4.5. For any k ⩾ 2, an algebra in the set {SD(1A)k1 ; SD(1A)k2(1, 0)}
is not stably equivalent of Morita type to an algebra in the set {SD(1A)k2(0, 1);
SD(1A)k2(c, 1), c ̸= 0}.

Moreover, if k is odd there is no stable equivalence of Morita type between the
algebras SD(1A)k1 and SD(1A)k2(1, 0).

4.1.2. Lie algebra structure on HH1(Λ)
We shall now improve on Corollary 4.5 using the Lie algebra structure on HH1(Λ)
where Λ is one of the algebras SDk

1 (1A) or SDk
2 (1A)(c, d). Let Γ be a quiver of

type 1A, with arrows x and y. Then the local tame symmetric algebras of semi-
dihedral type may be defined as KΓ/Ik(c, d) for (c, d) ∈ K2 or, as we mentioned
above, (c, d) ∈ {(0, 0), (1, 0), (c, 1); c ∈ K}.

Remark 4.6. It is possible (though laborious) in this case to compute dimHHn(Λ)
for all n ⩾ 0 (the case c = 0 = d may be found in [6]). However, these dimensions do
not give any more information than dimHH1(Λ).

We have

HomΛ−Λ((Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ),Λ) ∼= HomΛ−Λ(Λ⊗K KΓ1 ⊗K Λ,Λ) ∼= HomK(KΓ1,Λ)

via the correspondence f ↔ g given by f(1 ⊗
x
1) = g(x) and f(1 ⊗

y
1) = g(y). We shall

often identify g ∈ HomK(KΓ1,Λ) with the pair (g(x), g(y)).
Define the following elements in HomK(KΓ1,Λ):

φt = (x(yx)t, 0) for 0 ⩽ t ⩽ k − 1, θ0 = (1 + cx, cy + d(yx)k−1),

θ1 = (y(xy)k−1, 0), θ−1 = (0, x(yx)k−1),

θ2 = ((xy)k, 0), θ−2 = (0, (xy)k),

ω = (y(xy)k−2 + c(yx)k−1, 1), χ = (0, y).

Set B = {φt, 1 ⩽ t ⩽ k − 1; θ1; θ−1; θ2; θ−2; θ0} ⊂ HomK(KΓ1,Λ) and

B′ =



{ω;φ0} if k is odd and c = 0 = d,

{ω;χ} if k is even and d = 0,

{χ} if k is even and d ̸= 0,

{ω} if k is odd, c ̸= 0 and d = 0,

∅ if k is odd and d ̸= 0.

Lemma 4.7. With the notation above, B ∪ B′ is a set of cocycle representatives of a
basis of HH1(Λ).

Proof. The fact that the elements in B ∪ B′ are cocycles can be checked easily (recall
that char(K) = 2).

Moreover, the classes of the cocycles

C :=
{
(x(yx)t, y(xy)t); ((xy)t + (yx)t, 0); (0, (xy)t + (yx)t); 1 ⩽ t ⩽ k − 1

}
form a basis of Im(? ◦ ∂1) (this basis will be useful when computing Lie brackets).
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It is then straightforward to check that the cochains in B ∪ B′ ∪ C are linearly
independent, and the result follows, using the dimension of HH1(Λ) obtained previ-
ously.

As described in Subsection 2.1, we transport the usual Lie bracket on HH1(Λ)
defined using the Bar resolution to a Lie bracket on HH1(Λ) defined using the minimal
projective resolution. Note that we can identify Q2 with Λ⊗KΓ0 KZ ⊗KΓ0 Λ, where
Z = {x2 − (yx)k−1y + c(yx)k; y2 − d(xy)k}.

Lemma 4.8. We use the same notation for a cocycle and for its cohomology class.
The (potentially) non-zero brackets of basis elements are the following:

[φt, φt′ ] = (t+ t′)φt+t′ ; [θ−2;χ] = θ−2; [θ−1, φ0] = θ−1;

[φt, θ0] =


θ0 if t = 0,

d(k − 1)θ−2 if t = 1,

0 if t > 1;

[θ−2, φ0] = θ−2; [θ1;φ0] = θ1;

[φt, ω] =

{
(k − 1)(θ1 + cθ2) if t = 1,

0 if t ̸= 1;
[θ−2, θ0] = φk−1 + cθ−2; [θ0, ω] = cω;

[φt, χ] = tφt; [θ2, ω] = φk−1; [ω, χ] = ω.

[θ−2, ω] =

{
θ−1 if k > 2,

θ−1 + θ2 if k = 2;
[θ2, θ0] = θ1 + cθ2;

Proof. We refer to Lemma 4.19 for an example (in a non-local case) of the computa-
tion of a Lie bracket, the method here is similar.

We then compute the first two terms in the lower central series. Since they give
no new information when d = 0, we only give the results for d ̸= 0.

Proposition 4.9. We keep the notation above and assume that d ̸= 0. Then a basis
of L1(HH1(SD(1A)k2(c, d))) is given by:

(a) {φ2p+1, 1 ⩽ p ⩽ k−3
2 ; θ1 + cθ2;φk−1 + cθ−2} if k is odd (there are no φt if k = 3);

(b) {φ2p+1, 0 ⩽ p ⩽ k−2
2 ; θ1 + cθ2; θ−2} if k is even.

Moreover, L2(HH1(SD(1A)k2(c, d))) is generated by the following set:

(a) {φ2p+1, 2 ⩽ p ⩽ k−3
2 ; c(θ1 + cθ2); c(φk−1 + cθ−2)} if k is odd (there are no φt if

k = 3 or k = 5);

(b) {φ2p+1, 0 ⩽ p ⩽ k−2
2 ; c(θ1 + cθ2); θ−2} if k is even.

In particular,

dimL2(HH1(SD(1A)k2(c, d))) =

{
k−1
2 − 2δc,0 + δk,3 if k is odd,

k
2 + 2− δc,0 if k is even,

where δ is the Kronecker symbol.

Corollary 4.10. There is no stable equivalence of Morita type between the algebras
SD(1A)k2(0, 1) and SD(1A)k2(c, 1) for c ̸= 0.

In order to complete the proof of Theorem 4.1, we must prove the following result.
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Proposition 4.11. Assume that k is even. Then there is no stable equivalence of
Morita type between the algebras SD(1A)k1 and SD(1A)k2(1, 0).

Proof. Let g be the Lie algebra HH1(SD(1A)k1) and let g′ be the Lie algebra
HH1(SD(1A)k2(1, 0)). These Lie algebras are not nilpotent (indeed, since [φ1, χ] = φ1,
it follows that φ1 is in all the terms of the lower central series for both Lie algebras).

Consider the subspace I of g generated by {φt, 1 ⩽ t ⩽ k − 1; θ0; θ−1; θ1; θ−2; θ2;ω}
and the subset I ′ of g′ generated by {φt, 1 ⩽ t ⩽ k − 1; θ−1; θ1; θ−2; θ2;ω}. They are
Lie ideals.

Moreover, the lower central series of I is given by L1(I) = span{φt, 3 ⩽ t ⩽
k − 1; θ0; θ−1; θ1} and Li(I) = span{φt, 2

i+1 − 1 ⩽ t ⩽ k − 1} if i ⩾ 2, so that it van-
ishes eventually and I is nilpotent. Similarly, the lower central series of I ′ is given by
L1(I ′) = span{φt, 3 ⩽ t ⩽ k − 1; θ−1; θ1 + θ2} and Li(I ′) = span{φt, 2

i+1 − 1 ⩽ t ⩽
k − 1} if i ⩾ 2, so that it vanishes eventually and I ′ is nilpotent.

Since dim I = dim g− 1 and g is not nilpotent, I is the nilradical of g.
We now prove that I ′ is the nilradical of g′. Assume for a contradiction that it is

not. Then it follows that there is a non-zero element in g′, that we can choose of the
form u = λχ+ µθ0, such that the subspace J generated by I ′ and u is a nilpotent
ideal. Since [u, ω] = (λ+ µ)ω and J is nilpotent, we must have λ+ µ = 0 (otherwise
ω would be in all the Li(J)). Therefore we may assume that u = χ+ θ0. We have
[u, θ1 + θ2] = θ1 + θ2 so that θ1 + θ2 ∈ Li(J) for all i, a contradiction. Therefore I ′ is
the nilradical of g′.

It follows that the nilradicals of HH1(SD(1A)k1) and HH1(SD(1A)k2(1, 0)) have
different dimensions, and hence that HH1(SD(1A)k1) and HH1(SD(1A)k2(1, 0)) are
not isomorphic Lie algebras.

Remark 4.12. It can be noted that when k is odd and cc′ ̸= 0, the Lie algebras
HH1(SD(1A)k2(c, 1)) and HH1(SD(1A)k2(c

′, 1)) are isomorphic. Indeed, if {φt, 1 ⩽ t
⩽ k − 1; θ1; θ−1; θ2; θ−2; θ0} is a basis of HH1(SD(1A)k2(c, 1)) and {φ′

t, 1 ⩽ t ⩽ k −
1; θ′1; θ

′
−1; θ

′
2; θ

′
−2; θ

′
0} is a basis of HH1(SD(1A)k2(c

′, 1)), the isomorphism is defined
by

φt 7→ φ′
t, θ1 7→ θ′1, θ−1 7→ θ′−1,

θ0 7→ c

c′
θ′0, θ2 7→ c′

c
θ′2, θ−2 7→ c′

c
θ′−2.

In the remaining unresolved cases, we do not know whether the first Hochschild
cohomology groups are isomorphic or not.

4.2. Algebras of semi-dihedral type with two simple modules

We have defined the algebras SD(2B)k,s1 (c) and SD(2B)k,s2 (c) of semi-dihedral type
with two simple modules in Section 1. Note that when k ⩾ 2, the ideal of relations for
SD(2B)k,22 (c) is not admissible; a definition with an admissible ideal can be obtained
by removing the loop η and adapting the relations.

We shall use the Lie algebra structure of the first Hochschild cohomology group to
improve on the results in [22], and to give a partial answer to the question of whether

the algebras SD(2B)k,s1 (c) and SD(2B)k
′,s′

2 (c′) are stably equivalent of Morita type
or not.
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The main result of this section is the following.

Theorem 4.13. Let k, k′, s, s′ be integers with {k, s} = {k′, s′} and let c be an ele-
ment in {0, 1}.
(1) Assume that char(K) = 2. Then, for a ∈ {1, 2}, the algebras SD(2B)k,sa (0) and

SD(2B)k′,s′

a (1) are not stably equivalent of Morita type.

(2) In each of the following cases, the algebras SD(2B)k,s1 (c) and SD(2B)k
′,s′

2 (c′)
are not stably equivalent of Morita type:

(i) char(K) = 2 and ks is even;
(ii) char(K) = 2, ks is odd and (c, c′) ̸= (0, 0);
(iii) char(K) = 3;
(iv) char(K) ̸= 2, 3, ks = 0 in K;
(v) char(K) ̸= 2, 3, ks ̸= 0 in K and k + s− 2ks = 0 in K.
(vi) char(K) ̸= 2, 3, λ := 3−12ks ̸= 0 in K, µ := 2ks− k − s ̸= 0 in K, and the

following subsets of K are not equal:{
sλ−1, 2sλ−1, kλ−1, 2kλ−1, (sλ−1)−1, (2sλ−1)−1, (kλ−1)−1, (2kλ−1)−1

}
and{
sµ−1, 2sµ−1, kµ−1, 2kµ−1, (sµ−1)−1, (2sµ−1)−1, (kµ−1)−1, (2kµ−1)−1

}
.

The remainder of Section 4.2 is devoted to the proof of this result.

4.2.1. The first Hochschild cohomology group of SD(2B)k,s1 (c)

Let Λ be the algebra SD(2B)k,s1 (c) and let Γ be the quiver of type 2B. Let e1 and e2
denote the idempotents in Λ corresponding to the vertices.

Lemma 4.14. Define a sequence of Λ-Λ-bimodules Q2 ∂2

−−−→ Q1 ∂1

−−→ Q0 ∂0

−−−→ Λ → 0
as follows. The modules Qn are given by

Q2 = (Λe1 ⊗ e1Λ)⊕ (Λe1 ⊗ e2Λ)⊕ (Λe2 ⊗ e1Λ)⊕ (Λe2 ⊗
1
e2Λ)⊕ (Λe2 ⊗

2
e2Λ),

Q1 =

2⊕
i,j=1

Λei ⊗ ejΛ,

Q0 =

2⊕
i=1

Λei ⊗ eiΛ,

where the subscripts on the tensor product symbols ⊗ denote the component of the free
Λ-Λ-bimodule Q2. The map ∂0 is multiplication and the other maps are determined by

∂1(ei(δ) ⊗ et(δ)) = δ ⊗ et(δ) − ei(δ) ⊗ δ for δ ∈ Γ1 with origin i(δ) and endpoint t(δ),

∂2(e1 ⊗ e1) = e1 ⊗ α+ α⊗ e1 −
k−1∑
t=0

(βγα)t (β ⊗ e1 + e1 ⊗ γ) (αβγ)k−1−t

−
k−2∑
t=0

(βγα)tβγ ⊗ βγ(αβγ)k−2−t

+ c

k−1∑
t=0

(βγα)t (e1 ⊗ γα+ β ⊗ α+ βγ ⊗ e1) (βγα)
k−1−t,
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∂2(e1 ⊗ e2) = e1 ⊗ η + β ⊗ e2,

∂2(e2 ⊗ e1) = e2 ⊗ γ + η ⊗ e1,

∂2(e2 ⊗
1
e2) = e2 ⊗ β + γ ⊗ e1,

∂2(e2 ⊗
2
e2) =

s−1∑
r=0

ηr ⊗ ηs−1−r −
k−1∑
t=0

(γαβ)t (e2 ⊗ αβ + γ ⊗ β + γα⊗ e2) (γαβ)
k−1−t.

Then this sequence is the beginning of a minimal projective Λ-Λ-bimodule resolution
of Λ.

Proof. It is easy to check that it is a complex, and that applying Si⊗Λ? gives the
beginning of a minimal projective right Λ-module resolution of the simple module
Si for i = 1, 2. From these resolutions, we may determine dimExtnΛ(Si, Sj) for n = 0,
1 and 2 and i, j = 1, 2 and check that Qn is the module in Happel’s theorem [10].
Noting that Λ/ radΛ = S1 ⊕ S2 as a right Λ-module, we then apply Lemma 2.1.

Remark 4.15. We can identify Q1 with Λ⊗KΓ0 KΓ1 ⊗KΓ0 Λ via a⊗ δ ⊗ a′ 7→ aeiδ ⊗
et(δ)a

′ and similarly Q2 with Λ⊗KΓ0
KZ ⊗KΓ0

Λ where Z = {α2 − βγ(αβγ)k−1 −
c(αβγ)k;βη; ηγ; γβ; ηs − (γαβ)k}.

Using the resolution above, we may now compute the dimension of HH1(Λ). The
proof is straightforward and is omitted.

Proposition 4.16. Let Λ be the algebra SD(2B)k,s1 (c). Then

dimHH1(Λ) =



k + s+ 3 if char(K) = 2 and k and s are both even ,

k + s+ 2 if char(K) = 2 and k and s are not both even

and ksc = 0 in K,

k + s+ 1 if char(K) = 2 and ksc ̸= 0 in K,

k + s+ 2 if char(K) = 3 and k and s are both 0 in K,

k + s+ 1 if char(K) = 3 and k and s are not both 0 in K

but ks = 0 in K,

k + s if char(K) = 3 and ks ̸= 0 in K,

k + s+ 1 if char(K) ̸= 2, 3 and k and s are both 0 in K,

k + s if char(K) ̸= 2, 3 and k and s are not both 0 in K.

Corollary 4.17. If char(K) = 2 and k and s are both odd and if {k′, s′}= {k, s}, then
there is no stable equivalence of Morita type between SD(2B)k,s1 (0) and SD(2B)k

′,s′

1 (1).

In order to go further, we now consider the Lie algebra structure of HH1(Λ). In
the sequel, we identify a morphism f ∈HomΛ−Λ(Q

1,Λ) with g ∈HomKΓ0−KΓ0(KΓ1,Λ)
such that g(δ) = f(ei(δ) ⊗ et(δ)) for all δ ∈ Γ1, and with the quadruple (g(α), g(β),
g(γ), g(η)).

The case where char(K) = 2.

We start with a basis for HH1(SD(2B)k,s1 (c)).
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Lemma 4.18. We define cocycles in HomKΓ0−KΓ0
(KΓ1,Λ) as follows:

φt = (α(βγα)t, 0, 0, 0) for 1 ⩽ t ⩽ k − 1,

θr = (0, 0, 0, ηr+1) for 1 ⩽ r ⩽ s− 1,

ψ = ((αβγ)k, 0, 0, 0),

χ = (e1 + cα, cβ, 0, 0),

ω = ((βγα)k−1βγ + c(αβγ)k, 0, 0, 0),

φ0 = (0, β, 0, 0) and θ0 = (0, 0, 0, η) if k and s are both even,

ζ1 = (0, sβ, 0, kη) if k + s is odd,

ζ0 = (α, 0, 0, η) if k and s are both odd and c = 0.

The cohomology classes of the cocycles in B ∪ B′ with B = {φt; θr;ψ;χ;ω; 1 ⩽ t ⩽
k − 1; 1 ⩽ r ⩽ s− 1} and

B′ =


{φ0; θ0} if k and s are both even,

{ζ1} if k + s is odd,

{ζ0} if k and s are both odd and c = 0,

∅ otherwise

form a basis of HH1(SD(2B)k,s1 (c)).

Proof. This is proved by computing explicitly Ker(? ◦ ∂2) and Im(? ◦ ∂1). We omit the
details, but we give the following basis of Im(? ◦ ∂1), which is useful when computing
brackets of elements in HH1(Λ);

(α(βγα)t,−β(γαβ)t, 0, 0), (α(βγα)t, 0,−γ(αβγ)t, 0), ((αβγ)t − (βγα)t, 0, 0, 0),

(0, αβ(γαβ)t,−γα(βγα)t, 0), (0, αβ,−γα, 0) (0, β,−γ, 0),

with 1 ⩽ t ⩽ k − 1.

We may now compute the brackets of these basis elements.

Lemma 4.19. We use the notation in the previous lemma. We describe the (poten-

tially) non-zero brackets in HH1(SD(2B)k,s1 (c)).
For all k and s we have

[φt, φt′ ] = (t+ t′)φt+t′ if 0 ⩽ t, t′ ⩽ k − 1, t+ t′ ⩽ k − 1,

[θr, θr′ ] = (r + r′)θr+r′ if 0 ⩽ r, r′ ⩽ s− 1, r + r′ ⩽ s− 1,

[ψ, χ] = ω [χ, ω] = cω.

If, moreover, k + s is odd, then

[φt, ζ1] = tsφt and [θr, ζ1] = rkθr.

If instead k and s are both odd and c = 0, then

[φt, ζ0] = tφt, [χ, ζ0] = χ, [θr, ζ0] = rθr, [ω, ζ0] = ω.

Proof. In order to illustrate the method, let us determine the bracket [χ, ω]. We
view χ and ω as maps in HomKΓ0−KΓ0

(KΓ1,Λ).
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First, for every δ ∈ Γ1, we replace each instance of δ in ω(α) by χ(δ), that is, we
replace every α in turn with e1 + cα and every β by cβ, and we add the results. Since
char(K) = 2, we get

(k − 1)c(βγα)k−1βγ + kc2(αβγ)k + ce1βγ(αβγ)
k + kc(βγα)k−1βγ + kc2(αβγ)k = 0.

We apply the same procedure to ω(β) = 0, ω(γ) = 0 and ω(η) = 0, and we obtain 0
in all cases.

Next, we exchange the roles of χ and ω. We replace each instance of δ in χ(α) and
χ(β) by ω(δ). We get

α 7→c(βγα)k−1βγ + c2(αβγ)k,

β 7→0

and of course γ and η are sent to 0.
Finally, we subtract the two quantities, which gives the map

α 7→c(βγα)k−1βγ + c2(αβγ)k,

β 7→0,

γ 7→0,

η 7→0,

that is, cω. Therefore, [χ, ω] = cω.
The other brackets are computed in the same way. Note that we work modulo

Im(? ◦ ∂1).

It can be noted that the Lie algebras HH1(SD(2B)k,s1 (c)) and HH1(SD(2B)s,k1 (c)) for

c∈ {0,1} (same c) are isomorphic. Indeed, if we consider the basis of HH1(SD(2B)k,s1 (c))
given in Lemma 4.18 and the similar basis contained in {φ′

r, 0 ⩽ r ⩽ s− 1, θ′t, 0 ⩽ t ⩽
k − 1, ψ′, χ′, ω′, ζ ′0, ζ

′
1} of HH1(SD(2B)s,k1 (c)), the isomorphism is given by

φt 7→ θ′t, θr 7→ φ′
r, ψ 7→ ψ′, χ 7→ χ′, ω 7→ ω′, ζ0 7→ ζ ′0, ζ1 7→ ζ ′1

on the elements that are actually present in each case. Therefore the Lie algebra
structure of HH1(Λ) does not help to separate the pairs of parameters (k, s) and
(s, k).

We already know from Corollary 4.17 that if k and s are both odd and {k, s} =

{k′, s′}, then SD(2B)k,s1 (0) and SD(2B)k
′,s′

1 (1) are not stably equivalent of Morita
type.

If k+ s is odd, the second term in the lower central series has dimension k+s−5
2 + c+

δk,3+2δk,1 (if k is odd and s is even, it is spanned by {φ2p+1; θ2q+1; cω; 2 ⩽ p ⩽ k−3
2 ,

0 ⩽ q ⩽ s
2 − 1}), therefore it follows that HH1(SD(2B)k,s1 (0)) and HH1(SD(2B)k

′,s′

1 (1)),

with {k, s} = {k′, s′}, are not isomorphic Lie algebras, and hence that SD(2B)k,s1 (0)

and SD(2B)k
′,s′

1 (1) are not stably equivalent of Morita type.
Similarly, if k and s are both even, the second term in the lower central series

of HH1(SD(2B)k,s1 (c)) is spanned by {φ2p+1; θ2q+1; cω; 0 ⩽ p ⩽ k
2 − 1, 0 ⩽ q ⩽ s

2 − 1}
and has dimension k+s

2 + c, therefore SD(2B)k,s1 (0) and SD(2B)k
′,s′

1 (1) are not stably
equivalent of Morita type.

We have therefore proved the following result.
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Proposition 4.20. Assume that char(K) = 2. Then the algebras SD(2B)k,s1 (0) and

SD(2B)k
′,s′

1 (1), with {k, s} = {k′, s′}, are not stably equivalent of Morita type.

The case where char(K) = 3.

The Lie algebra structure of HH1(SD(2B)k,s1 (c)) is determined in the following lemma.

Lemma 4.21. Define the following cocycles in HomK(KΓ1,Λ):

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1,

φ0 = (0, β, 0, 0),

θr = (0, 0, 0, ηr+1) if 0 ⩽ r ⩽ s− 1,

ψ = ((αβγ)k, 0, 0, 0),

ω = (α+ c(βγα)k−1βγ + c(αβγ)k,−β, 0, 0).

Then a basis of HH1(SD(2B)k,s1 (c)) is given by the cohomology classes of the elements
in B ∪ B′ where B = {φt, θr, ψ, ω; 1 ⩽ t ⩽ k − 1, 1 ⩽ r ⩽ s− 1} and

B′ =


{φ0, θ0} if k and s are both 0 in K,

{φ0} if k is 0 and s is not 0 in K,

{θ0} if k is not 0 and s is 0 in K,

∅ if ks is not 0 in K.

The (potentially) non-zero brackets are given by

[φt, φt′ ] = (t′ − t)φt+t′ if 0 ⩽ t, t′ ⩽ k − 1, t+ t′ ⩽ k − 1,

[θr, θr′ ] = (r′ − r)θr+r′ if 0 ⩽ r, r′ ⩽ s− 1, r + r′ ⩽ s− 1,

[ψ, ω] = ψ.

It is easy to check that the Lie algebras HH1(SD(2B)k,s1 (c)) andHH1(SD(2B)k
′,s′

1 (c′))
are isomorphic if {k, s} = {k′, s′} and c, c′ ∈ {0, 1}. The Lie algebra structure does
not provide any new information at this point, however, it will be useful in order to
distinguish the algebras SD(2B)k,s1 (c) and SD(2B)k,s2 (c) later.

The case where char(K) ̸= 2, 3.
This case is similar, nevertheless, we give the Lie algebra structure, since it will be
used later.

Lemma 4.22. Define the following cocycles in HomK(KΓ1,Λ).

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1,

φ0 = (0, β, 0, 0),

θr = (0, 0, 0, ηr+1) if 0 ⩽ r ⩽ s− 1,

ψ = ((αβγ)k, 0, 0, 0),

ω = (ksα+ ksc(βγα)k−1βγ, (3− k)sβ, 0, 3kη).
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Then a basis of HH1(SD(2B)k,s1 (c)) is given by the cohomology classes of the elements
in B ∪ B′ where B = {φt, θr, ψ; 1 ⩽ t ⩽ k − 1, 1 ⩽ r ⩽ s− 1} and

B′ =

{
{φ0, θ0} if k and s are both 0 in K,

{ω} if k and s are not both 0 in K.

The (potentially) non-zero brackets are given by

[φt, φt′ ] = (t′ − t)φt+t′ if 0 ⩽ t, t′ ⩽ k − 1, t+ t′ ⩽ k − 1,

[θr, θr′ ] = (r′ − r)θr+r′ if 0 ⩽ r, r′ ⩽ s− 1, r + r′ ⩽ s− 1,

[ω, φt] = 3tsφt for 1 ⩽ t ⩽ k − 1, if k ̸= 0 or s ̸= 0 in K,

[ω, θr] = 3rkθr for 1 ⩽ r ⩽ s− 1, if k ̸= 0 or s ̸= 0 in K,

[ω, ψ] = 2ksψ (only if k ̸= 0 or s ̸= 0 in K).

4.2.2. The first Hochschild cohomology group of SD(2B)k,s2 (c)

Let Λ be the algebra SD(2B)k,s2 (c) and let Γ be the quiver of type 2B.

Lemma 4.23. Define a sequence of Λ-Λ-bimodules

Q2 =

2⊕
z∈Z

Λei(z)⊗et(z)Λ
∂2

−→Q1 =

2⊕
δ∈Γ1

Λei(δ)⊗et(δ)Λ
∂1

−→Q0 =

2⊕
i=1

Λei⊗eiΛ
∂0

−→Λ→ 0

as follows. The set Z is {α2 − c(βγα)k, βη − αβ(γαβ)k−1, ηγ − γα(βγα)k−1,
γβ − ηs−1} if s > 2 and {α2 − c(αβγ)k, βγβ − (αβγ)k−1αβ, γβγ − (γαβ)k−1γα} if
s = 2. The map ∂0 is multiplication, ∂1 is determined by ∂1(ei(δ) ⊗ et(δ)) = δ ⊗ et(δ) −
ei(δ) ⊗ δ for δ ∈ Γ1 and ∂2 is determined by

e1 ⊗ e1 7→ e1 ⊗ α +α⊗ e1 − c

k−1∑
t=0

(αβγ)t (α⊗ γ + αβ ⊗ e1 + e1 ⊗ βγ) (αβγ)k−1−t,

e1 ⊗ e2 7→ e1 ⊗ η +β ⊗ e2 −
k−1∑
t=0

(αβγ)t (e1 ⊗ β + α⊗ e2) (γαβ)
k−1−t

−
k−2∑
t=0

(αβγ)tαβ ⊗ αβ(γαβ)k−2−t,

e2 ⊗ e1 7→ e2 ⊗ γ +η ⊗ e1 −
k−1∑
t=0

(γαβ)t (e2 ⊗ α+ γ ⊗ e1) (βγα)
k−1−t

−
k−2∑
t=0

(γαβ)tγα⊗ γα(βγα)k−2−t,

e2 ⊗ e2 7→ e2 ⊗ β +γ ⊗ e2 −
s−2∑
r=0

ηr ⊗ ηs−2−r,
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if s > 2 and by

e1 ⊗ e1 7→ e1 ⊗ α+ α⊗ e1 − c

k−1∑
t=0

(βγα)t (e1 ⊗ γα+ β ⊗ α+ βγ ⊗ e1) (βγα)
k−1−t,

e1 ⊗ e2 7→ e1 ⊗ γβ + β ⊗ β + βγ ⊗ e2 −
k−1∑
t=0

(αβγ)t (e1 ⊗ β + α⊗ e2) (γαβ)
k−1−t

−
k−2∑
t=0

(αβγ)tαβ ⊗ αβ(γαβ)k−2−t,

e2 ⊗ e1 7→ e2 ⊗ βγ + γ ⊗ γ + γβ ⊗ e1 −
k−1∑
t=0

(γαβ)t (e2 ⊗ α+ γ ⊗ e1) (βγα)
k−1−t

−
k−2∑
t=0

(γαβ)tγα⊗ γα(βγα)k−2−t,

if s = 2.

Then this sequence is the beginning of a minimal projective Λ-Λ-bimodule resolution
of Λ.

Proof. The proof is the same as that of Lemma 4.14.

Using the resolution above, we may now compute the dimension of HH1(Λ). The
proof is straightforward and is omitted.

Proposition 4.24. Let Λ be the algebra SD(2B)k,s2 (c). Then

dimHH1(Λ) =



k + s+ 3− c if char(K) = 2 and k and s are both even,

k + s+ 2− c if char(K) = 2 and k + s is odd,

k + s+ 2− 2c if char(K) = 2 and k and s are both odd,

k + s+ 1 if char(K) ̸= 2 and k and s are both 0 in K,

k + s if char(K) ̸= 2 and k and s are not both 0 in K.

Corollary 4.25. Assume that char(K) = 2 and that {k′, s′} = {k, s}. Then there is

no stable equivalence of Morita type between SD(2B)k,s2 (0) and SD(2B)k
′,s′

2 (1).

If, moreover, k or s is even, then for c ∈ {0, 1} there is no stable equivalence of

Morita type between SD(2B)k,s2 (1) and SD(2B)k
′,s′

1 (c).

If instead k and s are both odd, then for c, c′ ∈ {0, 1} not both equal to 0, there is

no stable equivalence of Morita type between SD(2B)k,s2 (c) and SD(2B)k
′,s′

1 (c′).

Finally, if char(K) = 3, {k′, s′}= {k, s} with ks=0 in K and c, c′ ∈ {0, 1}, then there

is no stable equivalence of Morita type between SD(2B)k,s2 (c) and SD(2B)k
′,s′

1 (c′).

In order to go further, we now consider the Lie algebra structure of HH1(Λ). Once
more, we identify a morphism f ∈ HomΛ−Λ(Q

1,Λ) with g ∈ HomKΓ0−KΓ0(KΓ1,Λ)
and with the quadruple (g(α), g(β), g(γ), g(η)).
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The case where char(K) = 2.

We start with a basis for HH1(SD(2B)k,s2 (c)).

Lemma 4.26. Assume that s > 2. Define the following cochains in HomK(KΓ1,Λ):

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1, φ0 = (α, 0, 0, 0),

θr = (0, 0, 0, ηr+1) if 2 ⩽ r ⩽ s− 1, ψ1 = ((αβγ)k, 0, 0, 0),

θ1 = (0, (s− 1)αβ(γαβ)k−1, 0, η2), ψ0 = (e1, 0, 0, (γαβ)
k−1),

ω = ((βγα)k−1βγ, 0, 0, 0), θ0 = (α, β, 0, η),

χ = (α, 0, 0, η).

Set

B = {φt; θr;ψ1;ω; 1 ⩽ t ⩽ k − 1, 1 ⩽ r ⩽ s− 1} ,

B′ =



{φ0, θ0} if k and s are even,

{θ0} if k is even and s is odd,

{φ0} if s is even and k is odd,

{χ} if ks is odd and c = 0,

∅ if ks is odd and c = 1,

and B′′ =

{
{ψ0} if c = 0,

∅ if c = 1.

Then the cohomology classes of the elements in B ∪ B′ ∪ B′′ form a basis for
HH1(SD(2B)k,s2 (c)).

Lemma 4.27. When s = 2, a basis is given by the non-zero cohomology classes of
the following elements of HomK(KΓ1,Λ), written as (g(α), g(β), g(γ)):

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1, θ1 = (0, (αβγ)k−1αβ, 0),

ψ1 = ((αβγ)k, 0, 0), ω = ((βγα)k−1βγ, 0, 0),

ψ0 = (1− c)(e1, (αβγ)
k−2αβ, 0),

φ0 = (α, kβ, 0), θ0 = (1− k)(0, β, 0).

We may now compute the brackets of these basis elements.

Lemma 4.28. We use the notation in the previous lemmas. We describe the (poten-

tially) non-zero brackets in HH1(SD(2B)k,s2 (c)).
For all k and s we have

[φt, φt′ ] = (t+ t′)φt+t′ (t, t
′ ⩾ 1), [θr, θr′ ] = (r + r′)θr+r′ (r, r

′ ⩾ 1),

[φt, φ0] = tφt, [θr, θ0] = rθr,

[φ1, ψ0] = (1− c)(1− k)θs−1, [θ1, ψ0] = (1− c)(1− s)φk−1,

[ψ1, φ0] = ψ1, [ψ1, θ0] = ψ1,

[ψ0, φ0] = (1− c)ψ0, [ψ0, θ0] = (1− c)ψ0,

[ψ1, ψ0] = (1− c)ω,
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and, if ks ̸= 0 in K and c = 0,

[φt, χ] = tφt (t ⩾ 1), [θr, χ] = rθr (r ⩾ 1),

[ω, χ] = ω, [ψ0, χ] = ψ0.

Remark 4.29. It is easy to check that HH1(SD(2B)k,s2 (c)) and HH1(SD(2B)s,k2 (c))
are isomorphic Lie algebras.

Corollary 4.30. Assume that char(K) = 2. Let k, k′, s, s′ be integers such that
{k, s} = {k′, s′} and let c, c′ be in {0, 1}. Suppose that one of the following holds:

(i) k and s are both even and cc′ = 0;

(ii) k + s is odd;

(iii) ks is odd and (c, c′) ̸= (0, 0).

Then there is no stable equivalence of Morita type between the algebras SD(2B)k,s2 (c)

and SD(2B)k
′,s′

1 (c′).

Proof. Set g = HH1(SD(2B)k,s2 (c)) and g′ = HH1(SD(2B)k
′,s′

1 (c′)). Let Li(g) and
Li(g′) be the ith term in the lower central series of g and g′ respectively. Write
the basis elements in g′ with dashes.

In case (i) L2(g) is the span of the set {φ2p+1; θ2q+1;ψ1; (1− c)ω; (1− c)ψ0; 0 ⩽ p ⩽
k
2 − 1, 0 ⩽ q ⩽ s

2 − 1} and its dimension is k+s
2 + 3− 2c, and L2(g′) is the span of the

set {φ′
2p+1; θ

′
2q+1; c

′ω′; 0 ⩽ p ⩽ k′

2 − 1, 0 ⩽ q ⩽ s′

2 − 1} and it has dimension k+s
2 + c′.

These dimensions are different when cc′ = 0, therefore g and g′ are not isomorphic.
In case (ii), we may assume that k = k′ is odd and s = s′ is even. Here, L1(g)

is the span of {φ2p+1; θ2q+1;ψ1; (1− c)φk−1; (1− c)ω; (1− c)ψ0; 1 ⩽ p ⩽ k−3
2 , 0 ⩽

q ⩽ s
2 − 1} so its dimension is k+s−1

2 + 3− 3c+ δk,1, and L1(g′) is the span of

{φ′
2p+1; θ

′
2q+1;ω

′; 1 ⩽ p ⩽ k−3
2 , 0 ⩽ q ⩽ s

2 − 1} and has dimension k+s−1
2 + δk,1, and

these dimensions are different when (c, c′) ̸= (1, 0). Moreover, if i > k−3
2 , we have

dimLi(g) = s
2 + 4− 3c and dimLi(g′) = s

2 + c′, which are different when c = 1 and
c′ = 0. Therefore g and g′ are not isomorphic.

Finally, in case (iii), again assume that k = k′ and s = s′ for the proof. In
this case, L1(g) is the span of {φ2p+1; θ2q+1; (1− c)ω; (1− c)ψ0; (1− c)φ1; (1−
c)θ1; 1 ⩽ p ⩽ k−3

2 , 1 ⩽ q ⩽ s−3
2 } and L1(g′) is spanned by {φ′

2p+1; θ
′
2q+1;ω

′; (1− c′)χ′;

(1− c)φ′
1; (1− c′)θ′1; 1 ⩽ p ⩽ k−3

2 , 1 ⩽ q ⩽ s−3
2 }, therefore dimL1(g)− dimL1(g′) =

(c′ − c)δk,1 + 3c′ − 4c, which is non-zero when (c, c′) ̸= (0, 0). Therefore g and g′ are
not isomorphic.

Remark 4.31. If ks is odd, then the Lie algebras HH1(SD(2B)k,s1 (0)) and

HH1(SD(2B)k,s2 (0)) are isomorphic, so the Lie algebra structure of the first Hochschild
cohomology group does not bring anything new. Indeed, if {φt; θr;ψ;χ;ω; ζ0; 1 ⩽ t ⩽
k − 1; 1 ⩽ r ⩽ s− 1} is our basis of HH1(SD(2B)k,s1 (0)) and {φ′

t; θ
′
r;ψ

′
0;ψ

′
1;ω

′;χ′; 1 ⩽
t ⩽ k − 1, 1 ⩽ r ⩽ s− 1} is our basis of HH1(SD(2B)k,s2 (0)), then the isomorphism is
determined by

φt 7→ φ′
t, θr 7→ θ′r, ω 7→ ω′,

ψ 7→ ψ′
1, ζ0 7→ χ′, χ 7→ ψ′

0.
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The case where char(K) ̸= 2.
In order to differentiate the algebras of type SD(2B)1 and SD(2B)2 up to stable
equivalence of Morita type, we give the Lie algebra structure when char(K) ̸= 2.

Lemma 4.32. We define cocycles in HomKΓ0−KΓ0(KΓ1,Λ) as follows:

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1,

θr = (0, 0, 0, ηr+1) if 2 ⩽ r ⩽ s− 1,

θ1 = (0, (s− 1)(αβγ)k−1αβ, 0, η2),

ψ = ((αβγ)k, 0, 0, 0),

φ0 = (α− c(βγα)k−1βγ, 0, 0, 0) and θ0 = (0, β, 0, η)− φ0 if k = 0 and s = 0 in K,

ω = (2(k + s− ks)α+ c(3ks− 2k − 2s)(βγα)k−1βγ, 2k(s− 1)β, 0, 2kη)

if k ̸= 0 or s ̸= 0 in K.

Set B = {φt; θr;ψ; 1 ⩽ t ⩽ k − 1; 1 ⩽ r ⩽ s− 1} and

B′ =

{
{φ0; θ0} if k and s are both zero in K,

{ω} if k ̸= 0 or s ̸= 0 in K.

Then the cohomology classes of the elements in B ∪ B′ form a basis of the Lie algebra
HH1(SD(2B)k,s2 (c)). The (potentially) non-zero brackets are given by

[φt, φt′ ] = (t′ − t)φt+t′ if 1 ⩽ t, t′ ⩽ k − 1, t+ t′ ⩽ k − 1,

[θr, θr′ ] = (r′ − r)θr+r′ if 1 ⩽ r, r′ ⩽ s− 1, r + r′ ⩽ s− 1,

[φ0, φt] = tφt, [θ0, θr] = rθr,

[ψ,φ0] = ψ, [ψ, θ0] = −ψ,
[ω, φt] = 2stφt, [ω, θr] = 2krθr,

[ω, ψ] = 2(2ks− k − s)ψ.

Remark 4.33. Here again, if we specialise to s = 2, a basis of HH1(SD(2B)k,22 (c)) is
given by the non-zero cohomology classes of the following elements of HomK(KΓ1,Λ),
written as (g(α), g(β), g(γ)):

φt = (α(βγα)t, 0, 0, 0) if 1 ⩽ t ⩽ k − 1, θ1 = (0, (αβγ)k−1αβ, 0),

ω = ((2− k)α+ 2c(k − 1)(βγα)k−1βγ, kβ, 0), ψ = ((αβγ)k, 0, 0)

and the brackets are the same as those given in Lemma 4.32 above.

It is easy to check that the Lie algebras HH1(SD(2B)k,s2 (c)) and HH1(SD(2B)k
′,s′

2 (c′))
are isomorphic if {k, s} = {k′, s′} and c, c′ ∈ {0, 1}. The Lie algebra structure does

not provide any new information within the family SD(2B)k,s2 (c), but we have the
following result.

Corollary 4.34. Assume that char(K) = 3, that {k, s} = {k′, s′} and that c, c′ ∈
{0, 1}. Then there is no stable equivalence of Morita type between SD(2B)k,s2 (c) and

SD(2B)k
′,s′

1 (c′).



42 RACHEL TAILLEFER

Assume that char(K) ̸= 2, 3 and that either ks = 0 in K, or that ks ̸= 0 and
2ks− k − s = 0 in K. Then there is no stable equivalence of Morita type between

SD(2B)k,s2 (c) and SD(2B)k
′,s′

1 (c′).

Proof. Set g=HH1(SD(2B)k,s2 (c)) and g′ =HH1(SD(2B)k
′,s′

1 (c′)). Let Li(g) (respec-
tively Li(g′)) denote the ith term in the lower central series of g (respectively g′).

• First assume that char(K) = 3. We already know from Corollary 4.25 that

there is no stable equivalence of Morita type between SD(2B)k,s2 (c) and

SD(2B)k
′,s′

1 (c′) when ks = 0 in K.
Therefore, assume that ks ̸= 0 in K. Then the centre of the Lie algebra g is
spanned by ψ if (k, s) = (1, 1) in K2 and vanishes otherwise, so its dimension is
at most 1, whereas the centre of the Lie algebra g′ is spanned by {φk−1, θs−1}
so its dimension is at least 2. Therefore the algebras g and g′ are not isomorphic
and the first part of the corollary follows.

• If char(K) ̸= 2, 3 and ks = 0, then dimL1
g = dimL1

g′ + 1 (the extra element is
ψ), hence the Lie algebras g and g′ are not isomorphic.

• If char(K) ̸= 2, 3 and ks ̸= 0 and k + s− 2ks = 0 in K, then the centre of g′

is zero, whereas that of g is spanned by ψ and has dimension 1, hence the Lie
algebras g and g′ are not isomorphic.

Proposition 4.35. Assume that char(K) ̸= 2, 3 and that {k, s} = {k′, s′}. Put λ =
3−12ks ̸= 0 and µ = 2ks− k − s and assume that λµ ̸= 0 in K and that the following
subsets of K are not equal:

Eλ =
{
sλ−1, 2sλ−1, kλ−1, 2kλ−1, (sλ−1)−1, (2sλ−1)−1, (kλ−1)−1, (2kλ−1)−1

}
and Eµ =

{
sµ−1, 2sµ−1, kµ−1, 2kµ−1, (sµ−1)−1, (2sµ−1)−1, (kµ−1)−1, (2kµ−1)−1

}
.

Then there is no stable equivalence of Morita type between SD(2B)k,s2 (c) and

SD(2B)k
′,s′

1 (c′).

Proof. For λ ∈ K∗, let gλ be the 6-dimensional Lie algebra with basis {e0, . . . , e5} and
whose bracket is determined by [e0, ei] = νiei with (ν1, ν2, ν3, ν4, ν5) = (s, 2s, k, 2k, λ).

Now consider the algebra HH1(SD(2B)k,s2 (c))/D2(HH1(SD(2B)k,s2 (c))) where

D2(g) is the second term in the derived series of g. Since D2(HH1(SD(2B)k,s2 (c)))
is spanned by the φt and θr for t ⩾ 3 and r ⩾ 3, this is a Lie algebra that is iso-
morphic to gλ with λ = 2ks− k − s, via the isomorphism given by e0 = 1

2ω, e1 = φ1,
e2 = φ2, e3 = θ1, e4 = θ2 and e5 = ψ (recall that 2 and 3 are invertible in K). Simi-

larly, the Lie algebra HH1(SD(2B)k,s1 (c′))/D2(HH1(SD(2B)k,s1 (c′))) is isomorphic to
gµ with µ = 2ks

3 (the isomorphism sends ω to 1
3ω in this case).

If HH1(SD(2B)k,s2 (c)) and HH1(SD(2B)k,s1 (c′)) are isomorphic, then so are gλ
and gµ.

We now prove that if the sets Eλ and Eµ are distinct, then the Lie algebras gλ and
gµ are not isomorphic, using generalised derivations.
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For ρ ∈ K∗, we consider dergλ
(ρ, 1, 1). Let D be a (ρ, 1, 1)-derivation of gλ. Set

D(ej) =
∑5

i=0 aijei for i = 0, 1, . . . , 5. Then, for i = 1, 2, . . . , 5, we have

ρD([e0, ei]) = [D(e0), ei] + [e0, D(ei)],

which is equivalent to the set of equations
ρνia0i = 0 for 1 ⩽ i ⩽ 5,

(ρνi − νj)aji = 0 for 1 ⩽ i ̸= j ⩽ 5,

(ρ− 1)aii = a00 for 1 ⩽ i ⩽ 5

that is equivalent to 
a0i = 0 for 1 ⩽ i ⩽ 5,

(ρνi − νj)aji = 0 for 1 ⩽ i ̸= j ⩽ 5,

(ρ− 1)aii = a00 for 1 ⩽ i ⩽ 5.

Note that the equations that come from the identities ρD([ej , ei]) = [D(ej), ei] +
[ej , D(ei)] for 1 ⩽ i ̸= j ⩽ 5 are a consequence of the first five equations above. There-
fore these equations characterise D. The subset of the equations above that involve
the parameter λ is

(ρλ− s)a15 = 0, (ρs− λ)a51 = 0,

(ρλ− 2s)a25 = 0, (2ρs− λ)a52 = 0,

(ρλ− k)a35 = 0, (ρk − λ)a53 = 0,

(ρλ− 2k)a45 = 0, (2ρk − λ)a54 = 0.

Therefore, if µ ∈ K∗ is another parameter, and if ρ ∈ Eµ and ρ ̸∈ Eλ, then there
are strictly fewer equations characterising dergµ(ρ, 1, 1) than those characterising
dergλ

(ρ, 1, 1). It follows that dim dergλ
(ρ, 1, 1) < dim dergµ

(ρ, 1, 1) and hence that gλ
and gµ are not isomorphic Lie algebras.

Finally, Theorem 4.13 is obtained by combining Propositions 4.20 and 4.35 and
Corollaries 4.17, 4.25, 4.30 and 4.34.

5. Algebras of quaternion type

As we mentioned in Subsection 1.4, we shall only consider the local tame symmetric
algebras of quaternion type. Using a result of Erdmann and Skowroński, in this case we
can compute the dimensions of all the Hochschild cohomology groups. The dimension
of the first Hochschild cohomology group, as well as the Lie algebra structure of the
first cohomology group HH1(Λ), give new information on stable equivalence of Morita
type, but we are not able to distinguish all the algebras. The main result of this
subsection is Corollary 5.6.

Once more, we assume that the field K has characteristic 2. We have defined the
algebras Q(1A)k1 and Q(1A)k2(c, d) in Subsection 1.1. In these algebras, the follow-
ing relations hold: x3 = (xy)k = (yx)k = y3 and x4 = 0. The element z := (xy)k−1 +
(yx)k−1 is central in these algebras by [2], therefore from the equalities y2z = yzy =
zy2, using the other relations, we obtain x2y = 0 = yx2. It then follows that xy2 =



44 RACHEL TAILLEFER

0 = y2x, and that y(xy)k = y4 = 0, even in Q(1A)k1 . We may therefore view Q(1A)k1
as Q(1A)k2(0, 0).

Fix an integer k ⩾ 2. For (c, d) ∈ K2, let Ik(c, d) be the ideal in K⟨x, y⟩ generated
by the set {(xy)k + (yx)k;x2 + (yx)k−1y + c(xy)k; y2 + (xy)k−1x+ d(yx)k; (xy)kx;
(yx)ky} and let Λ := K⟨x, y⟩/Ik(c, d) be one of the algebras Q(1A)k1 or Q(1A)k2(c, d).
Clearly, Q(1A)k2(c, d)

∼= Q(1A)k2(d, c).

5.1. Dimensions of the Hochschild cohomology groups
Erdmann and Skowroński have shown in [3] that Λ is periodic of period 4 and

they give explicitly a minimal projective resolution of Λ as a Λ-Λ-bimodule in [3,
Theorem 5.9]:

0 → Λ
j−−→ Λ⊗ Λ

∂3

−−−→ (Λ⊗ Λ)2 = (Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ)

∂2

−−−→

∂2

−−−→ (Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ)

∂1

−−−→ Λ⊗ Λ
∂0

−−−→ Λ → 0,
(1)

where ∂0 is multiplication, ∂1(1 ⊗
α
1) = α⊗ 1 + 1⊗ α for α ∈ {x, y} and ∂2, ∂3 and

j are determined by:

∂2(1 ⊗
x
1) = x ⊗

x
1 + 1 ⊗

x
x+

k−2∑
t=0

(yx)ty ⊗
x
y(xy)k−2−t

+

k−1∑
t=0

(
(yx)t ⊗

y
(xy)k−1−t + c(yx)ty ⊗

x
(yx)k−1−t + c(yx)t ⊗

y
x(yx)k−1−t

)
,

∂2(1 ⊗
y
1) = y ⊗

y
1 + 1 ⊗

y
y +

k−2∑
t=0

(xy)tx ⊗
y
x(yx)k−2−t

+

k−1∑
t=0

(
(xy)t ⊗

x
(yx)k−1−t + d(xy)tx ⊗

y
(xy)k−1−t + d(xy)t ⊗

x
y(xy)k−1−t

)
,

∂3(1⊗ 1) = (x ⊗
x
1 + 1 ⊗

x
x)(1 + cx+ c2x2) + (y ⊗

y
1 + 1 ⊗

y
y)(1 + dy + d2y2),

j(1) =

k−1∑
t=0

(
(xy)t ⊗ (xy)k−t + (yx)t+1 ⊗ (yx)k−t−1

+(xy)tx⊗ y(xy)k−1−t + (yx)ty ⊗ x(yx)k−1−t
)
.

Again, it is straightforward to check that

dimHH1(Λ) =

{
k + 5 if k is even of if k is odd and (c, d) = (0, 0),

k + 4 if k is odd and (c, d) ̸= (0, 0).

We shall now give the dimensions of all the Hochschild cohomology groups for Λ.
Note that for Λ = Q(1A)k1 , these were already given in [5].

Proposition 5.1. We have the following dimensions

dimHHi(Q(1A)k1) =

{
k + 3 if i ≡ 0, 3 (mod 4),

k + 5 if i ≡ 1, 2 (mod 4),
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dimHHi(Q(1A)k2(c, d)) =


k + 3 if i ≡ 0, 3 (mod 4),

k + 5 if i ≡ 1, 2 (mod 4) and k is even,

k + 4 if i ≡ 1, 2 (mod 4) and k is odd.

Proof. Let Λ be one of the algebras Q(1A)k1 or Q(1A)k2(c, d). By [3, Theorem 5.9],
we have Ω4

Λe(Λ) ∼= Λ. In particular, HHi+4(Λ) = HHi(Λ) for all i ⩾ 1. Moreover, Λ is
periodic Frobenius of period π ⩽ 4 and dimension π − 1 in the sense of [4]. We also
deduce that Ωπ

Λ
∼= idmodΛ, so that if we assume π ⩽ 3, then the stable Calabi-Yau

dimension of Λ in the sense of [3] is at most 2. However, by [3, Proposition 5.8 and
Corollary 5.10], this last stable dimension is equal to 3. Therefore π = 4.

It now follows from [4, Theorem 2.3.27(ii)], using the fact that Λ is symmet-
ric (hence the K-dual Λ∗ is isomorphic to Λ as a Λ-Λ-bimodule) and using Corol-
lary 2.1.13 and Definitions 2.1.22 to 2.1.28 in [4] as well as the two-sided resolution
of Λ obtained from [3], that dimHH3−i(Λ) = dimHHi(Λ) for i = 0, 1, 2, 3 and there-
fore that dimHH2(Λ) = dimHH1(Λ). (A direct computation using the resolution in
[3] also gives this last fact.) Moreover, computing the dimensions from the complex
obtained from (1), we get dimHH3(Λ) = dimHH4(Λ) = dimHH0(Λ)− dim(Im(? ◦ j ◦
∂0)) = dimHH0(Λ). The result follows.

We can therefore resolve some of the classification questions in this case (note that
the first Hochschild cohomology group is enough for this).

Corollary 5.2. If k is odd then there is no stable equivalence of Morita type between
Q(1A)k1 and Q(1A)k2(c, d).

5.2. Lie algebra structure on HH1(Λ)
Let Γ be a quiver of type 1A, with arrows x and y. Then the local tame symmetric

algebras of quaternion type may be defined as KΓ/Ik2 (c, d) for (c, d) ∈ K2. Let Λ be
such an algebra.

We then have HomΛ−Λ((Λ ⊗
x
Λ)⊕ (Λ ⊗

y
Λ),Λ) ∼= HomK(KΓ1,Λ) via the corre-

spondence f ↔ g given by f(1 ⊗
x
1) = g(x) and f(1 ⊗

y
1) = g(y).

Moreover, if Z = {x2 + (yx)k−1 + c(yx)k, y2 + (xy)k−1x+ d(xy)k}, we can iden-
tify Q2 with Λ⊗KΓ0

KZ ⊗KΓ0
Λ.

Define the following elements in HomK(KΓ1,Λ) (as pairs (g(x), g(y))):

φt = (x(yx)t, 0) for 1 ⩽ t ⩽ k − 1, θ1 = (y(xy)k−1, 0), θ−1(0, x(yx)
k−1),

χ = (1 + cx, x(yx)k−2 + d(xy)k−1), θ−2 = (0, (xy)k), θ2((xy)
k, 0),

ω = (y(xy)k−2 + c(yx)k−1, 1 + dy).

We then have the following result.

Lemma 5.3. We keep the notation above.

(1) If k is odd and (c, d) ̸= (0, 0) then a basis for HH1(Q(1A)k2(c, d)) is given by the
cohomology classes of

{θ1; θ−1; θ2; θ−2;φt, 1 ⩽ t ⩽ k − 1;ψ := dχ+ cω} .

Otherwise, {θ1; θ−1; θ2; θ−2;φt, 1 ⩽ t ⩽ k−1;χ;ω} is a basis of HH1(Q(1A)k2(c,d))
and of HH1(Q(1A)k1).
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(2) The (potentially) non-zero brackets of these basis elements are the following:

[φt, χ] = tcφt for t > 1, [φt, ω] = tdφt for t > 1,

[φ1, χ] = cφ1 + (k − 1)(θ−1 + dθ−2), [φ1, ω] = dφ1 + (k − 1)(θ1 + cθ2),

[φt, φt′ ] = (t+ t′)φt+t′ , [φ1, ψ] = c(θ1 + cθ2) + d(θ−1 + dθ−2),

[θ1, χ] = kcθ1, [θ1, ω] = kdθ1,

[θ−1, χ] = kcθ−1, [θ−1, ω] = kdθ−1,

[θ2, χ] = θ1 + (k − 1)cθ2, [θ2, ω] = φk−1 + kdθ2,

[θ−2, χ] = φk−1 + kcθ−2, [θ−2, ω] = θ−1 + (k − 1)dθ−2,

[θ2, ψ] = cφk−1 + d(θ1 + cθ2), [θ−2, ψ] = dφk−1 + c(θ−1 + dθ−2).

We start with a special case.

Lemma 5.4. If cd ̸= 0 in K, then for any d′ ∈ K there is no stable equivalence of
Morita type between the algebras Q(1A)22(0, d

′) and Q(1A)22(c, d).

Proof. In the basis described in Lemma 5.3, the Killing form of the Lie algebra

HH1(Q(1A)22(c, d)) has matrix

05 0 0
0 0 cd
0 cd 0

. Therefore its rank is 2 if cd ̸= 0 and

0 if cd = 0. The result follows, since the rank of the Killing form invariant under an
isomorphism of Lie algebras.

We then compute the first two terms in the lower central series. In view of
Lemma 5.4, we need only consider the cases where cd = 0, that is, (c, d) = (0, 0)
and c = 0, d ̸= 0.

Proposition 5.5. We keep the notation above. Then L1(HH1(Λ)) is spanned by:

(a)
{
φ2p+1, 1 ⩽ p ⩽ k−3

2 ; cφk−1 + d(θ1 + cθ2); dφk−1 + c(θ−1 + dθ−2); c(θ1 + cθ2)+

d(θ−1 + dθ−2)} if k is odd and cd = 0, (c, d) ̸= (0, 0); the dimension is k+3
2 ;

(b) {φ2p+1, 1 ⩽ p ⩽ k−3
2 ;φk−1; θ1; θ−1} if k is odd and (c, d) = (0, 0); the dimension

is k+3
2 ;

(c) {φ2p+1, 0⩽ p⩽ k−4
2 ;φk−1; θ1 + cθ2; θ−1 + dθ−2} if k is even and cd = 0, (c, d) ̸=

(0, 0); the dimension is k
2 + 2;

(d) {φ2p+1, 1 ⩽ p ⩽ k−4
2 ;φk−1; θ1; θ−1} if k is even and (c, d) = (0, 0); the dimen-

sion is k
2 + 1 + δk,2.

Moreover, when k is odd or k = 2, L2(HH1(Λ)) is spanned by:

(i) {φ2p+1, 2 ⩽ p ⩽ k−3
2 ;φk−1} if k is odd and c = 0 and d ̸= 0; the dimension is

k−3
2 + δk,3;

(ii) {φ2p+1, 2 ⩽ p ⩽ k−3
2 } if k is odd and (c, d) = (0, 0); the dimension is k−5

2 + δk,3;

(iii) {φ1, θ1, θ−1 + dθ−2} if k = 2 and c = 0 and d ̸= 0; the dimension is 3;

(iv) {θ1, θ−1} if k = 2 and (c, d) = (0, 0); the dimension is 2.
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As a consequence of Lemma 5.4 and Proposition 5.5, we get the following result.

Corollary 5.6. Let k ⩾ 2 be any integer and let c and d be non-zero elements in K.
Then Q(1A)k1 , Q(1A)k2(0, d), Q(1A)k2(c, d) are not stably equivalent of Morita type.

Remark 5.7. We still do not know whether Q(1A)k2(0, d) and Q(1A)k2(0, d
′) for d ̸= d′

non-zero are stably equivalent of Morita type or not or whether Q(1A)k2(c, d) and
Q(1A)k2(c

′, d′) for {c, d} ̸= {c′, d′} with cd ̸= 0 and c′d′ ̸= 0 are stably equivalent of
Morita type or not.

In fact, if k is odd and dd′ ̸= 0, the Lie algebras HH1(Q(1A)k2(0, d)) and
HH1(Q(1A)k2(0, d

′)) are isomorphic (in the remaining cases we do not know), and
the isomorphism is given by

φt 7→ φ′
t for 1 ⩽ t ⩽ k − 2, φk−1 7→ d′

d
φ′
k−1,

ψ 7→ d

d′
ψ′, θ−2 7→ d′

d
θ′−2,

with the obvious notations for the bases of the two Lie algebras.
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