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COALGEBRAS IN SYMMETRIC MONOIDAL CATEGORIES

OF SPECTRA

MAXIMILIEN PÉROUX and BROOKE SHIPLEY

(communicated by J.P.C. Greenlees)

Abstract
We show that all coalgebras over the sphere spectrum are

cocommutative in the category of symmetric spectra, orthog-
onal spectra, Γ-spaces, W-spaces and EKMM S-modules. Our
result only applies to these strict monoidal categories of spectra
and does not apply to the ∞-category setting.

1. Introduction

It is well known that the diagonal map of a set, or a space, gives it the struc-
ture of a comonoid. In fact, the only possible (counital) comonoidal structure on
an object in a Cartesian symmetric monoidal category is given by the diagonal (see
[AM10, Example 1.19]). Thus all comonoids are forced to be cocommutative in these
settings. We prove that this rigidity is inherited by all of the strict monoidal cate-
gories of spectra that have been developed over the last 20 years, including symmetric
spectra (see [HSS00]), orthogonal spectra (see [MMSS01, MM02]), Γ-spaces (see
[Seg74, BF78]), W-spaces (see [And74]) and S-modules (see [EKMM97]), which
we call EKMM-spectra here. That is, S-coalgebra spectra in any of these categories
are cocommutative, where S denotes the sphere spectrum.

Theorem 1.1. Let (C,∆, ε) be an S-coalgebra in symmetric spectra, orthogonal spec-
tra, Γ-spaces, W-spaces or EKMM-spectra. Then C is a cocommutative S-coalgebra.

Furthermore, we prove that all R-coalgebras are cocommutative whenever R is
a commutative S-algebra with R0 homeomorphic to S0; see Theorems 3.4 and 4.1.
Moreover, in Remark 3.5, we recall that, in symmetric spectra or orthogonal spec-
tra, every commutative S-algebra is weakly equivalent to one whose zeroth space is
homeomorphic to S0.

It is important to note that these results are restricted to the listed strict monoidal
categories of spectra. In [Lur18], Lurie considers the category of cocommutative coal-
gebras in a symmetric monoidal ∞-category and establishes an equivalence between
the associated dualizable algebra and coalgebra objects in [Lur18, Corollary 3.2.5].
One could similarly consider the category of (not necessarily cocommutative)
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coalgebras and their dualizable objects. Since there exist compact non-commutative
S-algebra spectra, one can consider for such an X the Spanier-Whitehead dual,
DX = hom(X, S), and this represents a non-cocommutative S-coalgebra spectrum.
This shows that the category of coalgebras in the ∞-category of spectra has non-
cocommutative objects.

Given a symmetric monoidal model category M, the underlying ∞-category, M,
admits a symmetric monoidal structure. As part of his PhD thesis, the first author is
determining conditions that imply the equivalence of the ∞-category of (cocommuta-
tive) coalgebras over M and the nerve of (cocommutative) coalgebras in M. In other
words, this compares the coalgebra objects with a (cocommutative) comultiplication
up to coherent homotopy with the strictly (cocommutative) coalgebras.

The paper is organized as follows. In Section 2, we recall the notions of comonoids
and coalgebras and introduce a purely categorical argument, Theorem 2.2, which is
at the heart of the proof of Theorem 1.1. Section 3 considers the general setting of
diagram spectra introduced in [MMSS01] which encapsulates most of the categories
of spectra mentioned above. The category of EKMM-spectra needs particular care
and is considered in Section 4.
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2. Definition and preliminaries

Let (C,⊗, I) be a symmetric monoidal category throughout this section.

Definition 2.1. A comonoid (C,∆, ε) in C consists of an object C in C together
with a coassociative comultiplication ∆: C → C ⊗ C, such that the following diagram
commutes:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C,

∆

∆ idC⊗∆

∆⊗idC

and admits a counit morphism ε : C → I such that we have the following commutative
diagram:

C ⊗ C C ⊗ I ∼= C ∼= I⊗ C C ⊗ C

C.

idC⊗ε ε⊗idC

∆ ∆

The comonoid is cocommutative if the following diagram commutes:

C ⊗ C C ⊗ C

C,

τ

∆ ∆
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where τ is the twist isomorphism from the symmetric monoidal structure of C. A mor-
phism of comonoids f : (C,∆, ε) → (C ′,∆′, ε′) is a morphism f : C → C ′ in C such
that the following diagrams commute:

C C ′ C C ′

C ⊗ C C ′ ⊗ C ′, I.

f

∆ ∆′

f

ε
ε′

f⊗f

We denote coMon(C) the category of comonoids in C.

In the next sections, our main strategy uses the following result.

Theorem 2.2. Let (C,⊗, I) and (D,⊙, J) be symmetric monoidal categories endowed

with a pair of adjoint underlying functors L : C D : R, where the functor R

is lax symmetric monoidal such that:

(i) the maps I → R(J) and R(D)⊗R(D) → R(D ⊙D) are isomorphisms in D, for
all comonoids D in D;

(ii) all comonoids in C are cocommutative;

(iii) for each comonoid D in D, the counit map LR(D) → D given by the adjunction
is an epimorphism in D.

Then all comonoids in D are cocommutative.

Notice that condition (i) of Theorem 2.2 is respected whenever R is a strong
monoidal functor.

Proof. Recall from [AM10, Proposition 3.85], as R : D → C is a lax symmetric
monoidal functor, there exists a unique lax symmetric comonoidal structure on the
functor L : C → D such that the adjoint pair forms a symmetric monoidal conjunc-
tion (sometimes called colax-lax adjunction, see [AM10, Definition 3.81]). Since L is
lax symmetric comonoidal, it sends (cocommutative) comonoids in C to (respectively
cocommutative) comonoids in D (see [AM10, Proposition 3.29, Proposition 3.37]).
Because of condition (i), one can check that if (D,∆, ε) is a comonoid in D, then
R(D) is a comonoid in C with comultiplication:

R(D) R(D ⊙D) R(D)⊗R(D),
R(∆) ∼=

and counit:

R(D) R(J) I.
R(ε) ∼=

Using condition (ii) we get that LR(D) is a cocommutative comonoid in D for any
(not necessarily cocommutative) comonoid D in D. One can show the counit map of
the adjoint LR(D) → D is a morphism of comonoids in D as in [AM10, Proposi-
tion 3.93]. We conclude using (iii) and Proposition 2.3.

Recall that any subalgebra of a commutative algebra is also commutative. The
following is the dual case and could be proved using opposite categories.
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Proposition 2.3. Let (C,∆, ε) and (C ′,∆′, ε′) be comonoids in (C,⊗, I). Suppose C
is cocommutative. Given a morphism of comonoids f : C → C ′, if f is an epimorphism
in C, then C ′ is also cocommutative.

Proof. Since f is a morphism of comonoids the top square in the following diagram
commutes:

C C ′

C ⊗ C C ′ ⊗ C ′

C ⊗ C C ′ ⊗ C ′.

f

∆

∆

∆′

f⊗f

τ τ

f⊗f

The bottom square commutes from the naturality of the twist isomorphism τ . The
left side commutes as C is cocommutative. The commutativity of the above diagram
gives:

τ ◦∆′ ◦ f = τ ◦ (f ⊗ f) ◦∆ = (f ⊗ f) ◦ τ ◦∆ = (f ⊗ f) ◦∆ = ∆′ ◦ f.

Since f is an epimorphism in C, it follows that ∆′ = τ ◦∆′. Therefore (C ′,∆′, ε′) is
cocommutative.

Subsequently condition (ii) of Theorem 2.2 will be verified using the following
lemma. Let (Top,×, ∗) be the category of spaces (weak Hausdorff k-spaces) endowed
with the Cartesian product and (Top∗,∧, S

0) the based spaces endowed with the
smash product, where S0 = {0, 1} is the unit, with 0 as basepoint. Recall that the
functor:

(−)+ : (Top,×, ∗) −→ (Top∗,∧, S
0),

X 7−→ X
∐

{∗}

is strong symmetric monoidal: X+ ∧ Y+ ∼= (X × Y )+. Since (Top,×, ∗) is a Cartesian
symmetric monoidal category, every space C has a unique comonoidal structure with
respect to the Cartesian product, see [AM10, Example 1.19]. The counit ε : C → ∗
is the unique map to the terminal object, and the comultiplication ∆: C → C × C is
the diagonal ∆ = (idC , idC). The comultiplication is always cocommutative. Since the
functor (−)+ : Top → Top∗ is strong symmetric monoidal, it sends the cocommutative
comonoid (C,∆, ε) to a cocommutative comonoid (C+,∆+, ε+). The next result says
that these are the only possible comonoids in (Top∗,∧, S

0). It turns out that this is
purely a point-set argument, and the result remains valid for the category of sets,
and simplicial sets, denoted respectively Set and sSet.

Lemma 2.4. Let the category C be either Set, sSet or Top endowed with its Cartesian
symmetric monoidal structure. Then the faithful strong symmetric monoidal functor
(−)+ : (C,×, ∗) → (C∗,∧, S

0) lifts to an equivalence of categories (−)+ : coMon(C) →
coMon(C∗). In particular, any comonoid in C∗ is cocommutative and isomorphic to
a certain comonoid (C+,∆+, ε+) where (C,∆, ε) is a cocommutative comonoid in C

with the diagonal as a comultiplication.

Proof. We argue only for C = Set and claim the other cases are similar. The functor is



COALGEBRAS IN SYMMETRIC MONOIDAL CATEGORIES OF SPECTRA 5

clearly faithful. Let us first show that it is essentially surjective on comonoid objects.
Let (C ′,∆′, ε′) be a comonoid in Set∗. We first argue that ∆′(c) = c ∧ c for all c 6= ∗
in C. Let us denote ∆′(c) = c1 ∧ c2.

If c1 = ∗, then (id′C ∧ ε′)(c1 ∧ c2) = ∗, as the map id′C ∧ ε′ is pointed, and thus
counitality of C ′ shows:

c = ((id′C ∧ ε′) ◦∆′)(c) = (id′C ∧ ε′)(c1 ∧ c2) = ∗, (2.1)

which is a contradiction with c 6= ∗. Thus c1 6= ∗, and similarly one can show c2 6= ∗
when c 6= ∗.

Let us show ε′(c1) = 1 and ε′(c2) = 1, when c 6= ∗. If we assume ε′(c2) = 0, then
we obtain again equation (2.1) which is a contradiction with c 6= ∗. Thus ε′(c2) 6= 0
and we prove similarly ε′(c1) 6= 0 when c 6= ∗.

Let us prove ∆(c) = c ∧ c, for c 6= ∗. Since C ′ is counital, we get:

c = ((id′C ∧ ε′) ◦∆′)(c) = c1 ∧ ε
′(c2) = c1 ∧ 1.

So c1 = c. Similarly, c2 = c.
Now notice that C ′ ∼= ε′−1(0)

∐

ε′−1(1). Let c ∈ ε′−1(0). Then from the equation:

((idC′ ∧ ε′) ◦∆′)(c) = (idC′ ∧ ε′)(c ∧ c) = c ∧ 0 = ∗,

counitality of C ′ concludes that c = ∗. Thus ε′−1(0) = ∗. Regard C = ε′−1(1) as an
object in Set. Denote the diagonal on C by ∆ = (idC , idC) : C → C × C and ε : C → ∗
the unique map to the point. We have just shown that (C+,∆+, ε+) is isomorphic
to the comonoid (C ′,∆′, ε′) in Set∗. This proves that the functor (−)+ is essentially
surjective on comonoids.

Let us show the functor (−)+ : Set → Set∗ is full on comonoid objects. Given
two comonoids denoted by (C+, (∆C)+, (εC)+) and (D+, (∆D)+, (εD)+) in Set∗, let
f : C+ → D+ be a map of comonoids in Set∗. Then counitality gives the commutative
diagram:

C+ D+

S0.

f

(εC)+ (εD)+

If, for c 6= ∗ in C+, we have f(c) = ∗, then commutativity of the diagram gives:

1 = (εC)+(c) = ((εD)+ ◦ f)(c) = (εD)+(∗) = 0,

which is a contradiction. Thus the map f : C+ → D+ is induced by a map C → D in
Set, which proves that (−)+ : Set → Set∗ is full on comonoid objects.

Remark 2.5. Subsequently, we will only be using that all comonoids in the symmetric
monoidal category (Top∗,∧, S

0) are cocommutative. Notice that Theorem 2.2 does
not apply for the adjoint pair of functors:

(−)+ : (Top,×, ∗) (Top∗,∧, S
0) : U,

where U : Top∗ → Top is the forgetful functor, as U does not respect condition (i) of
Theorem 2.2.

Recall that given a commutative monoid R in C, the category of (left) modules
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over R in C, denoted ModR(C) is a symmetric monoidal category, where the unit is
R and the monoidal product is denoted ⊗R and is defined as the coequalizer:

M ⊗R⊗N M ⊗N,
idM⊗αN

(αM◦τ)⊗idN

where αM : R⊗M →M and αN : R⊗N → N are the (left) R-actions on M and N
respectively. This leads to the following definition.

Definition 2.6. Let R be a commutative monoid in C. A coalgebra (C,∆, ε) over
R in C, or an R-coalgebra in C, is a comonoid (C,∆, ε) in the symmetric monoidal
category (ModR(C),⊗R, R). A morphism f : (C,∆, ε) → (C ′,∆′, ε′) of R-coalgebras
in C is a morphism of comonoids in ModR(C).

3. Coalgebras in diagram spectra

Let us recall the definitions from [MMSS01] and set the notation. Let D =
(D,⊗, 0) be a locally small symmetric monoidal based topological category with unit
object 0 and continuous monoidal product ⊗, with base point ∗. Let Top∗ be the
category of based spaces (weak Hausdorff k-spaces). Recall that a D-space X is a
continuous based functor X : D → Top∗. If X and Y are D-spaces, their (internal)
smash product X ∧ Y is a D-space such that, for each object d in D, we have:

(X ∧ Y )(d) = colime⊗f→d

(

X(e) ∧ Y (f)
)

,

where the colimit is taken over the commutative triangles:

e′ ⊗ f ′ e⊗ f

d.

ϕ⊗ψ

As D is locally small, we can interpret the above colimit as a coend, i.e., (X ∧ Y )(d)
is the following coequalizer in Top∗:

∨

(ϕ,ψ) in
Mor(D×D)

D(e⊗ f, d) ∧X(e′) ∧ Y (f ′)
id∧X(ϕ)∧Y (ψ)

(ϕ⊗ψ)∗∧id∧id ∨

(e,f) in
Ob(D×D)

D(e⊗ f, d) ∧X(e) ∧ Y (f).

(3.1)
See more detail in [MMSS01, Definition 21.4]. Then D-spaces form a symmetric
monoidal category denoted TopD∗ (see [MMSS01, Theorem 1.7] where the category
is denoted DT).

A commutative monoid in TopD∗ is a lax symmetric monoidal functor D → Top∗.
Let R be a commutative monoid in TopD∗ with unit λ : S0 → R(0), and product
φ : R(d) ∧R(e) → R(d⊗ e), for any d and e in D. A D-spectrum X over R is an
R-module in TopD∗ . It is a D-space X : D → Top∗ together with continuous maps
σ : R(d) ∧X(e) → X(d⊗ e), natural in d and e, such that the composite:

X(d) ∼= S0 ∧X(d)
λ∧id

R(0) ∧X(d) X(0⊗ d) ∼= X(d)
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is the identity and the following diagram commutes:

R(e) ∧R(f) ∧X(d) R(e) ∧X(f ⊗ d)

R(e⊗ f) ∧X(d) X(e⊗ f ⊗ d).

φ∧id

id∧σ

σ

σ

As recalled in the previous section, the smash product X ∧R Y of two R-modules X
and Y is defined as the coequalizer:

X ∧R ∧ Y X ∧ Y,
idX∧σY

(σX◦τ)∧idY

where τ is the twist isomorphism. We denote the category of R-modules ModR(Top
D

∗ )
simply by SpDR . Subsequently we assume the following conditions on the topological
category D.

Property 3.1. There is a faithful strong symmetric monoidal continuous based func-
tor S : D → Top∗.

Property 3.2. If S(d) is homeomorphic to the base point in Top∗, then d is isomor-
phic to the base point ∗ in D. If S(d) is homeomorphic to S0, then d is isomorphic to
the unit object 0 in D.

Example 3.3. Recall, from [MMSS01, Examples 4.2, 4.4, 4.6, 4.8], that particular
choices of the category D recover the usual definition of the categories of symmetric
spectra, orthogonal spectra, Γ-spaces and W-spaces, among others. It is also shown
that there exist faithful strong symmetric monoidal based functors S : D → Top∗ for
each of the choices of D, which of course identify with the usual sphere spectrum
definition. It is elementary to check that Property 3.2 is verified in each of these
cases. There may be other examples of interest.

We now state the main theorem.

Theorem 3.4. Let D satisfy Properties 3.1 and 3.2. Let (R,φ, λ) be a commutative
monoid in TopD∗ , where R(0) ∼= S0. Let (C,∆, ε) be an R-coalgebra in TopD∗ . Then C
is a cocommutative R-coalgebra. In particular, all coalgebras over the sphere spectrum
in symmetric spectra, orthogonal spectra, Γ-spaces and W-spaces are cocommutative.

Remark 3.5. We show here that, in symmetric spectra or orthogonal spectra, any
cofibration of commutative S-algebras is the identity at level 0. For a cofibrant object
R, the unit map S → R is a cofibration and hence it follows that R(0) ∼= S(0) = S0.
Thus, in symmetric spectra or orthogonal spectra, any cofibrant commutative S-
algebra R has the property that R(0) ∼= S0.

Recall the free commutative S-algebra functor, denoted C(X) =
∨

n>0X
∧n/Σn,

with X∧0 = S. The cofibrations in the model structure on commutative S-algebras
from [MMSS01, 15.1] are built by applying C to the positive cofibrations defined
in [MMSS01, 14.1]. There it is noted that these positive cofibrations are homeomor-
phisms at level 0. In fact, by [MMSS01, 6.2], any generating positive cofibration is
of the form Fki with i an h-cofibration and k > 0. Since k > 0, level 0 of these maps is
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the identity map on the trivial one point space ∗. Since X∧n(0) ∼= X(0)∧n, the only
contribution to level 0 for the map CFki is the identity map on S0 coming from the
summand with n = 0. Thus, any cofibration of commutative S-algebras is the identity
on level 0.

This also holds in the S-model structure from [Shi04, 3.2] for commutative S-
algebras. There a cofibration of commutative S-algebras is shown to be an underlying
positive S-cofibration of S-modules by [Shi04, 4.1]. These maps are isomorphisms in
level 0 by definition [Shi04, Section 3]. Elsewhere these model structures are referred
to as the “flat” or “positive flat” model structures [Sch].

We wish to prove Theorem 3.4. We will use Theorem 2.2 for the following adjoint
pair of functors. Given a commutative monoid R in TopD∗ , the free R-module func-
tor is the left adjoint to the evaluation at the unit object 0 of D (see [MMSS01,
Definition 1.3]):

R ∧ − : Top∗ SpDR : Ev0.

Equation (3.1) shows that there is a natural map X(0) ∧ Y (0) → (X ∧R Y )(0), for
any X and Y in SpDR , which makes the functor Ev0 : Sp

D

R → Top∗ lax symmetric
monoidal. We have already shown in Lemma 2.4 that condition (ii) of Theorem 2.2
is verified by (Top∗,∧, S

0). So we only need to know when conditions (i) and (iii) of
Theorem 2.2 are verified.

Let us first investigate condition (iii) of Theorem 2.2. Notice that a map f : X → Y
in TopD∗ is an epimorphism if and only if, for any object d in D, the map f : X(d) →
Y (d) is an epimorphism in Top∗, i.e. a surjective based continuous map.

Lemma 3.6. Let D satisfy Properties 3.1 and 3.2. Let (R,φ, λ) be a commutative
monoid in TopD∗ . Let (C,∆, ε) be an R-coalgebra in TopD∗ . Then the natural map
R ∧ C(0) −→ C is an epimorphism of R-modules in TopD∗ .

The main idea of the proof is to look at the consequences of counitality of an R-
coalgebra C with respect to the identifications in the smash product C ∧R C. Before
proving the lemma, we need the following result.

Lemma 3.7. Let X be an object of (Top∗,∧, S
0).

(i) If we are given pointed maps f : S0 → X and g : X → S0 such that the induced
map:

S0 ∧X X ∧ S0f∧g

∼=

is an isomorphism, then either X ∼= ∗ and the morphisms f and g are the trivial
maps, or X ∼= S0 and f and g are isomorphisms.

(ii) Suppose we are given pointed sets Y and Z together with pointed maps f : S0 →
Y , g : X → Z, f ′ : X → Y and g′ : S0 → Z such that the following diagram com-
mutes:

S0 ∧X Y ∧ Z X ∧ S0

X

f∧g

∼=
α

f ′∧g′

∼=

for a pointed map α : Y ∧ Z → X. Then either X ∼= ∗ and the morphisms g and



COALGEBRAS IN SYMMETRIC MONOIDAL CATEGORIES OF SPECTRA 9

f ′ are trivial, or X ∼= S0 and the composite S0 ∼= S0 ∧ S0 f∧g′

Y ∧ Z
α
X

is an isomorphism.

Proof. The proof is purely a point set argument. For (i), assume X ≇ ∗. Let x 6= ∗
in X. The commutativity of the diagram:

S0 ∧X X ∧ S0

S0 ∧ S0

f∧g

∼=

id
S0∧g f∧id

S0

implies that f ∧ idS0 is surjective. Thus any element x ∧ 1 in X ∧ S0 is of the form
f(1) ∧ 1. This implies X ∼= S0.

For (ii), assume again X ≇ ∗. The map α is surjective as α ◦ (f ∧ g) is an isomor-
phism. For an element x 6= ∗ in X, denote by y ∧ z an element in Y ∧ Z such that
α(y ∧ z) = x. Then we get:

f(1) ∧ g(x) = y ∧ z = f ′(x) ∧ g′(1).

Thus y = f(1) = f ′(x) and z = g′(1) = g(x). The desired composite is an isomor-
phism. Whence X ∼= S0.

Proof of Lemma 3.6. We need to prove that the continuous structure map σ : R(d) ∧
C(0) → C(d) is surjective for each d in D. If d = 0, since the composition C(0) ∼=

S0 ∧ C(0) −→ R(0) ∧ C(0)
σ

−→ C(0) is the identity, then σ : R(0) ∧ C(0) → C(0) is
surjective. If d = ∗, then the map σ : R(∗) ∧ C(0) −→ C(∗) is trivial, as the functors
C and R are pointed.

Let us assume now that d is an object in D, where d ≇ 0, ∗. The above definition

of the smash product of R-modules in TopD∗ leads to the explicit definition of C ∧R C
as a quotient space of:

(C ∧R C)(d) =





∨

(e,f)∈D×D

D(e⊗ f, d) ∧ C(e) ∧ C(f)





/

∼R, (3.2)

for any d in D. The relations here are induced by the internal smash product (see
coequalizer (3.1) for X = Y = C) and by the R-action via the structure maps

σ : R(e) ∧ C(f) → C(e⊗ f). Notice that the natural isomorphisms d⊗ 0
∼=
→ d and

0⊗ d
∼=
→ d imply that there is at least one copy of C(d) ∧ C(0) and C(0) ∧ C(d) in

(C ∧R C)(d).
First let us show that an element in C(d) ∧ C(0) is not identified with an element

in C(0) ∧ C(d) in (C ∧ C)(d) via the coequalizer (3.1). For this matter, assume there
are objects e and f in D that fit in either of the following commutative diagrams
in D:

d⊗ 0 e⊗ f 0⊗ d d⊗ 0 e⊗ f 0⊗ d

d, d.

∼= ∼= ∼= ∼=

Using Property 3.1, we apply the functor S : D → Top∗ and get the commutative
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diagrams in Top∗:

S(d) ∧ S0 S(e) ∧ S(f) S0 ∧ S(d) S(d) ∧ S0 S(e) ∧ S(f) S0 ∧ S(d)

S(d), S(d).

∼= ∼= ∼= ∼=

Then, using Lemma 3.7 and Property 3.2, we get either d ∼= 0 or d ∼= ∗ in both cases,
which is a contradiction. Thus elements in C(d) ∧ C(0) are not identified with ele-
ments in C(0) ∧ C(d) in (C ∧ C)(d).

Now we consider C ∧R C instead of C ∧ C. Some identifications do occur in the
pointed space (C ∧R C)(d) via the R-action structure maps. Recall that since C is
counital, we have the commutative diagram:

C ∧R C C ∧R R ∼= C ∼= R ∧R C C ∧R C

C.

idC∧ε ε∧idC

∆ ∆

(3.3)

The commutativity shows that the maps ε ∧ idC and idC ∧ ε are epimorphisms in
TopD∗ , hence surjective once evaluated at d. Suppose now that the structure map
σ : R(d) ∧ C(0) → C(d) is not surjective. Consider an element c in C(d) not in the
image of σ. On the one hand, we can view C as C ∧R R and so, if we consider c in
C(d) as c ∧ λ(1) in C(d) ∧R(0) of (C ∧R R)(d), then we can take its preimage under
the map:

idC ∧ ε : (C ∧R C)(d) −→ (C ∧R R)(d).

The preimage lies in the contribution from C(d) ∧ C(0) in (3.2). On the other hand,
if we view C as R ∧R C, consider c in C(d) as λ(1) ∧ c in R(0) ∧ C(d) of (R ∧R C)(d)
and take its preimage under the map:

ε ∧ idC : (C ∧R C)(d) −→ (R ∧R C)(d),

it belongs to the copy C(0) ∧ C(d) in (3.2). Since we have supposed that σ is not
surjective and that c does not belong to the image of σ in C(d), we get that the two

preimages (idC ∧ ε)
−1

(c) and (ε ∧ idC)
−1

(c) in (C ∧R C)(d) are disjoint from each
other. But then the commutativity of diagram (3.3) forces two different values of ∆(c)
for the map ∆: C −→ C ∧R C. We get a contradiction, thus σ : R(d) ∧ C(0) → C(d)
must be surjective.

Remark 3.8. Notice that we did not require R(0) ∼= S0 for Lemma 3.6. It is valid for
any commutative monoid R in TopD∗ . This suggests that, even though R-coalgebras
in TopD∗ are not necessarily cocommutative when R(0) ≇ S0, there are restrictions on

the possibilities of R-coalgebras in TopD∗ .

Remark 3.9. In the proof of Lemma 3.6 above, choosing a particular category D

might simplify the reader’s understanding. For instance, if we choose D = Σ+ as in
[MMSS01, Example 4.2], where Σ is the category of finite sets and their permuta-

tions, we obtain the usual category of symmetric spectra SpΣ := Sp
Σ+

S
as in [HSS00].

Lemma 3.6, for S-coalgebras in SpΣ, appeared in an early version of [HS] before being
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developed further here. Equation (3.1) of the internal smash product of Σ+-spaces X
and Y at the nth level simplifies to:

(X ∧ Y )n =
∨

p+q=n

Σ+
n ∧Σp×Σq

Xp ∧ Yq,

where Σn is the symmetric group on n letters. Thus we see directly that the copies
Xn ∧ Y0 and X0 ∧ Yn are never identified in the internal smash product, but they can
be when considering (X ∧S Y )n. In particular, we do not need Lemma 3.7 here.

In order to prove Theorem 3.4, we now investigate condition (i) of Theorem 2.2
with the functor Ev0 : Sp

D

R → Top∗. We need the next two results.

Lemma 3.10. Let X and Y be pointed spaces. For any commutative monoid (R,φ, λ)
in TopD∗ , and any object d in D, we have a homeomorphism of pointed spaces:

R(d) ∧X ∧ Y ∼= [(R ∧X) ∧R (R ∧ Y )] (d).

Proof. The proof follows by adjointness of the functor R ∧ − : Top∗ → SpDR as in
[MMSS01, Lemma 21.3].

Lemma 3.11. Let D satisfy Properties 3.1 and 3.2. Let (R,φ, λ) be a commutative
monoid in TopD∗ , where R(0) ∼= S0. Let (C,∆, ε) be an R-coalgebra in TopD∗ . Then
there is a homeomorphism of pointed spaces:

C(0) ∧ C(0) ∼= (C ∧R C)(0).

Remark 3.12. The result of Lemma 3.11 is automatic in most categories of interest,
and does not require C to be a coalgebra. Indeed, we have (X ∧ Y )(0) ∼= X(0) ∧ Y (0)
for any symmetric spectra or orthogonal spectra X and Y . In other words, the functor
Ev0 : Sp

D

R → Top∗ is strong symmetric monoidal when R(0) ∼= S0. But this is not true
in general (for instance in W-spaces and Γ-spaces, see Examples 3.14 and 3.16 below).

Proof. Denote by σ : R ∧ C(0) → C the natural epimorphic map of Lemma 3.6. Let
us consider the map of R-modules σ ∧ σ :

(

R ∧ C(0)
)

∧R
(

R ∧ C(0)
)

→ C ∧R C. If we
evaluate on the unit object 0 we get a map:

σ ∧ σ : C(0) ∧ C(0) ∼=
[(

R ∧ C(0)
)

∧R
(

R ∧ C(0)
)]

(0) −→ (C ∧R C)(0),

where the left homeomorphism is induced by Lemma 3.10 and R(0) ∼= S0. Recall that
(C ∧R C)(0) is obtained from (C ∧ C)(0) by coequalizing the R-action, so that we
get a surjective continuous pointed map (C ∧ C)(0) → (C ∧R C)(0). The map σ ∧ σ
factors through the space (C ∧ C)(0):

[(

R ∧ C(0)
)

∧R
(

R ∧ C(0)
)]

(0) (C ∧ C)(0)

(C ∧R C)(0).

σ∧σ

σ∧σ

Recall that (C ∧ C)(0) = (
∨

D(e⊗ f, 0) ∧ C(e) ∧ C(f))/ ∼. From Lemma 3.6, given
an element α ∧ c1 ∧ c2 inD(e⊗ f, 0) ∧ C(e) ∧ C(f), there exists r1 ∈ R(e), r2 ∈ R(f),
c′1, c

′
2 ∈ C(0) such that σ(r1 ∧ c

′
1) = c1 and σ(r2 ∧ c

′
2) = c2. Hence (σ ∧ σ)(α ∧ r1 ∧

c′1 ∧ r2 ∧ c
′
2) = α ∧ c1 ∧ c2. Thus the map σ ∧ σ is surjective.
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Next we show that the map σ ∧ σ : C(0) ∧ C(0) → (C ∧R C)(0) is injective. Explic-
itly, the map σ ∧ σ sends C(0) ∧ C(0) to the copy D(0⊗ 0, 0) ∧ C(0) ∧ C(0) in (C ∧R

C)(0) via the natural isomorphism 0⊗ 0
∼=
−→ 0. Since C is counital, we can consider

the maps of R-modules:

C ∧R C C ∧R R ∼= C, C ∧R C R ∧R C ∼= C.
idC∧ε ε∧idC

Evaluating again at 0 and factoring the above maps through the product, we get a
continuous pointed map:

(C ∧R C)(0) C(0) ∧ C(0).
(idC∧ε)∧(ε∧idC)

Explicitly, the above map acts as the identity on the copy of C(0) ∧ C(0) in (C ∧R
C)(0). That is, the composite:

C(0) ∧ C(0) (C ∧R C)(0) C(0) ∧ C(0)σ∧σ (idC∧ε)∧(ε∧idC)

is the identity by the counital property. Thus σ ∧ σ is injective. Therefore σ ∧ σ
induces the desired homeomorphism with inverse (idC ∧ ε) ∧ (ε ∧ idC).

Proof of Theorem 3.4. We apply Theorem 2.2 to the adjoint pair of functors:

R ∧ − : Top∗ SpDR : Ev0.

Lemma 3.11 proves (i). Lemma 2.4 shows (ii). Finally, Lemma 3.6 induces (iii).

We end this section with three examples.

Example 3.13. The functor R ∧ − : Top∗ → SpDR does not lift to an essentially sur-
jective functor on comonoid objects. For instance, when R is the sphere spectrum S

there exist examples of S-coalgebras that are not isomorphic to suspension spectra.
For example, in symmetric spectra, given a space Y and a quotient space Y/B, one
can form a counital coalgebra C with C0 = Y+, and Cn = Sn ∧ (Y/B)+ for n > 0.
The counit map on level n, that is, Sn ∧ (Y/B)+ → Sn, is induced by the map from
Y/B+ → S0 that sends only the base point to the base point of S0.

Example 3.14. Let (W,∧, S0) be the category of based spaces homeomorphic to
finite CW complexes endowed with the usual smash product of spaces, as described in
[MMSS01, Example 4.6]. The sphere spectrum S : W → Top∗ is defined as the strong
symmetric monoidal faithful functor induced by inclusion. Recall from [MMSS01,
Lemma 4.9] that anyW-space has a unique structure ofW-spectrum over S. Moreover,
for any W-spaces X and Y , we have X ∧ Y ∼= X ∧S Y . We provide here an example
where:

X(S0) ∧ Y (S0) ≇ (X ∧ Y )(S0),

for some choice of W-spaces X and Y . Recall from equation (3.1) that we have:

(X ∧ Y )(S0) =





∨

(K,L)∈W×W

W(K ∧ L, S0) ∧X(K) ∧ Y (L)





/

∼, (3.4)
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where elements α ∧ xK ∧ yL in W(K ∧ L, S0) ∧X(K) ∧ Y (Y ) are identified with ele-
ments x0 ∧ y0 in X(S0) ∧ Y (S0) ∼= W(S0 ∧ S0, S0) ∧X(S0) ∧ Y (S0) if and only if
either one of the following type of identifications occurs:

(1) there exist maps f : S0 → K and g : S0 → L in W such that X(f)(x0) = xK ,
Y (g)(y0) = yL and the following diagram commutes:

S0 ∧ S0 K ∧ L

S0;

f∧g

∼=
α

(2) there exist maps f : K → S0 and g : L→ S0 in W such that X(f)(xK) = x0,
Y (g)(yL) = y0 and the following diagram commutes:

K ∧ L S0 ∧ S0

S0;

f∧g

α
∼=

(3) there exist spaces K ′ and L′ in W, together with a map β : K ′ ∧ L′ → S0 in W,
such that there exist maps f : S0 → K, g : S0 → L, f ′ : K → K ′ and g′ : L→ L′

in W where X(f)(x0) = X(f ′)(xK), Y (g)(y0) = Y (g′)(yL) and the following
diagram commutes:

S0 ∧ S0 K ′ ∧ L′ K ∧ L

S0.

f∧g

∼=
β

f ′∧g′

α

For any based space A, let us defined the infinite symmetric product of A, denoted
SP(A), to be the free commutative monoid generated by A in (Top∗,×, ∗), see more
details in [AGP02, Definition 5.2.1]. Write [a1, a2, . . . , an] for the equivalence class
in SP(A) of the point (a1, a2, . . . , an, ∗, ∗, . . .) in

∏

n>1A. This defines a functor
SP : Top∗ → Top∗ where a map f : A→ B induces SP(f) : SP(A) → SP(B) defined
by f([a1, . . . , an]) = [f(a1), . . . , f(an)]. We precompose by the functor S : W → Top∗
to obtain a based, continuous functor SP : W → Top∗, which makes the infinite sym-
metric product SP into a W-space. A standard result of Dold-Thom gives that, for
n > 1, the spaces SP(Sn) are the Eilenberg-Mac Lane spaces K(Z, n), see [AGP02,
Proposition 6.1.2], and thus SP is the Eilenberg-Mac Lane spectrum HZ in W-spaces.

We argue here that (SP ∧ SP)(S0) ≇ SP(S0) ∧ SP(S0). Let us describe particular
elements α ∧ xK ∧ yL in W(K ∧ L, S0) ∧ SP(K) ∧ SP(L), for particular K and L in
W, that are not identified to any element x0 ∧ y0 in SP(S0) ∧ SP(S0), via any identifi-
cations of the form (1), (2) and (3) above. Let us first describe K and L and the map
α : K ∧ L→ S0. For the map α not be to be trivial, we choose K and L disconnected
as follows. Let K = {∗, k1, k2} and L = {∗, ℓ1, ℓ2} be discrete spaces. Then the smash
product K ∧ L is given by the discrete space {∗, k1 ∧ ℓ1, k1 ∧ ℓ2, k2 ∧ ℓ1, k2 ∧ ℓ2}. We
define the map α : K ∧ L→ S0 by α(∗) = 0 and:

α(k1 ∧ ℓ1) = 0, α(k1 ∧ ℓ2) = 1, α(k2 ∧ ℓ1) = 1, α(k2 ∧ ℓ2) = 0.

Given our choice of α : K ∧ L→ S0, the reader can verify that there are no maps
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f : K → S0 and g : L→ S0 in W such that they fit in the commutative diagram:

K ∧ L S0 ∧ S0

S0.

f∧g

α
∼=

This shows that for any choice of xK and yL in SP(K) and SP(L), no element α ∧
xK ∧ yL is identified with an element x0 ∧ y0 ∈ SP(S0) ∧ SP(S0) in the identification
of type (2) as described above.

Let xK = [k1, k2]. Let yL be any non-basepoint element of SP(L). Any element of
SP(S0) is of the form [1, . . . , 1] and, for a map f : S0 → K, the map SP(f) sends this
element to [f(1), . . . , f(1)] in SP(K). Since k1 6= k2, there is no map f : S0 → K such
that SP(f)(x0) = xK for some x0 ∈ SP(S0). Thus, identifications of type (1) do not
occur on the element α ∧ xK ∧ yL in W(K ∧ L, S0) ∧ SP(K) ∧ SP(L).

Suppose now there exist objects K ′ and L′ in W, together with maps f ′ : K → K ′,
g′ : L→ L′ and β : K ′ ∧ L′ → S0 in W, such that the following diagram commutes:

K ∧ L K ′ ∧ L′

S0.

f ′∧g′

α
β

Since α is non-trivial, it follows thatK ′ ∧ L′ is disconnected and β is non-trivial. Since
K ′ ∧ L′ is disconnected, if follows that both K ′ and L′ are disconnected as well. We
argue that the images f ′(k1) and f ′(k2) do not lie in the same path-component of
K ′. If we suppose they are, then commutativity of the above diagram gives:

0 = α(k1 ∧ ℓ1) = β(f ′(k1) ∧ g
′(ℓ1)) = β(f ′(k2) ∧ g

′(ℓ1)) = α(k2 ∧ ℓ1) = 1,

which is a contradiction. Also, since β(f ′(k2) ∧ g
′(ℓ1)) = α(k2 ∧ ℓ1) = 1, it follows

that f ′(k2) is not the basepoint of K ′. Since β(f ′(k1) ∧ g
′(ℓ2)) = α(k1 ∧ ℓ2) = 1, also

f ′(k1) is not the basepoint. Thus the two non-basepoints f ′(k1) 6= f ′(k2) in K ′ are
distinct. Whence, there are no elements x0 ∧ y0 ∈ SP(S0) ∧ SP(S0) such that identi-
fications of type (3) occur with the element α ∧ xK ∧ yL.

Therefore, we have presented a non-trivial element α ∧ xK ∧ yL ∈ W(K ∧ L, S0) ∧
SP(S0) ∧ SP(S0) in the summand (SP ∧ SP)(S0) of equation (3.4) that is not identi-
fied with any element in SP(S0) ∧ SP(S0). Thus (SP ∧ SP)(S0) ≇ SP(S0) ∧ SP(S0).

Remark 3.15. In Example 3.14, we purposefully have chosen a W-space X where the
structure maps:

K ∧X(S0) → X(K ∧ S0) ∼= X(K)

are not epimorphisms. However, if X is an S-coalgebra in W-spaces, Lemma 3.6 shows
that such non-epimorphic structure maps are not possible.

Example 3.16. Recall, from [MMSS01, Example 4.8], that if we choose D to be
the category of finite based sets n+ = {0, 1, . . . , n} and all based maps, where 0 is
the basepoint, then a D-space is a Γ-space as in [Seg74]. As in W-spaces, here the
sphere spectrum S : D → Top∗ is defined as the strong symmetric monoidal faithful
functor induced by inclusion (endowing the finite sets with the discrete topology).
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Recall from [MMSS01, Lemma 4.9] that we have X ∧S Y ∼= X ∧ Y for any Γ-spaces
X and Y , as the action of the sphere spectrum S provides no additional data. As in
Example 3.14, the Γ-space model of the Eilenberg-Mac Lane spectrumHZ provides an
example of a Γ-space X where (X ∧X)(1+) ≇ X(1+) ∧X(1+). The proof is similar
to Example 3.14.

4. Coalgebras in EKMM-spectra

We prove here (in Theorem 4.1 below) a result similar to Theorem 3.4 for EKMM-
spectra using the same strategy from Theorem 2.2. We first investigate the definition
of the smash product in this case.

Let us set notation and recall the definitions. All missing details can be found
in [EKMM97]. Let L denote the category whose objects are universes and whose
morphisms are linear isometries. We fix U a universe, that is, a countable dimensional
real inner product space. We say X is a spectrum indexed on U if we are given
a collection XV of pointed topological spaces for each V ⊆ U a finite dimensional
subspace, together with structure maps:

σV,W : ΣW−VXV −→ XW ,

whenever V ⊆W ⊆ U, such that the adjoint of each σV,W is a homeomorphism. Given
two spectra X and Y indexed on U, their external smash product X∧Y is a spectrum
indexed on U⊕2 defined by:

(X∧Y )V = XV1
∧ YV2

,

for any finite dimensional subspace V = V1 ⊕ V2 ⊆ U⊕2. Let L(n) = L(U⊕n

,U) for
all n ∈ N. We say X is an L-spectrum if the spectrum X is endowed with an action
α : L(1)⋉X −→ X (see [EKMM97, Chapter I, Definition 4.2]). If X and Y are
L-spectra, their operadic smash product X ∧L Y is the coequalizer:

(

L(2)× L(1)× L(1)
)

⋉ (X∧Y ) L(2)⋉X∧Y,
γ⋉idX∧Y

idL(2)⋉(αX∧αY )
(4.1)

where γ : L(2)× L(1)× L(1) → L(2) is the map defined by: (θ, ϕ, ψ) 7−→ θ ◦ (ϕ⊕ ψ),
and idL(2) ⋉ (αX∧αY ) is defined via the isomorphism (see [EKMM97, Chapter I,
Proposition 2.2(ii)]):

(

L(2)× L(1)× L(1)
)

⋉X∧Y ∼= L(2)⋉
(

(L(1)× L(1))⋉ (X∧Y )
)

,

and αX∧αY is the induced map:

L(1)× L(1)⋉ (X∧Y ) ∼= (L(1)⋉X)∧(L(1)⋉ Y )
αX∧αY−→ X∧Y.

A definition of the twisted half-smash product L(2)⋉X∧Y can be found in [Col97,
Definition 5.1]. Let us make the construction explicit. For each V ⊆ U⊕2, define a
Thom spectrum M(V ) indexed on U so that, for any V ⊆W ⊆ U⊕2 we have an
isomorphism of spectra indexed on U:

ΣW−V
M(W )

∼=
−→ M(V ),

see [Col97, Proposition 4.3]. Whenever the dimension of U ⊆ U is strictly smaller
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than the dimension of V ⊆ U⊕2, the space M(V )U is just a point (see beginning of
[Col97, Section 4]). The twisted half-smash product L(2)⋉ (X∧Y ) is defined to be
the colimit (see [Col97, Definition 3.5]) in the category of spectra indexed over U:

colimV⊆U⊕2

(

M(V ) ∧ (X∧Y )V

)

, (4.2)

where the colimit is taken over the maps:

M(V ) ∧ (X∧Y )V
∼= ΣW−V

M(W ) ∧ (X∧Y )V
∼= M(W ) ∧ ΣW−V (X∧Y )V
→ M(W ) ∧ (X∧Y )W

for V ⊆W ⊆ U⊕2, finite dimensional subspaces. This amounts to saying that, for any
finite dimensional subspace U ⊆ U, the smash product (X ∧L Y )U can be regarded
as a quotient of the following space:









∨

V=V1⊕V2⊆U
⊕2

finite dimensional

M(V )U ∧XV1
∧ YV2









/

∼.

Since M(V )U is a point whenever the dimension of V is bigger than U and that
M(0)0 ∼= S0, we obtain:

(X ∧L Y )0 ∼= X0 ∧ Y0. (4.3)

Recall from [EKMM97, Chapter III, Definition 1.1] that an S-module X is an
L-spectrum such that the natural map S ∧L X → X is an isomorphism. The smash
product of S-modules X and Y is defined as X ∧S Y = X ∧L Y (see [EKMM97,
Chapter II, Definition 1.1]). We denote the resulting symmetric monoidal category
by SpEKMM. Similarly as in previous sections, given a commutative monoid R in
SpEKMM (i.e. a commutative S-algebra), we define the smash product X ∧R Y of two
R-modules X and Y as the coequalizer:

X ∧S R ∧S Y X ∧S Y.
idX∧σ

(σ◦τ)∧idY

(4.4)

See [EKMM97, Chapter III, Definition 3.1].

Theorem 4.1. Let R be a commutative S-algebra in SpEKMM such that R0
∼= S0. Let

(C,∆, ε) be an R-coalgebra in SpEKMM. Then C is cocommutative.

Proof. We apply Theorem 2.2 to the pair R ∧ − : Top∗ ModR(Sp
EKMM) :Ev0.

Equation (4.3) shows that Ev0 is a strong symmetric monoidal functor, and thus
proves condition (i). Lemma 2.4 shows (ii). We conclude using Lemma 4.2 below
and (iii) of Theorem 2.2.

Lemma 4.2. Let R be a commutative S-algebra in SpEKMM. Let (C,∆, ε) be an R-
coalgebra in SpEKMM. Then the natural map σ : R ∧ C0 −→ C is an epimorphism of
R-modules in SpEKMM.

Proof. As we have recalled above, given any finite dimensional subspace U ⊆ U, the
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smash product (C ∧R C)U can be regarded as:

(C ∧R C)U =









∨

V=V1⊕V2⊆U
⊕2

finite dimensional

M(V )U ∧ CV1
∧ CV2









/

∼R. (4.5)

If dim(U) = 1 in equation (4.5), we get that (C ∧R C)U is simply:
((

M(U ⊕ 0)U ∧ CU ∧ C0

)

∨
(

M(0)U ∧ C0 ∧ C0

)

∨
(

M(0⊕ U)U ∧ C0 ∧ CU

))/

∼R.

Denote the action from the L-structure of C by α : L(1)⋉ C −→ C. Elements in
CU ∧ C0 are not identified with elements in C0 ∧ CU in the coequalizer (4.1) via the
map α∧α. However, elements of CU ∧ C0 can be identified with elements of C0 ∧ CU
under the R-action RU ∧ C0 → CU (in the coequalizer (4.4)) and the structure map
σ0,U in (C ∧R C)U (in the colimit (4.2)). Notice the similarity with equation (3.2)
in previous section. We can argue similarly. Suppose the map RU ∧ C0 → CU is not
surjective. Since the composite:

SU ∧ C0 RU ∧ C0 CU

is the structure map σ0,U , then σ0,U must also not be surjective. Let c be an element in
CU not in the image of RU ∧ C0 → CU . Notice that c is also not in the image of σ0,U .
Its preimage under the map ε ∧ idC lies in C0 ∧ CU but its preimage under the map
idC ∧ ε lies in CU ∧ C0. Since c is not in the image of σ0,U , elements in the two preim-

ages (idC ∧ ε)
−1

(c) and (ε ∧ idC)
−1

(c) are not identified in the colimit (4.2). Similarly,
since c is not in the image of RU ∧ C0 → CU , the elements in the two preimages are
not identified in the coequalizer (4.4). Thus, the two preimages (idC ∧ ε)

−1
(c) and

(ε ∧ idC)
−1

(c) are disjoint in (C ∧R C)U . But we then get a contradiction with the
commutativity of the diagram:

C ∧R C C ∧R R ∼= C ∼= R ∧R C C ∧R C

C.

idC∧ε ε∧idC

∆ ∆

The higher dimensional cases are done similarly, so the map R ∧ C0 −→ C is an
epimorphism.
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