
Homology, Homotopy and Applications, vol. 20(2), 2018, pp.377–402

THE ALGEBRAIC AND TOPOLOGICAL K-THEORY
OF THE HILBERT MODULAR GROUP
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Abstract
In this paper we provide descriptions of the Whitehead

groups with coefficients in a ring for the Hilbert modular group
(and its reduced version). We also compute the rational topolog-
icalK-theory of their reduced C∗-algebras. This is done by com-
puting the source of the assembly maps in the Farrell–Jones and
the Baum–Connes conjecture respectively. We also construct a
model for the classifying space of the Hilbert modular group for
the family of virtually cyclic subgroups.

1. Introduction

In [BSSn16] Bustamante and Sánchez studied theWhitehead groups of the Hilbert
modular group SL2(Ok) and the reduced version PSL2(Ok), for any totally real
extension k of Q. In that paper they obtained, for all q ∈ Z, the following splitting

Whq(PSL2(Ok)) ∼=
⊕
M∈F

Whq(M),

where the sum runs over conjugacy classes of maximal finite subgroups of PSL2(Ok).
They also obtained isomorphisms

Wh1(SL2(Ok)) ∼= SL2(Ok)
ab ⊕ Z/2⊕Wh1(PSL2(Ok)),

Wh0(SL2(Ok)) ∼= Z⊕Wh0(PSL2(Ok)), and

Wh−1(SL2(Ok)) ∼= Wh−1(PSL2(Ok)).

The main tools used in [BSSn16] are the K-theoretic Farrell–Jones conjecture from
[FJ93], the p-chain spectral sequence from [DL03], and the action of the Hilbert mod-
ular group on the n-fold product of copies of hyperbolic planes. It is worth noting that
they work with the Farrell–Jones conjecture with coefficients in the non-connective
algebraicK-theory spectrum KZ of the integers. Nevertheless, the computations carry
through with coefficients in KR, for any ring R, although they do not recover the
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classical Whitehead groups, instead you get a direct summand of the Whitehead
groups with coefficients (see Section 2). In the present paper we are interested in the
Whitehead groups with coefficients in an associative ring with unit, which are a gen-
eralization of the Whitehead groups studied in [BSSn16]. The strategy is to use the
K-theoretic Farrell–Jones conjecture to identify the Whitehead groups Whq(G;R)
with the homology groups of a certain classifying space with coefficients in the non-
connective K-theory spectrum KR. Then we use a result of Bartels to split these
homology groups into two parts. The first summand is the one studied in [BSSn16],
while for the study of the second part we follow the strategy used in [LR14], which
makes use of the inductive structure of our equivariant homology theory, the Lück–
Weiermann construction from [LW12], and the Mayer–Vietoris sequence associated
to it. The descriptions of the Whitehead groups of the Hilbert modular group and the
reduced one are in Theorem 5.9 and Theorem 5.2. The latter is a partial generalization
of Theorem 3.35 in [DKR11].

On the other hand we also obtain a computation of the rational topological K-
theory groups of the reduced group C∗-algebra of PSL2(Ok). We use the Baum–
Connes conjecture to identify the topological K-theory groups with the equivariant
K-homology groups of the classifying space for proper actions. Then we use the
p-chain spectral sequence from [DL03] and some results proved in [BSSn16] that
implies that PSL2(Ok) satisfies conditions (M) and (NM) defined in [DL03]. Finally,
using some computations of the rational group cohomology of PSL2(Ok) from [Fre90]
we obtain a complete calculation of the rationalized topological K-theory groups of
the reduced C∗-algebra of the reduced Hilbert modular group in Theorem 6.2.

This paper is organized as follows. In Section 2 we recall the definition of a classi-
fying space EFG of a group G and a family of subgroups F , we describe the Lück–
Weiermann construction, and we construct an explicit model for the classifying space
EFBCV of a non-orientable virtually cyclic subgroup V , with respect to the family of
finite-by-cyclic subgroups. In Section 3 we recall the K-theoretic Farrell–Jones con-
jecture and the Baum–Connes conjecture, we introduce the Whitehead groups via a
theorem of Waldhausen, and we recall Bartels’s splitting theorem for the domain of
the assembly map in the Farrell–Jones conjecture. Section 4 is devoted to introducing
the Hilbert modular group and what we call the reduced Hilbert group as well as some
of their basic properties. We end this section by constructing models for the classify-
ing space for both groups, with respect to the family of virtually cyclic subgroups, in
Theorem 4.10 and Theorem 4.17. Next, in Section 5, we perform the computation of
the Whitehead groups of the Hilbert modular group and the reduced Hilbert modular
group, and give expressions in terms of the Whitehead groups of finite groups and
the Nil-groups of the coefficient ring. Finally, in Section 6, we compute the rational
topological K-theory of the reduced C∗-algebra of the reduced modular Hilbert group
using the Chern Character and some results in [DL03].

2. Classifying spaces for families of subgroups

In this section we recall the notion of classifying spaces for families of subgroups,
the construction of Lück–Weiermann from [LW12], and the construction of a model
for EFBCV , for a non-orientable virtually cyclic group V and the family of finite-by-
cyclic subgroups.
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Let G be a discrete group. A family of subgroups F of a group G is always
assumed to be closed under conjugation and under taking subgroups. A model for
the classifying space EFG is a G-CW-complex X satisfying that all of its isotropy
groups belong to F and the fixed point set XH is contractible for every H in F .
Equivalently, a model for EFG is a terminal object in the category whose objects are
G-CW-complexes with stabilizers in F (often called F-G-CW-complexes) and whose
morphisms are G-homotopy classes of G-maps. It is well known that given G and
F , a model for EFG always exists and is unique up to G-homotopy equivalence (see
[Lüc05]).

We are specially interested in the following families of subgroups:

• ALL of all subgroups of G;

• V CYC of all virtually cyclic subgroups of G, i.e. subgroups which have a (possibly
finite) cyclic subgroup of finite index;

• F BC of all subgroups that are either finite or isomorphic to F ⋊ Z, with F a
finite group. Here the notation F BC stands for finite-by-cylic;

• F IN of all finite subgroups;

• Sub(K) the family of subgroups of G generated by a subgroup K ⩽ G.

• Tr consisting of the trivial subgroup.

The family F IN is interesting because it appears in the Baum–Connes conjecture.
Similarly, the family V CYC appears in the original statement of the Farrell–Jones
conjecture. In [DKR11] and [DQR11] it is proven that V CYC can be replaced by
F BC in the Farrell–Jones assembly map. This is why the family F BC is also considered
in this work.

We denote by EG, EG, EG, and EKG the classifying spaces ETrG, EF ING,
EV CYCG, ESub(K)G, respectively.

Definition 2.1. Let G be a group and let V CYC∞ be the set of infinite virtually cyclic
subgroups of G.

• Define an equivalence relation ∼ in V CYC∞ as follows: if H,K ∈ V CYC∞ we say
that H ∼ K if H ∩K is infinite. We denote by [H] the equivalence class of H,
and by [V CYC∞] the quotient set.

• Define NG[H] := {g ∈ G|[g−1Hg] = [H]}. We call this subgroup of G the nor-
malizer of the class [H], or the commensurator of H. Note that NG[H] does not
depend on the representative of the class [H], in particular, we can choose H to
be an infinite cyclic subgroup of G.

• Define a family of subgroups of NG[H] by

V CYC[H] := {V ⊂ NG[H]|V ∈ V CYC∞, V ∈ [H]} ∪ (F IN ∩NG[H])

where F IN ∩NG[H] consists of the family of finite subgroups of NG[H].

Theorem 2.2 ([LW12, Theorem 2.3]). Let G be a discrete group. Let I be a complete
set of representatives of the G-orbits in [V CYC∞] under the G-action coming from
conjugation. For every H ∈ I, choose models for ENG[H] and EV CYC[H]NG[H], and
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a model for EG. Now consider X defined by the G-pushout:⨿
H∈I G×NG[H] ENG[H]

i //

⨿
H∈I IdG×NG[H]fH

��

EG

��⨿
H∈I G×NG[H] EV CYC[H]NG[H] // X,

where the maps starting from the left upper corner are cellular and one of them is an
inclusion of G-CW-complexes. Then X is a model for EG.

Now we are going to analyze classifying spaces of virtually cyclic groups, for the
family F BC of finite-by-cyclic subgroups. It is well known that every virtually cyclic
group V is of one of the following types:

1. Finite;

2. orientable or finite-by-cyclic, i.e. it surjects onto Z with finite kernel, so that it
is isomorphic to F ⋊ Z with F a finite group; or

3. non-orientable, i.e. it surjects onto the infinite dihedral group D∞ with finite
kernel, so that it is isomorphic to an amalgam of finite groups F1 ∗F3 F2 with
[F1 : F3] = [F2 : F3] = 2.

Let V be a non-orientable virtually cyclic group, then we have the short exact
sequence

1 → F → V
pV−−→ D∞ → 1,

with F a finite group. On the other hand, since D∞ is isomorphic to Z ⋊ Z/2, we
have the short exact sequence

1 → Z → D∞
pD−−→ Z/2 → 1.

The following theorem will be used in the proof of Lemma 5.7.

Theorem 2.3. Let V be a non-orientable virtually cyclic group and denote PV =
pD ◦ pV : V → Z/2. Let X be the V -CW-complex defined by the V -pushout

EFV //

��

EV

��

P ∗
V EZ/2 // X,

where the upper arrow is an inclusion map, and P ∗
V denotes the action of V induced

by the map PV . Then X is a model for EFBCV .

Proof. Since for every K ⩽ V we have the pushout

EFV
K //

��

EV K

��

P ∗
V EZ/2K // XK ,

it is not difficult to see that X is a model for EFBCV .
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3. The Farrell–Jones conjecture and the Baum–Connes
conjecture

In this section we recall the Farrell–Jones conjecture and the Baum–Connes con-
jecture. Also we recall Bartels’s splitting theorem and we introduce the Whitehead
groups Whq(G;R) using a famous theorem of Waldhausen.

Let G be a discrete group and let R be an associative ring with unit. We denote by
Kn(R(G)), n ∈ Z, the algebraic K-theory groups of the group ring R(G) in the sense
of Quillen for n ⩾ 0 and in the sense of Bass for n ⩽ −1. Let NKn(R) denote the
Bass Nil-groups of R, which by definition are the cokernels of the map in algebraic
K-theory Kn(R) → Kn(R[t]) induced by the canonical inclusion R → R[t]. From the
Bass–Heller–Swan theorem we get, for all n ∈ Z, the decomposition

Kn(R(Z)) ∼= Kn(R[t, t−1]) ∼= Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R).

Throughout this work we consider equivariant homology theories in the sense of
[LR05, Section 2.7.1]. In particular, we are interested in the equivariant homology
theory with coefficients in the K-theory spectrum described in [LR05, Section 2.7.3],
denoted by HG

∗ (−;KR). For a fixed group G this homology theory satisfies the
Eilenberg–Steenrod axioms in the G-equivariant setting. One of the main proper-
ties of this homology theory is that

HG
n (G/H;KR) ∼= HH

n (H/H;KR) ∼= Kn(R(H))

for every H ⊆ G. The other property we are interested in is the so-called induction
structure (see [LR05, Section 2.7.1]): given a group homomorphism α : H → G and
a H-CW-pair (X,A) such that the kernel of α acts freely on X, there are, for every
n ∈ Z, natural isomorphisms

indα : H
H
n (X,A;KR) → HG

n (indα(X,A);KR).

This equivariant homology theory is relevant since it appears in the statement of
the Farrell–Jones conjecture.

In their seminal paper [FJ93] Farrell and Jones formulated their famous isomor-
phism conjecture for the K-theory, L-theory and Pseudoisotopy functors. Here we
consider the K-theoretic version of the conjecture as stated by Davis and Lück in
[DL98].

Conjecture 3.1 (The Farrell–Jones isomorphism conjecture). Let G be group and
let R be a ring. Then, for any n ∈ Z, the following assembly map, induced by the
projection EG → G/G, is an isomorphism

AV CYC,ALL : HG
n (EG;KR) → HG

n (G/G;KR) ∼= Kn(R(G)). (∗)

Once the Farrell–Jones conjecture has been verified for a group G, one can hope to
compute Kn(R(G)) by computing the left hand side of (∗). The later is a generalized
homology theory that can be approached, for example, via Mayer–Vietoris sequences,
Atiyah–Hirzebruch-type spectral sequences or the p-chain spectral sequence described
in [DL03].

In order to handle the left hand side of (∗) it is desirable to have good models
for the classifying spaces EG. For this, we will use the construction of Lück and
Weiermann described in the previous section. Roughly speaking, this construction
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gives us an algorithm for constructing a model for EG, using a model for EG and
attaching to it some classifying space (with respect to smaller families) of subgroups
of G.

Given a cellular G-map f : X → Y between the G-CW-complexes X and Y , we
define

HG
n (f : X → Y ;KR) := HG

n (Mf , X;KR),

where Mf is the mapping cylinder of f with the G-CW-structure induced by X and
Y , and X is identified with the image of the canonical inclusion X → Mf . Using the
fact that Y and Mf are G-homotopy equivalent, we have the long exact sequence

· · · → HG
n (X;KR)

f∗−→ HG
n (Y ;KR) → HG

n (f : X → Y ;KR) → HG
n−1(X;KR) → · · · .

(1)
If g : X → Y is a G-cellular map G-homotopic to f , then using a five lemma argu-

ment it is easy to see thatHG
n (f : X → Y ;KR) ∼= HG

n (g : X → Y ;KR). In this context,
the Farrell–Jones conjecture may be rephrased by claiming thatHG

n (EG → G/G;KR)
vanishes for every group G and every n ∈ Z.

The following theorem will be useful in our computations of algebraic K-theory.

Theorem 3.2. Let G be a group and let R be a ring. Then, for any n ∈ Z, the
assembly map induced by the (unique up to homotopy) G-map EG → EG

HG
n (EG;KR) → HG

n (EG;KR)

is split-injective, so that

HG
n (EG;KR) ∼= HG

n (EG;KR)⊕HG
n (EG → EG;KR).

Proof. The first assertion is the main result of [Bar03]. In order to prove the splitting
we use the long exact sequence (1) to get, for any n ∈ Z, the split short exact sequence:

0 → HG
n (EG;KR) → HG

n (EG;KR) → HG
n (EG → EG;KR) → 0,

and the result follows.

The Whitehead groups Whn(G;R) of G with coefficients in the ring R, appear in
this context as follows.

Proposition 3.3 ([Wal78, Prop. 15.7]). Let G be a group. Then Whn(G;R) ∼=
HG

n (EG → pt;KR) for all n ∈ Z. In fact, they fit in a long exact sequence

· · · → HG
n (EG;KR) → Kn(R(G)) → Whn(G;R) → HG

n−1(EG;KR) → · · · .

Lemma 3.4. Let G be a group and let R be a ring. Suppose that G satisfies the
Farrell–Jones conjecture. Then, for all n ∈ Z, we have the following isomorphisms

Kn(R(G)) ∼= HG
n (EG;KR) ∼= HG

n (EG;KR)⊕HG
n (EG → EG;KR),

Whn(G;R) := HG
n (EG → EG;KR) ∼= HG

n (EG → EG;KR)⊕HG
n (EG → EG;KR).

Proof. Consider theG-maps (unique up toG-homotopy) f1 : EG→EG, f2 : EG→EG
and f3 : EG → EG. Up to G-homotopy we have that f3 and f2 ◦ f1 are equal, hence
we have that the mapping cylinder Mf3 is G-homotopy equivalent to Mf1 ∪EG Mf2 .
Now, from the long exact sequence of the triple (Mf3 ,Mf1 , EG) and excision, we get
the following long exact sequence:
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· · · → HG
n (EG → EG;KR) → HG

n (EG → EG;KR) → HG
n (EG → EG;KR) → · · · ,

which fits in the commutative diagram

· · · // HG
n (EG → EG;KR) // HG

n (EG → EG;KR) // HG
n (EG → EG;KR) // · · ·

· · · // HG
n (EG;KR)

OO

// HG
n (EG;KR)

OO

// HG
n (EG → EG;KR)

=
OO

// · · · ,

where the vertical arrows are the induced by the inclusions (EG, ∅) ↪→ (Mf1 , EG) and
(EG, ∅) ↪→ (Mf3 , EG). From Theorem 3.2 we know that the lower row splits, which
leads to a splitting of the upper row and this finishes the proof.

Using this lemma we can divide our task into two parts:

• The computation of HG
n (EG → EG;KR), which in our case is possible using

the p-chain spectral sequence following the strategy in [BSSn16], and

• the computation of HG
n (EG → EG;KR), which can be done following the strat-

egy in [LR14], using the Lück–Wiermann construction, the induction structure
of the equivariant homology theory HG

∗ (−;KR), and the explicit computation
of the commensurators NG[H].

Now we proceed to describe the Baum–Connes conjecture. Consider the complex
group ring C(G) canonically included in L2(G). The reduced group C∗-algebra of G is
the completion of C(G) in L2(G) and is denoted by C∗

r (G). For n ∈ Z, letKtop
n (C∗

r (G))
denote the topological K-theory groups of C∗

r (G).
The Baum–Connes conjecture relates the topological K-theory groups of C∗

r (G)
with a more accessible object, namely the so called G-equivariant K-homology. It is
the equivariant homology theory with coefficients in the topological K-theory spec-
trum Ktop described for example in [LR05, Section 2]. This theory is denoted by
HG

n (−;Ktop). Due to the induction structure we have a very important property of
this theory

HG
n (G/H;Ktop) ∼= HH

n (H/H;Ktop) ∼= Ktop
n (C∗

r (H)).

Conjecture 3.5 (Baum–Connes conjecture). Let G be a discrete group. Then for
any n ∈ Z, the following assembly map, induced by the projection EG → G/G, is an
isomorphism

AF IN,ALL : HG
n (EG;Ktop) → HG

n (G/G;Ktop) ∼= Ktop
n (C∗

r (G)). (∗∗)

4. The Hilbert modular group

In this section we review the definition of the Hilbert modular group and its reduced
version, and recall some of their basic properties. Then we proceed to construct models
for the classifying spaces for the family of virtually cyclic subgroups. The results we
state without proof in this section can be found for example in [Fre90]. For additional
information about the Hilbert modular group we refer the reader to [Hir73, vdG88],
and to [Efr87] for the reduced Hilbert group.

A totally real number field k is a finite extension of Q, of degree n, such that all
its embeddings σi : k → C have image contained in R.
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Definition 4.1. Let k denote a totally real number field of degree n and Ok its ring
of algebraic integers. The Hilbert modular group is by definition SL2(Ok), also we
call the quotient PSL2(Ok) = SL2(Ok)/{I,−I} the reduced Hilbert modular group,
where I is the identity matrix. From now on we will denote the Hilbert modular
group with the letter Γ, the reduced Hilbert modular group with the letter G, and
p : Γ → G the canonical projection.

By definition an element in PSL2(Ok) is a class that has exactly two representa-
tives, say a matrix A and its negative −A. From now on, we will make an abuse of
notation and we will not distinguish between a matrix in SL2(Ok) and its class in
PSL2(Ok).

Note that if k = Q, then PSL2(Ok) = PSL2(Z) is nothing but the classical mod-
ular group, hence it is a discrete subgroup of PSL2(R), and admits a proper and
discontinuous action on the hyperbolic plane H via Möbius transformations. How-
ever, PSL2(Ok) is not a discrete subgroup of PSL2(R) if n ⩾ 2, where n is the
degree of k over Q. Yet we can define the embedding

σ : PSL2(Ok) → PSL2(R)n = PSL2(R)× · · · × PSL2(R) (2)

by (
α β
γ δ

)
7→
((

σ1(α) σ1(β)
σ1(γ) σ1(δ)

)
, . . . ,

(
σn(α) σn(β)
σn(γ) σn(δ)

))
,

and identifying the Hilbert modular group with its image we can think of it as a
discrete subgroup of PSL2(R)n. Considering the diagonal action of PSL2(R)n on the
n-fold product H× · · · ×H, we have that the Hilbert modular group does act properly
and discontinuously on this n-fold product space. We also have corresponding actions
of SL2(R) via the quotient map to PSL2(R) with kernel ±I acting trivially.

Next, we would like to analyze the commensuratorsNG[H], forG = PSL2(Ok), the
reduced Hilbert modular group and H an infinite virtually cyclic subgroup. Since the
commensurator only depends on the commensurability class of H we can assume that
H is an infinite cyclic group generated by an infinite-order element α ∈ G. Because
of this it is useful to have a classification of elements in the reduced Hilbert modular
group, so that we can analyze the commensurators case by case. Recall that we are
considering H, the upper half plane model for the hyperbolic 2-space.

Definition 4.2. Consider an element α ∈ PSL2(R). We say that α is

• elliptic if Tr(α)2 < 4,

• parabolic if Tr(α)2 = 4, and

• hyperbolic if Tr(α)2 > 4.

Note that the action of PSL2(R) on H can be extended to an action on H =
H ∪ R ∪ {∞}.

Lemma 4.3. Consider an element α ∈ PSL2(R). Then
1. α is elliptic if and only if it fixes exactly one point in H.

2. α is parabolic if and only if it fixes exactly one point in R ∪ {∞}.
3. α is hyperbolic if and only if it fixes exactly two points in R ∪ {∞}.
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It may happen that the image of the matrix

(
α β
γ δ

)
in the reduced Hilbert mod-

ular group PSL2(Ok) under the embedding (2) has both elliptic components and
hyperbolic components. For example, if k = Q(

√
2), then there are two embeddings

of k into R, namely

σ1 : s+ t
√
2 7→ s+ t

√
2 and σ2 : s+ t

√
d 7→ s− t

√
2,

for s, t ∈ Q. In this case, the matrix

(
1 +

√
2 1 +

√
2

2 1 +
√
2

)
∈ PSL2(Ok) is mapped by

the embedding (2) to((
1 +

√
2 1 +

√
2

2 1 +
√
2

)
,

(
1−

√
2 1−

√
2

2 1−
√
2

))
,

which clearly has first component elliptic and second component hyperbolic. This is
an example of what we will call a mixed element. It is pointed out in [Efr87, Page 11,
third paragraph] that there are no mixed elements with parabolic components.

Definition 4.4. Consider an element α of the reduced Hilbert modular group
PSL2(Ok), and denote by α its image under (2).

1. We say that α is totally elliptic (resp. hyperbolic, parabolic) if all of the com-
ponents of α are elliptic (resp. hyperbolic, parabolic).

2. We say that α is mixed if α has both elliptic components and hyperbolic com-
ponents.

3. We say that α is hyperbolic-parabolic if it is totally hyperbolic and there exist
one point in (R ∪ {∞})n fixed by α that it is fixed by some totally parabolic
element of PSL2(Ok).

Continuing with the example above, we can get a hyperbolic-parabolic element

by considering α =

(
1 +

√
2 0

0 (1 +
√
2)−1

)
, then the fixed points of α are (∞,∞),

(0, 0), (∞, 0), and (0,∞) and the first two points are fixed by a totally parabolic
element.

Now, since it is clear that the elements of PSL2(Ok) of finite order are those
that happen to be totally elliptic, Proposition 4.6 and Proposition 4.7 describe the
commensurators of all infinite cyclic subgroups of PSL2(Ok).

Lemma 4.5. Let G = PSL2(Ok). Consider an infinite-order element α ∈ G and de-
note by H the infinite cyclic subgroup generated by α. Then the normalizer NG(H)
fits in the short exact sequence

1 → CG(H) → NG(H) → F → 1,

where F is a subgroup of Z/2, and CG(H) is the centralizer of H in G.

Proof. Consider the action of G in H. It is well known that the normalizer NG(H)

acts on the fixed point set HH
of H, which is exactly the fixed point set of α. On

the other hand, from hyperbolic geometry, we know that HH
consists of at most two
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points (in the boundary of H). Hence, we have the short exact sequence

1 → K → NG(H) → F → 1,

where F is a subgroup of Z/2, and K consists of the elements g of G such that they

act trivially in HH
, i.e., g has HH

as its fixed point set. Again, by hyperbolic geometry
we know that two elements in G commute if and only if they have the same fixed
point set, hence K = CG(H).

Proposition 4.6. Let G = PSL2(Ok). Consider an element α ∈ G with m hyperbolic
components, 1 ⩽ m ⩽ n, and let H be the infinite cyclic subgroup generated by α.
Then,

NG[H] ∼= NG(H) ∼=

{
Zm or Zm ⋊ Z/2 if α if not hyperbolic-parabolic, and

Zn−1 or Zn−1 ⋊ Z/2 if α is hyperbolic-parabolic,

where the action of Z/2 in the semidirect products is given by multiplication by −1,
in particular, is free away from the origin.

Proof. First, we compute the normalizer NG(H). By Lemma 4.5, we have two cases.
If F is trivial we have that NG(H) = CG(H). Now, if F = Z/2, then any element β in
NG(H) that is not in CG(H) acts non-trivially in the fixed point set of α (considering
the action of α in H), hence β acts on the geodesic that joins the fixed points of α by
an involution, and we conclude that β is an element of order two, so that the short
exact sequence in Lemma 4.5 splits, and NG(H) ∼= CG(H)⋊ Z/2.

Now we shall consider the action of G on the n-fold product Hn. Since the hyper-
bolic plane is a CAT (0)-space with the hyperbolic metric, we have that Hn is also a
CAT (0)-space with the product metric. Moreover, α is a hyperbolic isometry (in the
CAT (0) sense), and we have that (see [DP15, Proof of Proposition 4.4])

NG[H] = {g ∈ G|∃n ∈ Z such that g−1αng = α±n} =

∞∪
i=1

NG(⟨αi⟩).

Note that αi and α have the same fixed point set, then NG(⟨αi⟩) acts on the fixed

point set HH
of α. We deduce that NG[H] acts on HH

, and we have the short exact
sequence

1 → K → NG[H] → F → 1,

where F is a subgroup of Z/2, and K consists of those elements of NG[H] that

have HH
as fixed point set, so that K = CG(H). Finally, we have that NG[H] ∼=

CG(H)⋊ F . If F = Z/2, by restricting the action of NG[H] to the geodesic with end

points in HH
, we can see that the non-trivial element of F acts by multiplication

by −1.
The only thing left is to describe the centralizers, this was done by Efrat in Theo-

rem 5.7 page 26 and Proposition 3.1 page 93 of [Efr87], where it is proved that CG(H)
is a free abelian group of rank m (resp. n− 1) if α is not a hyperbolic-parabolic (resp.
hyperbolic-parabolic) element.

Considering, again, the hyperbolic-parabolic element α =

(
1 +

√
2 0

0 (1 +
√
2)−1

)
,
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we can see that the order-two element β =

(
0 −1
1 0

)
belongs to the normalizer

NG(H), therefore we have the isomorphism NG(H) ∼= Zn−1 ⋊ Z/2. We still do not
know whether there exist or not some infinite cyclic subgroup H of the reduced
Hilbert modular group for which the normalizer NG(H) is free abelian.

Proposition 4.7. Let G = PSL2(Ok). Consider a totally parabolic element α ∈ G,
and denote by H the infinite cyclic subgroup generated by α. Then, we have that

NG[H] ∼= NG(H) ∼= Zn.

Proof. First, we will suppose that α acting on the hyperbolic plane H fixes ∞. In
this case α is a translation, i.e., is represented by a matrix of the following form

A =

(
1 t
0 1

)
with t ∈ Ok. Now suppose that the matrix B =

(
a b
c d

)
belongs to

NG[H]. Since (B−1AB)n is a translation for some n ∈ Z, hence B−1AB should be
itself a translation and a direct computation shows that c = 0, d = a−1, so that

B−1AB =

(
1 ta−2

0 1

)
.

By definition of NG[H] we know that there exist n,m ∈ Z such that Am = B−1AnB,
which is equivalent to the following identity(

1 mt
0 1

)
=

(
1 ta−2n
0 1

)
,

it follows that a−2 = m
n , so that a−2 ∈ Q ∩ Ok = Z, hence a = ±1. Since Ok

∼= Zn

as abelian groups, we have that NG[H] ∼= Zn. We have shown that B =

(
±1 b
0 ±1

)
,

this is, B is a translation. It is now clear that NG[H] = NG(H).
Now suppose that α does not fix ∞ and it is represented by the matrix A′. We

can find a matrix M ∈ GL2(k) such that M−1A′M fixes infinity (see [Fre90, Proof
of Proposition 3.4]). Using the argument in the previous case we can show that
M−1NG[H]M is an additive subgroup of R. On the other hand M−1GM is com-
mensurable with G in PSL2(R) (see [Fre90, Corollary 3.3]), hence M−1NG[H]M
and NG[H] are commensurable. We can conclude that M−1NG[H]M is isomorphic
to Zn. As is the previous case we can see that the elements in M−1NG[H]M are
translations, this implies that NG[H] = NG(H).

Remark 4.8. Let k be a finite extension of Q, not necessarily a totally real one, with
s real embeddings and 2t complex embeddings, say σ1, . . . , σs, σs+1, σs+1, . . . , σs+t,
σs+t, where the bar means complex conjugation. Let Ok be the ring of algebraic
integers of k. Then, it is a well known fact in algebraic number theory that Ok

embeds diagonally in Rs × Ct via σ1, . . . , σs+t, as a discrete lattice. This leads to an
analog embedding to (2)

PSL2(Ok) → PSL2(R)s × PSL2(C)t,

with discrete image, so that we have PSL2(Ok) acting diagonally on the (s+ t)-
fold product H× · · · ×H×H3 × · · · ×H3, where H3 stands for the 3-dimensional
hyperbolic space. Clearly, if t = 0 we are in the Hilbert modular group case. Also if
s = 0 and t = 1 we have the so-called Bianchi groups, these might be the most studied
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cases.
If t > 0, the results from [BSSn16] do not hold in general, since we have made fun-

damental use of properties (M) and (NM) (see [BSSn16, Lemma 4.3]), that directly
implied that the only infinite virtually subgroups of the Hilbert modular group are Z
and D∞, but in [BFJPP00] they showed that, in the concrete case of Bianchi groups,
we have more infinite virtually cyclic subgroups. Hence the first factor of Lemma 3.4
cannot be computed within the context of [BSSn16].

On the other hand Lemma 4.5 holds for G = PSL2(Ok), with k an arbitrary finite
extension of Q, the only difference in the proof would be that G acts on the Riemann
sphere C ∪ {∞} via Möbius transformations, everything else in the proof follows under
the same lines. Moreover, the centralizer CG(H) is again an abelian group, since it can
be embedded in the stabilizers in SL2(C) of {∞} and of {∞, 0} of C ∪ {∞}, which
are abelian using standard facts of the theory of Möbius transformations. The only
problem to obtain analogous to Lemma 4.6 is that we do not know of a calculation
like that given in [Efr87] for centralizers of elements in the Hilbert modular group.

In order to construct a model for EG we will simplify the push-out given in The-
orem 2.2. For this we will need the following lemma.

Lemma 4.9. Let G = PSL2(Ok). Then each infinite cyclic subgroup H of G is con-
tained in a unique maximal infinite cyclic subgroup Hmax of G.

Proof. Consider H and H ′ two infinite cyclic subgroups of G such that H ⊆ H ′.
Then, it is clear that H ′ is contained in CG(H) the centralizer of H in G, which is a
finitely generated free abelian group. Since every cyclic group contained in a finitely
generated abelian group is contained in a unique maximal cyclic group, we have that
H is contained in a unique maximal infinite cyclic subgroup of G.

Theorem 4.10. Let G = PSL2(Ok). Let I be a complete set of representatives of
conjugacy classes of maximal infinite cyclic subgroups of G. For every H ∈ I, choose
models for ENG(H) and EWG(H), where WG(H) = NG(H)/H. Now consider the
G-pushout: ⨿

H∈I G×NG(H) ENG(H)
i //

⨿
H∈I IdG×NG(H)fH

��

EG

��⨿
H∈I G×NG(H) EWG(H) // X,

where EWG(H) is viewed as an NG(H)-CW-complex by restricting with the projection
NG(H) → WG(H), the maps starting from the left upper corner are cellular and one
of them is an inclusion of G-CW-complexes. Then X is a model for EG.

Proof. We will verify that all elements in Theorem 2.2 can be replaced by those
appearing in the above push-out. In fact, since each infinite virtually cyclic subgroup
of G is commensurable with an infinite virtually cyclic subgroup of G, using the
Lemma 4.9 we conclude that the set of representatives I in Theorem 2.2 coincides with
the I defined in the statement above. Now, if we take H ∈ I, from Propositions 4.6
and 4.7 we have that NG[Hmax] = NG(Hmax). The only thing left is to see that a
model for EV CYC [H]NG(H) is also a model for EWG(H). We know that NG(H) is
isomorphic either to Zr or to Zr ⋊ Z/2, since H is maximal, we have that WG(H)



K-THEORY OF THE HILBERT MODULAR GROUP 389

is either isomorphic to Zr−1 or to Zr−1 ⋊ Z/2 respectively. Anyway, checking the
assertion in both cases is straightforward.

Recall that the geometric dimension of a group G with respect to the family of
virtually cyclic subgroups gd(G) is defined as the minimum n such that there exists

an n-dimensional model for EG.

Corollary 4.11. Let Γ = SL2(Ok), and G = PSL2(Ok). Then gd(G) = gd(Γ) ⩽ 2n.

Proof. Since Γ is an extension of G by a finite group it is clear that p∗EG = EΓ,
therefore gd(G) = gd(Γ). A model for EG is given by the n-fold product H× · · · ×H
(see [BSSn16, Remark 4.2]), while models for ENG(H) and EWG(H) are given by
Rn. Now the result follows from the pushout in the previous theorem.

Corollary 4.12. Let G = PSL2(Ok) and let R be a ring. Then, for every q ∈ Z,

HG
q (EG → EG;KR) ∼= HG

q (
⨿
H∈I

G×NG(H) ENG(H)→
⨿
H∈I

G×WG(H) EWG(H);KR)

∼=
⊕
H∈I

HNG(H)
q (ENG(H) → EWG(H);KR),

where I is a set of representatives of conjugacy classes of maximal infinite cyclic
subgroups.

Proof. Using the G-pushout from the previous theorem, we have the first isomor-
phism. In fact, since we are assuming that the map i is an inclusion of a subcomplex,
the space X is actually the homotopy pushout, and then the homotopy cofibers of
the two vertical rows are G-homotopically equivalent. Now, the second isomorphism
follows from the induction structure of the equivariant homology theory, because

we have HG
q (G×NG(H) ENG(H);KR) ∼= H

NG(H)
q (ENG(H);KR) and HG

q (G×NG(H)

EWG(H);KR) ∼= H
NG(H)
q (EWG(H);KR), and a five lemma argument.

We have analyzed the commensurators of infinite cyclic subgroups of G =
PSL2(Ok) and the classifying space EG. We now do the same for Γ = SL2(Ok).
For this we recall that we are denoting by p : Γ → G the canonical projection. Then,
we have the following short exact sequence

1 → Z → Γ
p−→ G → 1,

where Z =

{
±
(
1 0
0 1

)}
∼= Z/2 is the center of Γ. We are going to use this notation

for the rest of the paper. Note that we have a classification of elements in Γ analogue
to that in G, i.e. the elements in Γ are either elliptic, parabolic or hyperbolic.

Lemma 4.13. Consider A ∈ Γ = SL2(Ok) a hyperbolic or parabolic element. If B is
such that p(B)p(A)p(B−1) = p(A±1), then BAB−1 = A±1.

Proof. Since p is a homomorphism of groups we have that p(BAB−1) = p(A±1),
hence BAB−1 = ±A±1. On the other hand, taking traces in the later equation we
get Tr(A) = Tr(BAB−1) = ±Tr(A±1) = ±Tr(A). If BAB−1 = −A±1 we conclude
that Tr(A) = 0, contradicting the fact that A is hyperbolic or parabolic. Now, the
result follows.
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As an immediate consequence we have the following.

Proposition 4.14. Consider A ∈ Γ = SL2(Ok) a hyperbolic or parabolic element,
and let C be the infinite cyclic subgroup generated by A. Then

1. CΓ(C) = p−1(CG(p(C))), and

2. NΓ(C) = p−1(NG(p(C))).

Lemma 4.15. Consider A ∈ Γ = SL2(Ok) a hyperbolic or parabolic element, and let
C be the infinite cyclic subgroup generated by A. Then CΓ(C) ∼= Z/2⊕ CG(p(C)).

Proof. From the previous proposition we have the short exact sequence

1 → Z → CΓ(C) → CG(p(C)) → 1.

Since CΓ(C) is abelian (see [Fre90, Lemma 2.2 p. 83]) and CG(p(C)) is free abelian
we have that the short exact sequence splits and the result follows.

Proposition 4.16. Consider A ∈ Γ = SL2(Ok) an infinite-order element, and let C
be the infinite cyclic subgroup generated by A. Then,

NΓ(C) ∼=

{
Zr ⊕ Z/2 if NG(p(C)) ∼= Zr, and

Zr ⋊ Z/4 if NG(p(C)) ∼= Zr ⋊ Z/2.

Proof. Recall that A has infinite order if and only if at least one of its coordinates
under (2) is either hyperbolic or parabolic. Now, we can assume that A is either
hyperbolic or parabolic up to changing the embedding of k in R. Now, from Propo-
sition 4.14 we obtain the following commutative diagram

Z� _

��

Z� _

��

1 // CΓ(C)

��

// NΓ(C)

��

// F // 1

1 // CG(p(C))

II

//

��

NG(p(C)) //

��

F // 1,

1 1

where F is a subgroup of Z/2, the middle vertical arrows are the restriction of p : Γ →
G, and the curved arrow is the splitting described in the proof of Lemma 4.15. In the
first case whenNG(p(C)) is a free abelian group we have that F is a trivial group, then
NΓ(C) ∼= CΓ(C) and the result follows from Lemma 4.15. In the other case F = Z/2
and the splitting CG(p(C)) → CΓ(C) in the diagram let us conclude that NΓ(C) has
a finitely generated free abelian normal subgroup of index four. In order to finish the
proof it is enough to show that NΓ(C) has an element of order four. In fact, it is well
known that every finite subgroup of SL2(R) is cyclic, thus the preimage under p of
any order-two subgroup of NG(p(C)) is an order-four cyclic subgroup of NΓ(C).

We can, finally, construct a model for EΓ.

Theorem 4.17. Let Γ = SL2(Ok). Let I be defined by taking, for each H ∈ I from
Theorem 4.10, an infinite cyclic subgroup C of Γ such that p(C) = H, with p : Γ → G
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the canonical projection. For every C ∈ I, choose models for ENΓ(C) and EWΓ(C),
where WΓ(C) = NΓ(C)/C. Now consider the Γ-pushout:⨿

C∈I Γ×NΓ(C) ENΓ(C)
i //

⨿
C∈I IdΓ×NΓ(C)fC

��

EΓ

��⨿
C∈I Γ×NΓ(C) EWΓ(C) // X,

where EWΓ(C) is viewed as an NΓ(C)-CW-complex by restricting with the projection
NΓ(C) → WΓ(C), the maps starting from the left upper corner are cellular and one
of them is an inclusion of Γ-CW-complexes. Then X is a model for EΓ.

Proof. Since p : Γ → G has finite kernel we have p∗EG = EΓ, and p∗EG = EΓ. On
the other hand, from Lemma 4.13 and Lemma 5.6 we get the identifications

p∗(G×NG(p(C)) ENG(p(C))) = Γ×p−1(NG(p(C))) f
∗ENG(p(C))

= Γ×NΓ(C) ENΓ(C), and

p∗(G×NG(p(C)) EWG(p(C))) = Γ×p−1(WG(p(C))) f
∗EWG(p(C))

= Γ×WΓ(C) EWΓ(C).

Now the proof is complete once we apply p∗ to the G-pushout from Theorem 4.10.

5. Computations of algebraic K-theory

In this section we give expressions for the Whitehead groups Whq(G;R) and
Whq(Γ;R) in terms of the Whitehead groups of finite groups and the nilgroups of R
and R(Z/2).

Definition 5.1. Consider G = PSL2(Ok). We define the following sets:

1. F is a collection of representatives of conjugacy classes of finite maximal sub-
groups of G.

2. P is a collection of representatives of conjugacy classes of maximal cyclic sub-
groups of G generated by a totally parabolic element.

3. H1 (resp. H2) is a collection of representatives of conjugacy classes of maximal
cyclic subgroups of G generated by a totally hyperbolic, but not hyperbolic-
parabolic, element such that its normalizer is isomorphic to Zn (resp. Zn ⋊ Z/2).

4. HP1 (resp. HP2) is a collection of representatives of conjugacy classes of max-
imal cyclic subgroups of G generated by a hyperbolic-parabolic element such
that its normalizer is isomorphic to Zn−1 (resp. Zn−1 ⋊ Z/2).

5. Mm
1 (resp. Mm

2 ) is a collection of representatives of conjugacy classes of maxi-
mal cyclic subgroups of G generated by a mixed element, with exactly m hyper-
bolic components 1 ⩽ m ⩽ n− 1, such that its normalizer is isomorphic to Zm

(resp. Zm ⋊ Z/2).
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Theorem 5.2. Consider G = PSL2(Ok) and let R be an associative ring with uni-
tary element, then, for all q ∈ Z we have an isomorphism

Whq(G;R) ∼=

(⊕
M∈F

Whq(M ;R)

)
⊕NP ⊕NH ⊕NHP ⊕NM

where

NP =
⊕
H∈P

(
n−1⊕
i=0

(NKq−i(R)⊕NKq−i(R))(
n−1

i )

)

NH =
⊕

H∈H1

(
n−1⊕
i=0

(NKq−i(R)⊕NKq−i(R))(
n−1

i )

)
⊕
⊕

H∈H2

(
n−1⊕
i=0

NKq−i(R)(
n−1

i )

)

NHP =
⊕

H∈HP1

(
n−2⊕
i=0

(NKq−i(R)⊕NKq−i(R))(
n−2

i )

)

⊕
⊕

H∈HP2

(
n−2⊕
i=0

NKq−i(R)(
n−2

i )

)

NM =
n−1⊕
j=1

 ⊕
H∈Mj

1

(
j−1⊕
i=0

(NKq−i(R)⊕NKq−i(R))(
j−1
i )

)

⊕
⊕

H∈Mj
2

(
j−1⊕
i=0

NKq−i(R)(
j−1
i )

) .

Proof. First of all, we know that G satisfies the Farrell–Jones conjecture as a conse-
quence of the main result of [KLR]. Now, we can use the splitting

Whq(G;R) ∼= HG
q (EG → EG;KR) ∼= HG

q (EG → EG;KR)⊕HG
q (EG → EG;KR).

For the first term in the right hand side we have the isomorphism

HG
q (EG → EG;KR) ∼=

⊕
M∈F

Whq(M ;R),

which is proved in [BSSn16, Theorem 1.1] for R = Z, nevertheless, the proof car-
ries on for general R with out any changes. Now, we have to calculate HG

q (EG →
EG;KR). From Theorem 4.10 we get the isomorphism

HG
q (EG → EG;KR) ∼=

⊕
H∈I

HNG(H)
q (ENG(H) → EWG(H);KR),

where I is a collection of representatives of conjugacy classes of maximal infinite
virtually cyclic subgroups of G.

Clearly, the set I can be expressed as the disjoint union P ⊔H1 ⊔H2 ⊔HP1 ⊔

HP2 ⊔
n−1⊔
r=1

Mr
1 ⊔

n−1⊔
r=1

Mr
2. We define NP =

⊕
H∈P

H
NG(H)
q (ENG(H) → EWG(H)),

NH =
⊕

H∈H1⊔H2

H
NG(H)
q (ENG(H) → EWG(H)), and so on.
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From Proposition 4.6 and Proposition 4.7 we know that for any infinite cyclic
subgroup H of G its normalizer NG(H) is either isomorphic to Zr or to Zr ⋊ Z/2 for
some r ⩾ 0, and from [LR14, Proof of Theorem 1.11] we have that

HNG(H)
q (ENG(H) → EWG(H);KR)

=


r−1⊕
i=0

(NKq−i(R)⊕NKq−i(R))(
r−1
i ) if NG(H) ∼= Zr, or

r−1⊕
i=0

NKq−i(R)(
r−1
i ) if NG(H) ∼= Zr ⋊ /2.

Now the result follows.

Remark 5.3. Note that if R is a regular ring, then all nil-groups NKi(R) vanish, so
in this case we get Whq(PSL2(Ok);R) ∼= ⊕M∈FWhq(M ;R). In particular, if R = Z,
we recover Theorem 1.1 from [BSSn16].

Remark 5.4. In [LPW16, Theorem C] they proved that if NKi(R) has finite expo-
nent, then it is isomorphic to ⊕∞F with F a finite abelian group. Now, assuming
all the nil-groups of R have finite exponent, we can greatly simplify the summand
NP ⊕NH ⊕NPH ⊕NM from Theorem 5.2, in fact, the later would be isomorphic to

n−1⊕
i=0

NKq−i(R).

Remark 5.5. If we consider a Fuchsian group G, that is, a discrete subgroup of
PSL2(R), then we can compute the commensurator of any infinite cyclic subgroup
H with the same argument as in Lemma 4.6 and Lemma 4.7. What we would obtain
is that NG[H] is isomorphic to NG(H) and the later is isomorphic either to Z or to
Z ⋊ Z/2 ∼= D∞. Now, following the proof of Theorem 5.2, we get, for all q ∈ Z,

Whq(G;R) ∼=
⊕
M∈F

Whq(M : R)⊕
⊕
I1

(NKq(R)⊕NKq(R))⊕
⊕
I2

NKq(R),

where F is a complete set of representatives of conjugacy classes of maximal finite
subgroups, I1 (resp. I2) is a complete set of representatives of conjugacy classes of
maximal infinite cyclic subgroups such that NG(H) ∼= Z (resp. NG(H) ∼= D∞). This
generalizes the main result of [BJPP02] and [BJPP01]. A particular interesting
example is the fundamental group of an orientable closed surface of genus at least two.
Since these are torsion free groups the first summand vanishes, hence the Whitehead
groups are just sums of copies of nil-groups.

Now we are going to perform the computation of Whq(SL2(Ok)). In order to do
so we shall need the following three lemmas.

Lemma 5.6 ([LR14, Lemma 3.7]). Let f : G1 → G2 be a surjective group homomor-
phism. Consider a subgroup H ⩽ G2. Let Y be a G1-space and Z be an H-space.
Denote by fH : f−1(H) → H the restriction of f . Then there is a natural G1-homeo-
morphism

G1 ×f−1(H) (Y × f∗
HZ) → Y × f∗(G2 ×H Z),

where f∗
H and f∗ are the restrictions and the actions on the products are diagonal

actions.
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Lemma 5.7. Let Γ = SL2(Ok), and let C be a maximal cyclic subgroup of Γ such
that NΓ(C) ∼= Zr ⋊ Z/4. Then, for every q ∈ Z we have

HNΓ(C)
q (ENΓ(C)× EWΓ(C) → EWΓ(C);KR) ∼=

HNΓ(C)
q (ENΓ(C)× EZWΓ(C)× EZZ/4 → EZWΓ(C)× EZZ/4;KR),

where the actions of NΓ(C) in EWΓ(C), EZWΓ(C) and EZZ/4 come from the pro-
jections qH : NΓ(C) → WΓ(C) and WΓ(C) → Z/4.

Proof. Recall that we are using the notation G = PSL2(Ok) and p : Γ → G. Denote
by pC : WΓ(C) → WG(p(C)) the restriction of p, by qC : NΓ(C) → WΓ(C) the canoni-
cal projection, and by QC the composition pC ◦ qC . We have that NΓ(C) ∼= Zr ⋊ Z/4,
WΓ(C) ∼= Zr−1 ⋊ Z/4, NG(p(C)) ∼= Zr ⋊ Z/2, and WG(p(C)) ∼= Zr−1 ⋊ Z/2.

First, we know that WG(p(C)) satisfies properties (M) and (NM), so that we have
from [LW12, Corollary 2.11] the WG(p(C))-pushout⨿

F∈JC
WG(p(C))×F EF //

��

EWG(p(C))

��⨿
F∈JC

WG(p(C))/F // EWG(p(C)),

where JC is a complete system of representatives of maximal finite subgroups of
WG(p(C)).

Using the fact that WΓ(C) is an extension of WG(p(C)) by a finite group and
Lemma 5.6, we have the identifications

p∗CEWG(p(C)) = EZWΓ(C),

p∗CEWG(p(C)) = EWΓ(C),

p∗CWG(p(C))×F EF = WΓ(C)×p−q
C (F ) p

∗
CEF, and

p∗CWG(p(C))/F = WΓ(C)/p−1
C (F ),

where we are abusing of notation by writing p∗CEF instead of p∗C |p−1
C (F )EF . Now we

get the WΓ(C)-pushout⨿
F∈JC

WΓ(C)×p−1
C (F ) p

∗
CEF //

��

EZWΓ(C)

��⨿
F∈JC

WΓ(C)/p−1
C (F ) // EWΓ(C).

Consider the WΓ(C)-homology theory that is obtained by assigning to a WΓ(C)-

CW-complex Z the abelian groups H
NΓ(C)
n (ENΓ(C)× q∗CZ → q∗CZ;KR). Using the

Mayer–Vietoris sequence associated to this WΓ(C)-homology theory, the pushout
above, and the fact that EZWΓ(C)× EZZ/4 is a model for EZWΓ(C), we get the
desired isomorphism once we prove, for all n ∈ Z and for all F ∈ JC , the following
isomorphism

HNΓ(C)
n (ENΓ(C)× q∗C(WΓ(C)×p−1

C (F ) p
∗
CEF ) → q∗C(WΓ(C)×p−1

C (F ) p
∗
CEF );KR)

∼= HNΓ(C)
n (ENΓ(C)× q∗H(WΓ(C)/p−1

C (F )) → q∗C(WΓ(C)/p−1
C (F ));KR). (3)
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From Lemma 5.6 we have

ENΓ(C)× q∗C(WΓ(C)×p−1
C

p∗CEF ) = NΓ(C)×Q−1
C (F ) (EQ−1

C (F )×Q∗
CEF ),

WΓ(C)×p−1
C (F ) p

∗
CEF = NΓ(C)×Q−1

C (F ) Q
∗
CEF,

ENΓ(C)× q∗C(WΓ(C)/p−1
C (F )) = NΓ(C)×Q−1

C (F ) EQ−1
C (F ), and

q∗C(WΓ(C)/p−1
C (F )) = NΓ(C)×Q−1

C (F ) pt.

Then, the left and right hand side of (3) are respectively isomorphic to

H
Q−1

C (G)
n (EQ−1

C (F )×Q∗
CEF → Q∗

CEF ;KR), (4)

and

H
Q−1

C (G)
n (EQ−1

C (F ) → pt;KR). (5)

On the other hand, from Theorem 2.3, we obtain the Q−1
C (F )-pushout

EQ−1
C (F )×Q∗

CEF //

��

EQ−1
C (F )

��

Q∗
CEF // EFBCQ

−1
C (F ).

So, taking the homology of the fibers of the vertical arrows, we have

H
Q−1

C (F )
n (EQ−1

C (F )×Q∗
CEF → Q∗

CEF ;KR)

∼= H
Q−1

C (F )
n (EQ−1

C (F ) → EFBCQ
−1
C (F );KR) ∼= H

Q−1
C (F )

n (EQ−1
C (F ) → pt;KR),

where the second isomorphism comes from the Farrell–Jones conjecture for the family
F BC of finite-by-cyclic subgroups. Now we conclude that (4) and (5) are isomorphic.

Lemma 5.8. Let Γ = SL2(Ok), and let C be a maximal cyclic subgroup of Γ such
that NΓ(C) ∼= Zr ⋊ Z/4. Then, for every q ∈ Z and every maximal finite subgroup F
of Γ we have

H
NΓ(C)
j (ENΓ(C)× EZWΓ(C)× F/Z → EZWΓ(C)× F/Z;KR)

∼=
r−1⊕
i=0

(NKj−i(R(Z/2))⊕NKj−i(R(Z/2)))(
r−1
i ),

and the action of F ∼= Z/4 comes from flipping each pair of Nil-groups.

Proof. Using Lemma 5.6, we have

H
NΓ(C)
j (ENΓ(C)× EZWΓ(C)× F/Z → EZWΓ(C)× F/Z;KR)

∼= H
NΓ(C)
j (NΓ(C)×f−1

C (Z) (ENΓ(C)× q∗CEZWΓ(C))

→ ENΓ(C)× q∗CEZWΓ(C);KR)

∼= H
f−1
C (Z)

j (ENΓ(C)× q∗CEZWΓ(C) → q∗HEZWΓ(C);KR)
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∼= H
f−1
C (Z)

j (Ef−1
C (Z) → Ef−1

C (Z)/C;KR)

∼= H
Z×Z/2
j (T r−1 × (E(Z× Z/2) → EZ/2);KR)

∼=
r−1⊕
i=0

(NKj−i(R(Z/2))⊕NKj−i(R(Z/2)))(
r−1
i )

Analyzing the proof of [LR14, Lemma 3.9(ii)] it is easy to see that the action of
F ∼= Z/4 on this homology is given by flipping the two copies of NK∗(R(Z/2)) in
every summand.

Theorem 5.9. Consider Γ = SL2(Ok), G = PSL2(Ok), and let R be an associative
ring with unit, then, for all q ∈ Z, we have the isomorphism

Whq(Γ;R) ∼= HG
q (EG;KR)⊕NP ⊕NH ⊕NHP ⊕NM,

where

NP =
⊕
H∈P

(
n−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
n−1

i )

)

NH =
⊕

H∈H1

(
n−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
n−1

i )

)

⊕
⊕

H∈H2

(
n−1⊕
i=0

NKq−i(R(Z/2))(
n−1

i )

)

NHP =
⊕

H∈HP1

(
n−2⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
n−2

i )

)

⊕
⊕

H∈HP2

(
n−2⊕
i=0

NKq−i(R(Z/2))(
n−2

i )

)

NM =
n−1⊕
j=1

 ⊕
H∈Mj

1

(
j−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
j−1
i )

)

⊕
⊕

H∈Mj
2

(
j−1⊕
i=0

NKq−i(R(Z/2))(
j−1
i )

) .

Moreover, if F is a complete set of representatives of conjugacy classes of maximal
finite subgroups of G, then HG

q (EG;KR) fits in the long exact sequence

· · · →
⊕
M∈F

HM
q (EM ;KR) → HG

q (EG;KR)⊕
⊕
M∈F

Kq(R(M)) → HG
q (EG;KR) → · · · .

Proof of Theorem 5.9. We know from the main result of [KLR] that Γ satisfies the
Farrell–Jones conjecture. Now from Lemma 3.4 we have that

Whq(Γ;R) ∼= HΓ
q (EΓ → EΓ;KR)⊕HΓ

q (EΓ → EΓ;KR).

Following the proof of [BSSn16, Theorem 1.2] we have, for all q ∈ Z, that
HΓ

q (EΓ → EΓ;KR) ∼= HG
q (EG;KR). Now, we consider the following G-pushout
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M∈F G×M EM //

��

EG

��⨿
M∈F G/M // EG,

where F is a complete set of representatives of conjugacy classes of finite maximal
subgroups of G, which is a consequence of G satisfying the hypothesis of [LW12,
Corollary 2.11]. We get the long exact sequence in the statement from the Mayer–
Vietoris sequence of the G-pushout above.

Note that, this long exact sequence could also be obtained from the p-chain spectral

sequence that converges to H
Or(G)
n (∗MF IN , ∗Tr;KR) (see [BSSn16] and [BJPP01,

Proposition 12]).

The next step is to compute HΓ
q (EΓ → EG;KR). From Theorem 4.17 we get the

isomorphism

HΓ
q (EΓ → EΓ;KR) ∼=

⊕
C∈I

HNΓ(C)
q (ENΓ(C) → EWΓ(C);KR).

In order to compute H
NΓ(C)
q (ENΓ(C) → EWΓ(C);KR) we are going to follow the

argument in the proof of Theorem 1.11 of [LR14]. For any maximal infinite cyclic
subgroup C of Γ we have

NΓ(C) ∼=

{
Zr × Z/2 if NG(p(C)) ∼= Zr, and

Zr ⋊ Z/4 if NG(p(C)) ∼= Zr ⋊ Z/2.

Then we proceed by cases.

Case 1: NΓ(C) ∼= Zr × Z/2. In this case we have

HNΓ(C)
q (ENΓ(C) → EWΓ(C);KR) ∼= HZr×Z/2

q (E(Zr × Z/2) → E(Zr−1 × Z/2);KR)

∼= HZ×Z/2
q (Tr−1 × (E(Z× Z/2) → EZ/2);KR)

∼=
r−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
r−1
i ),

where Tr−1 is the real (r − 1)-dimensional torus, the second isomorphism comes from
the inductive structure of the equivariant homology theory and the maximality of
C, and the third isomorphism comes from the Atiyah–Hirzebruch spectral sequence
associated to the homology theory given by sending a CW -complex Z to the abelian

groups H
Z×Z/2
q (Z × (E(Z× Z/2) → EZ/2);KR).

Case 2: NΓ(C) ∼= Zr ⋊ Z/4. Since the projection ENΓ(C)× q∗hEWΓ(C) is a
NΓ(C)-homotopy equivalence, we have from Lemma 5.7 the following

HNΓ(C)
q (ENΓ(C) → q∗

H
EWΓ(C);KR)

∼= HNΓ(C)
q (ENΓ(C)× q∗HEWΓ(C) → q∗HEWΓ(C);KR)

∼= HNΓ(C)
q (ENΓ(C)×q∗H(EZWΓ(C)×EZ(Z/4))→ q∗H(EZWΓ(C)×EZ(Z/4));KR),

where the third isomorphism comes from Lemma 5.7.

Next, we have theZ/4-homology theory given by assigning to a Z/4-CW-complex Y
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the abelian groups

HNΓ(C)
q (ENΓ(C)× q∗H(EZWΓ(C)× Y ) → q∗H(EZWΓ(C)× Y );KR) ,

so that we have an Atiyah–Hirzebruch spectral sequence converging to

HNΓ(C)
q (ENΓ(C)× q∗H(EZWΓ(C)× EZ(Z/4)) → q∗H(EZWΓ(C)× EZ(Z/4));KR),

and such that

E2
i,j = H

Z/4
i (EZZ/4;HNΓ(C)

j (ENΓ(C)× q∗H(EZWΓ(C)× (Z/4)/Z)

→ q∗H(EZWΓ(C)× (Z/4)/Z));KR).

From Lemma 5.8 we have

E2
i,j

∼= H
Z/4
j (EZZ/4;

r−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
r−1
i ))

∼= H
Z/4
j (EZZ/4;

Z(Z/4)⊗Z Z⊗Z(Z/4)

r−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
r−1
i ))

∼= Hj(EZZ/4;Z⊗Z(Z/4)

r−1⊕
i=0

(NKq−i(R(Z/2))⊕NKq−i(R(Z/2)))(
r−1
i ))

∼= Hj(EZZ/4;
r−1⊕
i=0

NKq−i(R(Z/2))(
r−1
i ))

∼=


r−1⊕
i=0

NKq−i(R(Z/2))(
r−1
i ) if i = 0,

0 if i ̸= 0.

Therefore the proof is complete by using Lemma 5.7 and Lemma 5.8.

Remark 5.10. Note that

HM
i (EM ;KZ) ∼=


PSL2(Ok)

ab ⊕ Z/2 if i = 1,

Z if i = 0, and

0 if i ⩽ −1.

Therefore HM
i (EM ;KZ) → Ki(Z(M)) is injective for i ⩽ 1 and we recover Corol-

lary 1.4 of [BSSn16]. On the other hand, in general, the so called classical assembly
map HM

i (EM ;KR) → Ki(R(M)) is not necessarily injective, even when R is regular.
For example, in [UW] Ullman and Wu show that if R is a finite field of characteristic
p > 2 and M = Z/2× Z/2, then the classical assembly map is not injective.

6. Computations of topological K-theory of C∗-algebras

In order to obtain calculations of topological K-theory of the reduced C∗-algebra
of the Hilbert modular group, we will use a similar strategy as in [BSSn16]. First
note that, since the Hilbert modular group is a countable subgroup of SL2(R), it
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satisfies the Baum–Connes conjecture, as does the reduced modular Hilbert group,
see for example [GHW05]. In this section we use notation introduced in [Fre90].

We know that Hn is a model for EPSL2(Ok), and, moreover, from Remark 4.2 in
[BSSn16] the group PSL2(Ok) satisfies (M), (NM). Then by Theorem 4.1 in [DL03]
there is a short exact sequence

0 →
⊕
H∈F

K̃top
q (C∗

r (H)) → Ktop
q (C∗

r (PSL2(Ok))) → Hq(PSL2(Ok) \Hk;Ktop) → 0,

where F denotes a set of representatives of conjugacy classes of maximal finite sub-
groups of PSL2(Ok).

As every element in F is abelian (Lemma 4.1 in [BSSn16]) we know that

K̃top
q (C∗

r (H)) =

{
Z♯(H)−1 if q is even,

0 if q is odd,

where ♯(H) denotes the number of conjugacy classes in the group H. Then we have
an isomorphism

Ktop
q (C∗

r (PSL2(Ok)))⊗Q

∼=

{
(Hq(PSL2(Ok) \Hk;Ktop)⊗Q)⊕Q♯(H)−1 if q is even,

Hq(PSL2(Ok) \Hk;Ktop)⊗Q if q is odd.

Now, it only remains to compute the ranks of the K-homology of the quotient
SL2(Ok) \Hk. For this we use the Chern character and the knowledge of their homol-
ogy groups.

Theorem 6.1 ([Fre90, Theorem 6.3]). The ranks of the homology groups of X =
SL2(Ok) \Hk are given by following formulae:

1. rk(H0(X)) = 1.

2. rk(Hq(X)) = 0, for q ⩾ 2k.

3. rk(Hq(X)) = bquniv + bqEis + bmcusp, for 0 < q < 2k, where

(a) bquniv =

{(
k

q/2

)
if q is even,

0 if q is odd,

(b) bqEis =


0 if 0 < q < k,

h ·
(
k−1
q−k

)
if k ⩽ q < 2k − 1,

h− 1 if q = 2n− 1,

(c) bqcusp =

{
0 if q ̸= k,∑

p+r=q h
p,r
cusp if q = k,

where h is the class field number of the extension k : Q and

hp,q
cusp =

∑
b⊂{1,...,k}
♯b=p

dim[Γb, (2, . . . , 2)]0,

where [Γb, (2, . . . , 2)]0 denotes the space of cusp forms as defined in [Fre90,
Def. I.4.5].
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As SL2(Ok) is an extension of PSL2(Ok) by Z/2Z, we have

H∗(SL2(Ok) \Hk;Q) ∼= H∗(PSL2(Ok) \Hk;Q).

Moreover, as we are taking rational coefficients we have an isomorphism

H∗(PSL2(Ok) \Hk;Q) ∼= H∗(PSL2(Ok) \Hk;Q).

Then, by the Chern character,

Hq(PSL2(Ok) \Hk;Ktop)⊗Q ∼=
⊕
n∈Z

Hq+2n(PSL2(Ok) \Hk;Q).

The last isomorphism completes the calculation of the topological K-theory groups
of C∗

r (PSL2(Ok)) with rational coefficients. Thus we have proved the following result.

Theorem 6.2. The ranks of the topological K-theory of the reduced C*-algebra
C∗

r (PSL2(Ok)) are given by the following formulae:

rk(Ktop
q (C∗

r (PSL2(Ok)))

=


∑
n∈Z

bq+2n
univ + bq+2n

Eis + bq+2n
cusp +

∑
H∈F

(|H| − 1) + 1 if q is even∑
n∈Z

bq+2n
univ + bq+2n

Eis + bq+2n
cusp if q is odd.

Here F denotes the set of conjugacy classes (H) of non-trivial subgroups belonging to
the family MFIN whose elements are maximal finite subgroups of G together with
the trivial group.

Remark 6.3. A computation of the torsion part of the topological K-theory groups
would depend on a complete description of the group cohomology of PSL2(Ok) with
integral coefficients, but this problem goes beyond the scope of this paper.
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[vdG88] G. van der Geer. Hilbert Modular Surfaces, volume 16 of Ergeb.
Math. Grenzgeb. (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1988.

[Wal78] F. Waldhausen. Algebraic K-theory of generalized free products. I, II.
Ann. of Math. (2), 108(1):135–204, 1978.

Luis Jorge Sánchez Saldaña luisjorge@im.unam.mx

Unidad Cuernavaca del Instituto de Matemáticas, National University of Mexico, Av.
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