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ON POLYHEDRAL PRODUCT SPACES OVER POLYHEDRAL
JOINS

ELIZABETH VIDAURRE

(communicated by Charles A. Weibel)

Abstract
The construction of a simplicial complex given by polyhedral

joins (introduced by Anton Ayzenberg), generalizes Bahri, Ben-
dersky, Cohen and Gitler’s J-construction and simplicial wedge
construction. This article gives a cohomological decomposition
of a polyhedral product over a polyhedral join. A formula for the
Hilbert-Poincaré series is given, which generalizes Ayzenberg’s
formula for the moment-angle complex.

1. Introduction

From a simplicial complex and pairs of topological spaces, polyhedral product
spaces give a family of spaces (see Definition 2.2). The spaces that have the form
of a polyhedral product include moment-angle complexes, complements of complex
coordinate subspace arrangements, and intersections of quadrics among others. In
certain cases, polyhedral products provide geometric realizations of right-angled Artin
groups and the Stanley-Reisner ring.

One can define the polyhedral join, Z∗
K(X,A), similarly to the polyhedral product

by replacing the cartesian product with the topological or simplicial join [1]. When
the pairs (X,A) are simplicial complexes (L,K), the associated polyhedral join is a
simplicial complex. A natural question that arises concerning a polyhedral product
over such a simplicial complex is: what is the cohomology of the polyhedral product
space over a polyhedral join, ZZ∗

K
(L,K)(X,A), in terms of the simplicial complexes K,

Ki, Li and the cohomology of the spaces (X,A)? In this paper, we answer this ques-
tion and, in the case of simplicial pairs (Li,Ki) given by a simplex and a subsimplicial
complex, analyze the product in the cohomology ring.

Polyhedral joins behave well with polyhedral products. For example, there is the
following homeomorphism between real moment-angle complexes and moment-angle
complexes [3]:

ZZ∗

K
(∆1,∂∆1)(D

1, S0) = ZK(D2, S1).

This means that any moment-angle complex can be expressed as a real moment-angle
complex. This equivalence has since been used by many [11, 6, 9, 10, 8].
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Using polyhedral joins Z∗
K(L,K), this can be generalized to arbitrary polyhedral

products. It allows for a give and take in dimension. A polyhedral product can be
expressed as another polyhedral product of either lower dimensional spaces (X,A)
over a higher dimensional simplicial complex, or of higher dimensional spaces (X,A)
over a lower dimensional simplicial complex.

We use a spectral sequence constructed by Bahri, Bendersky, Cohen and Gitler
that converges to the cohomology of ZK(X,A) in terms of the long exact sequence
for the pairs (Xi, Ai). It gives a Kunneth-like formula for the general polyhedral
product. In Section 3 we show how the spectral sequence reduces the problem to
analyzing the map H∗(ΣlkLi

(σ)) → H∗(ΣlkKi
(σ)) induced by the inclusion of links

lkKi
(σ) →֒ lkLi

(σ), where σ is a simplex in Ki. Since there is no convenient way to
describe the induced map in full generality, we consider two cases of pairs of simplicial
complexes.

In Section 4, we restrict to the pairs (Li,Ki) = (∆li ,Ki) where ∆li is the li-
simplex. With this pair, the associated polyhedral join is called the composed sim-
plicial complex K(K1, . . . ,Km). This pair covers the case of the homeomorphism
between moment-angle complexes and real moment-angle complexes. As a conse-
quence of Theorem 4.1, we give the corresponding Hilbert-Poincaré series. For the
polyhedral product ZK(K1,...,Km)(CA,A), we define a multigraded structure and give
the multigraded Betti numbers in Proposition 4.8. Moreover, the ring structure of
H∗(ZZK(L,K)(X,A)) is analyzed. This amounts to a description of the Stanley-
Reisner ideal of K(K1, . . . ,Km), given in Proposition 4.9.

Qibing Zheng also studies the pair (∆li ,Ki) in [12] to derive an Alexander duality
isomorphism for certain classes of polyhedral products. Our methods are distinct from
his and are used for a different purpose.

Finally, in Section 5, we study the case given by the pair (Li,Ki) = (Li, ∅) as the
map induced by the inclusion of links can be fully described. The cohomology groups
will be given in Theorem 5.1.
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2. Polyhedral product spaces

Let [m] = {1, 2, . . . ,m} denote the set of integers from 1 to m. An abstract simpli-
cial complex, K, on [m] is a subset of the power set of [m], such that:

1. ∅ ∈ K.

2. If σ ∈ K with τ ⊂ σ, then τ ∈ K.

An n-simplex is the full power set of [n+ 1] and is denoted ∆n. Associated to an
abstract simplicial complex is its geometric realization, denoted K or |K| (also called
a geometric simplicial complex). A (geometric) n-simplex, ∆n, is the convex hull of
n+ 1 points.
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We do not assume m is minimal, i.e. there may exist [n] ( [m] such that K is
contained in the power set of [n]. In particular, we allow ghost vertices {i} ⊂ [m] such
that {i} /∈ K.

Let K and L be simplicial complexes on sets [m] and [n], respectively. A map
from [m] to [n] induces a simplicial map from K to L if it satisfies the property that
simplices map to simplices.

Definition 2.1. Let I be a subset of [m]. The full subcomplex of K in I is denoted
KI . It is a simplicial complex on the set I and defined by

KI := {σ ∈ K | σ ⊂ I}.

It will sometimes be helpful to use the notation K|I and it is often called the
restriction of K to I in the literature.

Given an abstract simplicial complex K, let SK be the category with simplices of
K as the objects and inclusions as the morphisms. In particular, for σ, τ ∈ ob(SK),
there is a morphism σ → τ whenever σ ⊂ τ . Define CW to be the category of CW-
complexes and continuous maps. Define (X,A) to be a collection of pairs of CW-
complexes {(Xi, Ai)}

m
i=1, where Ai is a subspace of Xi for all i.

Definition 2.2. Given an abstract simplicial complex K on [m], simplices σ, τ of K
and a collection of pairs of CW-complexes (X,A), define a diagram D : SK → CW
given by

D(σ) =
∏

i∈[m]

Yi, where Yi =

{
Xi i ∈ σ,

Ai i ∈ [m]\σ.

For a morphism f : σ → τ , the functor D maps f to ι : D(σ) → D(τ) where ι is the
canonical injection.

The polyhedral product space, ZK(X,A) ⊂
∏

i∈[m]

Xi is

ZK(X,A) := colim
σ∈K

D(σ) =
⋃

σ∈K

D(σ).

Notice that it suffices to take the colimit over the maximal simplices of K. In
fact, simplicial complexes can be defined by their maximal simplices and this descrip-
tion will be used throughout. In the case where (Xi, Ai) = (X,A) for all i, we write
ZK(X,A).

Some examples of polyhedral products are moment-angle complexes ZK(D2, S1),
which have the homotopy type of the complement of a complex coordinate subspace
arrangement, and Davis-Januszkiewicz spaces ZK(CP∞, pt), which have a Stanley-
Reisner ring as cohomology ring. For a simple example, consider the following.

Example 1. Let K be the boundary of a 2-simplex.

ZK(D1, S0) = D1 ×D1 × S0 ∪D1 × S0 ×D1 ∪ S0 ×D1 ×D1

= ∂(D1 ×D1 ×D1)
∼= S2.

In general, Z∂∆m(D1, S0) ∼= Sm (see examples in [2]).
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Next we will define the polyhedral smash product, a space analogous to the poly-
hedral product with the smash product operation in place of the cartesian product.
Define CW∗ to be the category of based CW-complexes and based continuous maps.

Definition 2.3. Let the CW-pairs (X,A) be pointed. Likewise, define a functor

D̂(σ) : SK → CW∗ by

D̂(σ) = ∧Yi, where Yi =

{
Xi i ∈ σ,

Ai i /∈ σ.

Then the polyhedral smash product is

ẐK(X,A) =
⋃

D̂(σ).

The following theorem of Bahri, Bendersky, Cohen and Gitler (BBCG) gives a
decomposition of a suspension of a polyhedral product.

Theorem 2.4 (Splitting Theorem, [2]). Let (XI , AI) = {(Xi, Ai)}i∈I . Then

ΣZK(X,A) ≃ Σ

( ∨

I⊂[m]

ẐKI
(XI , AI)

)
,

where Σ denotes the reduced suspension.

Given any simplicial complex, the following procedure allows for the construction
of an infinite family of associated simplicial complexes. Let SC be the category with
simplicial complexes as the objects and simplicial maps as the morphisms.

Definition 2.5 (Ayzenberg [1]). Let K be a simplicial complex on m vertices and σ
a simplex of K. Let (L,K) = {Li,Ki}i∈[m] be m pairs of simplicial complexes, where
Ki is a subsimplicial complex of Li and both are defined on the index set [li]. Consider
a functor D∗ : SK → SC defined in the following way

D∗(σ) = ∗
i∈[m]

Yi, where Yi =

{
Li i ∈ σ,

Ki i /∈ σ.

The associated polyhedral join is the colimit of the diagram

Z∗
K(L,K) := colimD∗(σ)

σ∈K

=
⋃

σ∈K

D∗(σ).

Note that Z∗
K(L,K) is a subsimplicial complex of ∗

i∈[m]
Li, which is a simplicial

complex on the set [
∑

i∈[m]

li]. In particular, D∗(σ) is the join of simplicial complexes

Li for i ∈ σ and simplicial complexes Kj for j ∈ [m]\σ.

Definition 2.6. Let K be a simplicial complex on the set [m] and {Li}i∈[m] be sim-
plicial complexes on the sets [li].

The composition of K with {Li}
m
i=1, denoted K(L1, . . . , Lm), is defined to be

K(L1, . . . , Lm) := Z∗
K(∆li−1, Li).
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The composition K(L1, . . . , Lm) may also be defined by the following condition:
for subsets σi ⊂ [li], the set σ = σ1 ⊔ · · · ⊔ σm is a simplex ofK(L1, . . . , Lm) whenever
the set {i ∈ [m] | σi /∈ Li} is a simplex of K.

It is noteworthy that simplicial complexes form an operad where the simplicial
complex on m vertices is viewed as an m-adic operation. See [1] for more details.

The composition is a generalization of the J-construction [3] and the simplicial
wedge construction [7].

The link of σ ∈ K, denoted lkK(σ), is a simplicial complex on the set [m]\σ defined
by τ ∈ lkK(σ) if and only if σ ∪ τ ∈ K. This indexing set is used to be consistent with
the definition in [1]. Given the indexing set of this complex, the link may have ghost
vertices that are not ghost vertices of K.

Example 2. This is an example of a composition of simplicial complexes K(L1,
. . . , Lm). Let m = 3 and K = {{1}, {2, 3}}:

l1 = 1 and L1 = {∅},
l2 = 1 and L2 = {{21}},
l3 = 2 and L3 = {{31}, {32}},

where L1 consists of a ghost vertex, L2 a single vertex, and L3 two vertices. Then

K(L1, L2, L3) = D∗({2, 3}) ∪ D∗({1})
= L1 ∗∆

0 ∗∆1 ∪ ∆0 ∗ L2 ∗ L3

= {∅} ∗ {21} ∗ {31, 32} ∪ {11} ∗ {21} ∗ {31}, {32}
= {21, 31, 32}, {11, 21, 31}, {11, 21, 32}.

31 32

11

21

Figure 1: Example of a composed simplicial complex.

Composed simplicial complexes have a nice relationship with polyhedral products.
Note that in the following proposition the indexing set of (X,A) is different than it
has been up to this point, and so it will be explicitly labeled. The notation used will
be ZK(Xi, Ai)i∈I for some indexing set I.

Proposition 2.7 (Ayzenberg [1, Proposition 5.1]). Let K be a simplicial complex
on m vertices and {Li}i∈[m] be simplicial complexes with li vertices. We have

∑
i∈[m]

li

pairs (Xij , Aij) with i ∈ [m] and j ∈ [li]. Then

ZK(L1,...,Lm)(Xij , Aij)i∈[m],j∈[li] = ZK

( ∏

j∈[li]

Xij , ZLi
(Xij , Aij)j∈[li]

)

i∈[m]

.

These spaces are equal, not just homeomorphic. The proof involves a shuffling of
the spaces Xi and Ai as in the proof of Proposition 2.8.
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Using methods of [1] we prove the analogous result for the polyhedral smash prod-
uct.

Proposition 2.8. Let K be a simplicial complex on m vertices and {Li}i∈[m] be
simplicial complexes with li vertices. Then

ẐK(L1,...,Lm)(Xij , Aij)i∈[m],j∈[li] = ẐK

( ∧

j∈[li]

Xij , ẐLi
(Xij , Aij)j∈[li]

)

i∈[m]

.

Proof. Suppose we have a simplex σ ∈ K and a simplex τi ∈ Li for each 1 6 i 6 m.
Then

ẐK

( ∧

j∈[li]

Xij , ẐLi
(Xij , Aij)j∈[li]

)

i∈[m]

=
⋃

σ

(∧

i∈σ

( ∧

j∈[li]

Xij

)
∧

∧

i∈[m]\σ

(⋃

τi

(∧

j∈τi

Xij

)
∧
( ∧

j∈[li]\τi

Aij

)))

=
⋃

σ,τi

(∧

i∈σ

( ∧

j∈[li]

Xij

)
∧

∧

i∈[m]\σ

((∧

j∈τi

Xij

)
∧
( ∧

j∈[li]\τi

Aij

)))
.

Since simplices in σ′ ∈K(L1, . . . , Lm) are of the form σ′ =(
⋃

i∈[m]\σ

τi)∪ (
⋃
i∈σ

∆li−1),

∧

i∈σ

( ∧

j∈[li]

Xij

)
∧

∧

i∈[m]\σ

(∧

j∈τi

Xij

)
=
∧

ij∈σ′

Xij .

Note that
⋃

i∈[m]\σ

[li]\τi = [Σli]\σ
′, and thus

∧

i∈[m]\σ

( ∧

j∈[li]\τi

Aij

)
=

∧

ij∈[Σli]\σ′

Aij .

And finally,

⋃

σ′

( ∧

ij∈σ′

Xij ∧
∧

ij∈[Σli]\σ′

Aij

)
= ẐK(L1,...,Lm)(Xij , Aij)i∈[m],j∈[li].

Similarly, we can make the same type of argument for the polyhedral join in place
of the composed simplicial complex for the most general form.

Theorem 2.9. Given m pairs of simplicial complexes (L,K) where Li and Ki are
simplicial complexes on the vertex set [li] (Li may have ghost vertices). Taking

∑
i∈[m]

li

pairs (Xij , Aij), we have

ZZ∗

K
(L,K)(Xij , Aij)i∈[m],j∈[li] = ZK

(
ZLi

(Xij , Aij)j∈[li], ZKi
(Xij , Aij)j∈[li]

)
i∈[m]

.

Proof. The proof is similar to Proposition 2.8. However, a simplex σ′ ∈ Z∗
K(L,K) is

of the form

σ′ =

( ⋃

i∈[m]\σ

τi

)
∪

(⋃

i∈σ

ρi

)
,

where σ ∈ K, τi ∈ Ki and ρi ∈ Li.
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The complexesKi must have an indexing set of the same cardinality of the indexing
set of Li; otherwise, the statement is not true. In particular, Li may have ghost ver-
tices. Keep in mind that including ghost vertices does change the polyhedral product
by multiplying by Ai where i is a ghost vertex.

In [3], Bahri, Bendersky, Cohen and Gitler show that a moment-angle complex
can be expressed as a real moment-angle complex. Since Z∂∆m(D1, S0) ∼= Sm (see
Example 1), we have the following as a consequence of Theorem 2.9.

Corollary 2.10 (Bahri, Bendersky, Cohen and Gitler [3]). Real moment-angle com-
plexes over a composed simplicial complex are homeomorphic to moment-angle com-
plexes:

ZK(∂∆1,...,∂∆1)(D
1, S0) ∼= ZK(D2, S1).

2.1. The BBCG spectral sequence
Recall that our goal is to compute the cohomology of ZZ∗

K
(L,K)(X,A) in terms of

K, Ki, Li, H
∗(Xij) and H∗(Aij). To do so, we will use a spectral sequence developed

by BBCG [4]. It gives a Kunneth-like formula for the cohomology of a polyhedral
product as long as the pairs (X,A) satisfy the following freeness condition.

Definition 2.11. Given the pair (Xi, Ai), the associated long exact sequence is given
by

· · ·
δ
→ H̃∗(Xi/Ai)

g
→ H∗(Xi)

f
→ H∗(Ai)

δ
→ H̃∗+1(Xi/Ai)

g
→ · · · .

Assume that the cohomology groups of the pair have the following decomposition:

H∗(Ai) = Bi ⊕ Ei,
H∗(Xi) = Bi ⊕ Ci,

H̃∗(Xi/Ai) = Ci ⊕Wi,

where Wi is sEi, the suspension of Ei. Additionally, assume 1 ∈ Bi, and for b ∈ Bi,
c ∈ Ci, e ∈ Ei, w ∈ Wi = sEi, we have

b
f
7→ b

δ
7→ 0, c

g
7→ c

f
7→ 0, e

δ
7→ w

g
7→ 0.

Before defining the spectral sequence, we will give some notation and recall the
definition of a half smash product:

1. for σ = {i1, . . . , ik}, define X̂σ := Xi1 ∧ · · · ∧Xik and Aσ = Ai1 × · · · ×Aik ,

2. the complement of a set σ ⊂ [m] is σc = [m]\σ,

3. given a basepoint x0 ∈ X, the right half smash product X ⋊ Y = (X × Y )/
(x0 × Y ),

4. for a subset I and a simplex σ such that σ ⊂ I, define

Y I,σ :=
⊗

i∈σ

Ci ⊗
⊗

i∈I−σ

Bi.

Choosing a lexicographical ordering for the simplices of K gives a filtration of the
associated polyhedral product space and polyhedral smash product, which in turn
leads to a spectral sequence converging to the reduced cohomology of ZK(X,A) and

a spectral sequence converging to the reduced cohomology of ẐK(X,A). The Es,t
1

term for ZK(X,A) has the following description.
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Theorem 2.12 (Bahri, Bendersky, Cohen and Gitler [4]). There exist spectral se-
quences

Es,t
r → H∗(ZK(X,A)),

Ês,t
r → H∗(ẐK(X,A)),

with Es,t
1 = H̃t((X̂/A)σ ⋊Aσc

) and Ês,t
1 = H̃t((X̂/A)σ ∧ Âσc

) where s is index of σ
in the lexicographical ordering and the differential dr : E

s,t
r → Es+r,t+1

r is induced by
the coboundary map δ : E → W = sE. Moreover, the spectral sequence is natural for
embeddings of simplicial maps with the same number of vertices and with respect to
maps of pairs. The natural quotient map

ZK(X,A) → ẐK(X,A)

induces a morphism of spectral sequences and the splitting theorem (2.4) induces a
morphism of spectral sequences.

Following [4], Definition 2.11 and the Künneth theorem imply that the entries

H̃t((X̂/A)σ ∧ Âσc

) in the first page of the spectral sequence for ẐK(X,A) decompose
as a direct sum of spaces WN ⊗ CS ⊗BT ⊗ EJ such that N ∪ S = σ, T ∪ J = σc

and N,S, J, T are disjoint. We have that S is a simplex in K as N ∪ S is a simplex
in K. Since the differential is induced by the coboundary δ : E → W , consider all the
possible summands WN ⊗ CS ⊗BT ⊗ EJ for S and T are fixed. It must be the case
that N is a simplex in K and that N is a subset of [m]\(S ∪ T ). Therefore all such N
correspond to simplices in the link of S in K restricted to the vertex set [m]\(S ∪ T ).

Theorem 2.13 (Bahri, Bendersky, Cohen and Gitler [4]). Let (X,A) satisfy the
decomposition described in Definition 2.11

H∗(Ai) = Bi ⊕ Ei,
H∗(Xi) = Bi ⊕ Ci.

Then

H∗(ZK(X,A)) =
⊕

I⊂[m],σ⊂I

EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lk(σ)Ic |),

where:

1. σ is a simplex in K,

2. lk(σ)Ic = {τ ⊂ [m]\I | τ ∪ σ ∈ K} is the link of σ in K restricted to the set
[m]\I,

3. Y I,σ =
⊗
i∈σ

Ci ⊗
⊗

i∈I−σ

Bi, and

4. H̃∗(Σ∅) = 1.

Theorem 2.14 (Bahri, Bendersky, Cohen and Gitler [4]). Let

H̃∗(Ai) = B̃i ⊕ Ei,

H̃∗(Xi) = B̃i ⊕ Ci.

Then

H∗(ẐK(X,A)) =
⊕

I⊂[m],σ⊂I

EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lk(σ)Ic |),
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where:

1. σ is a simplex in K,

2. lk(σ)Ic = {τ ⊂ [m]\I | τ ∪ σ ∈ K} is the link of σ in K restricted to the set
[m]\I,

3. Y I,σ =
⊗
i∈σ

Ci ⊗
⊗

i∈I−σ

B̃i where B̃i = Bi\{1},

4. H̃∗(Σ∅) = 1.

Consequently, assuming that the cohomology of the pairs (Xij , Aij) satisfy the
freeness condition, then once the kernel, image and cokernel of the pair (ZLi

(X,A),
ZKi

(X,A)) are computed, this theorem can be applied.

3. The general polyhedral join

We ultimately aim to understand the cohomology of the space ZZ∗

K
(L,K)(X,A).

By Theorem 5.1, this is equivalent to computing the cohomology of the space

ZK

(
ZLi

(Xij , Aij)j∈[li], ZKi
(Xij , Aij)j∈[li]

)
i∈[m]

.

As a starting point, we apply Theorem 2.13.
Fix an i. The inclusion Ki →֒ Li induces the obvious inclusion ZKi

(X,A) →֒
ZLi

(X,A), which in turn induces a map in cohomology

H∗(ZLi
(X,A))

φ
→ H∗(ZKi

(X,A)).

By Theorem 2.13, we have that

H∗(ZLi
(X,A)) =

⊕

σ∈Li,
σ⊂I

EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lkLi
(σ)Ic |)

=

( ⊕

τ∈Ki,
τ⊂I

EIc

⊗ Y I,τ ⊗ H̃∗(Σ|lkLi
(τ)Ic |)

)

⊕

( ⊕

σ/∈Ki,
σ⊂I

EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lkLi
(σ)Ic |)

)

and

H∗(ZKi
(X,A)) =

⊕

τ∈Ki,τ⊂I

EIc

⊗ Y I,τ ⊗ H̃∗(Σ|lkKi
(τ)Ic |),

where lkLi
(σ)Ic is the link of σ in Li restricted to the vertex set [li]\I. There-

fore, understanding the map φ is reduced to finding the image of the factor α ∈
H̃∗(Σ|lkLi

(τ)Ic |) for τ ∈ Ki. Recall (from the discussion before Theorem 2.13) that
α corresponds to the exponent of the W s in a summand EJ ⊗WN ⊗ Cτ ⊗BI\τ of

H̃∗(X̂/A
(N∪τ)

)⊗ H̃∗(Â(N∪τ)c)

in the E1 page of the BBCG spectral sequence. If N ∪ τ is a simplex in Ki, then

H̃∗(X̂/A
(N∪τ)

)⊗ H̃∗(Â(N∪τ)c) in the spectral sequence for ZKi
(X,A) maps to
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H̃∗(X̂/A
(N∪τ)

)⊗ H̃∗(Â(N∪τ)c) in the spectral sequence of ZLi
(X,A) by the natu-

rality of the spectral sequence for embeddings of simplicial maps. In particular, if
N ∪ τ ∈ Ki, then

φ : EJ ⊗WN ⊗ Cτ ⊗BI\τ 7→ EJ ⊗WN ⊗ Cτ ⊗BI\τ

and if N ∪ τ /∈ Ki, then

φ : EJ ⊗WN ⊗ Cτ ⊗BI\τ 7→ 0.

This is the dual of the inclusion

lkKi
(σ)Ic →֒ lkLi

(σ)Ic .

In other words, the map φ is induced by the inclusion lkKi
(σ)Ic →֒ lkLi

(σ)Ic .

4. Composed simplicial complexes

Recall that a composed simplicial complex is the polyhedral join Z∗
K(∆li−1, Li),

denoted K(L1, . . . , Lm), which is of particular importance because it yields the equiv-
alence between moment-angle complexes and some real moment-angle complexes. In
this case, the link of any simplex in ∆li−1 is a simplex, and hence the geometric real-
ization of the link is contractible. This means the cohomology of the suspension of
the link is trivial, and therefore so is a summand EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lk(σ)Ic |) unless
I = [m]. In particular, the image, kernel and cokernel of the map

H∗

( ∏

j∈[li]

Xij

)
→ H∗(ZLi

(Xij , Aij))

can be computed. The following proposition gives the cohomology of the polyhedral
product over a composed simplicial complex in terms of the cohomology of the pairs
and the simplicial complexes (using notation described after Definition 2.11).

Theorem 4.1. Given m simplicial complexes {Li}i∈[m], where Li is a complex on
the set [li]. For each i ∈ [m], let there be a family of pairs (Xij , Aij)j∈[li] satisfying
Definition 2.11

H∗(Aij) = Bij ⊕ Eij ,
H∗(Xij) = Bij ⊕ Cij .

Then

H∗(ZK(L1,...,Lm)(X,A)) =
⊕

I,σ,J,
τ,ρ,ρ′

H̃∗(Σ|lk(σ)Ic |)

⊗

( ⊗

k∈[m]\I

EJc

⊗ H̃∗(Σ|lk(τ)Jc |)⊗ Y J,τ

)

⊗

(⊗

s∈σ

Y [ls],ρ
′

⊗
⊗

s′∈I\σ

Y [ls′ ],ρ

)
,

where:

1. I ⊂ [m] and σ is a simplex in K, with σ ⊂ I,
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2. J ( [lk] and τ is a simplex in Lk, with τ ⊂ J ,

3. ρ′ is a nonsimplex in Ls and ρ is a simplex in Ls′ .

Proof. Recall Ayzenberg’s Theorem,

ZK(L1,...,Lm)(Xij , Aij) = ZK

( ∏

j∈[li]

Xij , ZLi
(Xij , Aij)

)

and that we want to find the kernel, Ci, image, Bi, and cokernel, Ei, of the induced
map H∗(

∏
j∈[li]

Xij) → H∗(ZLi
(Xij , Aij)).

Since

H∗

(
li∏

j=1

Xij

)
=

li⊗

j=1

(Bij ⊕ Cij)

=
⊕

ρ∈∆li−1

Y [li],ρ

=
⊕

ρ∈Li

Y [li],ρ ⊕
⊕

ρ′ /∈Li

Y [li],ρ
′

and, by Theorem 2.13,

H∗(ZLi
(Xij , Aij)j∈[li]) =

⊕

ρ∈Li

Y [li],ρ ⊕
⊕

J([li],τ⊂J

E[li]−J ⊗ H̃∗(Σ|lk(τ)Jc |)⊗ Y J,τ

we have

Bi =
⊕

ρ∈Li

Y [li],ρ, (4.1)

Ci =
⊕

ρ′ /∈Li

Y [li],ρ
′

, (4.2)

Ei =
⊕

τ∈Li,τ⊂J([li]

E[li]−J ⊗ H̃∗(Σ|lk(τ)Jc |)⊗ Y J,τ . (4.3)

Notice that Ci is the Stanley-Reisner ideal of Li, I(Li), and Bi is the Stanley-
Reisner ring of Li, SR(Li) (see Corollary 4.3). Now applying Theorem 2.13 again,

H∗

(
ZK

( ∏

j∈[li]

Xij , ZLi
(Xij , Aij)

))
=

⊕

I⊂[m],σ⊂I

EIc

⊗ Y I,σ ⊗ H̃∗(Σ|lk(σ)Ic |).

Substituting (4.3) and expanding,

E[m]−I =
⊗

k∈[m]−I

Ek

=
⊗

k∈[m]−I

⊕

J,τ

E[lk]−J ⊗ H̃∗(Σ|lk(τ)Jc |)⊗ Y J,τ

=
⊕

J,τ

( ⊗

k∈[m]−I

E[lk]−J ⊗ H̃∗(Σ|lk(τ)Jc |)⊗ Y J,τ

)
.



270 ELIZABETH VIDAURRE

Next, substituting (4.1) and (4.2) and expanding,

Y I,σ =
⊗

s∈σ

Cs ⊗
⊗

s′∈I−σ

Bs′

=
⊗

s∈σ

(⊕

ρ′ /∈Ls

Y [ls],ρ
′

)
⊗

⊗

s′∈I−σ

(⊕

ρ∈Ls′

Y [ls′ ],ρ

)

=
⊕

ρ′ /∈Ls

(⊗

s∈σ

Y [ls],ρ
′

)
⊗
⊕

ρ∈Ls′

( ⊗

s′∈I−σ

Y [ls′ ],ρ

)

=
⊕

ρ′,ρ

(⊗

s∈σ

Y [ls],ρ
′

⊗
⊗

s′∈I−σ

Y [ls′ ],ρ

)
.

The proposition follows.

Recall that the decomposition of H∗(ZK(X,A)) in Theorem 2.12 differs from the

decomposition for H∗(ẐK(X,A)) by the presence of 1 ∈ Bij . As a consequence, the

same proof provides a decomposition for H∗(ẐK(L1,...,Lm)(X,A)). Below is an exam-
ple of how Proposition 4.1 can be used to compute the Poincaré series for the coho-
mology of a polyhedral product over a composed simplicial complex.

Example 3. Suppose we have that K is two ghost vertices, L1 is a point and L2 is two
points. Namely, K = {∅} is indexed by [2], L1 = {{11}}, L2 = {{21}, {22}}. Given a

pair of spaces such that H̃∗(X) = 〈b4, c6〉 and H̃∗(A) = 〈e2, b4〉, we will compute the

Poincaré series for H∗(ẐK(L1,L2)(X,A)).

1. For I = ∅, the only possible simplex, σ, is the empty set. Since J1 6= [11], the
only choice for J1 and τ1 is the empty set, then lk(τ1)Jc

1
= L1 is contractible.

There is no contribution to the Poincaré series. This means we will only consider
I such that 1 ∈ I.

2. In the case I = {1} and σ = ∅, we consider subsets, Jk, of Lk for k ∈ [m]\I, and
simplices ρ′s ∈ Ls and ρs′ ∈ Ls′ for s ∈ σ and s′ ∈ I\σ:

(a) For J2 = ∅ and τ2 = ∅, lk(τ2)Jc
2
= L2 and H̃∗(Σ|lk(τ2)Jc

2
|) = 〈ι1〉:

i. If ρ1 = ∅, then P (E21 ⊗ E22 ⊗ ι1 ⊗B11) = t9 is contributed to the Poin-
caré series;

ii. If ρ1 = {11}, then P (E21 ⊗ E22 ⊗ ι1 ⊗ C11) = t11 is contributed.

(b) Similarly, with J2 = {21} and τ2 = ∅, lk(τ2)Jc
2
= {{22}} is contractible.

(c) If J2 = {21} and τ2 = {21}, then lk(τ2)Jc
2
= ∅:

i. If ρ1 = ∅, then P (C21 ⊗ E22 ⊗ 1⊗B11) = t12;

ii. If ρ1 = {11}, then P (C21 ⊗ E22 ⊗ 1⊗ C11) = t14.

(d) If J2 = {22}, τ2 = {22} then lk(τ2)Jc
2
= ∅:

i. If ρ1 = ∅, then P (C22 ⊗ E21 ⊗ 1⊗B11) = t12;

ii. If ρ1 = {11}, then P (C22 ⊗ E21 ⊗ 1⊗ C11) = t14.

3. For I = {2, 1} and σ = ∅, lk(σ)I = ∅:

(a) For ρ1 = ∅:
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i. If ρ2 = ∅, then P (B11 ⊗B21 ⊗B22) = t12;

ii. If ρ2 = {21}, then P (B11 ⊗ C21 ⊗B22) = t14;

iii. If ρ2 = {22}, then P (B11 ⊗B21 ⊗ C22) = t14.

(b) For ρ1 = {11}:

i. If ρ2 = ∅, then P (C11 ⊗B21 ⊗B22) = t14;

ii. If ρ2 = {21}, then P (C11 ⊗ C21 ⊗B22) = t16;

iii. If ρ2 = {22}, then P (C11 ⊗B21 ⊗ C22) = t16.

In conclusion,

P (H∗(ẐK(L1,L2)(X,A))) = t9 + t11 + 3t12 + 5t14 + 2t16.

Since
K(L1, L2) = L1 ∗ L2

= {{11, 21}, {11, 22}}

a simplicial complex with three vertices and two edges, we can see that this is con-
sistent with Example 5.8 in [4]. Their example computes the Poincaré series for the
polyhedral product over a simplicial complex with three vertices and two edges, and
spaces with equivalent cohomology. We obtained the same answer using a different
method.

Definition 4.2. Let K be a simplicial complex on m vertices and k be a ring. Con-
sider k[m] := k[v1, . . . , vm], the ring of polynomials in m indeterminates. The general-
ized Stanley-Reisner ideal of K, I(K), is generated by square-free monomials indexed
by the nonsimplices of K

I(K) = 〈vi1 · · · vin | {i1, . . . , in} /∈ K〉.

The Stanley-Reisner (or face) ring of a simplicial complex, K, is denoted k[K] and
is defined as

k[K] = k[m]�I(K).

The following is another version of Theorem 4.1 which highlights the role of the
Stanley-Reisner ring (see Definition 4.2).

Corollary 4.3. Following Definition 2.11, suppose we have a decomposition

H∗(Aij) = Bij ⊕ Eij ,
H∗(Xij) = Bij ⊕ Cij ,

with Eij the cokernel of H
∗(Xij) → H∗(Aij), Bij the image, and Cij the kernel. Then

H∗(ZK(L1,...,Lm)(X,A)) =
⊕

I,σ,J,τ

H̃∗(Σ|lk(σ)Ic |)

⊗

( ⊗

k∈[m]\I

(
E[lk]−J ⊗ H̃∗(Σ|lk(τ)Jc |)

)
⊗ Y J,τ

)

⊗

(⊗

s∈σ

I(Ls)⊗
⊗

s′∈I\σ

SR(Ls′)

)
,

where
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1. I ⊂ [m] and σ is a simplex in K, with σ ⊂ I,

2. J ( [lk]. τ is a simplex in Lk, with τ ⊂ J ,

3. ρ′ is a nonsimplex in Ls and ρ is a simplex in Ls′ .

Corollary 4.4. Let I ′ = I ′1 ⊔ · · · ⊔ I ′m ⊂ [Σli] and σ′ = σ′
1 ⊔ · · · ⊔ σ′

m a simplex in
K(L1, . . . , Lm) with σ′ ⊂ [

∑
li]\I

′. Then

H̃∗(Σ|lk(σ′)I′ |) =
⊗

k∈I

H̃∗(Σ|lk(σ′
k)I′

k
|)⊗ H̃∗(Σ|lk(σ)I |),

where I = {i ∈ [m] | I ′i 6= ∅} and σ = {i ∈ [m]\I | σ′
i /∈ Li}.

Proof. By Theorem 2.13,

H∗(ZK(L1,...,Lm)(X,A)) =
⊕

σ′,I′

E[
∑

li]−I′

⊗ H̃∗(Σ|lk(σ′)I′c |)⊗ Y I′,σ′

.

Moreover, by Proposition 4.1, we have that E[
∑

li]−I′

=
⊗

k∈[m]−I

E[lk]−Jk whenever

I ′i = [li] for all i ∈ I and I ′k = Jk for all k ∈ [m]− I. We also have that

Y I′,σ′

=
⊗

k∈[m]−I

Y Jk,τ ⊗

(⊗

s∈σ

Y [ls],ρ
′

)
⊗

( ⊗

s′∈I−σ

Y [ls′ ],ρ

)
,

whenever σ′ = (∪τ) ∪ (∪ρ′) ∪ (∪ρ). Thus for k ∈ [m]− I, σ′
k = τ . Similarly, for s ∈

σ, σ′
s = ρ′ /∈ Ls. In other words s ∈ σ if and only if σ′

s /∈ Ls. Lastly, for s′ ∈ I − σ,
σ′
s′ = ρ. A change of notation is used so that the proposition is not stated in terms

of complements of sets.

Example 4. Refer to Example 2 of K(L1, L2, L3) for details of the construction. We

will find H̃∗(Σ|lkK(L1,L2,L3)(σ
′)I′ |) in terms of the links in K,L1, L2, L3 for several

cases of σ′ ∈ K(L1, L2, L3) and I ′ ⊂ [
∑

li].

1. Suppose σ′ = {32}. Then σ′
1 = ∅, σ′

2 = ∅, σ′
3 = {32}.

(a) If I ′ = {11, 31}, then I ′1 = {11}, I ′2 = ∅, I ′3 = {31}. This means I = {1, 3}
and σ = ∅. Thus

H̃∗(Σ|lk(σ′)I′ |) = H̃∗(Σ|lk(σ′
1)I′

1
|)⊗ H̃∗(Σ|lk(σ′

3)I′

3
|)⊗ H̃∗(Σ|lk(σ)I |)

= H̃∗(Σ∅)⊗ H̃∗(Σ∅)⊗ H̃∗(Σ|{{1}, {3}}|)

= 1⊗ 1⊗ H̃∗(S1).

This is consistent with |lk(σ′)I′ |= |{{11, 21}, {21, 31}}I′ |= |{{11}, {31}}| ≃
S0.

(b) If I ′ = {31, 21}, then I = {2, 3} and σ= ∅. Thus H̃∗(Σ|lk(σ′)I′ |) = 1⊗ 1⊗ 0.
This is consistent with |lk(σ′)I′ | = |{{31, 21}}| = ∆1, which is contractible.

2. Suppose σ′ = {11, 32} and I ′ = {31}. Then I = {3} and σ = {1}. Moreover,

H̃∗(Σ|lk(σ′)I′ |) = 1⊗ 1, which is consistent with lk(σ′)I′ = ∅.

Recall that Definition 2.1 of the full subcomplex, KI or K|I , and that the notation
K or |K| denotes the geometric realization of K. Specializing Proposition 4.1 to the
case (X,A) = (CA,A) we have the following corollary.
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Corollary 4.5.

H∗(ZK(L1,...,Lm)(CA,A)) =
⊕

I⊂[m],Jk⊂[lk],
Jk 6=∅

H̃∗(ΣKI)⊗

(⊗

k∈I

H̃∗(ΣLk|Jk
)⊗ H̃∗(ÂJk)

)
,

where ÂJ :=
∧

j∈[J]

Aj.

Proof. Recall Lk is a simplicial complex on the set [lk]. For the pair (CAi, Ai), Bi = 1,

Ci = 0 and Ei = H̃∗(Ai). We have that Y J,τ 6= 0 whenever τ = ∅, so that lk(τk)Jk
=

Lk|Jk
. Also, if σ 6= ∅, then Y [li],ρ

′

= 0 because the emptyset is not a nonsimplex of any
simplicial complex. Since σ = ∅, it follows that lk(σ)Ic = KIc . Recall that Jk 6= [lk]
and hence Jc

k 6= ∅.

An immediate corollary of Corollary 4.5 is a computation of the Poincaré series of

H̃∗(ZK(L1,...,Lm)(CA,A)).

Corollary 4.6.

P̄ (H̃∗(ZK(L1,...,Lm)(CA,A))) =
∑

I⊂[m],
Jk⊂[lk],
Jk 6=∅

P̄ (H̃∗(ΣKI))
∏

k∈I

P̄ (H̃∗(ΣLk|Jk
))P̄ (H̃∗(ÂJk)).

Remark 4.1. It follows from the splitting theorem (2.4) that the Poincaré series can
also be written in the following form:

P̄ (H̃∗(ZK(L1,...,Lm)(CA,A))) =
∑

B⊂[m]

P̄ (H̃∗(ΣKB))
∏

b∈B

P̄ (H̃∗(ZLb
(CA,A))).

This generalizes the computation for (D2, S1) in Ayzenberg to the case (CA,A).
The above formulas can be proven instead by also using Ayzenberg’s result on the
homotopy type of the composition, which will be described in further detail in the
following proof.

Alternate proof of Corollary 4.6. Ayzenberg’s Lemma 7.5 states that for J =
∪Ji ⊂ [

∑
li], K(L1, . . . , Lm)J = KB(Lb1 |Jb1

, . . . , Lbk |Jbk
) where B = {bi | Ji 6= ∅}

and Corollary 6.2 states that |K(L1, . . . , Lm)| ≃ |K| ∗ |L1| ∗ . . . ∗ |Lm|, and hence
|K(L1, . . . , Lm)| ≃ |K| ∧ Σ|L1| ∧ · · · ∧ Σ|Lm|. Now, using the splitting theorem (2.4),

and the wedge lemma, which states that ẐK(X,A) ≃ Σ|K| ∧ Â[m], we have the fol-
lowing:

H̃∗(ZK(L1,...,Lm)(CA,A)) =
⊕

J

H̃∗(Σ|K(L1, . . . , Lm)J | ∧ ÂJ )

=
⊕

B,Jb1
,...,Jbk

H̃∗(Σ|KB(Lb1 |Jb1
, . . . , Lbk |Jbk

)| ∧ ÂJb1 ∧ · · · ∧ ÂJbk )

=
⊕

B,Jb1
,...,Jbk

H̃∗(Σ|KB | ∧ Σ|(Lb1 |Jb1
)| ∧ · · · ∧ Σ|(Lbk |Jbk

)| ∧ ÂJb1 ∧ · · · ∧ ÂJbk )

=
⊕

B,Jb1
,...,Jbk

H̃∗(Σ|KB |)⊗
⊗

bi∈B

H̃∗(Σ|(Lbi |Jbi
)| ∧ ÂJbi )
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=
⊕

B

H̃∗(Σ|KB |)⊗
⊗

bi∈B

⊕

Jbi

H̃∗(Σ|(Lbi |Jbi
)| ∧ ÂJbi )

=
⊕

B

H̃∗(Σ|KB |)⊗
⊗

bi∈B

H̃∗(ZLbi
(CA,A)).

4.1. Multigraded Betti numbers
Let k be the ground field and k[m] = k[v1, . . . , vm] be the ring of polynomials in m

indeterminates. The ring k[m] has a Z
m-grading defined by deg(vi) = (0, . . . , 2, . . . , 0)

with 2 in the i-th place. Given a free resolution · · · → R−i → · · · → k[K] by Z
m-

graded k[m] modules, we have the Tor-module

Tork[m](k[K], k) =
⊕

i∈Z>0,j∈Zm

Tor−i,2j
k[m] (k[K], k).

The multigraded Betti numbers of a simplicial complex are then defined in terms
of the multigraded structure of the Tor-module. The (−i, 2j)-th Betti number of K

is the dimension of Tor−i,2j
k[m] (k[K], k) over k:

β−i,2j
k

(K) := dimk(Tor
−i,2j
k[m] (k[K], k)).

Since the cohomology ring of the moment-angle complex is Tork[m](k[K], k), the multi-
graded Betti numbers of a simplicial complex have a topological interpretation in
terms of ZK(D2, S1) [5]. We adapt this interpretation for an arbitrary polyhedral
product of pairs (CA,A).

Moreover, taking into account Hochster’s theorem:

β−i,2j
k

(K) = dim H̃ |J|−i−1(KJ ; k),

where there is a straightforward association between j ∈ Z
m and a subset J ⊂ [m].

Then using the splitting theorem (2.4) and wedge lemma we give an analogous defi-
nition for the multigraded Betti numbers of a polyhedral product.

Definition 4.7. For i∈Z and J ⊂ [m], themultigraded Betti numbers of ZK(CA,A),
denoted βi,J (ZK(CA,A)), are defined as

βi,J (ZK(CA,A)) := dim H̃i(ΣKJ ∧ ÂJ).

Let s and t1, . . . , tm be indeterminates such that t̄J = tj11 · · · tjmm where ji = 1 if i ∈ J
and ji = 0 otherwise. The beta-polynomial of ZK(CA,A) is defined as

βZK(CA,A)(s, t̄) :=
∑

i∈Z,J⊂[m]

βi,J (ZK(CA,A))sit̄J

and the reduced beta-polynomial

β̃ZK(CA,A)(s, t̄) := βZK(CA,A)(s, t̄)− 1 =
∑

i∈Z,∅6=J⊂[m]

βi,J (ZK(CA,A))sit̄J .

The definition of multigraded Betti numbers of a simplicial complex is given in
terms of a Tor algebra and the Stanley-Reisner ring, which are in terms of indetermi-
nates in degree 2. When considering the (−i, 2j)-th Betti number of K and applying
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Hochster’s theorem, the (−i, 2j)-th Betti number should be the dimension of the
cohomology of KJ in degree (−i+ 2j)− j − 1 = −i+ j − 1 where |J | = j. This is

equivalent to Definition 4.7 since H̃i(ΣKJ ∧ ÂJ ) = H̃i−j−1(KJ ), with a change of
variables for the shift in cohomological degree.

Proposition 4.8. The beta-polynomial of ZK(L1,...,Lm)(CA,A) can be expressed in
terms of the beta-polynomial of the polyhedral products associated to each of the sim-
plicial complexes K,L1, . . . , Lm:

βZK(L1,...Lm)(CA,A)(s, t̄) = βZK(D1,S0)(s, β̃ZL1
(CA,A)(s, t̄), . . . , β̃ZLm (CA,A)(s, t̄)).

Proof. Let i′ ∈ Z, J = ∪Ji ⊂ [
∑

li], B = {bi ∈ [m] | Ji 6= ∅} = {b1, . . . , bk}, n+ p =
i′, r +

∑
rs = n,

∑
cs = p. Using Corollary 4.5, we have

βZK(L1,...,Lm)(CA,A)(s, t̄) =
∑

i′,J

dim H̃i′(ΣK(L1, . . . , Lm)J ∧ ÂJ )si
′

t̄J

=
∑

i′,B,
Jb1

,...,Jbk

∑

n,p

dim H̃n(ΣK(L1, . . . , Lm)J ) dim H̃p(ÂJb1 ∧ · · · ∧ ÂJbk )si
′

t̄J

=
∑

i′,B,
Jb1

,...,Jbk

∑

n,p

( ∑

r,r1,...,rk

dim H̃r(ΣKB)

k∏

i=1

dim H̃ri(ΣLbi |Jbi
)

)

×

( ∑

c1,...,ck

k∏

i=1

dim H̃ci(ÂJi)

)
si

′

t̄J

=
∑

i′,B,
Jb1

,...,Jbk

∑

n,p

∑

r

dim H̃r(ΣKB)

×
k∏

i=1

∑

r1,...,rk,
c1,...,ck

dim H̃ri+cj (ΣLbi |Jbi
∧ ÂJbi )si

′

t̄Jb1 · · · t̄Jbk .

Next, we will use a change of variables in order to rewrite this in a recognizable
form. Let

ri + cj = ai+j .

Then i′ = n+ p = r +
∑

ri +
∑

ci = r +
∑

ai+j = r +
∑

au. Therefore,

βZK(L1,...,Lm)(CA,A)(s, t̄)

=
∑

i′,B,
Jb1

,...,Jbk

∑

n,p

∑

r

dim H̃r(ΣKB)×
k∏

i=1

∑

r1,...,rk,
c1,...,ck

dimH̃ri+cj (ΣLbi |Jbi
∧ÂJbi )si

′

t̄Jb1 · · · t̄Jbk

=
∑

B,r

dim H̃r(ΣKB)s
r

k∏

i=1

∑

Jb,au

dim H̃au(ΣLbi |Jbi
∧ ÂJbi )sau t̄Js

= βZK(D1,S0)(s, β̃ZL1
(CA,A)(s, t̄), . . . , β̃Lm(CA,A)(s, t̄)).



276 ELIZABETH VIDAURRE

Example 5. Consider the composed simplicial complex from Example 2. We need to
compute the reduced beta-polynomials of each complex Li. Since the full subcomplex
of L1 associated to {11} is the empty set,

β̃ZL1
(CA,A) =

∑
dim H̃i(Σ∅ ∧A11)s

it11.

The full subcomplexes of L2 are all contractible, so its beta-polynomial is the zero
polynomial. The only nontrivial full subcomplex of L3 is associated to {31, 32}, and
hence its reduced beta-polynomial is

β̃ZL3
(CA,A) =

∑
dim H̃i(Σ∂∆1 ∧A31 ∧A32)s

it31t32.

The noncontractible full subcomplexes of K are {1, 2}, {1, 3}, {1, 2, 3}. Since the beta-
polynomial of L2 is zero, any subsets of [3] that contain 2 do not contribute any
nontrivial terms. Apply Proposition 4.8,

βZK(L1,...Lm)(CA,A)(s, t̄) = βZK(D1,S0)(s, β̃ZL1
(CA,A)(s, t̄), . . . , β̃ZLm (CA,A)(s, t̄))

=
∑

i∈Z,J⊂[m]

dim H̃i
(∑

KJ

)
si(β̃ZL(CA,A))

J

= 1 +
∑

dimHi
(∑

∂∆1
)
si(β̃ZL1

(CA,A))(β̃ZL3
(CA,A))

= 1 + s
(∑

dim H̃i(
∑

∅ ∧A11)s
it11

)(∑
dim H̃i(Σ∂∆1 ∧A31 ∧A32)s

it31t32

)
.

(4.4)

Since all full subcomplexes of K(L1, L2, L3) are contractible except those associated
to the empty set and the set {11, 31, 32}, its beta-polynomial is

βZK(L1,L2,L3)(CA,A)(s, t̄) =
∑

i∈Z,J

dim H̃i(ΣKJ ∧ ÂJ)sit̄J

= 1 +
∑

dim H̃i(Σ∂∆2 ∧A11 ∧A31 ∧A32)s
it11t31t32.

(4.5)

If for example Ai = S2 for all i, then both expressions 4.5 and 4.4 simplify to

1 + s8t11t31t32.

4.2. Ring structure
Recall the generalized Stanley-Reisner ideal I(K) in H̃∗(X1)⊗ · · · ⊗ H̃∗(Xm),

I(K) = 〈xi1 ⊗ · · · ⊗ xik | {i1, . . . , ik} /∈ K〉.

Since the generalized Stanley-Reisner ideal is essential to understanding the ring
structure of H∗(ZK(X,A)), we will describe the generalized Stanley-Reisner ideal in
the case that the underlying simplicial complex is a composition K(L1, . . . , Lm) in
terms of the generalized Stanley-Reisner ideal of K,L1, . . . , Lm.

Proposition 4.9. The generalized Stanley-Reisner ideal of K(L1, . . . , Lm) satisfies

I(K(L1, . . . , Lm)) = 〈ci1 ⊗ · · · ⊗ cik | {i1, . . . , ik} /∈ K〉,

where ci ∈ I(Li) for i1 6 i 6 ik.
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Proof. Recall from the proof of Theorem 4.1 that Ci = I(Li).

Suppose cσ ∈ I(K(L1, . . . , Lm)) where σ ⊂ [
∑

li] is such that σ /∈ K(L1, . . . , Lm).
Recall from the equivalent definition of K(L1, . . . Lm) (after Definition 2.6) that σ is
of the form

σ =
⋃

i∈[m]

σi,

where σi ⊂ [li] and {i ∈ [m] | σi /∈ Li} /∈ K. LetA = {i ∈ [m] | σi /∈ Li} = {i1, . . . , ik}.
In other words cσ = cA = ci1 ⊗ · · · ⊗ cik where A /∈ K and ci ∈ I(Li). It follows that
cσ ∈ 〈ci1 ⊗ · · · ⊗ cik | {i1, . . . , ik} /∈ K〉.

Suppose c= ci1 ⊗ · · · ⊗ cik ∈ 〈ci1 ⊗ · · · ⊗ cik | {i1, . . . , ik} /∈ K〉 where ci ∈ I(Li) for
i1 6 i 6 ik. Since ci ∈ I(Li), it is of the form ci = cτi for some τi /∈ Li. Since {i1, . . . , ik}
/∈ K, we have that τ = ∪τi /∈ K(L1, . . . , Lm). Therefore, c = cτ ∈ I(K(L1, . . . , Lm)).

Example 6. A minimal nonface of K is a set that is not a simplex of K but every
subset of it is a simplex of K. The generalized Stanley-Reisner ideal is generated by
the minimal nonfaces. Suppose we have the following simplicial complexes:

L1 ⊂ [2], L1 = {{11}, {12}}, I(L1) = 〈c11 ⊗ c12〉,
L2 ⊂ [2], L2 = {{21}}, I(L2) = 〈c22〉,
K ⊂ [2], K = {{2}}, I(K) = 〈c1〉.

The composition K(L1, L2) = L1 ∗∆
1 = {{11, 21, 22}, {12, 21, 22}} and hence

I(K(L1, L2)) = 〈c11 ⊗ c12〉.

5. The pair (Li, ∅)

In this section we will find a formula for the cohomology groups of ZZ∗

K
(Li,∅)(X,A),

the polyhedral product over a polyhedral join given by the pairs (Li, ∅). In this case,
we get a similar formula to Theorem 2.7

ZZ∗

K
(Li,∅)(X,A) = ZK

(
ZLi

(X,A),
∏

j∈[li]

Aj

)
. (5.1)

As an application, we can write the polyhedral product ZK(Sn,∨S0) as the real
moment-angle complex ZZ∗

K
(∂∆ni ,∅)(D

1, S0).

It follows from the discussion in Section 3 that the kernel, cokernel and image can
be computed if the links of simplices in Li can be described in general. Note that Li

and its subsimplicial complex, ∅, do not have any (nontrivial) simplices in common,
so the links do not present any issues. Equation (5.1) and Theorem 2.13 imply the
following formula.

Theorem 5.1. Given simplicial complexes Li on the vertex sets [li] with no ghost
vertices and pairs (Xij , Aij), where i varies in [m] and j varies in [li], that satisfy
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the freeness condition of Definition 2.11 with decompositions

H∗(Xij) = Bij ⊕ Cij ,

H∗(Aij) = Bij ⊕ Eij .

Then we have

H∗(ZZ∗

K
(Li,∅)(X,A))

=
⊕

J,τ,I,σ

ET ⊗B(T∪S)c ⊗ CS ⊗

(⊗

v∈τ

H̃∗(Σ|lk(σ)|I)

)
⊗ H̃∗(Σ|lk(τ)|Jc),

where

1. J ⊂ [m] with a simplex τ of K such that τ ⊂ J ;

2. For v ∈ τ , take subsets Iv ⊂ [lv] and a simplex σ ∈ Lv such that σ ⊂ Ic. For
k ∈ [m]\J , consider subsets Ik ⊂ [lk]. Then T and S are defined by

T =

( ⋃

[m]\J

Ik

)
∪

(⋃

v∈τ

Iv

)
, S =

⋃

v∈τ

σv.

Proof. From Definition 2.11, we need to find the kernel, Ei, image, Bi, and cokernel,
Ci, of the map

H∗(ZLi
(X,A)) → H∗

( ∏

j∈[li]

Aj

)
,

where H∗(
∏

j∈[li]
Aj) = Ei ⊕Bi and H∗(ZLi

(X,A)) = Ci ⊕Bi. Since the cohomol-
ogy of each space in the pair is given by

H∗(
∏

j∈[li]

Aj) =
⊕

I⊂[li]

BI ⊗ EIc

H∗(ZLi
(X,A)) =

⊕

σ⊂I⊂[m]
σ∈Li

EIc

⊗ H̃∗(Σ|lk(σ)|Ic)⊗ Y I,σ

=

( ⊕

I⊂[m]

EIc

⊗BI ⊗ H̃∗(ΣLi|Ic)

)

⊕

( ⊕

σ⊂I⊂[m]
∅6=σ∈Li

EIc

⊗ H̃∗(Σ|lk(σ)|Ic)⊗ Y I,σ

)

and the full subcomplex Li|Ic is only empty when Ic = ∅ (because Li has no ghost
vertices), we have that

Bi = B[li],

Ei =
⊕

I([li]

BI ⊗ EIc

,

Ci =
⊕

σ⊂I([m]
σ∈Li

∅6=σ∈Li

EIc

⊗ H̃∗(Σ|lk(σ)|Ic)⊗ Y (I,σ),
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where “σ, I 6= ∅” means that σ and I are not both the empty set. Then substituting,

H∗(ZZ∗

K
(Li,∅)(X,A))

=
⊕

J,τ

H̃∗(Σ|lk(τ)|Jc)⊗ E[m]\J ⊗ Cτ ⊗BJ\τ

=
⊕

J,τ

(
H̃∗(Σ|lk(τ)|Jc)⊗

⊗

k∈[m]\J

( ⊕

L⊂[lk]

EL ⊗BLc
)

⊗
⊗

v∈τ

( ⊕

I⊂[lv ],
σ∈Lv,σ,I 6=∅

EI ⊗ Y Ic,σ ⊗ H̃∗(Σ|lk(σ)|I)

)
⊗
⊗

u∈J\τ

B[lu]

)

=
⊕

J,τ,
I,L,σ

(
H̃∗(Σ|lk(τ)|Jc)⊗

⊗

k∈[m]\J

(EL ⊗BLc

)

⊗
⊗

v∈τ

(
EI ⊗ Y Ic,σ ⊗ H̃∗(Σ|lk(σ)|I)

)
⊗
⊗

u∈J\τ

B[lu]

)
.

Corollary 5.2. Suppose (Xij , Aij) = (CAij , Aij). Then

H∗(ZZ∗

K
(Li,∅)(CA,A))

=
⊕

J,τ,Ik,Iv 6=∅

(
H̃∗(ÂT )⊗

(⊗

v∈τ

H̃∗(ΣLv|Iv )
)
⊗ H̃∗(Σ|lk(τ)|Jc)

)
,

where

1. J ⊂ [m] with a simplex τ of K such that τ ⊂ J ;

2. For k ∈ [m]\J and v ∈ τ , take subsets Iv ⊂ [lv] and Ik ⊂ [lk], and define T :

T :=

( ⋃

k∈[m]\J

Ik

)
∪

(⋃

v∈τ

Iv

)
.

Proof. With the given pairs, we know that Cij = 0, Bij = 1 and Eij = H̃∗(Aij) for
all ij. Since Cij = 0, σ in Proposition 5.1 must be the empty set. Therefore I cannot
be the empty set and

H∗(ZZ∗

K
(Li,∅)(CA,A))

=
⊕

J,τ,Ik,
Iv 6=∅

(( ⊗

k∈[m]\J

EIk ⊗BIc
k

)
⊗
(⊗

v∈τ

EIα ⊗BIc
v ⊗ H̃∗(ΣLv|Iv )

)

⊗
( ⊗

j∈J\τ

B[lβ ]
)
⊗ H̃∗(Σ|lk(τ)|Jc)

)

=
⊕

J,τ,Ik,Iα 6=∅

(( ⊗

k∈[m]\J

EIk
)
⊗
(⊗

v∈τ

EIv ⊗ H̃∗(ΣLv|Iv )
)
⊗ H̃∗(Σ|lk(τ)|Jc)

)
.
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