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RACKS AS MULTIPLICATIVE GRAPHS
JACOB MOSTOVOY
(communicated by Ronald Brown)

Abstract

We interpret augmented racks as a certain kind of multi-
plicative graphs and show that this point of view is natural
for defining rack homology. We also define the analogue of the
group algebra for these objects; in particular, we see how dis-
crete racks give rise to Hopf algebras and Lie algebras in the
Loday-Pirashvili category £LM. Finally, we discuss the integra-
tion of Lie algebras in LM in the context of multiplicative
graphs and augmented racks.

1. Introduction

Racks are self-distributive algebraic structures which arise in different contexts,
such as knot theory or the structure theory of Hopf algebras. They have been invented
several times under different names: wracks (which later morphed into racks), dis-
tributive groupoids, automorphic sets. A union of conjugacy classes in a group can
be considered as a rack; there are many other interesting examples. A closely related
algebraic structure is that of an augmented rack or a crossed G-set: this is a rack
together with a morphism into a group (which is thought of as a rack with the oper-
ation of conjugation). We refer to [5] for an overview of the subject; we shall use the
facts from that paper without explicit reference.

In the present note we interpret augmented racks as multiplicative, rather than
self-distributive structures; we call these structures group-like graphs. This point of
view provides a simple interpretation of rack spaces (and, hence, rack homology)
and leads to the definition of an analogue of the group algebra for racks: it is a
Hopf algebra in the Loday-Pirashvili category of linear maps. This algebra carries a
filtration similar to the filtration by the powers of the augmentation ideal in a group
algebra; the associated graded Hopf algebra is the universal enveloping algebra of a
certain Lie algebra in the Loday-Pirashvili category, which can be described in terms
of what we call the graded coinvariant module of the corresponding augmented rack.
Note that Hopf dialgebras and Leibniz algebras are particular cases of Hopf algebras
and Lie algebras in the Loday-Pirashvili category, see [10], so our constructions can
be translated into the dialgebra language.

We also consider smooth group-like graphs and indicate how to set up a version of
Lie theory for them. One can think of a Lie algebra in the Loday-Pirashvili category

Received October 7, 2017, revised February 14, 2018; published on June 13, 2018.

2010 Mathematics Subject Classification: 20N99, 05C99, 16T05.

Key words and phrases: rack, multiplicative graph, Loday-Pirashvili category, Leibniz algebra.
Article available at http://dx.doi.org/10.4310/HHA.2018.v20.n2.a12

Copyright © 2018, Jacob Mostovoy. Permission to copy for private use granted.


http://intlpress.com/HHA/
http://intlpress.com/HHA/v20/
http://intlpress.com/HHA/v20/n2/

240 JACOB MOSTOVOY

(in particular, a Leibniz algebra) as of an infinitesimal object corresponding to a
group-like graph of a certain kind, namely, a linear Lie graph. Every such finite-
dimensional Lie algebra can be integrated to a linear Lie graph; this is consistent
with the formal integration procedure of [14]. Linear Lie graphs are in one-to-one
correspondence with linear augmented Lie racks; the exponential map of a Lie algebra
to the corresponding Lie group is an example of such rack. On the level of non-
augmented racks, this integration procedure has been discussed in [9], where the
connection between Leibniz algebras and racks was made for the first time.

Much of what we do is valid not only for group-like graphs, but for multiplica-
tive graphs: if group-like graphs are thought of as being analogous to groups, the
multiplicative graphs are analogous to semigroups (and are different from shelves of
[2]). We give a concrete example of a multiplicative graph which is not group-like;
it arises in knot theory when considering knots with double points. A by-product of
our constructions is a functor that assigns a differential graded Lie algebra to a Lie
algebra in the Loday-Pirashvili category (in particular, to a Leibniz algebra).

2. Multiplicative graphs and augmented racks

2.1. Multiplicative graphs

In this note, unless stated otherwise, by a “graph” we shall mean a directed graph,
possibly with loops and multiple edges. Such a graph ) can be written as a pair of
sets (vertices V and arrows A) with a pair of maps from arrows to vertices (source s
and target ¢):

Q=(V it: A).

Recall that the Cartesian product @1 0 Q5 of two graphs @1 = (V4 &= A1) and Q2 =
(Vo &= Ay) is a graph on the set of vertices Vi x Va, the set of arrows

A x Vo U Vi x Ay
and the source and target maps

s =51 xidUid X s9
and

t =1t xidUid x ts.

If @, and @2 are thought of as 1-dimensional cell complexes with directed 1-cells, the
graph Q1 @5 is obtained from the 2-dimensional cell complex Q)1 X Q2 by erasing
the 2-cells. The Cartesian product of graphs is associative in the sense that there is
a canonical isomorphism

(@:10Q2)0Q3 ~ Q:10(Q0Q3).

Definition 2.1. A Cartesian-multiplicative or, simply, multiplicative graph is a graph
Q@ together with a morphism

p:QUOQ —Q,

which is associative in the sense that

po (ndid) = po (idO p).
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The set of vertices of a multiplicative graph @ is a semigroup. Call @ group-like if
this semigroup is, actually, a group.

As an algebraic structure, a group-like graph is equivalent to what is known as
an augmented rack. Recall that an augmented rack X over a group G (also called a
crossed G-set) is a G-set X together with a morphism (augmentation map) of G-sets
m: X — G, where G acts on itself by conjugation. Probably, the most basic example
of an augmented rack is a union of an arbitrary set of conjugacy classes in a group G.

A group-like graph @ = (G &= A) gives rise to an augmented rack in the following
fashion. The “multiplication” u gives a two-sided action of the group G of vertices of
Q@ on the set A of arrows. Let X C A be the set of arrows whose source is 1. Then
there is an action of G on X defined by

=g lx-g
and the target map t: X — G is a morphism of G-actions where G acts on itself by
conjugation. In other words, X is an augmented rack over G.
Conversely, given an augmented rack m: X — G one constructs a group-like graph

(G&=GxX)
by setting
s(g,x) =g, g, x)=gm(z),
and

w((g1,71),92) = (9192, 277), w91, (92, 22)) = (9192, T2).

Group-like graphs form a category, whose morphisms are the morphisms of graphs
that respect the multiplication; in particular, they are group homomorphisms on
vertices. Augmented racks also form a category whose morphisms are the commutative
squares of the form

XfHX.X’

G&GQ

where f¢ is a homomorphism and fx (x)7¢(9) = fx(x9).
The preceding construction that allows to pass from a group-like graph to a rack
and vice versa is functorial:

Theorem 2.2. The category of group-like graphs is equivalent to the category of aug-
mented racks.

There are variations on the definition of a multiplicative graph. One may also
consider usual graphs, that is, undirected graphs without loops and multiple edges.
These lead to a very particular class of racks. Namely, in this context, for a group-like
graph @ with the group of vertices G, the set of edges X one of whose ends is the unit
of G is a subset of G which is (a) invariant under conjugation; (b) contains together
with each g € G its inverse.! Conversely, for each union X of non-trivial conjugacy

! This means that the rack X has a good involution, see [11].
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classes in G satisfying (b) there exists a group-like graph whose set of vertices is G
and whose set of edges that connect to the unit is X.

Another variation consists in considering k-graphs? instead of graphs, that is, pairs
of sets with k£ + 1 maps between them, for any k£ > —1. One defines the Cartesian
product of k-graphs in the same fashion. For instance, when k = 0, with this definition
each group-like O-graph is of the form (G < G x X) where X is a G-set and the map
is the projection onto the first factor. A group-like O-graph can be considered as a
group-like 1-graph whose only arrows are loops.

As the referee points out, one is tempted to compare the concept of a group-like
graph with that of a category; more precisely, an internal category in the category
of groups, see [7]. Both kinds of structures are directed graphs whose vertices form a
group; however, the arrows in a group-like graph cannot be composed as morphisms.
While an internal category in the category of groups (in other words, a crossed module
of groups) is an example of an augmented rack, it is an example of a very special kind.
In turn, an augmented rack is a particular example of a crossed module of racks [3].

2.2. Racks without augmentation and their associated groups
Historically, augmented racks are secondary objects as compared to racks. A rack
(without an augmentation) is a set X with a binary operation X x X — X, written as

(z,y) = ¥
satisfying the identity
(a¥)* = (a*)"
and such that for every y, z € X there exists a unique z € X with
¥ =z
This definition axiomatized the properties of conjugation in a group: if X is a union

of conjugacy classes in a group, the rack structure on X is given by

¥ =y oy

The rack structure on a group G given by conjugation is called the conjugation rack
of G.
In an augmented rack 7: X — G, the set X naturally has the structure of a rack
with the operation defined as
¥ = 27,

Conversely, each rack X defines the associated group Gx with the presentation

<T’£1a7—$27 s | Te; Tx; = ijT(zi”"j)>;

where X = {x1,x,...}. The group Gx acts on X and the tautological map 7: X —
Gx which sends x € X to the corresponding generator 7, of Gx is G x-equivariant;
that is, to say, defines an augmented rack. The functor X — Gx is left adjoint to the
functor of taking the conjugation rack of a group.

2This terminology is somewhat arbitrary.
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Proposition 2.3. The group-like graph corresponding to the augmented rack X —
Gx 1is path-connected.

Proof. By construction, X can be identified with the set of edges of the graph that
emanate from 1 € Gx; in particular, each generator 7, € Gx is connected to 1 by
the edge x. Also, the inverse of a generator 7, ! is connected to 1 by the edge 7, - 2.

Now, if w € Gx is connected to 1 by a sequence of edges aq,..., a,, then wr, is
also connected to 1, by the sequence of edges ay, ..., a,,w -z, and wr,* — by the
sequence ay, ..., G, w7, - . O

Note that the only property of the rack X — Gx that we used in the above proof
is that the image of X in Gx generates the whole group Gx. A similar argument
gives the following statement:

Proposition 2.4. For an augmented rack X — G, let H be the subgroup of G gen-
erated by the image of X. Then H is normal in G; it is the group of vertices of the
connected component of the unit in the group-like graph of X — G.

As we shall see later, the connectivity of a group-like graph is reflected in the
properties of the bialgebras associated with it.

3. The associated spaces

3.1. The cubical complexes E(@ and BQ
Let Q1 be the graph with two vertices and one arrow connecting them; set

Qn=Q 0. 0O

(n factors). A k-face of Q, is a subgraph of Q, isomorphic to Qg, obtained by
replacing n — k of the copies of Q; in the product above by one of its vertices.

For a graph @, we shall refer to the morphisms Q,, — @ as the n-cubes of Q). The
restriction of an n-cube to one of the k-faces of Q,, is a k-face of the n-cube. Each
arrow a of @) gives rise to a canonical map a: Q1 — Q. In a multiplicative @, a product
n-cube is an n-cube of the form

Q,=:0---0Q MQDMDQ £ 0,
where a; are arrows of ) and the last map is the multiplication of n factors in Q; we
shall denote such n-cube by a; 0 - -- Oay,. A product square is a product 2-cube.

Lemma 3.1. The k-faces of a product n-cube are product k-cubes.

Proof. If Qq is the graph consisting of one vertex and no arrows, we have Qo1 Q; =
Q1. An (n — 1)-face of an n-cube is obtained by replacing a copy of Q; in the product
by a Qo which can be grouped with the copy of Q; that precedes or follows it; this
establishes the lemma. O

For a multiplicative graph Q = (G &= A) let EQ be the cubical complex® whose
n-dimensional faces correspond to the product n-cubes of ) and the face maps — to

3 . . . . .
By a “cubical complex” we mean a geometric realization of a precubical set.
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the inclusions of the (n — 1)-faces into Q,,. The semigroup G of vertices of @) acts on
the product n-cubes by

(g,a1D---Dan)'—>(g~a1)D--~Dan,

for g € G acting on A the left via pu. This action is compatible with the face maps
and, hence, descends to an action of G on EQ. We shall denote the orbit space of
this action by BQ.

Given a product k-cube @ = a1 O - - - Oay and a product m-cube b = b, 0 - - - by,
one defines the product (k+m)-cube a0Ob as a; O --- Oap, 06,0 -+ Ob,y,. This
operation on product cubes is compatible with the face maps so that there is an
associative product

EQ x EQ — EQ

given by (a,b) — aOb.
For group-like graphs, the product cubes are easy to describe:

Lemma 3.2. Let Q = (G &= A) be a group-like graph which gives rise to a rack X.
Product n-cubes in Q are in one-to-one correspondence with (n + 1)-tuples of the form
(9,21, xn) with g € G and x; € X.

Proof. Recall that A = G x X. We shall see that each product n-cube can be uniquely
written as

(9,21)0(1,22)0 --- O(1, ),

with ¢ € G and z; € X.

Let us first consider product squares. The product square (g1, 21) 0 (g2, x2) is of
the form
gam(x2)

xT
919277(96‘2) —— 917T(361)927T(96‘2)

fcaT T”Q
x.‘??

9192 41>917T($1)92-

Here the corners of the square are vertices of @), the arrows are labelled by the
elements of X rather than G x X since the corresponding element of G is indicated
at the source of the arrow. Now, assume that we are given arbitrary h = g1 9o, 21 = z{*

and zo = x9. Then, the above product square is of the form

z;f(Zz)
hr(zg) — hm(z1)7(22)

and this establishes the lemma for product squares.
The case of the n-cubes with n > 2 now follows by induction from the associativity
of the [ operation. O
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In the notation of Lemma 3.2, the action of G on EQ is of the form

(9,(g 215 2n)) = (99" 21, 20);

in particular, it is free and E(Q is a covering space of BQ.

Lemma 3.3. Let Q be a group-like graph which gives rise to a rack X. The space
BQ coincides with the rack space of X.

The proof is immediate and follows from the definition of the rack space [6] and
the description of the product squares given in the proof of Lemma 3.2.

3.2. The spaces E@ and BQ via the James reduced product

The cubical complex E@ can be defined in terms of generators and relations.
Consider @ as a topological space (one-dimensional simplicial or cubical complex)
with a two-sided continuous G-action; the group G is then the 0-skeleton of Q). Write
F(Q) for the free monoid generated by the points of @ whose identity is the vertex
corresponding to 1 € G. The monoid F(Q) carries the natural topology induced by
the topology on Q; it is known as the James reduced product of Q, see [8].

Consider the following set of equivalence relations on F(Q):

grx~geT, THGNT-G, (1)

for each g € G,z € @, where x is the product in F(Q) and - denotes the G-action
on Q.

Proposition 3.4. For a group-like graph Q, the monoid EQ is the quotient of F(Q)
by the above equivalence relations.

Proof. Denote the congruences (1) by R. The space F(Q)/R has the natural structure
of a cubical complex. Indeed, F(Q) is the union of cells of the form ¢; * - - - * ¢,,, where
each g; is either a fixed element of G or varies over a fixed arrow in A. The congruences
R respect this cell subdivision of F(Q); each cell in F(Q)/R can be written as ay *
-+ % ap, with a; € A and m > 0 (in particular, the product may be empty; this gives
the unique 0-cell). Moreover, modulo R, each of the cells of positive dimension can
be uniquely written as g * 1 * - - - * x,, where the x; are edges emanating from 1 and
n>1.

The space EQ contains a copy of @ so that there is a unique continuous surjective
homomorphism of F(Q) to EQ which descends to a map

F(Q)/R— EQ
that maps aj * - - - * a, to a; O - -- Oay,. The preimage of a cell (g,z1,...,2,) is pre-
cisely the cell g % z1 % --- % x,, so that this homomorphism is, actually, an isomor-
phism. O

Remark 3.5. This construction of the rack space makes sense in a somewhat more
general context. Let Y be a topological space and G C Y a subset with the group
structure such that there is a left* action of G on Y extending the left multiplication

4The same construction works for right and for two-sided actions.
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on G. Denote by E(Y,G) the quotient of the free monoid F'(Y') by the relations
gra~g-,

for all g € G,z € Y. There is a left action of G on E(Y,G) and we can define B(Y, G)
as the quotient space of E(Y,G) by this action. For instance, given a left G-set X,
one can take Y = G LU X. A possibly more interesting example is a Cayley graph for
G or, indeed, a graph determined by an arbitrary subset S C G: we set Y to be the
graph whose vertices are elements of G and whose edges are pairs (g, gs) for all g € G
and s € S. Note that the 1-skeleton of E(Y,G) in this case is a multiplicative graph
into which the Cayley graph is embedded.

3.3. The action of 71 BQ on 7, EQ

The fundamental group of any topological monoid (or, indeed, of any space with
a unital multiplication) is abelian. More generally, let E be a topological monoid
and G C E be a subgroup acting on E by left translations with the quotient space
B. Assume that p: F — B is a covering. Then, m E lies in the centre of 7 B; in
particular, for a group-like graph ) the subgroup 71 EQ lies in the centre of m; BQ).

The proof is a standard exercise in topology. Let p(1) be the basepoint in B; for a
curve « starting at p(1) write ¥ for its lifting to F with 7(0) = 1. Let «, 8: [0,1] = B
be two closed paths starting and ending at p(1) and assume that @ is closed in E.
Denote by @, and 3, the reparametrizations of @ and (3, respectively, which are
constant outside of the interval [r, 7 + 1/2]. Note that the pointwise product curves
@, f3,, are fixed-end homotopic in E for all 71,7 € [0,1/2]; since @ is closed, their
projections to B define closed loops in B. Now, writing o for the concatenation of
loops in B we see that

aofl= 6031/27
while
foa= Boal/Z ~ 31/250 = aOBl/2a

which means that « o 3 equals 3 o a as an element of 71 B.

A very similar argument shows that m B acts trivially on 7, E for all n. Since for
n > 1 the groups m, F coincide with m, B, we see that the rack space BQ is always
homotopy simple, the fact that was first proved in [6].

4. Examples

4.1. Path graphs

Probably, the simplest non-trivial example of a multiplicative graph is the graph of
pairs of elements in a (semi)group. For a semigroup G, let A = G x G with the maps
s and t being the projections onto the first and on the second factors respectively, and
the two-sided action of G being the action of the diagonal in G x G by multiplication.
When G is a group, the corresponding augmented rack is the identity map G — G
(and the non-augmented rack is the conjugation rack of G).

An extension of this example is the graph whose arrows are sequences of n elements
in G, with s and ¢ being the first and the last element of the sequence. When G is
a topological semigroup, one can consider the graph whose edges are directed paths
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on G; again, with s and ¢ being the beginning and the end of the path. If G is a Lie
group, it makes sense to consider the group-like graph LG whose arrows are directed
segments of geodesics in G, parametrized by length. An important feature of this
graph is that the maps

s,t: LG — G

are vector bundles such that the action of G on LG is linear on the fibres. Indeed, each
geodesic vy starting at g € G is determined by a tangent vector in T,G whose direction
coincides with that of v and whose length gives the length of 7, and, therefore, the
fibre of s over g € G can be identified with T,G; the same argument goes for the
map t. This is the most basic example of a linear Lie graph, see Section 6.1.

4.2. Multiplicative cubical complexes and simplicial monoids

For any cubical complex with an associative cubical multiplication on it, the 1-
skeleton is a multiplicative graph. Each multiplicative graph @ can be obtained in
such a way, being the 1-skeleton of the cubical complex EQ. Here, as before, a cubi-
cal complex is a geometric realization of a precubical set X (a “cubical set without
degenerations”) and a cubical multiplication is a geometric realization of an associa-
tive map X x X — X. Recall that the n-cubes of the product of two precubical sets
X and Y are pairs of cubes of X and Y whose dimensions sum up to n.

Also, the 1-skeleton of a simplicial monoid is a multiplicative graph whose vertices
are the 0-simplices, whose edges are the 1-simplices and whose source and target maps
are the face maps. The monoid of 0-simplices can be identified with the monoid of
the degenerate 1-simplices, and, therefore, acts on the 1-simplices by multiplication;
since the face maps are homomorphisms, this gives a multiplicative graph. When the
monoid of 0-simplices is, actually, a group, its action respects the non-degeneracy of 1-
simplices. In particular, in this case, one obtains a multiplicative graph whose vertices
are the O-simplices of the simplicial monoid and whose arrows are the non-degenerate
1-simplices.

4.3. Knot racks as multiplicative graphs

One of the most useful examples of racks is the rack associated with a framed knot.
In terms of multiplicative graphs, this construction has the following form.

Let K be a parametrized framed knot in R3. Choose a basepoint in the exterior of
K and let A be the set of all homotopy classes of smooth loops in R? which start at
the basepoint and cross the knot K exactly once with the positive sign (this means
that at the crossing point the tangent vector to the loop, the tangent vector to the
knot and the framing vector form a positive basis in R?). Each a € A gives rise to two
elements of the knot group 71 (R? — K) as follows. Represent a by a curve + and define
s(a) as the class of the loop obtained by moving 7 at the crossing point off the knot
in the direction opposite to the framing; similarly, ¢(a) is obtained by shifting v off K
along the framing. These maps are evidently well-defined. Moreover, there is a two-
sided action of 71 (R® — K) on A by pre- and post-composing the loops which cross
the knot once with the loops that never cross the knot. Therefore (7 (R? — K) &= A)
is a group-like graph.

It is quite clear that this construction indeed is equivalent to the usual knot rack.
Indeed, if s(a) is trivial, a loop « representing a bounds a disk in the exterior of K.
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This disk can be squeezed, without moving the crossing point of v with K, to an
interval connecting the basepoint with a point on the knot; this is how the knot rack
is normally defined.

The space EQ for a knot rack also has a natural definition in terms of the curves
which cross the knot. Namely, the set of homotopy classes of loops that intersect the
knot n times, each of them positively, coincides with the set of product n-cubes in
the corresponding group-like graph. Indeed, each loop that crosses the knot n times
is a concatenation of n loops that hit the knot exactly once. Such a decomposition is
not unique; however, the product cube made of these n loops is well-defined.

We should also note that, just as in the case of usual knot racks, here framed
knots in R3 can be replaced by n — 2-dimensional framed submanifolds of an n-
manifold, or even by n — k-dimensional submanifolds with k& > 2. In this latter case,
the fundamental group of the knot exterior should be replaced by its & — 1st homotopy
group. Probably, the most basic example of a graph defined by a codimension two
subset is the group-like graph associated with the complement of an n-point set in R2.
Its vertices are the elements of the free group on n generators zi,...,z, and the
arrows are in one-to-one correspondence with pairs of elements of the form (ab, axyb)
for some x;. The rack that corresponds to such a graph is the union of the conjugacy
classes of the generators in the free group.

4.4. String links with double points

An interesting example of a multiplicative graph which is not group-like is provided
by string links with one double point.

Given n > 0, denote by L,, the monoid of isotopy classes of string links on n strands
and let L? be the set of isotopy classes of string links with one transversal double
point (see [4] for the definitions). A string link with a double point can be composed
with a usual string link on either side and this gives two commuting actions

L,xL)— L}
and
LY x L, — L.

There are also two maps L? — L,, given by the positive and the negative resolution
of the double point according to the Vassiliev skein relation; these two maps are
compatible with the actions of L, on L?. This means that £, := (L, &= L?) is a
multiplicative graph.

The corresponding space FL, has been mentioned in the literature; namely, it was
constructed by Matveev and Polyak in [13, page 229].

The graph £,, has a group-like subgraph which consists of pure braids with one
double point. Two pure braids involved in the resolution of a double point differ by an
insertion of a generator: if the positive resolution can be written as ab, the negative
is of the form aA;;b, where ¢ and j are the numbers of the strands which cross at the
double point.® The corresponding rack is the union of the conjugacy classes of the
generators in the pure braid group.

5There is a freedom of choosing the sign in the Vassiliev skein relation for string links which involves
the relative order in each pair of strands; this is the same as choosing between a generator and its
inverse for each 1, j.
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5. Hopf algebras associated with multiplicative graphs

Any group G gives rise to two Hopf algebras. One is the group algebra k[G]; it
carries the filtration by the powers of the augmentation ideal I(G). The associated
graded Hopf algebra D(G) is the universal enveloping algebra of the graded Lie algebra
coming form the lower central series of G. In this section we construct the analogs of
both Hopf algebras for group-like graphs.

5.1. The Loday-Pirashvili category

Let us review some notions from [10]. The Loday-Pirashvili category LM over a
given field k (which we assume to be of characteristic zero) has, as objects, pairs of
vector spaces

U -5 v)

over k together with a linear map between them. The morphisms are the commutative
squares of the form

Uy

N

VsV
The category LM is a tensor category with the tensor product®

RId+Id® f’
7

ULview Lvy=wev+veur L Ve

The natural explanation for this tensor product comes from considering LM as the
category of 1-jets of differential graded vector spaces, that is, the quotient of the
category of (non-negatively graded) chain complexes over k by the subcategory of
the chain complexes with trivial components in degrees 0 and 1.

One may speak of Lie algebras and Hopf algebras in LM the Milnor-Moore and
the Poincaré-Birkhoff-Witt theorems are then valid in LM. An algebra in LM is a
pair

(AL 3),

with H an algebra, A an H-bimodule and f a bimodule map. A bialgebra in LM
has, in addition, a compatible dual structure, namely a coproduct Ag: H - H R H
which makes H into a bialgebra, and the two-sided coaction

At A= AQH+H® A,
which is an H-bimodule map satisfying
Npof=(f@Id+1Id® f) o Ay.

A bialgebra is a Hopf algebra if it has an antipode; we shall state the properties
satisfied by the antipode in Section 5.3. Hopf algebras in LM are related to Yetter-
Drinfel’d modules, see [12].

SHereafter we denote by “4” the direct sum of vector spaces.
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A Lie algebra in LM is a pair

(M Ly g),

where g is a Lie algebra, M is a right” module over g and f is a g-module morphism.
In this situation, there exists a bracket on M that gives it the structure of a Leibniz
algebra:

[z, 9] = [, f(y)],

where the bracket on the right-hand side denotes the right action of g on M. Each
Leibniz algebra L can be obtained this way by taking the Lie algebra g to be the
maximal antisymmetric quotient of L and the map f to be the corresponding quotient
map. We refer to [10] for more details.

If M, considered as a Leibniz algebra, is, actually, a Lie algebra on which g acts
by derivations, the Lie algebra (M,g) is a differential crossed module. Differential
crossed modules can be identified with the differential graded Lie algebras whose
only non-zero terms are in degrees 0 and 1.

5.2. Lie algebras in LM and differential graded Lie algebras

There is one important observation that we should make even though it will not
be used in what follows: the Lie algebras in LM are related to the differential graded
Lie algebras in the same way as the multiplicative graphs are related to the products
on cubical complexes.

Namely, given a differential graded Lie algebra g,:
d d
e —> 81 — go,
the map g1 4, go together with the restriction of the bracket of g. to the maps

g1 ®go — g1 and go ® gg — go is a Lie algebra in LM.

Conversely, given a Lie algebra g = (gl 4, go) in LM with the Lie bracket denoted
by [, -], consider the free Lie algebra on the vector space go + g1. It is a differential
graded Lie algebra with the differential induced by d; we denote its Lie bracket by
[-,-]- Let Eg be the quotient of this free differential graded Lie algebra by the
relations

[z,y] = [2,4],
where either z,y € go, or z € g1 and y € go.

Proposition 5.1. The differential graded Lie algebra Eg, considered modulo terms
of degree two and higher, coincides with g as a Lie algebra in LM.

The proof is immediate. Observe that the functor g — Eg from LM to DGLA is
the left adjoint to the functor of reduction modulo terms of degree 2 and higher.

"We take right, rather than left, modules so as to have the same conventions as [10].
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5.3. The multiplicative graph algebra
Let @ = (G &= A) be a multiplicative graph. Write k[A] for the k-vector space
spanned by A and consider the linear map

¢: k[A] — K[G]
to the semigroup algebra of G defined by
¢(a) = t(a) — s(a),

for all a € A. Then (k[A] 2, k[G]) is an algebra in the Loday-Pirashvili category £M;
the two-sided action of k[G] on k[A] is the linear extension of the two-sided action of
G on A.

Recall that the algebra k[G] carries a coproduct, which we denote by Ag:

Ao(9) =9@y9,
for all ¢ € G. Define the two-sided coaction A; by setting
Ai(a) =a®t(a) + s(a) ® a,

for all a € A. Note that ¢ sends A; to Ag; moreover, A; is a k[G]-bimodule map.
Indeed, for a € A and g € G we have

Ai(a-g)=a-g@ta-g)+sa-g)®a-g
=a-g®tla)g+s(a)g®a-g=~A(a) Ao(g)

Similarly, A1(g-a) = Ag(g) - A1(a). As a consequence, we have
Lemma 5.2. (k[A] 2, k[G]) is a bialgebra in LM.
When G is a group, we can define the involution S;: k[A] — k[A] as
a— —s(a)"'a-t(a)™?,

for each a € A. Tt maps under ¢ to the antipode Sy: k[G] — k[G] that sends each
group element g to g~!. In order to check that S; gives rise to an antipode in LM
we need to verify that for any a € A

po(S®Id);oA; =po(ld®S); oAy =0. (2)
Here p is the product, (S ® Id); stands for
Sy @ Tdije) + So ® I
and (Id ® S); for
Idy4) @ So + Idyq ® S,
respectively. Substituting these expressions into (2), we obtain
(—=s(a)™"a-t(a) ") tla)+s(a)ta=0
and
a-tla) " +s(a) (=s(a)™"-a-t(a)”!) =0.
We have proved
Proposition 5.3. When Q is group-like, (k[A] 2, k[G]) is a Hopf algebra in LM.

Note that, in general, this Hopf algebra is not cocommutative.
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5.4. The augmentation filtration and the associated Hopf algebra
Write I(G) for the augmentation ideal in k[G] and let I"(A) C k[A] be the subspace

(1 -a-vy |a€ A v €T°G), vy € I"F@), k< n).

The image of I"(A) under ¢ lies in I"T1(G).
Lemma 5.4. If Q is group-like and path-connected, p(I"(A)) = I"T1(G).

Proof. Tt is sufficient to show that ¢(A) = I(G).

The augmentation ideal I(G) is additively generated by the elements of the form
g — 1 with g € G. Since @ is path-connected, for any g € G there is a path aq, ..., ay,,
with a; € A connecting 1 and g, although not necessarily according to the directions
of the a;. Let e; = 1 if a; is directed along the path and e; = —1 otherwise. Then

¢ (Z eiai> =g9-1
which shows that ¢(A) coincides with I(G). O
Remark 5.5. For a not necessarily path-connected @, the vertices of the connected
component that contains the unit in G form a normal subgroup Gy. Let I(G,Gp)

be the kernel of the homomorphism k[G] — k[G/Gy] induced by the quotient map.
Then ¢(I"(A)) can be explicitly identified as I"T1(G, Go).

From now on we shall assume that @ is group-like and path-connected.

The maps A; and S; respect the filtration by the I™(A) so there is a graded Hopf

algebra (D(Q) RN D(@)) associated with it. The map ¢., induced by ¢, raises the
degree by one.

Lemma 5.6. (D(Q) LAN D(@)) is an irreducible cocommutative Hopf algebra.

Proof. We have
Ai(a) =a®s(a) + s(a) ®a+ a® ¢(a).
The “non-cocommutative part” of A
Ala— a®¢(a)

vanishes on the associated graded level since ¢, raises the degree by one. Indeed, for
any u € k[A] and any g € G we have

Ai(g-u) = (g®@g) - Al(u),

and hence,

Alg—D-uw)=(g-D2@g-D+10((@g-1)+(g-1) 1) Al(u)

The same kind of equality holds for Af(u- (g —1)). Moreover, Aj(a) € A® I(G)
for any a € A. These formulae show that A increases the filtration index by one
and, therefore, induces the zero map on D(Q). This implies that the coproduct in
the bialgebra (D(Q) — D(G)) is cocommutative. The irreducibility follows from the
irreducibility of D(G). O
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Since D(G) satisfies the conditions of the Milnor-Moore Theorem, (D(Q) LN
D(G)) also does (see [10]); therefore, it is the universal enveloping algebra of a certain
Lie algebra (M — g) in LM:

(D(Q) 25 D(@)) ~ (U(g) © M — Ulg)).

The Lie algebra g = Prim D(G) is the graded Lie algebra of the successive quotients
of the lower central series of G, tensored with k. As for M, it can be understood in
terms of the graded coinvariant module of the augmented rack corresponding to Q.

5.5. The coinvariant module of an augmented rack
Let m: X — G be an augmented rack. The vector space k[X] spanned by X has a
decreasing filtration by the subspaces

I'"(X) = (z0=Dn=D |z c X, g, € Q),

where we use the exponential notation for the linear extension of the action of G to
an action of k[G] on k[X]. We should warn that this notation might be not entirely
intuitive; for instance, (9= = 29 — z. However, we want to keep clear the distinction
between the G-action on X and the two G-actions in a group-like graph. When n = 0,
we set 1°(X) = k[X].
Set, for n > 0
P(X) = I"(X) /I (X);

in other words, the space P™(X) consists of the coinvariants of the G-action on I"™(X).
In particular, P°(X) = k[X/G] is the vector space spanned by the orbits of the action
of G on X. Write P(X) for the graded vector space whose part of degree k is P*(X).

It is clear from the definition that the space P(X) is a graded module over D(G);
we call it the coinvariant module. Moreover, the map 7 induces a degree 1 map of
graded D(G)-modules 7,: P(X) — D(G):

(zlor= 1) (9= mod I'"'(Xx)) — ((r(z) - 1)1 (n =1 mod I"2(@)).
Indeed, for u € I*(G) and g € G we have
w —u=g (ug —gu) = g~ (u(g —1) — (g — Du) € I*"(G)

so that 7, is well-defined. The image of 7, in D(G) lies in the Lie algebra Prim D(G) of
the primitive elements of D(G): 7. P%(X) consists of elements of degree one in D(X),
which are primitive, and 7.P"(X) is spanned by the commutators with m,P"~(X).

This shows that (P(X) == Prim D(G)) is a graded Lie algebra in £LM.

Proposition 5.7. The Hopf algebra (D(Q) LAN D(G)) is the universal enveloping

algebra of the Lie algebra (’P(X) I PrimD(G)), where X is the augmented rack
corresponding to the group-like graph Q.

Proof. The universal enveloping algebra of (P(X) Z= Prim D(G)) is the map

where p is the product in D(G), with the following D(G)-bimodule structure on

D(G)),
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D(G) ® P(X):
wi - (wy @ m) = (wiws) @ m, (3)

(w®@m)-a=(wa) ®m+wem?, (4)

for all wy, wa,w € D(G), m € P(X) and a € Prim D(G) (see [10, page 271]).
Identify the vector space k[A] with k[G] ® k[X] via (g,2) — g ® . Under this
identification, I"™(A) is sent to
Y (G eI(X),

ptqg=n

namely,
(1= 1)+ (g = 1)+ (g, )"0 Pa) iy (g — 1) (g, — D)g a0,

Therefore, as a graded vector space, D(Q) is isomorphic to D(G) ® P(X). Under this
identification, the map ¢, coincides with p(Id ® 7). Also, the D(G)-bimodule struc-
ture is the same as that of the universal enveloping algebra of (P(X) — Prim D(G)).
This is clear for the left module structure (3). As for the right module structure, the
action on the right by a € g can be represented by a right action of h — 1 with h € G:

wor) " '=@wes)—uer=uh-1)0z"+ue "1,

with uw € I"™(A) and z € I™(X). It is, actually, sufficient to consider a € Prim D(G)
of degree one, since elements of this kind generate D(G); that is, consider the above
equality modulo I *2_ Then, the right-hand side of the above formula is equivalent
to

uh—1) @z +u®a"1
which in D(Q) translates precisely into (4). O

5.6. Edge-like elements in Hopf algebras and the Malcev completion
Let (A — H) be a Hopf algebra in LM. Call an element a € A edge-like if

Ai(a) =a®t(a) + s(a) @ a,

where s(a) and t(a) are group-like elements of H. Let us denote the set of group-like
elements of H by Go(H) and the set of edge-like elements of A by G1(A). Assigning to
an edge-like element a the corresponding group-like elements s(a) and ¢(a) we define
two maps

S,t: gl(.A) — go(H)

The two-sided action of H on A restricts to the action of the group Go(H) on G;(A).
We have:

Lemma 5.8. The pair (Go(H) &= G1(A)) is a group-like graph.

Consider the group-like graph Hopf algebra ¢: k[A] — k[G]. Since ¢ maps I"(A)
to I"T1(Q), it descends to a map

n: K[A]/T"(A) — K[G]/I"TH(G),

which is also a Hopf algebra in £LM. There is a canonical morphism of ¢, 1 onto ¢,
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for each n; the inverse limit of the ¢; in LM is a complete Hopf algebra
¢": k[A]" = K[G],
whose edge-like elements form a group-like graph
Go(k[G]") &= G1(k[A])

that we call the Malcev completion of (G &= A). Here, a complete Hopf algebra in LM
is defined as usual: the tensor products in the definition of the comultiplication should
be replaced by the completed tensor products. The definition of edge-like elements
in a complete Hopf algebra also uses completed tensor products instead of the usual
tensor products.

6. Linear Lie graphs and linear augmented racks

6.1. Lie theory

One can consider multiplicative graphs such that both G and A are smooth man-
ifolds and s and ¢ are submersions onto their image®. Our principal motivation here
is to show how the Lie theory for multiplicative graphs is related to the Lie algebras
in LM; for these purposes it is sufficient to consider a narrower class of graphs.

Definition 6.1. A group-like graph (G &= A) over a Lie group G is called a linear
Lie graph if the source and target maps are vector bundles over their image, the
two-sided action of G on A is linear on the fibres, and the fibres of s and t over 1 € G
have the same origin e € A.

Definition 6.2. An augmented rack 7: X — G is called a linear augmented Lie rack
if X is a vector space, G is a Lie group, 7 is smooth with 7(0) = 1 and the action of
G on X is linear.

A linear Lie graph clearly gives rise to a linear augmented Lie rack. The converse
is also true. Indeed, the source map G x X — G is simply the projection onto the
first factor. The target map sends (g, x) to gm(z); its fibre over h € G is the subspace

{(hm(z) Y x) |z € X}.

If the point x € X is taken to be the parameter for the fibre, the left action of G is
trivial and the right action is the rack action; both are linear.

An example of a linear Lie graph was given in Section 4.1: the arrows of this
graph are directed segments of geodesics on a Lie group, parametrised by length. The
corresponding augmented rack is the exponential map of the Lie algebra to the Lie
group.

In a linear augmented Lie rack, the map 7: X — G induces a G-equivariant” map

8This should be compared with the definition of a Lie groupoid.

9Here, in order to be consistent with the choice of the definition for the Lie algebra in £M one has
to consider the right action of GG; accordingly, the adjoint representation should be the right adjoint
representation.
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of the tangent spaces
e X =T.X - T1G =g.

Considering the infinitesimal part of the G-action, we see that m, is a map of g-
modules and, hence defines a Lie algebra in LM. Conversely, a Lie algebra in LM,
that is, a homomorphism g — gl(X) which covers the adjoint representation of g by
means of a map

f: X —g,

for finite-dimensional g can be integrated so as to produce a morphism F' from a
G-action on X to the adjoint representation of G. Then, the composition

F

X Sg2B @

defines a linear augmented Lie rack. In terms of racks without augmentation, this
exact construction can be found in [9].

Therefore, a Lie algebra in LM produces a linear Lie graph. This graph can be
thought of as the global integration of the Lie algebra; in this picture, the formal
integration (as described in [14]) may be thought of as standing halfway between a
Lie algebra in LM and the corresponding linear Lie graph.

An augmented rack similar to a linear augmented Lie rack arises from the com-
pletion of the graded coinvariant module of an augmented rack. The map of D(G)-
modules 7,.: P(X) — D(G) described in Section 5.5 is a degree 1 map of graded
vector spaces and can be extended to the map between the graded completions P(X)
and D(G). The image of P(X) lies in the subspace of primitive elements of D(G)
and, therefore, the image of the composition

P(X) KEN Prim D(G) =2 D(G)

lies in the group Go(D(G)) of the group-like elements of the complete Hopf algebra
D(G). In particular, if k = R, the rack P(X) — Go(D(Q)) is a linear augmented Lie
rack.

Remark 6.3. There is a situation where a Lie algebra in LM can be integrated to
a “more non-linear” graph than a linear Lie graph. As mentioned in Section 5.1,
differential crossed modules (or, which is the same, crossed modules of Lie algebras)
are Lie algebras in LM. A differential crossed module can be integrated to a crossed
module of Lie groups (see [1]), which is an augmented rack that, in turn, gives rise
to a group-like graph. The corresponding linear Lie graph can be recovered by taking
the tangent spaces to the fibres of the source map of this graph.

Note added in proof

When the present paper was in press, the author became aware of the paper “The
algebra of rack and quandle cohomology” by F. Clauwens (J. Knot Theory Ramifica-
tions 20, No. 11 (2011) 1487-1535) which contains the constructions of Section 3.
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