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Abstract
LetM be an open, connected manifold. A classical theorem of

McDuff and Segal states that the sequence {Cn(M)} of config-
uration spaces of n unordered, distinct points in M is homolog-
ically stable with coefficients in Z – in each degree, the integral
homology is eventually independent of n. The purpose of this
paper is to prove that this phenomenon also holds for homology
with twisted coefficients. We first define an appropriate notion
of finite-degree twisted coefficient system for {Cn(M)} and then
use a spectral sequence argument to deduce the result from the
untwisted homological stability result of McDuff and Segal. The
result and the methods are generalisations of those of Betley for
the symmetric groups.

1. Introduction

For a pair of spaces M and X, the configuration space of n unordered points in M
with labels in X is defined by

Cn(M,X) := (Emb(n,M)×Xn)/Σn.

Here n is the discrete space of cardinality n, so Emb(n,M) is the subspace of Mn

where no two points coincide. The symmetric group Σn acts diagonally, permuting
the points and the list of labels, so an element of Cn(M,X) is a subset of M of
cardinality n, together with an element of X “attached” to each point.

Assumption 1.1. Henceforth we assume that M is an open, connected manifold
with dim(M) > 2, and that X is a path-connected space. To be precise, by an open
manifold we mean a manifold with empty boundary, each of whose (path-)components
is non-compact but paracompact.

Since M is open, there are well-defined “stabilisation maps” Cn(M,X)→
Cn+1(M,X), which we define precisely in §2.2 below. They are so called because
the sequence of spaces {Cn(M,X)} is homologically stable with respect to them:
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Theorem 1.2 ([Seg73, McD75, Seg79, RW13]). Under the conditions on M and
X assumed above, the map Cn(M,X)→ Cn+1(M,X) induces an isomorphism on
integral homology in degrees ∗ 6 n

2 , and is split-injective on homology in all degrees.

1.1. Twisted homological stability

Several other families of groups or spaces which are homologically stable are also
known to have homological stability for twisted coefficients. For example general lin-
ear groups [Dwy80], mapping class groups of surfaces [Iva93, CM09, Bol12] and
the symmetric groups [Bet02] are known to satisfy this phenomenon. A machine
for proving twisted homological stability for many natural families of groups is con-
structed in [RWW17], and, in particular, covers the cases of mapping class groups
of non-orientable surfaces and orientable 3-manifolds.

The minimum data required in order to pose the question of twisted homological
stability for a sequence of based, path-connected spaces {Yn} is a functor π1({Yn})→
Ab, where the source is the category (groupoid) where the objects are the natural
numbers, all morphisms are automorphisms and Aut(n) = π1(Yn). In other words,
this is just a choice of π1(Yn)-module for each n. There is of course no chance of
stability with respect to such a general “twisted coefficient system”, as the π1(Yn)-
modules for differing n may be completely unrelated.

To obtain a notion of twisted coefficient system with a chance of stability, one needs
to add some (non-endo)morphisms to π1({Yn}) and require that the functor from this
new source category to Ab satisfy some finiteness conditions defined in terms of the
new morphisms. The correct way to do this depends on the particular context one is
working in (although a very general context for classifying spaces of discrete groups
is introduced in [RWW17]).

In §§2, 3 below we will define a twisted coefficient system of degree d for the sequence
{Cn(M,X)} to be a functor from a certain category B(M,X) to Ab satisfying a
certain finiteness condition. To state the main result, it is enough to mention that it
includes the data of a π1Cn(M,X)-module Tn for each n, and that the stabilisation
map induces a natural map

H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1). (1)

The main result of this paper is the following:

Theorem A. Under Assumption 1.1, if T is a twisted coefficient system for
{Cn(M,X)} of degree d, then the map (1) is an isomorphism in degrees ∗ 6 n−d

2 ,
and is split-injective in all degrees.

This is a generalisation of [Bet02, Theorem 4.3], where twisted homological sta-
bility is proved for the symmetric groups {Σn}, corresponding to the case M = R∞
and X = ∗. In fact, we also slightly strengthen Betley’s result in the case of the
symmetric groups. The category B(R∞, ∗) is equivalent to the category FI] of finite
sets and partially-defined injections. This is a subcategory of the category Γ of finite
pointed sets (viewed as the category of finite sets and partially-defined functions).
Betley’s result is stated for functors T : Γ→ Ab, whereas our result only requires T
to be defined on the subcategory FI] ⊂ Γ.
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Remark 1.3 (Split-injectivity). The split-injectivity statement of this theorem is
fairly easy, and has essentially the same proof as in the untwisted case. It is proved
separately in §7, and its proof does not depend on the twisted coefficient system being
of finite degree – this assumption is only required for surjectivity in the stable range.

Remark 1.4 (When ·2 is invertible). If T : B(M,X)→ Ab is a twisted coefficient
system of Z[ 12 ]-modules, i.e. its image lies in the subcategory Z[ 12 ]-mod of Ab, then the
stability range in Theorem A can be improved to ∗ 6 n− d, as long as M is at least 3-
dimensional. When M is a surface, a similar improvement is possible if T is a rational
twisted coefficient system, i.e. its image lies in the subcategory VectQ of Ab. The
improved range in this case is ∗ 6 n− d whenM is non-orientable and ∗ < n− d when
M is orientable. This uses the improved homological stability ranges, for untwisted
coefficients, obtained in [Chu12, RW13, KM15, Knu17]. See Remark 6.5 after the
proof of Theorem A in §6.

Remark 1.5 (Related results). We summarise here some related twisted homological
stability results that are not included in the statement of Theorem A.

Theorem D of [RWW17] proves homological stability for the braid groups βn with
coefficients in any functor Uβ → Ab of finite degree, where Uβ is a certain category
with the braid groups as its automorphism groups. There is a functor Uβ → B(R2, ∗),
and precomposing with this functor preserves degree, so this extends Theorem A in
the case of braid groups (M,X) = (R2, ∗). (We note, however, that the statement in
Theorem A about split-injectivity in all degrees is not recovered by their theorem.)
For example, the unreduced Burau representations fit into their setting. They also
recover a result of Church and Farb [CF13, Corollary 4.4], who prove twisted homo-
logical stability for the braid groups with coefficients in certain finite degree func-
tors Uβ → FI→ Ab built out of irreducible representations of the symmetric groups.
Chen [Che17] computes explicitly the homology H∗(βn; Burrn) with coefficients in
the reduced Burau representations over C, and directly reads off stability from his
calculations. The reduced and unreduced Burau representations fit into a much more
general family of braid group representations, called the Lawrence-Krammer-Bigelow
representations, which are discussed briefly in §4.2 below.

In [SS16, Theorem 3.4.1], Sam and Snowden prove that the sequence of groups G o
Σn is homologically stable with coefficients in any finite degree functor FIG → R-mod
if G is polycyclic-by-finite. This extends Theorem A in the case (M,X) = (R∞, BG),
since FIG embeds as a subcategory of B(R∞, BG), and precomposition by this embed-
ding preserves degree. Their methods are quite different to those of [RWW17] but
are, in fact, more analogous to ours, in that we both proceed by deducing twisted
homological stability from untwisted homological stability. (They use methods of
[SS17] to prove that the category of representations of FIG is Noetherian, and then
apply Theorem 4.2 of [PS17] and the known stability of G o Σn with constant coef-
ficients to deduce twisted stability.) Twisted homological stability with finite degree
coefficients is, in fact, true for G o Σn (and indeed also G o βn) for any group G, by
Theorem D of [RWW17].

Recently, Krannich [Kra17] has extended the techniques of [RWW17] to a topo-
logical setting, where one begins with an N-graded E1-module over an E2-algebra.
Considering C(R2) =

∐
n Cn(R2) as a module over itself, he recovers Theorem D of

[RWW17] for the braid groups. Moreover, if M is an open, connected d-manifold,
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considering C(M,X) as a module over C(Rd, X), he proves twisted homological sta-
bility for the configuration spaces Cn(M,X) with coefficients in any finite degree
functor defined on an analogue CX(M) of Uβ. An earlier version of this paper con-
tained a conjecture about extending Theorem A to coefficient systems defined only
on a certain subcategory of B(M,X) (see section §3.1 for the definition of this sub-
category). This has now been confirmed by the results of Krannich: there is a functor
CX(M)→ B(M,X) whose image is the subcategory of the conjecture, and precom-
position by this functor preserves the degree of coefficient systems.

Another family of coefficient systems (different from those appearing in Theo-
rem A) with respect to which twisted homological stability is known, is abelian coeffi-
cient systems. See §5.6.2 of [RWW17] for the case of the braid groups and Theorem
D(i) of [Kra17] for configuration spaces in general. A special case of the latter theorem
(homological stability for configuration spaces with the abelian twisted coefficients
Z[Z/2]) was proved earlier by the author in [Pal13].

1.2. Stable twisted homology
After establishing homological stability for a sequence of spaces, the natural next

step is to compute its limiting (or “stable”) homology. For configuration spaces, and
with constant coefficients, the answer is given by [Seg73] and [McD75]. It is also
known for some particular non-constant twisted coefficient systems in the case of the
braid groups: the reduced Burau representations [Che17] and the reduced and unre-
duced Coxeter representations [Vas92, §I.5]. The latter computation is also recovered
and extended in work in progress of Arthur Soulié. As far as the author is aware, no
other computations yet exist for the stable homology of configuration spaces with
non-constant twisted coefficients.

There is a general method for computing the stable twisted homology of a sequence
of groups, introduced by Djament and Vespa [DV10, DV15] and used by them for
orthogonal and symplectic groups, and Aut(Fn). This may be adaptable to surface
braid groups, but it is less likely to be applicable for configuration spaces on higher-
dimensional manifolds, since these are not aspherical. Randal-Williams [RW17] has
a different, more topological approach to computing stable twisted homology, which
he has applied to Aut(Fn) and to mapping class groups of surfaces, and which may
be more easily adaptable to configuration spaces.

1.3. Corollaries
Two special cases of Theorem A are as follows. For the first, fix a principal ideal

domain R and a path-connected based space Z with H∗(Z;R) flat over R in all
degrees. For example we could take R to be a field, or we could take R = Z and
assume that the integral homology of Z is torsion-free. Also choose non-negative
integers q, h and suppose that H̃∗(Z;R) = 0 in the range ∗ 6 h. The homology group
Hq(Z

n;R) is a Z[Σn]-module given by permuting the factors of Zn, and hence also a
Z[π1(Cn(M,X))]-module via the projection π1(Cn(M,X))→ Σn.

Corollary B. There are isomorphisms

H∗
(
Cn(M,X);Hq(Z

n;R)
) ∼= H∗

(
Cn+1(M,X);Hq(Z

n+1;R)
)

in the range ∗ 6 1
2

(
n−

⌊
q

h+1

⌋)
. If we take R = Q, or R is a ring in which 2 is
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invertible and M is at least 3-dimensional, then this holds in the larger range ∗ 6
n−

⌊
q

h+1

⌋
(except in the case where M is an orientable surface, in which case the

larger range is ∗ < n−
⌊

q
h+1

⌋
).

Remark 1.6 (Configurations with twisted labels). A consequence of Corollary B is
(untwisted) homological stability for configuration spaces Cn(M,π) with labels in a
fibre bundle π : E →M with path-connected fibres. Here, Cn(M,π) = {(e1, . . . , en) ∈
En | π(ei) 6= π(ej) for i 6= j}/Σn, generalising the notion of configuration spaces with
labels in a fixed space X. This uses the Serre spectral sequence for the fibre bundle
Cn(M,π)→ Cn(M) that forgets the labels, and which has E2 page isomorphic to the
twisted homology groups of Cn(M) with coefficients in the homology groups of Fn,
where F is the typical fibre of π. Corollary B says that the stabilisation maps induce
a map of spectral sequences which is an isomorphism in a range on the E2 page, as
long as we take field coefficients. One can then reconstruct an integral homological
stability result from the fields Fp and Q. This is proved in more detail in Appendix
B of [CP15] and also in Appendix A of [KM18].

We note that this result can alternatively be proved using a generalisation of the
proof of [RW13], which is concerned with configuration spaces with labels in a fixed
space. This alternative proof is also sketched in Appendix A of [KM18]. Moreover,
homological stability for Cn(M,π), with twisted as well as constant coefficients, is
implied by the recent work [Kra17] of Krannich (cf. Remark 1.5).

Now we describe a second special case of Theorem A. For an ordered partition µ =
(µ1, . . . , µk) of |µ| = µ1 + · · ·+ µk, denote by Σµ the product of symmetric groups
Σµ1
× · · · × Σµk

, which is naturally a subgroup of Σ|µ|. Fix an ordered partition
λ, and assume that n > |λ|, so that there is an induced ordered partition λ[n] :=
(n− |λ|, λ1, . . . , λk) of n. Then Σn/Σλ[n] is a (transitive) Σn-set. If R is a ring, then
R[Σn/Σλ[n]] is a π1(Cn(M,X))-module via the projection π1(Cn(M,X))→ Σn.

Corollary C. There are isomorphisms

H∗
(
Cn(M,X);R

[
Σn/Σλ[n]

]) ∼= H∗
(
Cn+1(M,X);R

[
Σn+1/Σλ[n+1]

])
in the range ∗ 6 1

2

(
n− |λ|

)
. If we take R = Q, or R is a ring in which 2 is invertible

and M is at least 3-dimensional, then this holds in the larger range ∗ 6 n− |λ| (except
in the case where M is an orientable surface, in which case the larger range is ∗ <
n− |λ|).

In particular, this includes stability for coefficients in Z[Σn/Σn−k] or in Z[Σn/(Σk×
Σn−k)] in the range ∗ 6 n−k

2 by taking λ to be (1, . . . , 1) or (k), respectively.

Remark 1.7 (Coloured configuration spaces). Corollary C may, in fact, be deduced
quickly from untwisted homological stability, as follows. First note that

H∗
(
Cn(M,X);R

[
Σn/Σλ[n]

]) ∼= H∗(Cλ[n](M,X);R),

where the coloured configuration space Cλ[n](M,X) is defined to be the covering space

of Cn(M,X) with
∣∣Σn/Σλ[n]∣∣ =

(
n
λ1

)(
n−λ1

λ2

)
· · ·
(
n−λ1−···−λk−1

λk

)
sheets, in which the n
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points are coloured according to the partition λ[n]. There is a stabilisation map

Cλ[n](M,X) −→ Cλ[n+1](M,X)

given by adding a point of the first colour to a coloured configuration (similarly to
the stabilisation map defined in Definition 2.1). This commutes up to homotopy with
the projections to Cλ(M,X), which are fibre bundles, and the map of fibres is the
ordinary stabilisation map Cn−|λ|(M|λ|, X)→ Cn+1−|λ|(M|λ|, X), where M|λ| denotes
the manifold M with |λ| points removed. The result then follows by applying the
relative Serre spectral sequence associated to this map of fibre bundles over Cλ(M,X).

Remark 1.8 (Representation stability). Write Fn(M,X) for the configuration space
of n ordered, distinct points in M labelled by X. This may also be written
C(1,1,...,1)(M,X) in the notation of the previous remark and is an (n!)-sheeted cov-
ering space of Cn(M,X). The sequence of graded Q[Σn]-modules H∗(Fn(M,X);Q)
is representation stable, a notion introduced in [CF13] and first proved in this case
by [Chu12].

There is an argument of Søren Galatius, involving only the elementary repre-
sentation theory of the symmetric groups, that proves representation stability for
H∗(Fn(M,X);Q) using, as an input, twisted homological stability for Cn(M,X) with
coefficients in Q[Σn/Σλ[n]], which is a special case of Corollary C above. This suggests
an underlying connection between representation stability and twisted homological
stability. We note that representation stability for H∗(Fn(M,X);Q) may also be
deduced from twisted homological stability for Cn(M,X) with respect to a different
twisted coefficient system than the one considered in Corollary C: see Corollary 5.17
of [Kra17] for the details. The twisted coefficient system used in that case does not
fit into the setting of Theorem A.

A note on terminology
To keep our terminology from becoming ambiguous, we will always use the terms

“local coefficient system” and “twisted coefficient system” as follows. For a space Y ,
a local coefficient system for Y will have its usual meaning as a bundle of abelian
groups over Y , or a functor from the fundamental groupoid of Y to Ab, or (when Y
is based and path-connected) a π1(Y )-module. The phrase twisted coefficient system
will always be used in the sense of Definition 2.2 below; in particular, it applies to a
sequence of spaces.
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2. Twisted coefficient systems

2.1. Setup
First we fix some data. Recall from Assumption 1.1 that M is an open, connected

manifold of dimension at least 2 and X is a path-connected space. This assumption
on M means that we may pick a connected manifold M with non-empty boundary
∂M whose interior is M (although we must allow ∂M to be non-compact in general).
Also choose a basepoint x0 for X. Choose a point a ∈ ∂M , and let U be a coordinate
neighbourhood of a with an identification U ∼= Rd+ = {x ∈ Rd | x1 > 0} which sends

a to 0. Also choose a self-embedding e : M ↪→M which is isotopic to the identity, is
equal to the identity outside U , and such that e(a) ∈M (i.e. in the interior of M).
Moreover, we choose an isotopy I : e ' idM . We obtain a sequence of points in M by
defining

a1 := e(a) an := e(an−1) for n > 2.

The isotopy I provides us with canonical paths pn : [0, 1]→M between an and an+1.

2.2. The configuration space and the stabilisation map
Recall that the configuration space of n unordered points in M with labels in X

is defined to be

Cn(M,X) := ((Mn r ∆)×Xn)/Σn = (Emb(n,M)×Xn)/Σn,

where ∆ = {(p1, . . . , pn) ∈Mn | pi = pj for some i 6= j} is the so-called fat diagonal
of Mn, and the symmetric group Σn acts diagonally, permuting the points of M along
with their labels in X. Thus a labelled configuration is an unordered set of ordered
pairs in M ×X, generically denoted by {(p1, x1), . . . , (pn, xn)}. When X is a point
we will also write Cn(M) = Cn(M,X).

Definition 2.1. The stabilisation map sn : Cn(M,X)→ Cn+1(M,X) is defined by

{(p1, x1), . . . , (pn, xn)} 7→ {(e(p1), x1), . . . , (e(pn), xn), (a1, x0)}.
Essentially, the existing configuration is “pushed” further into the interior of the
manifold by e, and the new configuration point a1 added in the newly vacated space.
Up to homotopy, the only “extra data” that this map depends on is the component
of ∂M containing a.

2.3. Twisted coefficient systems
We define the category B(M,X) to have the non-negative integers as its objects,

and a morphism m→ n is a choice of k 6 min{m,n} and a path in Ck(M,X) from
a k-element subset of {(a1, x0), . . . , (am, x0)} to a k-element subset of {(a1, x0), . . . ,
(an, x0)} up to endpoint-preserving homotopy. The identity is given by k = m = n
and the constant path. Composition of two morphisms is given by concatenating
paths and deleting configuration points for which the concatenated path is defined
only half-way. For example (omitting the labels in X):

◦ = (2)

When X is a point we will also write B(M) = B(M,X). This is the partial braid
category on M .
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Definition 2.2. A twisted coefficient system, associated to the direct system of
spaces {Cn(M,X)}, is a functor from B(M,X) to the category Ab of abelian groups.

Remark 2.3. If the manifold M splits as M ∼= R×M ′, then there is a monoidal
structure on B(M,X) (depending on the choice of such a splitting), given, intuitively,
by placing two braids (i.e. paths of configurations) side by side in the R direction –
in the figure above it corresponds to stacking braids vertically. If M ′ splits further as
M ′ ∼= R×M ′′, then a choice of such a splitting induces a braiding for this monoidal
structure. Moreover, if M ′′ splits again as M ′′ ∼= R×M ′′′, then this braiding is sym-
metric.

However, this is not the key structure that we use. Instead, we use (a) an endo-
functor s on B(M,X)1 and a natural transformation ι : id→ s,2 which together lead
to the notion of the degree of a functor B(M,X)→ Ab, and (b) the existence of mor-
phisms in B(M,X) that “forget” points. More formally, the latter says that B(M,X)
has a subcategory (consisting of all constant braids) isomorphic to I, which is the
category with non-negative integers as objects and where I(m,n) is the power set
of {1, . . . ,min(m,n)}, with composition given by intersection. This latter structure
leads to the notion of the height of a functor B(M,X)→ Ab.

There is an interaction between the structures (a) and (b) and the monoidal struc-
ture (when it exists), which may also be used to define notions of degree and height for
functors B(M,X)→ Ab. See §2 (especially §2.3) and §3 (especially §3.12) of [Pal17]
for a discussion of this interaction. See also Remark 3.3 below.

Further structure
We now explain how the stabilisation map induces a map between homology groups

of configuration spaces twisted by a functor T : B(M,X)→ Ab.
For each n, take {(a1, x0), . . . , (an, x0)} as the basepoint of Cn(M,X). Then the

automorphism group of the object n of B(M,X) is precisely the fundamental group
π1Cn(M,X). So if we are given a functor T : B(M,X)→ Ab this induces an action of
π1Cn(M,X) on Tn := T (n), and we can define the local homology H∗(Cn(M,X);Tn).

For every object n of B(M,X) there is a natural morphism ιn : n→ n+ 1 repre-
sented by the path in Cn(M,X) from {(a1, x0), . . . , (an, x0)} to {(a2, x0), . . . ,
(an+1, x0)} where each configuration point ai travels along the path pi (see §2.1)
and the labels x0 stay constant. Schematically, this may be pictured as:

...

a1
a2

an

a1
a2

an
an+1

x0

x0

(3)

For any γ ∈ π1Cn(M,X) = AutB(M,X)(n) it is easy to check that

ιn ◦ γ = (sn)∗(γ) ◦ ιn,

so for any T the map Tιn : Tn → Tn+1 is equivariant with respect to the group homo-
morphism (sn)∗ : π1Cn(M,X)→ π1Cn+1(M,X). Hence we have an induced map

(sn;Tιn)∗ : H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1).

1Cf. the stabilisation map (Definition 2.1).
2Cf. the morphisms ιn defined immediately below and illustrated in (3).
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This is the map (1) which induces the isomorphism in Theorem A.

Notation 2.4. From now on, by abuse of notation, we will denote the induced map
Tιn : Tn → Tn+1 also by ιn : Tn → Tn+1. Similarly for the left-inverse πn : n+ 1→ n
of ιn (represented by the reverse of the path that represents ιn; see §3.1): we denote
its image under T also by πn : Tn+1 → Tn.

2.4. A special case
Let X be a point and assume that M is simply-connected and of dimension at

least 3. These conditions imply that π1Cn(M) ∼= Σn, in other words a path in Cn(M)
from the basepoint {a1, . . . , an} to itself is determined by the permutation it induces
on the set {a1, . . . , an}. More generally, any morphism m→ n in B(M) is determined
by the partially-defined injection {a1, . . . , am} 99K {a1, . . . , an} that it induces. Hence
there is a canonical isomorphism of categories B(M) ∼= Σ, where Σ is the category
defined as follows.

Definition 2.5. The category Σ has objects {0, 1, 2, . . .}, and a morphism from m to
n in Σ is a partially-defined injection m 99K n. Composition is then composition of
partially-defined functions (where the composite function is defined exactly where it
is possible to define it). Note that Σ is an inverse category, i.e. every morphism f has
a unique morphism g such that fgf = f and gfg = g (this seems to have been first
defined in [Kas79]; see also §2 of [Lin13]). It is a subcategory of the category with
objects {0, 1, 2, . . .} and morphisms all partially-defined functions (not necessarily
injective), which is precisely Γop, a skeleton of the category Setfin

∗ of finite pointed
sets. Partially-defined injections are also sometimes called partially-defined bijections.
The category Σ also has other names in the literature, including finPInj [Heu09],

FI] [CEF15], Θ [CDG13] and Θ̃ [DV17].

In particular, we have B(R∞) ∼= Σ. Of course, R∞ is not a finite-dimensional man-
ifold, as was assumed of M , but the definitions make sense for arbitrary spaces M
and X, and Cn(R∞) is the colimit of the spaces Cn(Rd) under the obvious inclusions.
The space Emb(n,R∞) is a contractible Hausdorff space on which the natural action
of Σn is free and properly discontinuous, so its quotient Cn(R∞) is a model for the
classifying space BΣn.

For any M and X, there is a functor B(M,X)→ Σ given by forgetting both
the labels of the paths and the paths themselves, remembering only the partially-
defined injection induced by the paths. This means that any twisted coefficient sys-
tem Σ→ Ab canonically induces a twisted coefficient system B(M,X)→ Σ→ Ab (cf.
Remark 4.6 of [Pal17]).

2.5. A functorial viewpoint
This functor B(M,X)→ Σ arises naturally in another way, if we view B as a

functor of M and X. More precisely, we think of B(−,−) as a functor taking as
input a based space X and a manifold M equipped with a collar neighbourhood
together with a basepoint on ∂M . (Morphisms of such data are based maps X → Y
together with based embeddings M ↪→ N that are neat, i.e., compatible with the
collar neighbourhoods.) Its output is the category B(M,X) equipped with certain
additional structure. See §4 of [Pal17] for more precise details. Now, by the Whitney
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Embedding Theorem,3 any such M admits a neat embedding into some Euclidean
halfspace RN+ . This embedding, together with the trivial map from X to a point,
induces a functor B(M,X)→ B(int(RN+ )) ∼= Σ, which is isomorphic to the forgetful
functor described above.

2.6. A more general case
Instead of configurations of points (closed 0-dimensional submanifolds), one may

consider configurations of closed submanifolds of higher dimension. Let M be a con-
nected manifold with non-empty boundary and of dimension at least 2, as before.
Also fix a closed manifold P and an embedding ι0 : P ↪→ ∂M . Choose an embedding
e : M ↪→M which is isotopic to the identity and such that e(M) is disjoint from
ι0(P ). We obtain a sequence of pairwise-disjoint embeddings of P into M by defining
ιn := en ◦ ι0. Writing the disjoint union P t · · · t P of n copies of P as nP for short,
define CnP (M) to be the path-component of Emb(nP,M)/Diff(nP ) containing [ι1 t
· · · t ιn]. A stabilisation map CnP (M)→ C(n+1)P (M) may then be defined by send-
ing [φ1 t · · · t φn] to [(e ◦ φ1) t · · · t (e ◦ φn) t ι1]. One may also define more compli-
cated versions of this setup, in which the submanifolds in CnP (M) are parametrised
modulo a subgroup of Diff(P ) and come equipped with labels in some bundle over
Emb(P,M).

Everything in this paper generalises to this setting, including an analogous notion
of twisted coefficient system for {CnP (M)}, and the height and degree (see §3) of
such a twisted coefficient system. In the article [Pal18] we prove (untwisted) homo-
logical stability for these more general kinds of configuration spaces, as long as
dim(P ) 6 1

2 (dim(M)− 3). The arguments of this paper then immediately imply a
twisted homological stability result for these spaces too.

3. Height and degree of a twisted coefficient system

3.1. Degree
First we will define the degree of a functor T : B(M,X)→ Ab. Recall from §2.3 the

natural morphisms ιn : n→ n+ 1. The adjective “natural” suggests that they should
form a natural transformation and, in fact, they do. For every morphism φ : m→ n
of B(M,X) we have a commutative square

m m+ 1

n n+ 1

ιm

ιn

φ Sφ (4)

where the morphism Sφ is defined as follows: if φ is represented by a path p in
Ck(M,X) for some k 6 min{m,n}, then Sφ is represented by the path sk ◦ p in
Ck+1(M,X), where sk is the stabilisation map from §2.2. Thus we have an endo-
functor S : B(M,X)→ B(M,X) (which we call the stabilisation endofunctor) and a

3 The Whitney Embedding Theorem implies that any (paracompact) smooth manifold without
boundary admits an embedding into some Euclidean space. One may deduce from this the appropri-
ate analogous fact for manifolds with collared boundary – see Lemma A.1 of [Pal17] for the precise
statement.
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natural transformation ι : id⇒ S. Note that each ιn has an obvious left-inverse πn,
using the reverse of the path used to define ιn, and these morphisms fit together to
form a left-inverse π : S ⇒ id for ι.

So, given any T : B(M,X)→ Ab we get a natural transformation T ◦ ι : T ⇒ T ◦ S,

or in other words a morphism in the abelian category AbB(M,X). Denote its cokernel
by ∆T : B(M,X)→ Ab.

Definition 3.1. The degree of a functor T : B(M,X)→ Ab is defined recursively by

deg(0) = −1 deg(T ) = deg(∆T ) + 1,

where 0 is the identically-zero functor.

Restriction to fully-defined braids
The degree of T , in fact, only depends on its restriction to the injective braid

category

Bf(M,X) ⊂ B(M,X),

whose objects are the non-negative integers, just as for B(M,X), and whose mor-
phisms are “braids” in M × [0, 1] from {a1, . . . , am} × {0} to {a1, . . . , an} × {1}
(whose strands are labelled by ΩX) with precisely m strands – in other words, the
fully-defined braids, whereas morphisms in B(M,X) are partially-defined braids. Pre-
cisely, recall that a morphism in B(M,X) is a choice of k 6 min{m,n} and a certain
path in Ck(M,X). This morphism belongs to Bf(M,X) if and only if k = m. Note
that there are no morphisms from m to n if m > n. This means, in particular, that
the object 0 – which is both initial and terminal in B(M,X) – fails to be terminal in
the subcategory Bf(M,X), although it is still initial.

The stabilisation endofunctor S : B(M,X)→ B(M,X) restricts to an endofunctor
Sf on this subcategory Bf(M,X) and the natural transformation ι : id⇒ S restricts to
ιf : id⇒ Sf . This does not in general have a left-inverse, so both functors coker(T ◦ ιf)
and ker(T ◦ ιf) may be non-trivial for a given functor T : Bf(M,X)→ Ab.

Definition 3.2. The zero functor Bf(M,X)→ Ab has degree −1. A non-zero functor
T : Bf(M,X)→ Ab has degree 6 d if and only if ker(T ◦ ιf) = 0 and deg(coker(T ◦
ιf)) 6 d− 1.

This is called the injective degree in §2 of [Pal17] (see Definition 2.1), where
we compare various related notions of degree. We note that T : B(M,X)→ Ab has
degree d if and only if its restriction to Bf(M,X) has degree d (this is easy to prove
by induction on d).

Remark 3.3. If M is of the form R2 ×M ′ then, by Remark 2.3, B(M,X) has a
braided monoidal structure, hence in particular, a so-called pre-braided structure, so
Definition 4.10 of [RWW17] applies (if we take A = 0 and X = 1) and assigns a
“degree at N” to a functor B(M,X)→ Ab for each N ∈ Z. When N = 0 this agrees
with Definition 3.1. Similarly, Bf(M,X) also has a pre-braided structure when M =
R2 ×M ′, so functors Bf(M,X)→ Ab are assigned a “degree at N” by [RWW17],
which agrees with Definition 3.2 when N = 0. For a further discussion of the relation
to the twisted coefficient systems of [RWW17], see §2.4 of [Pal17].
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Remark 3.4. Clearly, any constant functor B(M,X)→ Ab has degree 6 0, and
therefore so does any functor isomorphic to a constant functor. Conversely, any func-
tor of degree 6 0 is isomorphic to a constant functor. One may see this as follows.
Suppose that deg(T ) 6 0. By definition of the degree, T (ιn) is an isomorphism for all
n, which, due to the structure of the category B(M,X), implies that every morphism
is sent to an isomorphism by T . Thus T factors through the Grothendieck groupoid
G(B(M,X)) of B(M,X), which may be defined as the fundamental groupoid of its
classifying space. But B(M,X) has an initial object, so its classifying space is con-
tractible and its Grothendieck groupoid is equivalent to the trivial category. Thus,
up to isomorphism, T factors through the trivial category.

Similarly, a functor T : Bf(M,X)→ Ab has degree 6 0 if and only if it is isomorphic
to a constant functor, by the same argument as above.

3.2. Height
Denote by u the homomorphism π1Cn(M,X)→ Σn which only remembers the

permutation of the basepoint configuration (this is part of the canonical functor
B(M,X)→ Σ from §2.4). Write Gn := π1Cn(M,X) and define Gkn := u−1(Σn−k ×
Σk). To define the height of a functor T : B(M,X)→ Ab we need the following decom-
position result:

Proposition 3.5. Let T : B(M,X)→ Ab be any functor, and recall that we write
Tn = T (n). Then for k = 0, . . . , n there is a direct summand (as abelian groups) T kn of
Tn such that the action of Gkn 6 Gn on Tn preserves it : so it is also a direct summand
as a ZGkn-module. Moreover, there is a decomposition of Tn as a ZGn-module:

Tn ∼=
n⊕
k=0

(
ZGn ⊗ZGk

n
T kn
)
. (5)

This identification is natural in the sense that ιn : Tn → Tn+1 sends T kn into T kn+1,
and the map of the right-hand side induced by ιn and (sn)∗ corresponds under (5) to
ιn on the left-hand side.

Remark 3.6 (A clarification). It is important to add that the ZGkn-submodules T kn of
Tn in the above proposition are canonical, that is to say that there is an operation that
takes a functor T : B(M,X)→ Ab as input and outputs a choice of such a submodule
for each k = 0, . . . , n. This operation is given explicitly below (on the line immediately
above Remark 3.11). Thus when we speak of “the” module T kn there is no ambiguity.
Precisely how this operation is defined is less important than the fact that it is
(well-)defined, so its definition is relegated to the proof of the proposition given below.

See also §4.5 of [Pal17], where a definition of the height of a twisted coefficient
system is given in a more general setting, which includes an operation taking T to T ′

(where T ′ encapsulates the data of the various T kn ).

Remark 3.7 (Related decompositions). This is similar to the cross-effect decomposi-
tion of a functor from a pointed monoidal category (a monoidal category whose unit
object is also initial and terminal) to an abelian category, which appears in [HPV15,
Proposition 3.4] (see also [DV17, Proposition 2.11]), and the idea of which goes back
to Eilenberg and MacLane [EML54, §9]. However, our category B(M,X) is not in
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general monoidal (it is when M is of the form R×N), so this setup does not cover our
situation. A similar cross-effect decomposition appears in [HV11, Proposition 1.4]
for functors from a source category which has finite coproducts – however, B(M,X)
also does not have finite coproducts. Yet another similar decomposition appears in
[CDG13, Lemme 2.7(3)] for functors from a source category which is a wreath prod-
uct C o Λ, where C is any category and Σ 6 Λ 6 Sefin. Here, Sefin is the category of
finite sets and partially-defined functions and Σ is its subcategory of partially-defined
injections, as in Definition 2.5. Our category B(M,X) may be written as a wreath
product π1(X,x0) o B(M), where the wreath product is defined using the projection
B(M)→ Σ. This is, however, not of the form considered in [CDG13], unless M is
simply-connected and of dimension at least 3 (see §2.4).

Since none of the existing decompositions in the literature covers the general case
that we require, we give a complete proof of the decomposition (5) in our situation
(i.e. Proposition 3.5). This is a little technical, so the reader may wish to skip directly
to Definition 3.15 at this point. Before embarking upon the proof of Proposition 3.5,
we point out a correction.

Remark 3.8 (A correction). We should mention that the proof of the decomposition
in Lemme 2.7(3) of [CDG13] contains an error. We will briefly explain the error
and sketch a corrected proof of their decomposition. See [CDG13, §2.1] for any
unexplained notation. The first part of their proof establishes a decomposition

T (C) =
⊕

P⊆P(E)

⋂
A∈P

TA,M (C), (6)

where TA,S(C) is defined to be ker(T (dC,A)) ∩ im(T (dC,S)), M = MP is defined to
be
⋂

(P(E) r P ) and the notation P(E) means the power set of E.4 The aim is then
to show that this is equal to ⊕

S⊆E

⋂
A∈QS

TA,S(C), (7)

where we define QS := {A ∈ P(E) | A ( S}. Define also RS := {A ∈ P(E) | A 6⊇ S}
and note thatQS ⊆ RS with equality exactly when S = E. They state that TA,S(C) =
0 whenever A 6∈ QS , but, in fact, this is only true under the stronger assumption
that A 6∈ RS . We may therefore restrict the direct sum in (6) to those P such that
P ⊆ RMP

(rather than P ⊆ QMP
, as claimed). The P with this property are precisely

the subsets RS for S ⊆ E. Moreover, the function R : P(E)→ P(P(E)) given by
S 7→ RS is injective (in contrast to the function Q), so we see that (6) is equal to⊕

S⊆E

⋂
A∈RS

TA,S(C).

The final step of the proof is to show that restricting each intersection to the subsetQS
of RS does not change it. The subset QS is coinitial in RS , but the function P(E)→
P(T (C)) given by A 7→ TA,S(C) is non-increasing, so this does not help us. Instead,
this follows from the facts that TA,S(C) = TA∩S,S(C) and {A ∩ S | A ∈ RS} = QS .

4There is a typo in [CDG13], whereM is incorrectly defined to be
⋂
P , rather than

⋂
(P(E)r P ).
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An alternative correction to the proof of Lemme 2.7(3) of [CDG13] was pointed
out to us later by Aurélien Djament, which we also briefly sketch. The decomposition
(6) arises from the family of pairwise-commuting idempotents {T (dC,S) | S ⊆ E} of
T (C). If we instead consider the subfamily {T (dC,Er{s}) | s ∈ E}, the corresponding
decomposition is

T (C) =
⊕
S⊆E

⋂
s∈S

TEr{s},S(C).

Using the fact that TA,S(C) = TA∩S,S(C), we may replace TEr{s},S(C) with
TSr{s},S(C) on the right-hand side. Note that {S r {s} | s ∈ S} is cofinal in QS
and the function P(E)→ P(T (C)) given by A 7→ TA,S(C) is non-increasing, so this
is equal to (7).

We now prove Proposition 3.5, for which we will need the following definitions.

Definition 3.9. For S ⊆ {1, . . . , n} =: n let fS : n→ n be the endomorphism in
B(M,X) given by the constant path in Cn−|S|(M,X) on the configuration {(ai, x0) |
i ∈ nr S}. So this is the endomorphism which “forgets” the points ai for i ∈ S and
is the identity elsewhere.

Definition 3.10. For p > 0 and {S1, . . . , Sp} a partition of S ⊆ n define

Tn[S1|· · ·|Sp] := im(TfnrS) ∩
p⋂
i=1

ker(TfSi
).

Note that the induced maps TfS : Tn → Tn are not in general ZGn-module homo-
morphisms, so these are subgroups but not sub-ZGn-modules.

We will write Sδ for the discrete partition of S, and define

T kn := Tn[{n−k+1, . . . , n}δ].

Remark 3.11. A few immediate observations are the following: Each TfS : Tn → Tn
is idempotent. The composition of TfS1

and TfS2
is TfS1∪S2

, so, in particular, the
TfS for S ⊆ n all pairwise commute. By definition Tn[ ] = im(Tfn), and since f∅ = id
we also have Tn[n] = im(Tf∅) ∩ ker(Tfn) = ker(Tfn), so:

Tn = im(Tfn)⊕ ker(Tfn) = Tn[ ]⊕ Tn[n]. (8)

The following lemma is less immediate but can be proved by some diagram-chasing
and drawing little cartoons like (2) and (3). We will give a proof in symbols.

Lemma 3.12. For k 6 m 6 n, the map

ιnm := ιn−1 ◦ · · · ◦ ιm : Tm → Tn

is split-injective and sends T km into T kn . Moreover, its restriction to a map T km → T kn
is a bijection. Hence any left-inverse for ιnm restricts to a bijection T kn → T km.

Proof. As mentioned in §3.1, each ιn has a natural left-inverse πn – these compose
to give a left-inverse πnm for ιnm. Just as for ιn and πn, by an abuse of notation we
will denote the induced map TfS : Tn → Tn also by fS .

We now show that ιm(T km) ⊆ T km+1, and hence by induction that ιnm(T km) ⊆ T kn .
Suppose x = ιm(y) for y ∈ T km. Then by definition y = f{1,...,m−k}(z) for some z ∈ Tm.
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Since πm : Tm+1 → Tm is split-surjective we have z = πm(w) for some w ∈ Tm+1.
Hence

x = ιm ◦ f{1,...,m−k} ◦ πm(w) = f{1,...,m−k+1}(w). (9)

For any m− k + 2 6 i 6 m+ 1 we have

f{i}(x) = f{i} ◦ ιm(y) = ιm ◦ f{i−1}(y) = ιm(0) = 0, (10)

since y ∈ T km. The two properties (9) and (10) verify that x ∈ T km+1.

Now we show that the restriction of ιm to T km → T km+1 is a bijection, and hence
by induction that the restriction of ιnm to T km → T kn is a bijection. Suppose x ∈ T km+1,
and define z := πm(x) ∈ Tm. Then

ιm(z) = ιm ◦ πm(x) = f{1}(x).

But note that x = f{1,...,m−k+1}(y) for some y ∈ Tm+1, so

f{1}(x) = f{1} ◦ f{1,...,m−k+1}(y)

= f{1,...,m−k+1}(y) (by Remark 3.11 and since k 6 m)

= x.

So it remains to prove that z ∈ T km. Firstly,

z = πm ◦ f{1,...,m−k+1}(y) = f{1,...,m−k} ◦ πm(y).

Secondly, for any m− k + 1 6 i 6 m, we have

ιm ◦ f{i}(z) = f{i+1} ◦ ιm(z) = f{i+1}(x) = 0,

since x ∈ T km+1. But ιm is split-injective, so f{i}(z) = 0. These two facts verify that

z ∈ T km.

The following lemma will allow us to construct the required decomposition by
induction:

Lemma 3.13. For all {S1, . . . , Sp} partitioning S ⊆ n with p > 2, there is a split
short exact sequence

0→ Tn[S1|· · ·|Sp] ↪→ Tn[S1tS2|· · ·|Sp] � Tn[S1|S3|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp]→ 0.

The first map is the inclusion, and a section of the second map is given by the inclusion
of each of the two factors. So in other words we have a decomposition

Tn[S1tS2|· · ·|Sp] = Tn[S1|· · ·|Sp] ⊕ Tn[S2|· · ·|Sp] ⊕ Tn[S1|S3|· · ·|Sp].

Proof. One can check from the definitions that the following facts are true:

1. TfS2
restricts to a map Tn[S1tS2|· · ·|Sp]→ Tn[S1|S3|· · ·|Sp], and similarly

TfS1 restricts to a map Tn[S1tS2|· · ·|Sp]→ Tn[S2|· · ·|Sp].
2. Tn[S1|S3|· · ·|Sp] and Tn[S2|· · ·|Sp] are contained in Tn[S1tS2|· · ·|Sp].
3. For {i, j} ⊆ {1, 2} if x ∈ Tn[Si|S3|· · ·|Sp], then TfSj

(x) is x when i 6= j and 0
when i = j.
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These facts imply that the map (TfS2
, T fS1

) restricts to the required split surjec-
tion (with a section given by inclusion of each factor). The kernel of this is

Tn[S1tS2|S3|· · ·|Sp] ∩ ker(TfS1
) ∩ ker(TfS2

)

= im(TfnrS) ∩
p⋂
i=3

ker(TfSi
) ∩ ker(TfS1tS2

) ∩ ker(TfS1
) ∩ ker(TfS2

)

= Tn[S1|· · ·|Sp],

since ker(TfS1) ⊆ ker(TfS1tS2).

We can now use this to inductively prove a more general decomposition:

Lemma 3.14. For any ∅ 6= S ⊆ n and R ⊆ nr S there is a decomposition

Tn[S|Rδ] =
⊕

∅ 6=Q⊆S
Tn[(QtR)δ]. (11)

As before, Qδ denotes the discrete partition of the set Q, so for example
Tn[{1, 2}|{3, 4, 5}δ] means Tn[{1, 2}|{3}|{4}|{5}]. Note that this decomposition is an
equality of subgroups, not just an abstract isomorphism of groups.

Proof. The |S| = 1 case is obvious, so we assume that |S| > 2 and assume the theorem
for smaller values of |S| by induction. Pick an element s ∈ S. Then by Lemma 3.13,

Tn[S|Rδ] = Tn[Sr{s}|(Rt{s})δ] ⊕ Tn[Sr{s}|Rδ] ⊕ Tn[{s}|Rδ].

Apply the inductive hypothesis to the right-hand side. The proposition then follows
from the observation that for ∅ 6= Q ⊆ S, exactly one of the following holds: (i) s ∈ Q
but Q 6= {s}; (ii) s /∈ Q; (iii) Q = {s}.

We can now use this to deduce the decomposition we want:

Proof of Proposition 3.5. Combining (11) (setting R := ∅ and S := n) with (8) we
obtain:

Tn =

n⊕
k=0

⊕
Q⊆n
|Q|=k

Tn[Qδ]. (12)

The action of Gn on Tn permutes the summands via the projection Gn → Σn and
the obvious action of Σn on subsets of n. So:

• T kn = Tn[{n−k+1, . . . , n}δ] is preserved by the action of Gkn 6 Gn on Tn.
• The Gn-action on Tn preserves the outer direct sum.
• The inner direct sum is the induced module IndGn

Gk
n
T kn = ZGn ⊗ZGk

n
T kn .

This establishes the decomposition of ZGn-modules (5). We proved in Lemma 3.12
above that ιn : Tn → Tn+1 sends T kn into T kn+1, and the naturality statement is
clear.

Having established this decomposition we can now define the height of a twisted
coefficient system:
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Definition 3.15. The height of a functor T : B(M,X)→Ab is the height at which the
decomposition (5) is truncated. More precisely, we define height(T ) by: height(T ) 6 h
if and only if T kn = 0 for all k > h and all n. (So, in particular, height(T ) = −1 if and
only if T = 0.)

3.3. Height and degree
Despite their different definitions, these two notions are, in fact, equal:

Lemma 3.16. For any functor T : B(M,X)→ Ab, height(T ) = deg(T ).

The important half of this equality is the inequality height(T ) 6 deg(T ), since
having an upper bound on the height of a twisted coefficient system is what is needed
to prove Theorem A, whereas it is often easier to find an upper bound on the degree
in examples.

Proof. We will use induction on d to prove the statement

deg(T ) 6 d ⇔ height(T ) 6 d, (IHd)

for all d > −1, using the decomposition (12) above, which we restate as:

Tn =
⊕
S⊆n

Tn[Sδ]. (13)

In this notation the height of T is determined by saying that height(T ) 6 d if and
only if Tn[Sδ] = 0 for all |S| > d and all n.

When d = −1 the definitions of height and degree coincide. This deals with the
base case, so let d > 0 and assume that (IHd−1) holds. For all n we have a split short
exact sequence 0→ Tn → Tn+1 → ∆Tn → 0. Applying (13), this is

0→
⊕
S⊆n

Tn[Sδ] −→
⊕
R⊆n+1

Tn+1[Rδ] −→
⊕
Q⊆n

∆Tn[Qδ]→ 0.

Analysing the maps carefully we see that
(a) Tn[Sδ] is sent isomorphically onto Tn+1[(S + 1)δ] by the first map.
(b) Tn+1[(Q t {1})δ] is sent isomorphically onto ∆Tn[(Q− 1)δ] by the second map.

(⇒) Suppose that deg(T ) 6 d. Then deg(∆T ) 6 d− 1 by the definition of degree,
and so by the inductive hypothesis (IHd−1), height(∆T ) 6 d− 1. By fact (b) above
this implies that

Tn+1[Rδ] = 0 whenever |R| > d and 1 ∈ R.

For any fixed k, the subgroups {Tn+1[Rδ] | |R| = k} are all abstractly isomorphic via
the action of Gn+1 on Tn+1. Also note that d > 0, so that |R| > 0, i.e. R 6= ∅. Hence:

Tn+1[Rδ] = 0 for all |R| > d. (14)

Therefore by (a), Tn[Sδ] = 0 for all |S| > d; in other words, height(T ) 6 d.
(⇐) The other direction is simpler. Suppose that height(T ) 6 d; then we have the

property (14) above. This implies that

∆Tn[Qδ] ∼= Tn+1[((Q+ 1) t {1})δ] = 0 for all |Q| > d− 1.

Hence height(∆T ) 6 d− 1, so we also have deg(∆T ) 6 d− 1 by the inductive hypoth-
esis (IHd−1). By definition this implies that deg(T ) 6 d, as required.
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Remark 3.17. The notion of height in this paper is the same as the notion of degree
in [Bet02] (for twisted coefficient systems for symmetric groups) and [Dwy80] (for
general linear groups), and goes back to Eilenberg and MacLane [EML54, §9]. On
the other hand, the notion of degree in this paper is in the same spirit as the notion
of degree in [Iva93, CM09, Bol12] (for mapping class groups of surfaces) and
[RWW17] (for automorphism groups in a general categorical setting). See [Pal17] for
a detailed account of various notions of height and degree in the literature. Lemma 3.16
provides a link between these two different viewpoints (see also Remark 3.16 of
[Pal17]).

We finish this section with a few immediate facts about the degree of a twisted
coefficient system.

Lemma 3.18. For twisted coefficient systems T, T ′ : B(M,X)→ Ab and a fixed abe-
lian group A,

(a) deg(T ⊕ T ′) = max{deg(T ),deg(T ′)},
(b) deg(T ⊗A)6deg(T ), and more generally, for deg(T ) and deg(T ′) non-negative,
(c) deg(T ⊗ T ′) 6 deg(T ) + deg(T ′),

where ⊕ and ⊗ are defined objectwise.

Proof. Fact (a) follows by induction from the fact that ∆(T ⊕ T ′) ∼= ∆T ⊕∆T ′. Fact
(b) follows from the fact that ∆(T ⊗A) ∼= ∆T ⊗A, which is true because tensoring
a split short exact sequence with A preserves split-exactness. Fact (c) is proved by
induction with base case (b), and inductive step using the fact that

∆(T ⊗ T ′) ∼= (T ⊗∆T ′)⊕ (∆T ⊗ T ′)⊕ (∆T ⊗∆T ′).

4. Examples of twisted coefficient systems

In this section we give some examples of twisted coefficient systems to which The-
orem A applies, and use them to deduce Corollaries B and C. These examples are
all pulled back from twisted coefficient systems for Σ along the canonical functor
B(M,X)→ Σ. After this, we also briefly discuss further examples of twisted coeffi-
cient systems, related to surface braid groups, which do not arise in this manner.

4.1. Examples of twisted coefficient systems for Σ and proofs of the
corollaries

Recall (Definition 2.5) that the category Σ has non-negative integers as objects
and partially-defined injections as morphisms. We will give some examples of functors
T : Σ→ Ab, which are twisted coefficient systems for the special case M = R∞ and
X = ∗ since B(R∞) ∼= Σ.

Recall (see §2.4) that there is a canonical functor U : B(M,X)→ Σ for each M
and X (cf. Remark 4.6 of [Pal17]), so these examples also give twisted coefficient
systems in general. Moreover, one may check (see §3 for notation) that ∆(T ◦ U) ∼=
∆T ◦ U , so by induction deg(T ◦ U) = deg(T ) (cf. Lemma 4.2 of [Pal17]), and also
that (T ◦ U)kn

∼= T kn , so height(T ◦ U) = height(T ).
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Example 4.1. Fix a path-connected based space (Z, ∗), an integer q > 0 and a
field F . The functor T̂Z : Σ→ Top is defined on objects by n 7→ Zn, and on mor-
phisms as follows: given a partially-defined injection j : {1, . . . ,m} 99K {1, . . . , n} in
Σ, define T̂Z(j) : Zm → Zn to be the map

(z1, . . . , zm) 7→ (zj−1(1), . . . , zj−1(n)),

where z∅ is taken to mean the basepoint ∗. For example:

: (z1, z2, z3) 7→ (∗, z1, ∗, z2).

The functor TZ,q,F : Σ→ Ab is then the composite functor Hq(−;F ) ◦ T̂Z .

Lemma 4.2. The twisted coefficient system TZ,q,F has degree at most b q
h+1c, where

for a path-connected space Z,

h = hconnF (Z) := max{k > 0 | H̃i(Z;F ) = 0 for all i 6 k} > 0.

Proof. First note that the Künneth theorem gives us natural split short exact se-
quences

0→ Hq(Z
n;F ) −→ Hq(Z

n+1;F ) −→
q⊕
i=1

Hq−i(Z
n;F )⊗F Hi(Z;F )→ 0, (15)

which together with the fact that Hi(Z;F ) = 0 for 1 6 i 6 h implies that

∆TZ,q,F =

q⊕
i=h+1

TZ,q−i,F ⊗F Hi(Z;F ). (16)

So, by Lemma 3.18 above, deg(TZ,q,F ) 6 1 + max{deg(TZ,q−i,F ) | h+ 1 6 i 6 q}.
Abbreviating deg(TZ,q,F ) to tq, we have the recurrence inequality

tq 6 1 + max{t0, . . . , tq−h−1}. (17)

Note that H0(Zn;F )→ H0(Zn+1;F ) is the identity map F → F for all n, so
∆TZ,0,F = 0, and hence deg(TZ,0,F ) = 0. Also note that for 1 6 q 6 h, hconnF (Z) > q
implies that hconnF (Zn) > q for all n (by the Künneth theorem), so TZ,q,F (n) =
Hq(Z

n;F ) = 0, and hence deg(TZ,q,F ) = −1 6 0. So we also have the initial condi-
tions

t0, t1, . . . , th 6 0. (18)

It now remains to prove that the recurrence inequality (17) and the initial conditions
(18) imply that tq 6 b q

h+1c for all q > 0. This will be done by induction on q. The
base case is 0 6 q 6 h which is covered by the initial conditions (18). Assume that
q > h+ 1. Then:

tq 6 1 + max{t0, . . . , tq−h−1}
6 1 + b q−h−1h+1 c
= b q

h+1c.
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Remark 4.3. See also [Han09a, Proposition 5.2], where it is proved (in the termi-
nology of this paper) that the height of TZ,q,F is at most q.

Remark 4.4. If, in Lemma 4.2, we replace F by a general principal ideal domain R
(such as Z), the short exact sequence (15) becomes

0→ Hq(Z
n;R) −→ Hq(Z

n+1;R) −→
q⊕
i=1

Hq−i(Z
n;R)⊗R Hi(Z;R)

⊕
q⊕
i=1

TorR(Hq−i(Z
n;R), Hi−1(Z;R))→ 0.

(19)

Here, as in (15), we have used the splitting in the Künneth short exact sequence to
move some summands from the left-hand side to the right-hand side. However, this
splitting is not always natural, and so (19) is not natural for general principal ideal
domains R. When R = F is a field, the Tor terms vanish and the Künneth short exact
sequence is of the form 0→ A→ B → 0→ 0, so its splitting is certainly natural in
this case.5 This is the reason why the short exact sequence (15) is natural – which
was necessary to deduce the isomorphism of functors (16). More generally, the Tor
terms vanish if H∗(Z;R) is flat over R in each degree, so the most general version
of Example 4.1 works for a principal ideal domain R and path-connected space Z
satisfying this condition. In particular, if H∗(Z;Z) is torsion-free, this example works
for homology with integral coefficients.

Proof of Corollary B. The first statement follows directly from Theorem A applied to
Example 4.1, using Lemma 4.2 and Remark 4.4 to compute the degree of the twisted
coefficient system in this case. The improved ranges follow from Remark 1.4.

Notation 4.5. Write N = Z>0. For k ∈ N and λ = (λ1, . . . , λk) ∈ Nk define |λ| :=
λ1 + · · ·+ λk. For ` ∈ N, define λ ` ` to be the statement

λ ∈ Nk for some k ∈ N and |λ| = `.

In words, λ is an ordered partition of ` of length k. For a set S with |S| > `, an
ordered decomposition of S of type λ is a tuple (S1, . . . , Sk) of pairwise disjoint subsets
Si ⊆ S such that |Si| = λi. Note that this decomposes S into either k or k + 1 subsets,
depending on whether |S| = ` or |S| > `. As a final piece of notation, define λ[n] = λ
for n = ` and

λ[n] = (n− `, λ1, . . . , λk),

for n > `, so that λ[n] ` n.

Example 4.6. Let Sefin be the category of finite sets and partially-defined functions.
Note that this is equivalent6 to the category Setfin

∗ of finite pointed sets. There is a

5This just comes from the fact that a natural transformation is invertible if it is objectwise invertible.
6Although not isomorphic, for essentially set-theoretic reasons.
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free functor Z(−) : Sefin → Ab taking S to ZS and taking a partially-defined function
j : S 99K R to the homomorphism∑

s∈S
nss 7→

∑
s∈S

nsj(s), (20)

where j(s) means 0 ∈ ZR if j is undefined on s. So any functor Σ→ Sefin gives a
twisted coefficient system for Σ by composing with Z(−).

We now define a functor Pλ : Σ→ Sefin associated to any λ ` `. On objects, it is
defined by

Pλ(n) =

{
{ordered decompositions of n of type λ} n > `,

∅ n < `.

Given a partially-defined injection j : {1, . . . ,m}99K{1, . . . , n}, we definePλ(j) : Pλ(m)
99K Pλ(n) as follows. First, if m < ` or n < ` then Pλ(j) is the empty function. If
m,n > ` and (S1, . . . , Sk) ∈ Pλ(m), then Pλ(j) is defined on (S1, . . . , Sk) exactly when

j is defined on every element of
⋃k
i=1 Si, in which case its value is (j(S1), . . . , j(Sk)) ∈

Pλ(n).
Note that, when λ = 1, the functor Pλ is simply the inclusion of Σ as a subcategory

of Sefin. There is a natural action of Σn on Pλ(n), since Σn is the automorphism group
of n in Σ, and an isomorphism

ZPλ(n) ∼= Z
[
Σn/Σλ[n]

]
of Z[Σn]-modules, where we write Σµ for the subgroup Σµ1

× · · · × Σµk
of Σ|µ|. Note

that the right-hand side is only defined for n > `. In particular, when λ = (1, . . . , 1)
with |λ| = `, we have ZPλ(n) ∼= Z[Σn/Σn−`].

We have the following isomorphisms in Ab for |λ| > 2:

∆ZPλ(n) ∼= Z
{

(S1, . . . , Sk) ∈ Pλ(n+ 1) | 1 ∈
⋃k
i=1Si

}
∼= Z

(⊔k
i=1Pλ−ei(n)

)
∼=
⊕k

i=1ZPλ−ei(n),

where λ− ei is the ordered partition (λ1, . . . , λi − 1, . . . , λk).7 The first and third
isomorphisms are obviously natural isomorphisms of functors Σ→ Ab, and one can
also explicitly check that the second isomorphism is natural. Hence we have an iso-
morphism

∆ZPλ ∼=
k⊕
i=1

ZPλ−ei , (21)

for |λ| > 2. This allows us to prove:

Lemma 4.7. The twisted coefficient system ZPλ has degree |λ|.

Proof. The proof is by induction on |λ|. First, if |λ| = 1 then ∆ZPλ(n) ∼= Z for all
n > 0. Hence all morphisms in Σ are sent by ∆ZPλ to endomorphisms of Z in Ab. But
all morphisms in Σ have one-sided inverses, so their images in Ab are endomorphisms

7And where (λ1, . . . , λk) means (λ1, . . . , λa−1, λa+1, . . . , λk) if λa = 0.
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of Z admitting one-sided inverses, and hence automorphisms. Thus ∆∆ZPλ = 0, and
so ZPλ has degree 1 by definition.

Now assume that |λ| > 2. By (21), Lemma 3.18 and the inductive hypothesis, we
have:

deg(∆ZPλ) = deg
( k⊕
i=1

ZPλ−ei
)

= max
i=1,...,k

(deg(ZPλ−ei)) = |λ| − 1,

so deg(ZPλ) = |λ| by the definition of degree.

Remark 4.8. Given an arbitrary ring R, there is also a functor R(−) : Sefin → Ab
taking a set S to the free R-module generated by S (viewed as an abelian group) and
with morphisms defined by the same formula (20) as for Z(−). Thus we have twisted
coefficient systems RPλ : Σ→ Ab associated to any ring R and ordered partition λ.
Just as in the case R = Z, we have isomorphisms RPλ(n) ∼= R[Σn/Σλ[n]] of R[Σn]-
modules for all n, and the twisted coefficient system RPλ has degree |λ|. To see this,
we can adapt the proof of Lemma 4.7 directly, as long as we are slightly more careful
about the base case. It is not in general true that the monoid EndAb(R) has the
property that any one-sided inverse is a two-sided inverse (consider R =

∏∞ Z for
example), so the base case does not come for free. However, one can explicitly compute
the maps ∆RPλ(m)→ ∆RPλ(n) induced by any j : {1, . . . ,m} 99K {1, . . . , n} in Σ,
and see that they are just the identity on R.

Proof of Corollary C. The first statement follows directly from Theorem A applied to
Example 4.6, using Lemma 4.7 and Remark 4.8 to compute the degree of the twisted
coefficient system in this case. The improved ranges follow from Remark 1.4.

4.2. Examples of twisted coefficient systems for surface braid groups

Examples derived from LKB representations

The Lawrence-Krammer-Bigelow representations are a family of representations of
the braid groups first introduced by Lawrence [Law90]. They have since been studied
by many people, including Bigelow [Big01] and Krammer [Kra02], who proved (inde-
pendently) that a certain one of these representations is faithful, thereby proving the
linearity of the braid groups. These representations depend on a choice of positive inte-
ger m, and come in several flavours, defined as the (ordinary, reduced, Borel-Moore)
homology of a certain covering space of the configuration space Cm(C− {1, 2, . . . , n}),
with the nth braid group acting via compactly-supported diffeomorphisms of the
punctured plane.

These representations, as well as further variants allowing more general punc-
tured surfaces (giving rise to representations of surface braid groups), will be stud-
ied in detail in future work. Here we just remark that certain special cases are
known to assemble into finite-degree twisted coefficient systems on the category Uβ
(cf. Remark 1.5), including the unreduced Burau representations [RWW17, Exam-
ple 4.15], the reduced Burau representations [Sou17, Corollary 2.36] (both corre-
sponding to m = 1) and the Lawrence-Krammer representations [Sou17, Proposi-
tion 2.40] (corresponding to m = 2).
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Further examples for braid groups

Another example of a finite-degree twisted coefficient system on Uβ is constructed
in [Sou17, Proposition 2.29] from the Tong-Yang-Ma representations [TYM96].
Moreover, the main result of [Sou17] is a functorial version of the Long-Moody con-
struction [Lon94], which produces a new twisted coefficient system on Uβ from an
old one, increasing the degree by exactly one in the process. Iterating this construc-
tion therefore gives many more examples of finite-degree twisted coefficient systems
on Uβ.

5. A twisted Serre spectral sequence

To prove Theorem A we will need a generalisation of the basic Serre spectral
sequence, allowing the base space to be equipped with a local coefficient system. It is
a special case of (the homology version of) an equivariant generalisation of the Serre
spectral sequence constructed by Moerdijk and Svensson in [MS93]. This section
gives a brief description of their spectral sequence and deduces the particular case
that we will need. We note that the required spectral sequence may also be deduced
as a special case of [MS06, §20.4], but we will not do this explicitly here.

5.1. Recollections about homology with local coefficients

We start by recalling a basepoint-independent description of (co)homology with
local coefficients (in the non-equivariant setting). Let R be a commutative ring with
unit. We first describe homology and cohomology of categories, which we view as
functors

H∗ : CatR −→ gr-R-mod and H∗ : CatR −→ gr-R-mod,

respectively, where the target is the category of graded R-modules and the sources
are as follows. An object of CatR is a category C and a functor F : C → R-mod and a
morphism from (C,F ) to (D,G) is a functor φ : C → D and a natural transformation
F ⇒ G ◦ φ. An object of CatR is a category C and a functor F : Cop → R-mod and
a morphism from (C,F ) to (D,G) is a functor φ : D → C and a natural transfor-
mation F ◦ φop ⇒ G. These are defined using the derived functors Ext and Tor for
representations of categories [Mit72, BW85]:8

H∗(C,F ) := TorC∗ (R,F ) and H∗(C,F ) := Ext∗C(R,F ),

whereR denotes the constant functor C → R-mod respectively Cop → R-mod sending
every object to the free R-module on one generator and sending every morphism to
the identity. They may also be computed using the classical Ext and Tor functors
for modules over rings, since there is an embedding Fun(C,R-mod) ↪→ RC-mod for
any category C and ring R, where RC is the category ring of C (this was defined in

8In [Mit72, §12], the (co)homology of a category C is defined more generally, allowing coefficients
in any functor Cop × C → R-mod, and in [BW85] this is further generalised to functors FC →
R-mod, where FC is a certain category of “factorisations in C”.
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[Mit72, §7], see also [Pal17, §5.1]):

H∗(C,F ) = TorRC∗ (R,F ) and H∗(C,F ) = Ext∗RCop(R,F ),

where R is considered as an RC-module (respectively RCop-module) with the trivial
action of the category ring.

Definition 5.1. For a space Y let ∆(Y ) be the category whose objects are all sin-
gular simplices in Y , and whose morphisms are simplicial operations (generated
by face and degeneracy maps). For example, ∆(∗) is the usual simplex category.
Denote the fundamental groupoid of Y by π(Y ), and the standard n-simplex by
∆n = {(x0, . . . , xn) ∈ Rn+1 | xi > 0, x0 + · · ·+ xn = 1}. There is a canonical func-
tor vY : ∆(Y )→ π(Y ) which takes a singular simplex ∆n → Y to the image of its

barycentre bn =
(

1
n+1 , . . . ,

1
n+1

)
. A morphism ∆k α−→ ∆n → Y is taken to the image

of the straight-line path in ∆n from α(bk) to bn. (One may alternatively define a
functor using the last vertex en = (0, . . . , 0, 1) in place of the barycentre bn – this is
naturally isomorphic to vY .)

A coefficient system for homology (resp. cohomology) is a covariant (resp. con-
travariant) functor ∆(Y )→ R-mod. It is a local coefficient system if it factors up
to natural isomorphism through vY . Homology and cohomology of spaces with local
coefficients are then functors

H∗ : TopR −→ gr-R-mod and H∗ : TopR −→ gr-R-mod, (22)

where an object of TopR is a space Y and a functor F : π(Y )→ R-mod and a mor-
phism from (Y, F ) to (Z,G) is a continuous map f : Y → Z and a natural transfor-
mation F ⇒ G ◦∆(f). An object of TopR is a space Y and a functor F : π(Y )op →
R-mod and a morphism from (Y, F ) to (Z,G) is a continuous map f : Z → Y and a
natural transformation F ◦∆(f)op ⇒ G. The definition is:

H∗(Y, F ) := H∗(∆(Y ), F ◦ vY ) and H∗(Y, F ) := H∗(∆(Y ), F ◦ vY ).

The homotopy-invariance of (co)homology may then be expressed by the statement
that the functors (22) are continuous functors between topologically-enriched cat-
egories, where the topology on morphism-sets in TopR and TopR is defined in the
obvious way using the compact-open topology of mapping spaces, and the topology
on morphism-sets in gr-R-mod is discrete.

Remark 5.2. If we restrict to topological spaces that are locally path-connected and
semi-locally simply-connected, then the categories TopR and TopR are equivalent to
the categories L and L∗ mentioned in §5.4 of [DK01] (see Theorems 5.11 and 5.12,
respectively). In particular, TopR may be thought of as follows: an object is a space
(satisfying the above conditions) equipped with a bundle of R-modules over it; a
morphism is a continuous map of spaces covered by a morphism of bundles that
restricts to an R-linear isomorphism on each fibre.

5.2. The spectral sequence
In [MS93] the above is generalised to the equivariant setting: they define cer-

tain categories and a functor vY : ∆G(Y )→ πG(Y ) for a G-space Y , and equivariant
twisted cohomology H∗G(Y ;F ) for any coefficient system F : ∆G(Y )op → Ab. Again a
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coefficient system is local if it factors up to natural isomorphism through vY . Coho-
mology with respect to local coefficient systems is G-homotopy invariant [MS93,
Theorem 2.3]. Their main theorem is the existence of a twisted equivariant Serre
spectral sequence:

Theorem 5.3 ([MS93, Theorem 3.2]). For any G-fibration f : Y → X (i.e. Y H →
XH is a fibration for all H 6 G) and any local coefficient system F on Y , there is a
local coefficient system Hq

G(f ;F ) on X for each q > 0 and a spectral sequence

Ep,q2 = Hp
G

(
X;Hq

G(f ;F )
)
⇒ H∗G(Y ;F ), (23)

with the usual cohomological grading.

Remark 5.4. We describe the local coefficient system Hq(f ;F ) in the non-equivari-
ant case. As a functor ∆(X)op → Ab it acts as follows. An object (i.e. singular simplex

∆k σ−→ X) is taken to the cohomology Hq(σ∗(Y );F ), where σ∗(Y ) is the pullback of
σ and f , and we denote any pullback of the coefficients F also by F . A morphism
∆l α−→ ∆k σ−→ X induces a map of pullbacks (σ ◦ α)∗(Y )→ σ∗(Y ) and hence a map
on cohomology. This coefficient system is a local coefficient system since it factors up
to natural isomorphism through vX by the following functor π(X)op → Ab. A point

x ∈ X is taken to Hq(f−1(x);F ). Given a homotopy class [I
p−→ X] of paths from x

to y, there are induced maps of pullbacks f−1(x) ↪→ p∗(Y )←↩ f−1(y). These induce
maps on cohomology, and since they are isomorphisms9 the first one can be inverted
to get a composite map Hq(f−1(x);F )→ Hq(f−1(y);F ). One can check that this
map is independent of the choice of representing path p.

In [MS93] the authors point out that there is an analogous version of the spectral
sequence (23) for homology. We will only need the non-equivariant (but twisted)
version, which is:10

Theorem 5.5. For any fibration f : Y → X and any local coefficient system F on
Y , there is a local coefficient system Hq(f ;F ) on X for each q > 0 and a spectral
sequence

E2
p,q = Hp

(
X;Hq(f ;F )

)
⇒ H∗(Y ;F ),

with the usual homological grading.

The description of the local coefficient systems Hq(f ;F ) is the same as above,
replacing cohomology with homology. An important observation is that if the local
coefficient system F on Y is pulled back from the base X, the local coefficient systems
Hq(f ;F ) are built out of the untwisted homology of each fibre.

We now return to the viewpoint – in the setting of based, path-connected spaces
– of local coefficient systems as an action of the fundamental group on an abelian
group. In the special case where the local coefficient system on Y is a pullback of one
on X the above can be rephrased as:

9The inclusion {0} ↪→ [0, 1] is an acyclic cofibration, so its pullback along the fibration f is again
an acyclic cofibration, in particular, a weak equivalence.
10This was also stated (referencing [MS93]) as Theorem 4.1 of [Han09b].
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Corollary 5.6. For any fibration f : Y → X with fibre F over the basepoint x0 ∈ X,
and any π1(X)-module M , there is a spectral sequence

E2
p,q = Hp

(
X;Hq(F ;M)

)
⇒ H∗(Y ;M), (24)

with the usual homological grading. Here the action of π1(Y ) on M is pulled back from
that of π1(X) via f∗ and the action of π1(F ) on M is trivial. The action of π1(X)
on Hq(F ;M) is induced by its diagonal action on the chain complex S∗(X)⊗Z M .

This is natural for maps of fibrations in the obvious way:

Proposition 5.7. Suppose we have a map of fibrations (the vertical maps are fibra-
tions, and the square commutes on the nose):

Y Y ′

X X ′

and a π1(X ′)-module M . Denote the fibres over the basepoints by F and F ′, respec-
tively. Then there is a map of spectral sequences (24) where:
◦ The map F →F ′ induces a map of untwisted homology Hq(F ;M)→ Hq(F

′;M),
which is equivariant w.r.t. the homomorphism π1(X)→ π1(X ′), so it induces a
map of twisted homology Hp(X;Hq(F ;M))→ Hp(X

′;Hq(F
′;M)). This is the

map on the E2 pages.
◦ The action of π1(Y ) on M is the pullback of the action of π1(Y ′) on M , so the

map Y → Y ′ induces a map of twisted homology H∗(Y ;M)→ H∗(Y
′;M). This

is the map in the limit.

6. Proof of twisted homological stability

We now use the twisted Serre spectral sequence of the previous section to prove
Theorem A. We first record another fact we will use:

Lemma 6.1 (Shapiro for covering spaces). Suppose we have a based, path-connected
space X which is locally path-connected and semi-locally simply-connected, a subgroup
H of π1(X) and an H-module A. Let X̂ be the (based) covering space corresponding
to H. Then

H∗(X̂;A) ∼= H∗(X;Zπ1(X)⊗ZH A). (25)

Moreover, given a map of the above data, namely a (based) map f : X → X ′ such that

f∗(H) ⊆ H ′ (so that there is a unique based lift f̂ : X̂ → X̂ ′) and a map φ : A→ A′

which is equivariant w.r.t. f∗, the identification (25) is natural in the sense that

H∗(X;Zπ1(X)⊗ZH A) H∗(X
′;Zπ1(X ′)⊗ZH′ A

′)

H∗(X̂;A) H∗(X̂
′;A′)

∼= ∼=

(26)

commutes.
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Proof. Denote the singular chain complex functor by S∗( ) and the universal cover

of X by X̃. Then we have an isomorphism of chain complexes

S∗(X̃)⊗ZH A −→ S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A

given by σ ⊗ a 7→ σ ⊗ [cx]⊗ a, where cx is the constant loop at the basepoint x of X.

Taking homology gives the identification (25). Let f̃ denote the unique (based) lift of

f to X̃ → X̃ ′. The diagram (26) is induced by

S∗(X̃)⊗Zπ1(X) Zπ1(X)⊗ZH A S∗(X̃
′)⊗Zπ1(X′) Zπ1(X ′)⊗ZH′ A

′

S∗(X̃)⊗ZH A S∗(X̃
′)⊗ZH′ A

′

∼= ∼=

and one can check that both routes around the square send σ ⊗ a to f̃](σ)⊗ [cx′ ]⊗
φ(a).

This will be applied to the following covering spaces of configuration spaces:

Definition 6.2. The configuration space C(k,n−k)(M,X) of k red and n− k green
points in M with labels in X is defined to be

(Emb(n,M)×Xn)/(Σn−k × Σk)

(cf. Remark 1.7), and we give it the basepoint {(a1, x0), . . . , (an, x0)} with the points
a1, . . . , an−k coloured green and the points an−k+1, . . . , an coloured red. There is
also a stabilisation map skn : C(k,n−k)(M,X)→ C(k,n−k+1)(M,X), which is defined
exactly as in §2.2, and adds a new green point to the configuration.

Definition 6.3. Let f : C(k,n−k)(M,X)→ Ck(M,X) be the map which forgets the
green points. We will also need the following two maps for technical reasons: Define
p : Ck(M,X)→ Ck(M,X) to be the self-homotopy-equivalence induced by the self-
embedding e|M : M ↪→M (see §2.1). Choose a self-diffeomorphism of M which is
isotopic to the identity and which takes ai to ai+n−k+1 for i = 1, . . . , k. Denote by φ
the self-homeomorphism Ck(M,X)→ Ck(M,X) induced by this.

The forgetful maps f are locally trivial fibre bundles, so we have a map of fibrations:

C(k,n−k)(M,X) C(k,n−k+1)(M,X)

Ck(M,X) Ck(M,X)

skn

φ−1 ◦ p

f φ−1 ◦ f (27)

The p is there to ensure that it commutes on the nose, and the φ−1 is there
to deal with basepoints: on the bottom-left we have to give Ck(M,X) the basepoint
{(an−k+1, x0), . . . , (an, x0)}, but on the bottom-right we can give it its usual basepoint
of {(a1, x0), . . . , (ak, x0)}.
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The map skn restricted to the fibres over the basepoints is a map

Cn−k(M r {an−k+1, . . . , an}, X)→ Cn−k+1(M r {an−k+2, . . . , an+1}, X),

but this can be identified, up to homeomorphism, with the stabilisation map
sn−k : Cn−k(Mk, X)→ Cn−k+1(Mk, X), where Mk is M with a subset of M r U of
size k removed (see §2.1 for notation).

Finally, before beginning the proof proper, we mention how a certain local coeffi-
cient system pulls back along the maps in (27). The covering space C(k,n−k)(M,X)→
Cn(M,X) corresponds to the subgroup Gkn 6 Gn = π1Cn(M,X). Recall from Propo-
sition 3.5 that T kn is a ZGkn-module (it is a sub-ZGkn-module of Tn), so it is a local
coefficient system for C(k,n−k)(M,X).

Lemma 6.4. The local coefficient system T kk on the right-hand base space pulls back
to the local coefficient systems T kn and T kn+1 on the total spaces of (27).

Proof. By Lemma 3.12, the left-inverse πnk of ιnk : Tk → Tn restricts to a bijection
T kn → T kk . So this is an isomorphism of abelian groups, and it is enough to check that
it is equivariant w.r.t. the map on π1 induced by the composite φ−1 ◦ p ◦ f in (27).
This is true because both e|M : M ↪→M (which induces p) and the diffeomorphism
which induces φ are isotopic to the identity. Exactly the same argument works for
the right-hand side.

Proof of Theorem A (except the split-injectivity claim). We need to show that the
map

H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1) (28)

induced by sn and ιn is an isomorphism in the range ∗ 6 n−d
2 . By the decomposition

(5) of Proposition 3.5, and the fact that T has degree d, this is the same as the map

d⊕
k=0

H∗(Cn(M,X);ZGn ⊗ZGk
n
T kn ) −→

d⊕
k=0

H∗(Cn+1(M,X);ZGn+1 ⊗ZGk
n+1

T kn+1)

induced by sn, ιn and (sn)∗. By Shapiro’s Lemma for covering spaces (Lemma 6.1)
this is isomorphic to the map

d⊕
k=0

H∗(C(k,n−k)(M,X);T kn ) −→
d⊕
k=0

H∗(C(k,n−k+1)(M,X);T kn+1) (29)

induced by skn and ιn. The map of fibrations (27) gives the following map of twisted
Serre spectral sequences (Corollary 5.6, Proposition 5.7 and Lemma 6.4):

E2
p,q = Hp(Ck(M,X);Hq(Cn−k(Mk, X);T kk )) +3

��

H∗(C(k,n−k)(M,X);T kn )

��
E2
p,q = Hp(Ck(M,X);Hq(Cn−k+1(Mk, X);T kk )) +3 H∗(C(k,n−k+1)(M,X);T kn+1).

(30)
The map in the limit is the kth summand of (29), and the map on E2 pages is induced
by the stabilisation map sn−k on the fibres and the homotopy-equivalence φ−1 ◦ p on



TWISTED HOMOLOGICAL STABILITY FOR CONFIGURATION SPACES 173

the base. Note that T kk is a constant coefficient system once it has been pulled back
to the fibres Cn−k(Mk, X) and Cn−k+1(Mk, X), since it was originally pulled back
from the base.

Hence, by untwisted homological stability for configuration spaces (Theorem 1.2)
and the universal coefficient theorem, the map on E2 pages is an isomorphism for
q 6 n−k

2 (and all p > 0). By the Zeeman comparison theorem11 it is therefore an

isomorphism in the limit for ∗ 6 n−k
2 . So in the range ∗ 6 n−d

2 each summand in (29)
is an isomorphism, so (28) is an isomorphism.

Remark 6.5. When M is at least 3-dimensional, the stabilisation map Cn(M,X)→
Cn+1(M,X) is an isomorphism on homology with coefficients in Z[ 12 ] in the larger
range ∗ 6 n, by [KM15]. Since Z[ 12 ] is a PID, this implies, via the universal coeffi-
cient theorem, the same for homology with coefficients in any Z[ 12 ]-module. Suppose
that T : B(M,X)→ Z[ 12 ]-mod 6 Ab is a twisted coefficient system of Z[ 12 ]-modules
(meaning that it takes values in the full subcategory Z[ 12 ]-mod of Ab) of degree d.
Then the constant coefficients T kk appearing in (30) above are all Z[ 12 ]-modules, and
the same proof tells us that the map

H∗(Cn(M,X);Tn)→ H∗(Cn+1(M,X);Tn+1) (31)

is an isomorphism in the larger range ∗ 6 n− d (rather than just ∗ 6 n−d
2 ). When M

is a surface, there is a similar improvement to the range for rational coefficients. In this
case the stabilisation map is an isomorphism on homology with rational coefficients
in the range ∗ 6 n in the non-orientable case and in the range ∗ < n in the orientable
case, by [Chu12, Corollary 3] and [Knu17, Theorem 1.3].12 Thus if T : B(M,X)→
VectQ 6 Ab is a rational twisted coefficient system of degree d, the map (31) is an
isomorphism in either the range ∗ 6 n− d (for non-orientable surfaces) or the range
∗ < n− d (for orientable surfaces).

7. Split-injectivity

To prove the split-injectivity part of Theorem A we will use the following lemma
which was used implicitly by Nakaoka in [Nak60] and later written down explicitly
by Dold in [Dol62]:

Lemma 7.1 ([Dol62, Lemma 2]). Given a sequence 0→ A1
φ1−→ A2

φ2−→ · · · of abeli-
an groups and homomorphisms, the following is sufficient to imply that each of the
maps φi is split-injective: There exist maps τk,n : An → Ak for 1 6 k 6 n with τn,n =
id such that

im(τk,n − τk,n+1 ◦ φn) 6 im(φk−1).

11The required implication is contained in the proof of Theorem 1 of [Zee57], although stronger
hypotheses are stated there. An explicit statement of the comparison theorem which applies to our
case is Theorem 1.2 of [Iva93]. It is also written in Remarque 2.10 of [CDG13].
12The maps used in these two references to induce isomorphisms between configuration spaces are
not the stabilisation maps. However, we may reduce to the case where the manifolds are of finite type,
so that the rational homology of the configuration spaces is a finite-dimensional vector space in each
degree. Moreover, the stabilisation maps are always split-injective in all degrees (see Theorem 1.2).
So the fact that H∗(Cn(M,X);Q) and H∗(Cn+1(M,X);Q) are abstractly isomorphic in a range
implies that the stabilisation map is an isomorphism in this range.
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Let Un(M,X) be the universal cover of Cn(M,X). One can think of its elements
as n-strand “open-ended braids” in M × [0, 1] (n pairwise disjoint paths in M × [0, 1]
which are the identity in the second coordinate and start at {(a1, 0), . . . , (an, 0)}, up
to endpoint-preserving homotopy) with each strand labelled by the based path space
PX. Let s̃n : Un(M,X)→ Un+1(M,X) be the lift of the stabilisation map which
applies e|M × id[0,1] to the braid and adds a vertical strand at a1 labelled by the
constant path cx0

.

As before, denote π1Cn(M,X) by Gn, and denote the singular chain complex of a
space by S∗( ). Let T : B(M,X)→ Ab be any twisted coefficient system (we do not
assume finite-degree in this section). Then the map

(sn; ιn)∗ : H∗(Cn(M,X);Tn) −→ H∗(Cn+1(M,X);Tn+1) (32)

is induced by the map of chain complexes

(s̃n)] ⊗ ιn : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Un+1(M,X))⊗ZGn+1

Tn+1.

Proof of Theorem A (split-injectivity claim). We want to prove that (32) is split-
injective for all ∗ and n. By Dold’s Lemma 7.1, it is sufficient to construct chain
maps

tk,n : S∗(Un(M,X))⊗ZGn
Tn −→ S∗(Uk(M,X))⊗ZGk

Tk

for 1 6 k 6 n such that tn,n = id and

tk,n ' tk,n+1 ◦ ((s̃n)] ⊗ ιn)− ((s̃k−1)] ⊗ ιk−1) ◦ tk−1,n. (33)

Let S ⊆ {1, . . . , n}. There is a unique partially-defined injection {1, . . . , n} 99K
{1, . . . , |S|} which is order-preserving and is defined precisely on S. This is a morphism
n→ |S| in the category Σ. Let πS,n be its lift along B(M,X)→ Σ to a morphism
n→ |S| of B(M,X) given by travelling along the paths pi (see §2.1) and keeping the
labels constant. By our standard abuse of notation we will denote its image under T
also by πS,n : Tn → T|S|.

We also define a map pS,n : Un(M,X)→ U|S|(M,X) as follows. Given an open-
ended braid in Un(M,X), forget the strands which start at (ai, 0) for i ∈ {1, . . . , n}r
S, and then concatenate this with the reverse of πS,n : n→ |S| to get an open-ended
braid in U|S|(M,X).

Directly from these definitions one can check (where the notation (S − 1) means
{s− 1 | s ∈ S}):
(a) If 1 /∈ S then πS,n+1 ◦ ιn = π(S−1),n and pS,n+1 ◦ s̃n ' p(S−1),n.
(b) If 1 ∈ S then πS,n+1 ◦ ιn = ι|S|−1 ◦ π(Sr{1}−1),n and pS,n+1 ◦ s̃n = s̃|S|−1 ◦

p(Sr{1}−1),n.

We now define tk,n to be the following chain map:

σ ⊗ x 7→
∑

S⊆{1,...,n}, |S|=k

(pS,n)](σ)⊗ πS,n(x).

Clearly tn,n = id, so we just need to check the identity (33). The right-hand side of
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this is:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k

(
(pS,n+1)] ◦ (s̃n)](σ)

)
⊗
(
πS,n+1 ◦ ιn(x)

)
−

∑
R⊆{1,...,n}, |R|=k−1

(
(s̃k−1)] ◦ (pR,n)](σ)

)
⊗
(
ιk−1 ◦ πR,n(x)

)
.

(34)

Using (a) and (b) above, we see that the top line of this decomposition is chain-
homotopic to:

σ ⊗ x 7→
∑

S⊆{1,...,n+1}, |S|=k, 1∈S

(
(s̃k−1)] ◦ (p(Sr{1}−1),n)](σ)

)
⊗
(
ιk−1 ◦ π(Sr{1}−1),n(x)

)
+

∑
S⊆{1,...,n+1}, |S|=k, 1/∈S

(p(S−1),n)](σ)⊗ π(S−1),n(x).

(35)

The first line of (35) cancels with the second line of (34), leaving just the second line
of (35), which is precisely tk,n, as required.
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