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EULER CHARACTERISTICS FOR SPACES OF STRING LINKS
AND THE MODULAR ENVELOPE OF L∞
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(communicated by Dev P. Sinha)

Abstract
We make calculations in graph homology which further

understanding of the topology of spaces of string links, in partic-
ular, calculating the Euler characteristics of finite-dimensional
summands in their homology and homotopy. In doing so, we also
determine the supercharacter of the symmetric group action on
the positive arity components of the modular envelope of L∞.

1. Introduction

Let Embc(
∐r

i=1 R
mi ,Rd) be the space of smooth embeddings f :

∐r
i=1 R

mi ↪→ Rd

that coincide outside a compact set with a fixed affine embedding ι. Such embeddings
are called string links. Let Immc(

∐r
i=1 R

mi ,Rd) be the space of smooth immersions
with the same behavior at infinity. In this paper and in [33] we study the homotopy
fiber over ι of the obvious inclusion Embc(

∐r
i=1 R

mi ,Rd) ⊂ Immc(
∐r

i=1 R
mi ,Rd),

which we denote Embc(
∐r

i=1 R
mi ,Rd). In [33] we built on Goodwillie-Weiss calcu-

lus [15] to define two types of complexes computing the rational homology and homo-
topy groups of Embc(

∐r
i=1 R

mi ,Rd), in the case when d > 2max{mi | 1 � i � r}+ 1,
which split into a direct sum of finite complexes. In Theorems 1.1 and 1.2 below we
compute the generating functions for the Euler characteristic of these summands, giv-
ing, to our knowledge, the first known “lower-bounds” for the homology and homotopy
of these spaces.

The first type of complexes we study, which we call Koszul complexes, are built
up from the (co)homology of configuration spaces of points in Rmi and in Rd. These
complexes are more amenable to computation. The second type of complexes, which
we call hairy graph-complexes, are similar to Kontsevich’s commutative operad graph-
complexes [24] except that our graphs are allowed to have external univalent vertices,
called hairs, and thus are more similar to graph-complexes studied by Conant, Kass-
abov and Vogtmann [9]. We show that these complexes are built up from the positive
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arity components of the modular envelope Mod(L∞) of the L∞ operad in case of
odd d, and from their twisted version ModDet(L∞) for even d. As a consequence
we determine in Theorem 1.3 the supercharacter of the symmetric group action on
the positive arity components of these modular envelopes, which up to regrading are
the Feynman transforms FDetCom and FCom, respectively, defined by Getzler and
Kapranov in [14].

Spaces of embeddings are central objects of study in differential topology, with for
example their components corresponding to isotopy classes and their higher homo-
topy groups useful for generating interesting phenomena [6]. The main applications of
modular operads are in mathematical physics, in particular, in Chern-Simons theory,
open and closed string field theories, Batalin-Vilkovisky formalism, and formal geom-
etry [3, 7, 18, 21, 24, 26, 27]. Graph-complexes and modular operads also have
applications in topology and geometry, in particular, in the study of the moduli spaces
of curves with marked points, automorphisms of free groups, and Vassiliev invariants
of knots and string links [9, 14, 23, 24, 34, 19]. In fact, Mod(Lie) = H0Mod(L∞),
the modular envelope of Lie, is related to Bar-Natan’s space of unitrivalent graphs
modulo AS and IHX relations from Vassiliev theory in exactly the same way as the
modular envelope of L∞ is related to our hairy graph-complexes.

Direct computations of the supercharacter of the symmetric group action on
Mod(L∞) and ModDet(L∞) using graph complexes have previously been much less
tractable than we find here. Such were first attempted in case of arity zero, where these
correspond to the well known Kontsevich graph-complexes associated to the commu-
tative operad [24], by Willwacher and Živković in [37]. The original paper of Getzler
and Kapranov [14], where the notion of a modular operad is introduced, gives a uni-
versal method to compute the supercharacter of a Feynman transform of any modular
operad, but explicit calculations were done in [14] only for the associative operad.
Thus our work deepens understanding of modular operads and graph-complexes as
well as embedding spaces.

1.1. Basic definitions and previous results

We recall the main results of [33]. To define complexes arising from Goodwillie-
Weiss calculus and computing the rational homology and homotopy groups of
Embc(

∐r
i=1 R

mi ,Rd), we first define two categories: RmodΩ and RmodΓ. Let Ω denote
the category of finite unpointed sets n = {1 . . . n}, n � 0, and surjections. Define a
right Ω-module as a contravariant functor from Ω to any given category. The cat-
egory of right Ω-modules in chain complexes over the rationals is denoted RmodΩ.
This category can be endowed with several model structures. We choose the one called
projective model structure. In that model, weak equivalences are quasi-isomorphisms,
fibrations are degreewise surjective maps [20]. Given two objects P and Q in RmodΩ,
we write RmodΩ(P,Q) for the space (chain complex) of morphisms between them,
and we write hRmodΩ(P,Q) for the derived mapping space. For specific computa-
tions we will need to apply this construction only to Ω-modules with zero differential,
in which case hRmodΩ(−,−) can be expressed as a product of Ext groups.

For a pointed topological space X, define the functor X∧• : Ω −→ Top from Ω to
topological spaces by X∧•(n) = X∧n. Here ∧n is the n-fold smash product operation,
with X∧0 = S0 the two-point space. For a morphism f in Ω, X∧•(f) is induced by
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the diagonal maps. Let C̃∗(−) denote the reduced singular chain complex functor, so

the functors C̃∗(X∧•) and H̃∗(X∧•) (with zero differential) are objects of RmodΩ.
Note that in case X is a suspension, any strict surjection (that is, a surjection which

is not a bijection) acts on H̃∗(X∧•) as a zero map.
Let Γ be the category whose objects are finite pointed sets n+ = {0, 1, . . . , n},

with 0 as the basepoint, and whose morphisms are pointed maps.1 The category of
contravariant functors from Γ to chain complexes is denoted RmodΓ. Objects of that
category are called right Γ-modules. As an example of a right Γ-module, we have the
homology H∗(C(•,Rd),Q), d � 2, where C(k,Rd) denotes the configuration space of
k labeled points in Rd. One can see that H∗(C(•,Rd),Q) is indeed a right Γ-module
as follows. First, since there is a morphism Com −→ H∗(C(•,Rd),Q) of operads from
the commutative operad Com = H0(C(•,Rd),Q) to the homology H∗(C(•,Rd),Q) =
H∗(Bd(•),Q) of the little d-disks operad, it follows that H∗(C(•,Rd),Q) is an infini-
tesimal bimodule (see [1, Definition 3.8] or [35, Definition 4.1]) over Com. Secondly,
the category of infinitesimal bimodules over Com is equivalent to the category of
right Γ-modules ([1, Corollary 4.10] or [35, Lemma 4.3]). One can also show that the
sequence Q⊗ π∗C(•,Rd), d � 3, has a natural structure of a right Γ-module.

The two categories RmodΩ and RmodΓ we just defined are equivalent. To prove
it, Pirashvili [29] constructed a functor cr : RmodΓ −→ RmodΩ, called cross effect,

and showed that it is actually an equivalence of categories. Let Ĥ∗(C(•,Rd),Q) (or,
respectively, Q⊗ π̂∗C(•,Rd)) denote the cross effect of H∗(C(•,Rd),Q) (respectively
of Q⊗ π∗C(•,Rd)).

Theorems 0.1 and 0.2 in [33] express the rational homology and homotopy groups
of L := Embc(

∐r
i=1 R

mi ,Rd) as the homology groups of derived mapping complexes
of right Ω-modules. More precisely, for d > 2max{mi | 1 � i � r}+ 1, there are iso-
morphisms:2

H∗(L,Q) ∼= H
(
hRmodΩ

(
H̃∗((∨r

i=1S
mi)∧•,Q), Ĥ∗(C(•,Rd),Q)

))
, (1.1)

Q⊗ π∗L ∼= H
(
hRmodΩ

(
H̃∗((∨r

i=1S
mi)∧•,Q),Q⊗ π̂∗C(•,Rd)

))
. (1.2)

For our purposes we need to split the right-hand sides of (1.1) and (1.2). In the
sequel a sequence of r integers s1, . . . , sr will be written as �s. Also we will write |�s|
for s1 + · · ·+ sr, and Σ�s for Σs1 × · · · × Σsr . If x1, . . . , xr is another sequence, we will
write �s · �x for s1x1 + · · ·+ srxr, and �x�s for

∏
i x

si
i . We will also write �s � 0 if si � 0,

i = 1 . . . r.
Since ∨r

i=1S
mi is a suspension, any strict surjection acts on H̃∗((∨r

i=1S
mi)∧•,Q)

as zero. This implies that the Ω-module H̃∗((∨r
i=1S

mi)∧•,Q) splits as follows:

H̃∗((∨r
i=1S

mi)∧•,Q) ∼=
⊕
�s�0

Q�m
�s , (1.3)

1We follow Pirashvili’s notation for Ω and Γ, see [29, 30]. In the literature following Segal [31], one
often denotes by Γ the opposite category. We choose Pirashvili’s notation as in the sequel we use the
higher order Hochschild-Pirashvili homology defined in [30] by means of these categories Ω and Γ.
2In other words, these formulae express the rational homology and homotopy of Embc(

∐
r

i=1
Rmi ,

Rd) as the higher order Hochschild homology over the space ∨
r

i=1S
mi with coefficients in the Γ-

modules H∗(C(•,R
d),Q) and Q⊗ π∗C(•,R

d), respectively, see [33].
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where Q�m
�s is the right Ω-module defined by

Q�m
�s (k) =

{
0 if k �= |�s|;

IndΣk

Σ�s
H̃∗(S�s·�m;Q) if k = |�s|.

Consider now Ĥ∗(C(•,Rd),Q) and Q⊗ π̂∗C(•,Rd) that appear in (1.1) and (1.2)
respectively. One has the splittings of Ω-modules:

Ĥ∗(C(•,Rd),Q) =
∏
t�0

Ĥt(d−1)(C(•,Rd),Q), (1.4)

and

Q⊗ π̂∗C(•,Rd) =
∏
t�0

Q⊗ π̂t(d−2)+1C(•,Rd). (1.5)

Combining (1.1), (1.2), (1.3), (1.4), and (1.5), we get the following splittings

H∗(Embc(
r∐

i=1

Rmi ,Rd),Q) ∼=
∏
�s,t

hRmodΩ

(
Q�m

�s , Ĥt(d−1)(C(•,Rd),Q)
)

∼=
⊕
�s,t

hRmodΩ

(
Q�m

�s , Ĥt(d−1)(C(•,Rd),Q)
)
, (1.6)

Q⊗ π∗(Embc(

r∐
i=1

Rmi ,Rd)) ∼=
∏
�s,t

hRmodΩ
(
Q�m

�s ,Q⊗ π̂t(d−2)+1C(•,Rd)
)

∼=
⊕
�s,t

hRmodΩ
(
Q�m

�s ,Q⊗ π̂t(d−2)+1C(•,Rd)
)
. (1.7)

The product is replaced by the direct sum because only finitely many factors con-
tribute for any given degree, as d > 2max{mi | 1 � i � r}+ 1, using the graph-com-
plexes we explicitly described in [33, Remark 2.4]. (For (1.7) this is true even for
a weaker constraint d > max{mi | 1 � i � r}+ 2. Moreover, we conjecture in [33,
Section 3] that (1.7) holds always in that range for ∗ � 0.)

1.2. Statements of main results

We can now state the main results of this paper. For �s � 0 and t � 0, let X�s,t

be the Euler characteristic of the summand of (1.6) indexed by �s, t. The associated
generating function is FH

�m,d(x1, . . . , xr, u) =
∑

�s,t�0

X�s,t · u
t�x�s.

Let Γ(−) denote the gamma function, and let μ(−) denote the standard Möbius
function. Given a variable x and an integer l � 1, let El(x) denote the sum

El(x) =
1

l

∑
p|l

μ(p)x
l
p . (1.8)

The following result computes the generating function above.
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Theorem 1.1. Assume that d > 2max{mi | 1 � i � r}+ 1. The generating function
FH

�m,d(x1, . . . , xr, u) is given by the formula

FH
�m,d(x1, . . . , xr, u) =

+∞∏
l=1

Γ((−1)d−1El(
1
u )−

∑r
i=1(−1)mi−1El(xi))

((−1)d−1lul)
∑

r
i=1(−1)mi−1El(xi)Γ((−1)d−1El(

1
u ))

, (1.9)

where each factor is understood as the asymptotic expansion of the underlying func-
tion when u is complex and (−1)d−1ul −→ +0 and x1, . . . , xr are considered as fixed
parameters.

When r = 1, the formula (1.9) coincides with that of [2, Theorem 6.1].

Using (1.9) we also compute the generating function of the Hodge splitting in the
rational homotopy, which is our second main result. First we need a couple more

definitions. Let Bp denote the pth Bernoulli number, so that
∑

p�0
Bpx

p

p! = x
ex−1 .

Recall that B2n+1 = 0, n � 1. Bernoulli’s summation formula equates 1j + 2j + · · ·+
nj with Sj(n) where

Sj(x) =
1

j + 1

j∑
p=0

(−1)p
(
j + 1

p

)
Bpx

j+1−p, j � 1. (1.10)

Define also Fl(u) by

Fl(u) = lulEl(
1

u
) =

∑
t|l

μ(t)ul− l
t = 1− u

l− l
p1 − u

l− l
p2 + u

l− l
p1p2 + · · ·+ μ(l)ul−1,

(1.11)
where p1 and p2 are the first prime factors of l. Notice that one always has Fl(0) = 1.

Similarly, consider Fπ
�m,d(x1, . . . , xr, u) associated to the splitting (1.7).

Theorem 1.2. The generating function Fπ
�m,d(x1, . . . , xr, u) is given by the formula

Fπ
�m,d(x1, . . . , xr, u) =

∑
k,l,j�1

μ(k)

kj
Sj

(
r∑

i=1

(−1)mi−1El(x
k
i )

)(
(−1)d−1lukl

Fl(uk)

)j

−
∑
k,l�1

r∑
i=1

μ(k)

k
(−1)mi−1El(x

k
i ) ln(Fl(u

k)),

where the polynomials El, Fl, Sj are respectively defined by (1.8), (1.11), (1.10).

The latter result essentially encodes the same information as the supercharacter
(which will be defined in Subsection 4.1) of the symmetric group action on the positive
arity components of Mod(L∞) and ModDet(L∞).

Theorem 1.3. The supercharacters of the symmetric group action on the modu-
lar envelope {Mod(L∞)((k))}k�0 of L∞ and on the Det-twisted modular envelope
{ModDet(L∞)((k))}k�0 of L∞ are described by the cycle index sums as follows:
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�−1

(
p21 + p2

2

)
+ Ch(Mod(L∞)) = �−1ZXMod(L∞)(�; p1, p2, p3, . . .)

= Ψodd(�) +
∑

k,l,j�1

μ(k)

kj
Sj

⎛⎝1

l

∑
a|l

μ

(
l

a

)
pak

�ak

⎞⎠( l�kl

Fl(�k)

)j

−

∑
k,l�1

μ(k)

kl

⎛⎝∑
a|l

μ

(
l

a

)
pak

�ak

⎞⎠ ln(Fl(�
k)), (1.12)

�−1

(
p21 + p2

2

)
+ Ch(ModDet(L∞)) = �−1ZXModDet(L∞)(�; p1, p2, p3, . . .)

= Ψeven(�)−
∑

k,l,j�1

μ(k)

kj
Sj

⎛⎝−
1

l

∑
a|l

μ

(
l

a

)
pak

�ak

⎞⎠( −l�kl

Fl(�k)

)j

−

∑
k,l�1

μ(k)

kl

⎛⎝∑
a|l

μ

(
l

a

)
pak

�ak

⎞⎠ ln(Fl(�
k)), (1.13)

where the variable � is responsible for the genus. The functions Ψodd(�) and Ψeven(�)
are expressed in terms of Willwacher-Živković’ functions P odd(s, t), P even(s, t) from
[37, Theorem 1] as follows

Ψodd/even(�) =
∑
l�1

μ(l)

l
ln
(
1 + P odd/even(∓�−l,±�l)

)
. (1.14)

The first line in (1.12) (and also in (1.13)) is to account the difference of the Getzler-
Kapranov notation [14] (left-hand side) with ours (right-hand side). The factor �−1

in front of ZXMod(L∞) appears because we consider the grading by the genus (first
Betti number) of the graphs, while in [14] the additional grading is minus the Euler

characteristics. The summand �−1
(

p2
1+p2

2

)
in the left-hand side is because Getzler-

Kapranov consider non-unital modular operads, while we follow Hinich-Vaintrob’s
conventions [19], and allow operads have a unit.

Some readers might be more familiar with the Feynman transform rather than
with the modular envelope. They are related one to another through a regrading
FDetCom = ΣsMod(L∞), FCom = ΣsModDet(L∞), see Lemma 4.4, which implies

Ch(FDetCom)(�; p1, p2, p3, . . .) = −Ch(Mod(L∞))(�;−p1,−p2,−p3, . . .),

Ch(FCom)(�; p1, p2, p3, . . .) = −Ch(ModDet(L∞))(�;−p1,−p2,−p3, . . .).

Comparing our answer with Ch(FDetAss) computed in [14, Theorem 9.18], we see
that the positive arity part (which we computed) is the “easy part” of the expression.
The arity zero part, expressed by Ψodd(�), Ψeven(�), is the difficult one, which is still
not explicitly computed. To recall Willwacher and Živković [37] expressed the gener-
ating functions P odd(s, t), P even(s, t) of the dimensions of the graph-complexes fGCd
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(where d is either odd or even)3 as an infinite sum of rather complicated expres-
sions, which do not make sense when one passes to the generating function of the
Euler characteristics by taking s = ∓�−1, t = ±�. The right-hand side of (1.14) is
the plethystic logarithm [14, Equations (8.6), (8.1.3’)], which works in any arity and,
in particular, in arity zero, and which determines the Euler characters (supertraces
for higher arities) of the connected part of the graph-complexes.4 We added 1 inside
the logarithm to take into account the empty graph.

1.3. Outline of the paper

In Section 2 we prove Theorem 1.1, which presents a formula for the generating
function of Euler characteristics of summands in the homological splitting (1.6). We
end with Subsection 2.4, which gives formulas obtained from (1.9) by taking mi = 1,
xi = ±1, 1 � i � r.

In Section 3 we prove three results: Theorem 1.2, Theorem 3.5 and Theorem 3.8.
The first one computes the generating function of Euler characteristics of summands
in the homotopical splitting (1.7). The key point is Lemma 3.1, which presents the
generating function in homotopy as a sum of logarithms of the generating function in
homology. The second result (respectively the third result) computes the generating
function for the homology ranks of the summands in (1.7) of genus zero (respectively
of genus one). Both from Theorem 3.5 and Theorem 3.8 one can see the exponential
growth of the Betti numbers of the rational homotopy of Embc(

∐r
i=1 R

mi ,Rd), r � 2.

In Section 4 we prove Theorem 1.3, which determines the supercharacter of the
symmetric group action on the positive arity components of the modular envelope
of L∞. This result is an interesting byproduct for the theory of operads, obtained
from the computations of the previous section.

In the appendix we give a link to and explain how we produced, using the gener-
ating function from Theorem 1.2, tables of Euler characteristics of the summands in
the homotopical splitting (1.7).

Acknowledgments
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2. Generating functions of Euler characteristics in homology

The goal of this section is to prove Theorem 1.1, which gives a formula for the
generating function FH

�m,d(x1, . . . , xr, u) of the Euler characteristics of the summands
in the homological splitting of the space of string links.

We first recall the definition of Koszul complexes computing (1.6). In short these
complexes were obtained in [33] by taking the projective resolution of the source
Ω-modules.

3The graph-complexes fGCd are defined similarly as our hairy graph-complexes except that their
graphs do not have hairs (univalent vertices) and can be disconnected.
4Compare with our Lemma 3.1 and also with [37, Lemma 3].
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2.1. Koszul complexes

Definition 2.1. Let V = {V (n)}n�0 and W = {W (n)}n�0 be symmetric sequences.

Define a new symmetric sequence V ⊗̂W by V ⊗̂W (n) =
⊕

p+q=n Ind
Σn

Σp×Σq
V (p)⊗

W (q).

In practice we need to deal with multigraded vector spaces. Besides the usual
homological degree, they will have the Hodge multi-grading (s1, . . . , sr) and grading
by complexity t. As usual when we take tensor product all the degrees get added.

Recalling the notation Ĥ∗(−) from the introduction, we have the following result.

Proposition 2.2 ([33, Proposition 4.5]). For d > 2max{mi | 1 � i � r}+ 1, there
is a quasi-isomorphism

C∗(Embc(

r∐
i=1

Rmi ,Rd))⊗Q �⎛⎝⊕
k�0

homΣk

(
⊗̂

1�i�r
H∗(C(•,Rmi),Q)(k), Ĥ∗(C(k,Rd),Q)

)
, ∂

⎞⎠ . (2.1)

Here H∗(−) is the Borel-Moore homology functor.

The differential ∂ here is defined similarly to the r = 1 case [2, Section 5]. We will
not describe it explicitly here. However, in [33, Subsection 4.3] we explicitly describe
the dual complex computing the cohomology of the space of links.

From now on let us assume that all mi > 1. We can do so because the summands
in (1.6) up to a regrading depend only on the parities of mi, i = 1 . . . r, and that of d.
The right hand side of (2.1) can be rewritten as

⊕
�s,t�0

⎛⎝⊕
k�0

homΣk

(
Ak

�s , Ĥt(d−1)(C(k,Rd),Q)
)
, ∂

⎞⎠ ,

where

Ak
�s =

⊕
k=|�k|

(
IndΣk

Σ�k

r⊗
i=1

Hsi(mi−1)+ki
(C(ki,R

mi),Q)

)
.

The �s, t summand in the complex above computes exactly the corresponding
summand in (1.6). Thus the Euler characteristic X�s,t used in FH

�m,d(x1, . . . , xr, u) =∑
�s,t�0

X�s,t · u
t�x�s can be defined as

X�s,t =
∑
k�0

(−1)t(d−1)−∑r
i=1 si(mi−1)−kdimXk

�s,t, (2.2)

where

Xk
�s,t = homΣk

(
Ak

�s , Ĥt(d−1)(C(k,Rd),Q)
)
. (2.3)
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2.2. Cycle index sum and proof of Theorem 1.1
Before starting the proof of Theorem 1.1 we will state two lemmas. For a permu-

tation σ ∈ Σk, let jl(σ) denote the number of its cycles of length l. Let tr(−) denote
the trace function from the space of matrices to the ground field.

Definition 2.3. Let {p1, p2, . . . } be a family of commuting variables.

• For a representation ρV : Σk −→ GL(V ) of the symmetric group Σk, the cycle
index sum of V , denoted ZV (p1, p2, . . . ), is defined by

ZV (p1, p2, . . . ) =
1

|Σk|

∑
σ∈Σk

tr(ρV (σ))
∏
l

p
jl(σ)
l . (2.4)

• If V = {V (k)}k�0 is a symmetric sequence, we define ZV (p1, p2, . . . ) =∑
k�0 ZV (k)(p1, p2, . . . ).

The vector spaces in the symmetric sequences below will be always multigraded.
The trace in (2.4) will be a graded trace, i.e. it will be a generating function of traces
on each component. For example, if V =

⊕
i,�s Vi,�s, where i is the homological degree,

and �s is the Hodge multigrading, then

tr(ρV (σ)) =
∑
i,�s

tr(ρVi,�s(σ))zi�x�s.

With such definition, the cycle index sum ZV of a symmetric sequence will also depend
on z, x1, . . . , xr, and also possibly on u, where the last variable will be responsible for
the grading by complexity.

Given two families {p1, p2, . . . } and {b1, b2, . . .} of commuting variables, we will
write ZV (pl ← bl; l ∈ N) for ZV (b1, b2, . . .). This notation means substituting the value
pl with the value bl in ZV . For a function f = f(p1, p2, . . . ) on variables p1, p2, . . .,

the notation
{
ZV (

∂
∂pl

; l ∈ N)f(p1, p2, . . .)
}∣∣∣

pl=0
means that we apply the differential

operator ZV (
∂

∂pl
; l ∈ N) to f , and at the end we take pl = 0 for all l � 0.

The following lemma is well known, see for example [35, Corollary 15.5].

Lemma 2.4. Let V = ⊕iVi and W = ⊕jWj be two graded vector spaces admitting
an action of the symmetric group Σk, that respects the grading, on each of them.
Consider the series

dimhomΣk
(V,W ) =

∑
i,j

dimhomΣk
(Vi,Wj)z

j−i,

ZV (z; p1, p2, . . . ) =
∑
i

ZVi
(p1, p2, . . . )z

i,

and ZW (z, p1, p2, . . . ) =
∑
j

ZWj
(p1, p2, . . . )z

j .

Then

dimhomΣk
(V,W ) =

{
ZV (

1

z
; pl ←

∂

∂pl
, l ∈ N)ZW (z; pl ← lpl, l ∈ N)

}∣∣∣∣
pl=0

=

{
ZV (

1

z
; pl ← l

∂

∂pl
, l ∈ N)ZW (z; p1, p2, . . . )

}∣∣∣∣
pl=0

.

(2.5)
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For the application below, V will also be Hodge multigraded and W will also be
graded by complexity. This will add up variables in the expression.

The second result we need to prove Theorem 1.1 is the following well known lemma,
see for example [35, Proposition 15.3] or [12].

Lemma 2.5. Let V = {V (k)}k�0 and W = {W (k)}k�0 be two finite symmetric se-
quences (that is, for all k � 0, V (k) and W (k) are of finite dimensions). Then

ZV ⊗̂W (p1, p2, . . . ) = ZV (p1, p2, . . . )ZW (p1, p2, . . . ).

Again we will be using a multigraded version of this lemma.
We are now ready to prove the main result of this section.

Proof of Theorem 1.1. Consider the following generating function

Ψ�m,d(x1, . . . , xr, u, z) =
∑
�s,t,k

(dimXk
�s,t)�x

�sutzt(d−1)−∑r
i=1 si(mi−1)−k,

where Xk
�s,t is the space from (2.3). Define two symmetric sequences V and W by

V (k) =
⊕
k=|�k|

(
IndΣk

Σ�k
⊗r

i=1 H∗(C(ki,R
mi),Q)

)
and W (k) = Ĥ∗(C(k,Rd),Q).

Then, by Lemma 2.4, the generating function

Ψ�m,d(x1, . . . , xr, u, z)

=

{
ZV (

1

z
, x1, . . . , xr; pl ←

∂

∂pl
, l � 1)ZW (z, u; pl ← lpl, l � 1)

}∣∣∣∣
pl=0

.

Since (recalling the definition of El(−) from the introduction, just before Theo-
rem 1.1):

• ZW (z, u; pl ← lpl, l � 1) =
∏+∞

l=1 e−pl(1 + (−1)dl((−z)d−1u)lpl)
(−1)dEl(

1

(−z)d−1u
)

by [2, Proposition 6.4],

• ZV (
1
z , x1, . . . , xr; pl ←

∂
∂pl

, l � 1) =
∏r

i=1 ZH∗(C(•,Rmi ),Q)(
1
z , xi; pl ←

∂
∂pl

, l � 1)

by Lemma 2.5 and the fact that V =
⊗̂r

i=1H∗(C(•,Rmi),Q),

and since

ZH∗(C(•,Rmi ),Q)(
1

z
, xi; pl ←

∂

∂pl
, l � 1) =

+∞∏
l=1

(
1 + (−

1

z
)l

∂

∂pl

)(−1)miEl(
xi

(−z)mi−1 )

,

by [2, Proposition 6.5], it follows that

Ψ�m,d(x1, . . . , xr, u, z) =

{
r∏

i=1

+∞∏
l=1

(
1 + (−

1

z
)l

∂

∂pl

)(−1)miEl(
xi

(−z)mi−1 )

Yl

}∣∣∣∣∣
pl=0

=

{
+∞∏
l=1

(
1 + (−

1

z
)l

∂

∂pl

)∑r
i=1(−1)miEl(

xi

(−z)mi−1 )

Yl

}∣∣∣∣∣
pl=0

,

where Yl = e−pl
(
1 + (−1)dl((−z)d−1u)lpl

)(−1)dEl(
1

(−z)d−1u
)
. Notice that the l-th fac-

tor uses pl and not any other pi, i �= l, which is then taken to be zero. For this reason
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in the formula below we replace each pl by a. By looking at (2.2), and the definition
of Ψ�m,d(x1, . . . , xr, u, z), we have the equality

FH
�m,d(x1, . . . , xr, u) = Ψ�m,d(x1, . . . , xr, u,−1),

and this implies

FH
�m,d(x1, . . . , xr, u) =

{
+∞∏
l=1

(
1 +

∂

∂a

)−∑r
i=1(−1)mi−1El(xi)

Zl

}∣∣∣∣∣
a=0

=
+∞∏
l=1

Γ
(
(−1)d−1El(

1
u )−

∑r
i=1(−1)mi−1El(xi)

)
((−1)d−1lul)

∑
r
i=1(−1)mi−1El(xi) Γ

(
(−1)d−1El(

1
u )
) ,

where Zl = e−a
(
1 + (−1)dlula

)(−1)dEl(
1
u
)
. The last equality follows from the identity(

1 +
∂

∂a

)−X

e−a
(
1 + (−1)dlula

)(−1)dEl(
1
u
)

∣∣∣∣∣
a=0

=
Γ
(
(−1)d−1El(

1
u )−X

)
((−1)d−1lul)

X
Γ
(
(−1)d−1El(

1
u )
) ,

whose proof is identical to that of [35, Proposition 15.7].
We thus obtain the desired result.

2.3. Understanding generating function of the Euler characteristics of
the homology splitting

The formula (1.9) might appear confusing at first as it is defined in terms of
asymptotic expansions that still need to be deciphered. Let us first fix some notation.

For two variables x, u, let Γ(x, u) denote the asymptotic expansion of
Γ( 1

u
−x)

uxΓ( 1
u
)
when

u goes to +0. For instance, in the case x = n is a positive integer, one has

Γ(n, u) =
1

(1− u)(1− 2u) · · · (1− nu)
. (2.6)

In the case x is a negative integer: x = −n, one has

Γ(−n, u) = (1 + u)(1 + 2u) · · · (1 + (n− 1)u). (2.7)

(In particular, Γ(−1, u) = Γ(0, u) = 1.) The series Γ(x, u) can be seen as a generating
function in u of a sequence of polynomials in x, see [35, Subsection 14.1]. It has
rather bad convergency properties: for any x ∈ C \ Z its radius of convergence in u is
zero [35, Proposition 14.5].

Proposition 2.6.

FH
�m,d(x1, . . . , xr, u) =

∏
l�1 Γ

(∑r
i=1(−1)mi−1El(xi), (−1)d−1 lul

Fl(u)

)
∏

l�1 (Fl(u))
∑

r
i=1(−1)mi−1El(xi)

, (2.8)

where polynomials Fl(u) are defined in (1.11).

Proof. This is deduced from Theorem 1.1 and from the formula

Γ((−1)d−1El(
1
u )−X)

((−1)d−1lul)XΓ((−1)d−1El(
1
u ))

=
Γ
(
X, (−1)d−1 lul

Fl(u)

)
Fl(u)X

,

see [35, Lemma 14.6] for similar computations for the case of long knots.
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2.4. Some special cases of the generating function in homology

The generating function FH
�m,d(x1, . . . , xr, u) from (1.9) can be used to estimate

the ranks of the homology and homotopy groups of Embc(
∐r

i=1 R
mi ,Rd). However,

the formula itself is hard to use to estimate the asymptotics of the growth since it
has infinitely many rather complicated factors. However, sometimes it is possible to
choose specific values for xi that would kill all but finitely many factors. This has
been done in the case of long knots r = 1, m1 = 1 in [35], where choosing x1 = −1
allows one to prove the exponential growth of the ranks of the rational homology
and homotopy groups of the space of long knots. Notice that choosing x1 = 1 (all
xi = 1 in the general case) corresponds to forgetting the Hodge splitting. In the case
of long knots the latter choice does not prove exponential growth, see [22, 35] or
computations below, which showed that the Hodge splitting was essentital.

In this subsection we produce similar computations for the spaces of classical string
links: all mi = 1, i ∈ {1, . . . , r}. Recall that it has been shown that the homology
ranks of Embc(

∐r
i=1 R

1,Rd) grow exponentially for r � 2 without using the Hodge
splitting (this being obtained as a combination of the main results of [22] and [32]).5

The computations that we produce below are rather disappointing: we compare the
choice of all xi = −1 versus all xi = 1 and see that only for r � 2 the first choice may
give a better estimate.6

• Assume d odd, and consider the function Fodd(1, u) defined by Fodd(1, u) =
FH
�1,d

(1, . . . , 1, u). We want to compute Fodd(1, u). By substituting mi by 1,

and xi by 1, 1 � i � r, in the formula (2.8), and by noticing that El(1) ={
1 if l = 1
0 if l � 2

, we obtain

Fodd(1, u) = Γ(r, u) =
1

(1− u)(1− 2u) · · · (1− ru)
,

where the last equality comes from (2.6). The radius of convergence in this case
is 1

r which implies exponential growth of rational homology ranks in case r � 2.

• For d even, similar computations give

Feven(1, u) = FH
�1,d

(1, . . . , 1, u) =
1

(1 + u)(1 + 2u) · · · (1 + ru)
.

The radius of convergence is 1
r .

• Assume d odd, and consider the function Fodd(−1, u) defined by Fodd(−1, u) =
FH
�1,d

(−1, . . . ,−1, u). By substituting mi by 1, and xi by −1, 1 � i � r, in the

5In general the homology ranks of Embc(
∐

r

i=1
Rmi ,Rd) grow exponentially for r � 2. One can see

that both from Theorem 3.5 and Theorem 3.8. For r = 1 and m1 odd one still gets the exponential
growth [1]. But for r = 1 and m1 even the question about the exponential growth is open.
6As we said earlier it does give a better estimate for r = 1. In case r = 2 and d odd it also gives
a better estimate, but the case of r = 2 and d even is more subtle as both generating functions
happen to have the same radius of convergence.
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formula (2.8), and by noticing that El(−1) =

{
(−1)l if l ∈ {1, 2}
0 if l � 3

, we obtain

Fodd(−1, u) = Γ(−r, u)×
Γ
(
r, 2u2

F2(u)

)
F2(u)2

. (2.9)

Since F2(u) = 1− u and applying (2.6) and (2.7), the formula (2.9) produces

Fodd(−1, u) =
(1 + u)(1 + 2u) · · · (1 + (r − 1)u)

(1− u− 2u2)(1− u− 4u2) · · · (1− u− 2ru2)
. (2.10)

It is easy to see that the smallest root (in absolute value) of the denominator

of (2.10) is −1+
√
1+8r

4r . Therefore the radius of convergence is equal to −1+
√
1+8r

4r .
This gives a better estimate of the homology ranks growth for r � 2. In case
r � 4, the produced estimate is weaker than the one obtained from Fodd(1, u).

• For d even, similar computations give

Feven(−1, u) =
(1− u)(1− 2u) · · · (1− (r − 1)u)

(1− u+ 2u2)(1− u+ 4u2) · · · (1− u+ 2ru2)
. (2.11)

As before, the radius of convergence of (2.11) is equal to
∣∣∣ 1+√

1−8r
4r

∣∣∣ = 1√
2r
. In

particular, for r = 1 this implies exponential growth of the homology ranks.
In case r � 3, the produced estimate is weaker than the one obtained from
Feven(1, u).

3. Generating functions of Euler characteristics in homotopy

In this section we prove Theorem 1.2, which computes the generating function of
Euler characteristics of summands in the homotopical splitting (1.7). We also com-
pute, using a different complex, the generating function of the ranks of the summands
in (1.7) of genus zero and one.7

3.1. The generating function for Q⊗ π∗(Embc(
∐r

i=1 R
mi ,Rd))

In Section 2 we have computed the generating function FH
�m,u(x1, . . . , xr, u) of Euler

characteristics of summands in the homological splitting of H∗(Embc(
∐r

i=1 R
mi ,Rd),

Q). The aim of this section is to compute the generating function Fπ
�m,u(x1, . . . , xr, u)

of the Euler characteristics of summands, but now in the homotopy groups Q⊗
π∗(Embc(

∐r
i=1 R

mi ,Rd)). Proposition 2.6 will be a key ingredient in our compu-
tations. If there is no confusion, the first generating function will be denoted by
FH(x1, . . . , xr, u), and the second one just by Fπ(x1, . . . , xr, u). Recalling the equa-
tion (1.7) from the introduction, for a sequence �s, t � 0, let X π

�s,t denote the Euler

characteristic of the summand hRmodΩ(Q
�m
�s ,Q⊗ π̂t(d−2)+1(C(•,Rd))). We will also

7Genus g is defined as the complexity minus total Hodge degree plus one: g = t− (s1+ · · ·+sr)+1.
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write �x�s for
∏r

i=1 x
si
i . The generating function we look at here is defined by

Fπ
�m,d(x1, . . . , xr, u) =

∑
�s,t

X π
�s,t�x

�sut. (3.1)

In order to compute Fπ
�m,d(x1, . . . , xr, u), we need the following lemma, which con-

nects FH(x1, . . . , xr, u) and Fπ(x1, . . . , xr, u).

Lemma 3.1. We have

Fπ
�m,d(x1, . . . , xr, u) =

+∞∑
l=1

μ(l)

l
ln(FH(xi ← xl

i, u ← ul)). (3.2)

Here μ(−) is the standard Möbius function. The notation FH(xi ← xl
i, u ← ul)

means that in the expression FH(x1, . . . , xr, u) the variable u is replaced by ul, and
xi is replaced by xl

i, 1 � i � r.

Proof. The plan of the proof is to compute the right hand side of (3.2), and compare
the obtained result with the right hand side of (3.1). From [35, Lemma 16.1], it is
straightforward to get the following

FH(x1, . . . , xr, u) =
∏
�s,t

1

(1− �x�sut)X
π
�s,t

,

which gives (by replacing u by ul and xi by xl
i)

FH(xi ← xl
i, u ← ul) =

∏
�s,t

1

(1− (�x�sut)l)
Xπ

�s,t

. (3.3)

Taking now the logarithm of (3.3), and using the well known series expansion
ln(1− x) = −

∑
p�1

xp

p , we obtain

ln(FH(xi ← xl
i, u ← ul)) =

∑
�s,t

∑
p�1

X π
�s,t

(�x�sut)pl

p
. (3.4)

By putting (3.4) in the right hand side of (3.2), we get

+∞∑
l=1

μ(l)

l
ln(FH(xi ← xl

i, u ← ul)) =
∑
l�1

∑
�s,t

∑
p�1

X π
�s,tμ(l)

(�x�sut)pl

pl

=
∑
�s,t

∑
q�1

X π
�s,t

1

q
(�x�sut)q

⎛⎝∑
l|q

μ(l)

⎞⎠ .

Since
∑

l|q μ(l) =
{
1 if q = 1
0 if q � 2

, it follows that

+∞∑
l=1

μ(l)

l
ln(FH(xi ← xl

i, u ← ul)) =
∑
�s,t

X π
�s,t�x

�sut = Fπ(x1, . . . , xr, u) by (3.1).

The last thing we need is an explicit expansion of ln(Γ(x, u)), where Γ(x, u) is
defined at the beginning of Subsection 2.3.
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Lemma 3.2. ln(Γ(x, u)) =
∑

j�1 Sj(x)
uj

j .

Proof. This identity easily follows from (2.6) and from Bernoulli’s summation formula
Sj(n) = 1j + · · ·+ nj when x = n is a positive integer. For other values of x, it follows
from the fact that ln(Γ(x, u)) is a generating function of u of a sequence of polynomials
in x [35, Lemma 14.2].

Now we are ready to prove Theorem 1.2, which is the main result of this subsection.

Proof of Theorem 1.2. The proof is a direct application of Proposition 2.6 and Lem-
mas 3.1–3.2.

3.2. The generating function in homotopy for genus � 1
In [33, Subsection 2.1] we explicitly described a complex E �m,d

π of hairy graphs that
computes the rational homotopy of the space Embc(

∐r
i=1 R

mi ,Rd) of high dimen-
sional string links. In short, this complex is obtained in [33] by taking an injective
resolution of the target Ω-modules in (1.7). The graph-complex E �m,d

π is a differential
graded vector space spanned by so called hairy graphs, i.e. connected graphs having
a finite non-empty set of external vertices (of valence 1 and called hairs), a finite set
of non-labeled internal vertices (of valence � 3). The edges are oriented. One allows
both multiple edges and tadpoles. The external vertices are colored with {1, . . . , r} as
the set of colors. As a part of the data, each graph comes with the ordering of its ori-
entation set that consists of the following elements: edges (of degree d− 1), internal
vertices (of degree −d), external vertices (of degree −mi if it is colored by i). Chang-
ing orientation of an edge in a graph produces sign (−1)d. Changing the order of the
orientation set produces the Koszul sign of permutation that takes into account the
degree of the elements. The differential is defined as the sum of expansion of internal
vertices.

For a hairy graph G ∈ E �m,d
π , its homological degree is the sum of the degrees of

the elements in its orientation set. Its corresponding Hodge multi-degree is the tuple
(�s), where si is the number of external vertices colored by i. Its complexity is the first
Betti number of the graph obtained from G by gluing together all its external vertices.
For hairy graphs it is also natural to define genus g as their first Betti number.

As an example of the complexity, the graph in Figure 1 is of complexity 2, while the
complexity is three in Figure 2, and five in Figure 3. Concerning the genus, intuitively,
a graph is of genus g if it contains g “loops”. See Figure 1, Figure 2 and Figure 3 for
some examples of graphs of genus 0, 1 and 2 respectively.

Figure 1: Graph
of genus 0.

Figure 2: Graph
of genus 1.

Figure 3: Graph of genus 2.

The graph-complex E �m,d
π can be split as follows. For g � 0, let E �m,d

πg denote the

subcomplex of E �m,d
π generated by graphs of genus g. For integers �s, t, let E �m,d

πg,�s,t be the

subcomplex of E �m,d
πg generated by graphs of Hodge multi-degree (�s) and complexity t.
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All these subcomplexes are well defined since the differential in E �m,d
π preserves the

Hodge multi-degree, the complexity, and the genus. In particular, one has the splitting

E �m,d
π =

⊕
g�0

E �m,d
πg . (3.5)

Definition 3.3. Let g � 0.

• The Hodge splitting of the complex E �m,d
πg is the splitting

E �m,d
πg =

⊕
�s,t�0

E �m,d
πg,�s,t. (3.6)

Each term of the right-hand side of (3.6) is a finite dimensional graph complex.

• The generating function associated to (3.6), and denoted F
πg
�m,d(x1, . . . , xr, u), is

defined as

F
πg
�m,d(x1, . . . , xr, u) =

∑
�s,t�0

X π
g,�s,t�x

�sut, (3.7)

where X π
g,�s,t is the Euler characteristic of E �m,d

πg,�s,t.

It is easy to see the following relation between the genus and the complexity of a
graph:

genus = complexity − number of external vertices + 1. (3.8)

Thanks to (3.8), we can easily express the generating function of the Euler charac-
teristics that takes into account the grading g as well:

Fπ(x1, . . . , xr, u, �) = �Fπ(
x1

�
, . . . ,

xr

�
, u�), (3.9)

where � is the variable responsible for the genus, and the right-hand side uses the
generating function defined earlier (3.1). (Abusing notation we denote this function
by Fπ as well.) Note that Fπ =

∑
g�0 F

πg�g. Applying the result from Theorem 1.2
one can get an explicit formula for Fπ(x1, . . . , xr, u, �). However, even though this
formula is very simple for explicit computer calculations it is not at all obvious that
it produces zero for the negative genus. Indeed, there will be summands in which �

appears with a negative exponent, that must somehow cancel out with each other.
The aim of this subsection is to compute the generating function from (3.7) with

g = 0 and 1 using hairy graph-complexes, which is done by Theorems 3.5 and 3.8
below. We need first to define a symmetric sequence of graph-complexes {M(P k

d )}k�1

that will be used in our computations.

3.2.1. Graph-complexes M(P k
d )

Recall that d denotes the dimension of the ambient space. For k � 0, M(P k
d ) is the

complex of graphs defined essentially in the same way as the hairy graph-complex with
the only difference that its graphs have exactly k external vertices labeled bijectively
by 1, . . . , k. Also we exclude external vertices from the orientation set of such graphs.
Thus the orientation set of any graphG ∈ M(P k

d ) is the union of the set EG of edges of
G (each edge being of degree d− 1) and the set IG of its internal vertices (each internal
vertex being of degree −d). So that the total degree of G is (d− 1)|EG| − d|IG|.
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The differential on M(P k
D) is defined in the same way as the sum of expansions

of internal vertices. Since the differential preserves the genus (first Betti number
of a graph), each of M(P k

d ) can be split into a direct sum by genus g. That is,
one has M(P k

d ) =
⊕

g�0 Mg(P
k
d ). Let V be the multi-graded r-dimensional vector

space of colors8, whose basis is the set {v1, . . . , vr}, with each vi being of degree
mi and of Hodge multi-degree (0 . . . 0︸ ︷︷ ︸

i−1

, 1, 0 . . . 0︸ ︷︷ ︸
r−i

). Consider the symmetric sequence

V ⊗• = {V ⊗n}n�0. One has an isomorphism

E �m,d
π

∼= homΣ(V
⊗•,M(P •

d )).

This implies

E �m,d
πg

∼= homΣ(V
⊗•,Mg(P

•
d )). (3.10)

Therefore the homology of each summand E �m,d
πg in (3.5) is completely determined

by the symmetric sequence of the homology of Mg(P
•
d ). It turns out that for g = 0

and 1, the corresponding symmetric sequences can be easily described. Thus the
plan to get Theorem 3.5 and Theorem 3.8 will be to compute the cycle index sums
ZH∗M0(P•

d
), ZH∗M1(P•

d
) first, and then apply (4.4). The latter equation is a general

formula that we obtain in the next section by first computing the cycle index sum of
V ⊗• (4.3) and then applying (2.5). We mention also at this point that for every given
k both groups H∗M0(P

k
d ) and H∗M1(P

k
d ) are concentrated in a single homological

degree. Thus computation of the homology ranks or of Euler characteristics carry
essentially the same information.

3.2.2. Genus zero
By (3.10) the complex Eπ0 of colored hairy graphs of genus zero has the form (take
g = 0)

Eπ0 ∼= homΣ(V
⊗•,M0(P

•
d )). (3.11)

On the other hand the complexes M0(P
•
d ) = {M0(P

k
d )}k�1 are complexes of trees,

whose homology is well known to be isomorphic up to a shift of degrees to the com-
ponents Lie((k)) := Lie(k − 1) of the cyclic Lie operad [36]. More precisely one has
an isomorphism of Σk-modules

H∗(M0(P
k
d ))

∼=Σk
Σk(d−2)−d+3Lie((k))⊗ (sign)⊗d. (3.12)

The homology is concentrated in the smallest possible degree of uni-trivalent trees.9

Such a tree with k external vertices must have k − 2 internal vertices and 2k − 3 edges.
Thus its degree is (2k − 3)(d− 1)− (k − 2)d = k(d− 2)− d+ 3. Our hairy graph-
complex specialized to the gradings when d = 3 and allmi = 1, contains in the bottom
degree homology the space of unitrivalent graphs modulo AS and IHX relations,
which encodes the finite type invariants of string links in R3 [4]. The tree-part of this
space is well studied [16, 25, 17, 28]. We failed to find in the literature formulas
similar to those given by Theorems 3.4–3.5, but they could be easily derived from the
results of aforementioned papers and are known to specialists.

8A color for us is a component of links in Embc(
∐

r

i=1
Rmi ,Rd).

9A tree is called uni-trivalent if all its internal vertices are trivalent.
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Let 1(•) be the symmetric sequence defined by 1(1) = Q, and 1(n) = 0 for all
n �= 1. One has

Lie((n)) ∼=Σn
IndΣn

Σ1×Σn−1
(1(1)⊗ Lie(n− 1))− Lie(n), n � 2.

Rationally this was proved in [25, 17] and integrally in [10]. Therefore Lie((•)) ∼=Σ

1(•)⊗̂Lie(•)− Lie(•) + 1(•). We add 1(•) to compensate subtraction of Lie(1), i.e.
to have zero in arity one. This implies that (since Z1(•)(p1, p2, . . . ) = p1)

ZLie((•)) = (p1 − 1)ZLie(•) + p1.

Using now the following well known result (see for example [5]; another short and
elegant proof is given in [11, Section 5.1])

ZLie(•)(p1, p2, . . . ) =
+∞∑
l=1

−μ(l) ln(1− pl)

l
,

we get

ZLie((•))(p1, p2, . . . ) = (1− p1)

+∞∑
l=1

μ(l) ln(1− pl)

l
+ p1. (3.13)

From (3.12) and the fact that for genus zero graphs the complexity is the number
of external vertices minus one, we get

ZH∗M0(P•
d
)(u, z; p1, p2, . . .) =

1

zd−3u
ZLie((•))

(
pl ← (−1)(l−1)d(zd−2u)lpl, l ∈ N

)
.

(3.14)

To recall, the Hodge splitting is defined in (3.6).

Theorem 3.4. The generating function of the dimensions of the Hodge summands
of the complex E �m,d

π0 of hairy graphs of genus zero is

Rπ0
�m,d(x1, . . . , xr, z, u)

= zα1(
1

z
) +

1− zd−2uα1(
1
z )

zd−3u

+∞∑
l=1

μ(l) ln
(
1− (−1)(l−1)d(zd−2u)lαl(

1
z )
)

l
,

where αl(
1
z ) =

∑r
i=1(−1)mi(l−1)xl

i(
1
z )

mil.

Proof. This formula is obtained from (3.13) by change of variables: first using (3.14)
and then (4.4).

Theorem 3.5. The generating function of the Euler characteristics of the Hodge
summands of the complex E �m,d

π0 of hairy graphs of genus zero is

Fπ0
�m,d(x1, . . . , xr, u) =

−

r∑
i=1

(−1)mixi +

(
r∑

i=1

(−1)mixi −
(−1)d

u

)
+∞∑
l=1

μ(l) ln
(
1− (−1)dul

∑r
i=1(−1)mixl

i

)
l

.

Proof. Take z = −1 in the previous theorem.
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3.2.3. Genus one

In the previous section we have computed the generating function for graph-complexes
of genus zero. Here we will make computations in the genus one case. Figure 4 and
Figure 5 are examples of graphs of genus one.

Figure 4: A graph
of genus one.

Figure 5: Another
graph of genus one.

1

2

3

4

5

Figure 6: A graph
in H∗M1(P

5
d ).

The first goal will be to understand the Σn action on H∗M1(P
n
d ). Notice that in

this homology we can consider only hedgehogs: graphs whose external vertices are
directly connected to the loop. This is because the other graphs are killed by the
differential in homology (see [8]). A typical graph (or generator) in H∗M1(P

n
d ) is the

one of Figure 6.

A hedgehog with n external vertices has 2n edges and n internal vertices, thus the
homology H∗M1(P

n
d ) is concentrated in the only degree 2n(d− 1)− nd = n(d− 2).

Let Dn denote the dihedral group of symmetries of the unit circle with n points
marked e

2kπi
n , k = 0 . . . n− 1. One has an obvious homomorphism Dn → Σn corre-

sponding to the permutation of the marked points. This map is an inclusion for n � 3.
The hedgehog whose external vertices are marked in the cyclic order 1, . . . , n is sent
to itself times certain sign when acted on by elements of Dn. Denote by λn the char-
acter of Dn corresponding to this sign. (This character depends on d as well.) As
a Σn module in graded vector spaces H∗M1(P

n
d ) is the n(d− 2)-suspended induced

representation

H∗M1(P
n
d )

∼=Σn
Σn(d−2)IndΣn

Dn
λn. (3.15)

Let us describe the character λn. Since Dn is generated by two elements: a 2π
n rotation

and a reflection, it is enough to compute λn on those elements. For an element σ ∈ Dn,
we will explicitly determine the sign λn(σ) (using the Koszul sign of permutation
taking into account the degrees of the elements in the orientation set) that appears in
the equality σ ·G = λn(σ)G. Here G stands for the hedgehog whose external vertices
are marked in the cyclic order 1, . . . , n (Figure 6 is an example of a hedgehog with 5
external vertices.) To recall the orientation set is the union of edges, of degree d− 1,
and internal vertices, of degree −d. There are three possibilities:

– If σ is a rotation by 2π
n , then one can easily see that σ ·G = (−1)d(n−1)G;

– If n is odd and σ is a reflection whose one vertex is fixed (see Figure 7), then

σ ·G = (−1)
n+1
2 dG;

– If n is even and σ is a reflection whose two vertices are fixed (see Figure 8),

then one has σ ·G = (−1)
nd
2 −1G.
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L

1

2

3 4

5

Figure 7: A reflection with
respect to L (n = 5).

1

2

3

4

L

Figure 8: A reflection with
respect to L (n = 4).

In order to simplify computations, we will write λn in another form. Let
sign: Dn −→ {−1, 1} be the signature representation restricted from Σn, and let
or : Dn −→ {−1, 1} be the orientation representation. Notice that the latter repre-
sentation concerns only reflections in Dn, that is, “or” is equal to −1 on reflections,
and to 1 on rotations. From our computations we obtain

λn = sign⊗d ⊗ or⊗(n+d+1). (3.16)

We will need the following well known fact [12]. To recall the cycle index sum is
defined in Definition 2.3.

Lemma 3.6. Let f : H → Σn be a group homomorphism and let ρV : H → GL(V ) be
a representation of H, then the cycle index sum of the induced representation can be
expressed as

ZIndΣn
H

V (p1, p2, . . . ) =
1

|H|

∑
h∈H

tr(ρV (h))
∏
l

p
jl(f(h))
l .

Let ROn ⊆ Dn denote the subset of Dn formed by rotations, and let REn denote
the subset formed by reflections. Using the above lemma we get

ZIndΣn
Dn

λn
(p1, p2, . . . ) =

1

|Dn|

∑
σ∈Dn

λn(σ)
∏
l

p
jl(σ)
l

=
1

2n

∑
σ∈ROn

λn(σ)
∏
l

p
jl(σ)
l +

1

2n

∑
σ∈REn

λn(σ)
∏
l

p
jl(σ)
l .

(3.17)
We will denote by An(p1, p2, . . .) and Bn(p1, p2, . . .) respectively the first and the
second summands in (3.17).

Let 1 denote the trivial character of Dn. We compute first the cycle index sum
ZIndΣn

Dn
1
. Then we will add some signs to describe ZIndΣn

Dn
λn

:

ZIndΣn
Dn

1
(p1, p2, . . .) = An(p1, p2, . . .) +Bn(p1, p2, . . .),

where

An =
1

2n

∑
l|n

ϕ(l)p
n
l

l and Bn =

{
1
2p1p

n−1
2

2 if n odd,
1
4 (p

2
1p

n−2
2

2 + p
n
2
2 ) if n even,
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where ϕ(l) is the Euler’s totient function that produces the number of positive integers
less than or equal to l that are relatively prime to l. Explicitly ϕ(l) =

∑
a|l μ(a)

l
a .

Summing over n � 1, we get

ZIndΣ•
D•

1
(p1, p2, . . . ) = −

1

2

∑
l�1

ϕ(l) ln(1− pl)

l
+

p21 + p2 + 2p1
4(1− p2)

. (3.18)

On the other hand, from (3.16) we get

An(p1, p2, . . .) = An(pl ← (−1)d(l−1)pl),

Bn(p1, p2, . . .) = (−1)n+d+1Bn(pl ← (−1)d(l−1)pl)

= (−1)d+1Bn(pl ← (−1)d(l−1)+lpl).

Here the second equality is deduced from the explicit formula for Bn. Since
∑

n�1 An

and
∑

n�1 Bn are respectively the first and second summands in (3.18), we get

ZIndΣ•
D•

λ•
(p1, p2, . . . ) =

−
1

2

∑
l�1

ϕ(l) ln(1− (−1)d(l−1)pl)

l
+ (−1)d+1 p21 + (−1)dp2 − 2p1

4(1− (−1)dp2)
. (3.19)

From (3.15) and the fact that any genus 1 graph with k external vertices has
complexity k,

ZH∗M1(P•
d
)(z, u; p1, p2, . . .) = ZIndΣ•

D•
λ•

(
pl ← z(d−2)lulpl, l ∈ N

)
. (3.20)

Recall the Hodge splitting from (3.6).

Theorem 3.7. The generating function of the dimensions of the Hodge summands
of the complex E �m,d

π1 of hairy graphs of genus one is

Rπ1
�m,d(x1, . . . , xr, z, u) = −

1

2

∑
l�1

ϕ(l) ln(1− (−1)d(l−1)zl(d−2)ulαl(
1
z ))

l

+ (−1)d+1 z2d−4u2α1(
1
z )

2 + (−1)dz2d−4u2α2(
1
z )− 2zd−2uα1(

1
z )

4(1− (−1)dz2d−4u2α2(
1
z ))

,

where αl(
1
z ) =

∑r
i=1(−1)mi(l−1)xl

i(
1
z )

mil.

Proof. This formula is obtained from (3.19) by change of variables: first using (3.20)
and then (4.4) below.

Theorem 3.8. The generating function of the Euler characteristics of the Hodge
splitting of the complex E �m,d

π1 of hairy graphs of genus one is

Fπ1
�m,d(x1, . . . , xr, u) = −

1

2

∑
l�1

ϕ(l) ln
(
1− (−1)dul

∑r
i=1(−1)mixl

i

)
l

+(−1)d+1 u2 (
∑r

i=1(−1)mixi)
2
+ (−1)du2

∑r
i=1(−1)mix2

i − 2(−1)du
∑r

i=1(−1)mixi

4 (1− (−1)du2
∑r

i=1(−1)mix2
i )

.

Proof. Take z = −1 in the previous theorem.
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4. Supercharacter of the symmetric group action on Mod(L∞)
and ModDet(L∞)

In Subsection 4.1 we compute the cycle index sum of the supercharacter of the
symmetric group action on the sequence M(P •

d ) introduced in Subsection 3.2.1. In
Subsection 4.2 we briefly recall basic facts about cyclic and modular operads and we
explain how M(P •

d ) is related to Mod(L∞) and ModDet(L∞). At the end we prove
Theorem 1.3.

4.1. Supercharacter for M(P •
d )

Let M = (⊕iMi, ∂) be a finite dimensional chain complex of Σk-modules over a
ground field K of characteristic 0. By the supercharacter we understand the character
of the Σk action on the virtual representation XM defined as XM :=

∑
i(−1)iMi.

The latter virtual representation is similar to the Euler characteristic in the sense that
XM � X (H∗M), that is why we use this notation. The cycle index sum encoding the
supercharacter of the Σk action on M can be defined as ZXM =

∑
i(−1)iZMi

, or
equivalently as ZM |z=−1.

For a symmetric sequence of chain complexes M = {M(k)}k�0, we similarly define
ZXM :=

∑
k�0 ZXM(k).

For the rest of this section, V will denote the r-dimensional vector space whose
basis is the set of colors v1, . . . , vr, with each vi being of degree mi and of Hodge
multi-degree (0 . . . 0︸ ︷︷ ︸

i−1

, 1, 0 . . . 0︸ ︷︷ ︸
r−i

). Consider the symmetric sequence V ⊗• = {V ⊗n}n�0.

We will need to know the cycle index sum ZV ⊗• . For each 1 � i � r, consider the
one dimensional vector space Vi spanned by vi, and consider the symmetric sequence
V ⊗•
i = {V ⊗n

i }n�0. One can rewrite the vector space V in the form V = V1 ⊕ · · · ⊕ Vr.
Therefore,

V ⊗n =
⊕
|�k|=k

IndΣk

Σ�k
V ⊗k1
1 ⊗ · · · ⊗ V ⊗kr

r .

Recalling Definition 2.1 we have V ⊗• = V ⊗•
1 ⊗̂ · · · ⊗̂V ⊗•

r , and by Lemma 2.5 one has

ZV ⊗• =
r∏

i=1

ZV ⊗•

i
. (4.1)

For 1 � i � r we will compute ZV ⊗•

i
. By noticing that the action of Σn on V ⊗n

i

depends on the parity of mi (for odd mi the action is the sign representation, which
means that if σ ∈ Σn, x ∈ V ⊗n

i , then σx = ±x, and for even mi it is the identity),
by also noticing that Vi is a one dimensional vector space, it follows that V ⊗•

i is the

commutative unital operad “up to sign”. One has ZCom(p1, p2, . . .) = exp
(∑

l�1
pl

l

)
,

see for example [11, Section 5]. We deduce that

ZV ⊗•

i
(z, xi; p1, p2, . . . ) = ZCom(pl ← (−1)mi(l−1)xl

iz
milpl) =

exp

⎛⎝∑
l�1

(−1)mi(l−1)xl
iz

mil
pl

l

⎞⎠ , (4.2)
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where the variable z is responsible for the usual homological degree and xi is respon-
sible for the i-th Hodge grading. The sign (−1)mi(l−1) appears because a cycle of
length l is an odd representation if and only if l is even. The factors xl

i and zmil

encode the fact that V ⊗l
i is concentrated in the Hodge multi-degree (0 . . . 0︸ ︷︷ ︸

i−1

, l, 0 . . . 0︸ ︷︷ ︸
r−i

)

and homological degree mil.
Combining (4.1) and (4.2), we have

ZV ⊗•(z, x1, . . . , xr; p1, p2, . . . ) = exp

⎛⎝∑
l�1

αl(z, x1, . . . , xr)
pl

l

⎞⎠ , (4.3)

where

αl(z, x1, . . . , xr) =

r∑
i=1

(−1)mi(l−1)xl
iz

mil.

For computations of the Euler characteristics we will need

αl(−1) =
r∑

i=1

(−1)mixl
i.

For any symmetric sequence M(•), we get

dim homΣ(V
⊗•,M(•)) =

{
ZV ⊗•( 1z ; pl ← l ∂

∂pl
, l ∈ N)ZM(•)(z; p1, p2, . . .)

}∣∣∣
pl=0

= ZM(•)
(
z; pl ← αl(

1
z , x1, . . . , xr), l ∈ N

)
.

(4.4)
Notation “dim” stays for the generating function of dimensions that takes into account
both homological degree (with z responsible for it) and the Hodge degrees (x1, . . . , xr

are the responsible variables).
The hairy graph-complex E �m,d

π we recalled at the beginning of Subsection 3.2 has
exactly this form:

E �m,d
π

∼= homΣ(V
⊗•,M(P •

d )),

where M(P k
d ) is the graph-complex from Subsection 3.2.1.

Theorem 4.1. The supercharacter of the symmetric group action on the graph-com-
plexes {M(P k

d )}k�1 is described by the cycle index sum

ZXM(P•
d
)(u; p1, p2, p3, . . .) =

∑
k,l,j�1

μ(k)

kj
Sj

⎛⎝−
1

l

∑
a|l

μ

(
l

a

)
pak

⎞⎠( (−1)d−1lukl

Fl(uk)

)j

+

∑
k,l�1

μ(k)

kl

⎛⎝∑
a|l

μ

(
l

a

)
pak

⎞⎠ ln(Fl(u
k)),

where the variable u is as usual responsible for complexity.

Proof. Applying (4.4) to M(•) = M(P •
d ) and taking z = −1, we get

Fπ
�m,d(x1, . . . , xr, u) = ZX (M(P•

d
))(u, pl ← αl(−1)).

Thus to get ZXM(P•
d
) from Fπ

�m,d we need to replace each occurrence of αl(−1) =
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i=1(−1)mixl

i back to pl. Using the result of Theorem 1.2 and the fact that El(x) =
1
l

∑
a|l μ(

l
a )x

a we get the result.

4.2. Proof of Theorem 1.3
4.2.1. Cyclic and modular operads
All the operads that we are going to consider are ones in chain complexes. Cyclic
and modular operads were introduced by Getzler and Kapranov [13, 14]. In short a
cyclic operad O = {O(n), n � 0} is a usual symmetric operad for which the output
of its elements has the same role as the inputs. In particular, each component O(n)
has an action of Σn+1. To distinguish the cyclic arity with the usual one, one writes
O((n+ 1)) for O(n). For usual operads, the category that encodes the ways elements
can be composed is the category of rooted trees, while for cyclic operads, it is the
category of unrooted trees [13, Section 1].

A modular operad is a stable collection M = {M((g, n)); g � 0, n � 0}. Stable
means M((g, n)) = 0 if 2g + n− 2 � 0.10 The compositions for M are encoded by
the categories of stable graphs Γ((g, n)), g � 0, n � 0, 2g + n− 2 > 0. An element
in Γ((g, n)) is a connected graph G that has n external vertices of valence one and
labeled bijectively by {1 . . . n}, and some set V (G) of non-labeled internal vertices,
together with a map g : V (G) → N to the set of non-negative integers. We will denote
by |v| the valence of v ∈ V (G). One also requires

∑
v∈V (G) g(v) + β1(G) = g, where

β1(G) is the first Betti number of G. One has a morphism ρ : G1 → G2 in Γ((g, n)) if
G2 is obtained from G1 by a contraction of some subset of internal edges also assuming
that for any v ∈ V (G2), g(v) =

∑
v′∈V (ρ−1(v)) g(v

′) + β1(ρ
−1(v)). Here ρ−1(v) is the

preimage of the vertex v ∈ V (G2) under the edge contraction ρ taken together with its
small neighborhood, so that ρ−1(v) can be viewed as a stable graph in Γ((g(v), |v|)).
(This notation will be used below in the definition of a cocycle or twist of the modular
operadic structure.)

The terminal element in Γ((g, n)) is cg,n – the n-corolla with the only vertex of
genus g. The structure of a modular operad is determined by the composition maps

M((G)) :=
⊗

v∈V (G)

M((g(v), |v|)) → M((g, n)) =: M((cg,n)),

corresponding to the morphisms G → cg,n in Γ((g, n)) g � 0, n � 0, that should sat-
isfy natural associativity properties. Here we implicitly assume that each M((g, n))
has a Σn action.

One has an adjunction Mod : CycOp � ModOp: Cyc between the categories of
cyclic and modular operads, where Cyc assigns to a modular operad its g = 0 part.
Its left adjoint functor Mod assigns to a cyclic operad its modular envelope [19].
As relevant to us examples, Lie and its Koszul resolution L∞ are cyclic operads, for
which one defines Mod(Lie) and Mod(L∞), cf. loc. cit.

The notion of a modular operad is more subtle than it might appear at the first
sight. It comes in different twisted versions. Denote by IsoΓ((g, n)), g � 0, n � 0,
the groupoids of isomorphisms of stable graphs. For any stable graph G, let AutG
denote the endomorphism set of the graph G in one of these categories. It is the

10Below we also allow M((0, 2)) to be one-dimensional being spanned by the identity element. It
appears in our graph-complexes, that is why we add it.
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group of symmetries of G that can also permute its external vertices (if symmetries
allow). A cocycle D is a family of functors D : IsoΓ((g, n)) → grVect, g � 0, n � 0, to
the category of graded vector spaces, that always assigns a one-dimensional vector
space, and that has in addition the structure of a hyperoperad : to each morphism
ρ : G1 → G2 in Γ((g, n)), it is assigned a map νρ : D(G2)⊗

⊗
v∈V (G2)

D(ρ−1(v)) →

D(G1) satisfying natural axioms [14, Section 4.1]. For any cocycle D, a D-twisted
modular operad is a stable sequence M = {M((g, n)), g � 0, n � 0} endowed with
composition maps

D(G)⊗M((G)) → M((g, n)) = M((cg,n)),

for any G ∈ Γ((g, n)), g � 0, n � 0.
The cocycle Det from [14] is of a special interest to us. For a vector space W of

dimension k define DetW = Σ−kΛkW . It is a one-dimensional vector space in degree
−k. One has

Det(W1 ⊕W2) = DetW1 ⊗DetW2. (4.5)

Below, for a tensor product of one-dimensional vector spaces we will be using · instead
of ⊗. Also the dual of a one-dimensional space X will be denoted by X−1.

The cocycle Det is defined as Det(G) := DetH1(G), for any stable graph G ∈
Γ((g, n)). A peculiar property of Det is that it restricts trivially on IsoΓ((0, n)). This
means that Det-twisted cyclic operads are the usual cyclic ones. One gets a similar
adjunction ModDet : CycOp � ModOpDet : Cyc between the usual cyclic operads
and the Det-twisted modular ones. This, in particular, produces ModDet(L∞) – the
Det-twisted modular envelope of L∞.

4.2.2. M(P •
d ) as Mod(L∞) and ModDet(L∞)

For any stable collection {M((g, n))} define a symmetric sequenceM((•))={⊕gM(g, n),
n � 0}.

Consider now the modular envelope Mod(L∞). It is easy to notice that graph-
complexes M(P •

d ) are closely related to the components of Mod(L∞)((•)). They are
spanned by the same combinatorial graphs, where the grading genus corresponds to
the first Betti number of the graphs. If we choose d = 3 and also tensor each compo-
nent M(P k

d ) with the sign representation and take a shift in degree (desuspension)
by k we get Mod(L∞)((k)).

Lemma 4.2. For any k � 1,

Mod(L∞)((k)) ∼=Σk
Σ−kM(P k

3 )⊗ sign. (4.6)

Proof. Combinatorially Mod(L∞)((k)) is a graph-complex consisting of exactly the
same graphs as M(P k

3 ), so we only need to work out the signs and degrees properly.
The operad L∞ is cyclic and is freely generated by operations of cyclic arity l, l � 3,
which have degree l − 3 and the sign action of Σl. Graphically such operations corre-
spond to vertices of arity l. As a conclusion, to orient a graph G ∈ Mod(L∞)((k)) we
need to order its vertices, where a vertex v of valence |v| is considered as element of
degree |v| − 3, and for each vertex to order edges adjacent to it. Changing the order of
adjacent edges at any vertex gives the sign of permutation; changing the order of ver-
tices gives the Koszul sign of permutation (that is, the sign of permutation that takes
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into account the degree of elements). Now when we look at a graph G ∈ M(P k
3 ), it is

oriented by ordering the set of its vertices (considered as elements of degree −3) and
edges (considered as elements of degree 2, therefore their placement in the orientation
set can be ignored), and by orienting all edges. Changing orientation of an edge gives
a negative sign. Now, we replace each edge in the orientation set by its two half-edges
in the order – first source, second target. Then we change the order of the elements in
the orientation set so that the vertices and adjacent to it half-edges come in one block
– first the vertex than half-edges. The combined block corresponding to any vertex
v has degree exactly |v| − 3. Notice, however, that k half-edges, corresponding to the
external vertices, do not appear in any such block. These half-edges get annihilated
with Σ−ksign in (4.6).

For this argument one should consider separately the case of the identity element
id ∈ Mod(L∞)((0, 2)). It is described as a graph that has two external vertices con-
nected by an edge (no internal vertices). The same graph in M0(P

2
3 ) has degree two

and enjoys the sign action of Σ2. The degree and sign shift exactly correspond to the
statement of the lemma.

The fact that the differentials agree, which in both cases are sums of expansions
of vertices, is a tedious, but straightforward check.

One has a similar description for the components of ModDet(L∞)((•)) in terms
of M(P •

2 ).

Lemma 4.3. For any k � 1, ModDet(L∞)((k)) ∼=Σk
Σ−1M(P k

2 ).

Proof. Similarly to the previous lemma, we need to check that the signs and gradings
agree.

Forgetting the differential, L∞ is a free cyclic operad generated by a sequence
of one-dimensional vector spaces. As a consequence, Mod(L∞) and its twisted ver-
sion ModDet(L∞) are also free (twisted) modular operads generated by the same
sequence viewed as a stable collection concentrated in genus g = 0. Thus for any sta-
ble graph G, for which g|V (G) ≡ 0, there corresponds exactly one graph in Mod(L∞)
and ModDet(L∞), that, abusing notation, we also denote by G. Recall that AutG
is the group of symmetries of G. Denote by AutintG its subgroup of elements fixing
external vertices of G pointwise.

Denote by or(G), respectively orDet(G), the one dimensional sign representation
of AutG that describes how the sign of G in Mod(L∞), respectively ModDet(L∞),
changes when the symmetries get applied. One obviously has thatG=0 inMod(L∞),
respectively ModDet(L∞), if the restriction of this sign representation on AutintG

is non-trivial. We consider or(G) and orDet(G) as one-dimensional graded vector
spaces concentrated in the degree of G, which is |G| =

∑
v∈V (G)(|v| − 3) for or(G)

and |G| =
∑

v∈V (G)(|v| − 3)− β1(G) for orDet(G).

One can view G as an element ofM(P k
2 ), respectivelyM(P k

3 ). One similarly defines
or2(G) and or3(G) – the corresponding graded one-dimensional AutG-modules.

To prove the lemma, we should show that orDet(G) = Σ−1or2(G).

• Let Cint
0 (G) denote the vector space of cellular 0-chains spanned by the internal

vertices of G.
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• Let Cint
1 (G) denote the vector space of cellular 1-chains spanned by the internal

edges of G. Here as usual, one considers oriented edges; changing orientation
implies change in sign: −→e = −←−e .

• Let Cext
1 (G) denote the vector space of cellular 1-chains spanned by the external

edges of G.

• We also set C1(G) = Cint
1 (G)⊕ Cext

1 (G).

All these spaces are viewed as AutG-modules concentrated in degree zero. One has
an exact sequence of AutG-modules:

0 ←− H0(G) ←− Cint
0 (G)

∂
←− Cint

1 (G) ←− H1(G) ←− 0. (4.7)

From Lemma 4.2, one has or(G) = or3(G) ·DetCext
1 (G). From the definition of

M(P k
d ), one can easily get or2(G) = or3(G) ·DetC1(G) · (DetCint

0 (G))−1. From the
definition of the Det-cocycle, and using the fact that Mod(L∞) and ModDet(L∞)
are free, one has

orDet(G) = or(G) ·DetH1(G) = or(G) ·DetCint
1 (G) · (DetCint

0 (G))−1 ·DetH0(G).

The last equation follows from (4.7) and (4.5).
From the three identities above, we get

orDet(G) = Σ−1or(G) ·DetCint
1 (G) · (DetCint

0 (G))−1 =

Σ−1or3(G) ·DetC1(G) · (DetCint
0 (G))−1 = Σ−1or2(G).

The case of the identity element id ∈ ModDet(L∞)((0, 2)) should be considered sep-
arately. The corresponding graph in M0(P

2
2 ) has degree 1 and trivial action of Σ2,

which is compatible with the statement of the lemma.

For d > 3, the components Mg(P
k
d ) can also be expressed in terms of

Mod(L∞)((g, k)) and ModDet(L∞)((g, k)) using some regrading, which follows
from the isomorphism Mg(P

k
d+2) �Σk

Σ2(g−1)+2kMg(P
k
d ).

The lemma below is aimed to the readers more familiar with the Feynman trans-
forms rather than with the modular envelope.

For a stable collection M = {M((g, n)), g � 0, n � 0}, one denotes by ΣM the
objectwise suspension ΣM = {ΣM((g, n)), g � 0, n � 0}, and one denotes by sM its
modular operadic suspension

sM = {sM((g, n)), g � 0, n � 0} = {Σ−2(g−1)−nM((g, n))⊗ sign, g � 0, n � 0}.

Lemma 4.4. The modular envelopes of Lie and the Feynman transforms of Com are
related to each other by the following regrading: FDetCom = ΣsMod(L∞), FCom =
ΣsModDet(L∞).

Proof. To the regradings Σ and s one assigns the twisting cocyclesDΣ andDs, respec-
tively, see [14]. One has that ModDet(L∞) is a free Det-twisted modular operad gen-
erated by Σ−1

s
−1Com. Thus ΣsModDet(L∞) is a free (Det ·DΣ ·Ds =: K)-twisted

modular operad generated by Com((•)), which is exactly the definition of FCom. Simi-
larly, ΣsMod(L∞) is a free (DΣ ·Ds = K ·Det−1)-twisted modular operad generated
by Com((•)), which is the definition of FDetCom.
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4.2.3. Proof of the theorem
We concentrate on positive arities. The case of arity zero and a connection to Will-
wacher-Živković’ computations [37] have been explained in the introduction. For
a symmetric sequence {M(n), n � 0}, we denote by Z>0

M the cycle index sum of
{M(n), n � 1}.

Now we have all ingredients to prove Theorem 1.3: Lemmas 4.2–4.3 and Theo-
rem 4.1. In the cycle index sum of the latter result, there is variable u, which is
responsible for complexity. It follows from (4.6) that

Z>0
XMod(L∞)(u; p1, p2, p3, . . .) = ZXM(P•

3 )(u;−p1,−p2,−p3, . . .). (4.8)

Since Mod(L∞) is a modular operad, it is more natural to consider the splitting
by genus rather than by complexity. We use the variable � as the one responsible
for the genus. It follows from (3.8) that we need to make the change of variables
u ← �, pl ←

pl

�l , and in addition to it, multiply the result by �. (Compare with (3.9).)
Combining it with (4.8), we get

Z>0
XMod(L∞)(�; p1, p2, p3, . . .) = �ZXM(P•

3 )(u ← �; pl ← −
pl

�l
, l ∈ N).

To finish the proof of (1.12) we apply Theorem 4.1 for d = 3.
To prove (1.13), we similarly get

Z>0
XModDet(L∞)(�; p1, p2, p3, . . .) = −�ZXM(P•

2 )(u ← �; pl ←
pl

�l
, l ∈ N).

And then apply Theorem 4.1 for d = 2.

Appendix A. Computation of Euler characteristics

In [2, Appendix A], Arone and the second author produced tables of computer
calculations of the Euler characteristics of the Hodge summands both for the rational
homology and rational homotopy of the spaces Embc(R

m,Rd), d � 2m+ 2. Using
Mathematica we produced similar computations in case of link spaces with two
components (r = 2). Recall the splitting of the complex E �m,d

π from (3.5). One has

E �m,d
π =

⊕
g�0

⊕
�s,t

E �m,d
πg,�s,t. Let χ

πg
�s,t denote the Euler characteristic of each summand in that

splitting. The tables (which can be found online at http://dx.doi.org/10.4310/

HHA.2018.v20.n2.a7) furnish values of χπg
s1,s2,t for genus g ∈ {0, 1, 2, 3} with m1,m2

and d odd. Recall also that complexity t is determined by the formula g + s1 + s2 =
t+ 1 from (3.8).
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