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PARTIAL EULER CHARACTERISTIC, NORMAL GENERATIONS
AND THE STABLE D(2) PROBLEM

FENG JI and SHENGKUI YE

(communicated by J.P.C. Greenlees)

Abstract
We study the interplay amongWall’sD(2) problem, the normal

generation conjecture (the Wiegold Conjecture) of perfect groups
and Swan’s problem on partial Euler characteristic and deficiency
of groups. In particular, for a 3-dimensional complex X of coho-
mological dimension 2 with finite fundamental group, assuming
the Wiegold conjecture holds, we prove thatX is homotopy equiv-
alent to a finite 2-complex after wedging a copy of sphere S2.

1. Introduction

In this article, we study several classical problems in low-dimensional homotopy
theory and group theory, focusing on the interplay among these problems.

Let us first recall Swan’s problem. Let G be a group and ZG the group ring. Swan
[16] defines the partial Euler characteristic µn(G) as follows. Let F be a resolution

· · · → F2 → F1 → F0 → Z → 0

of the trivial ZG-module Z, in which each Fi is ZG-free on fi generators. For an
integer n ⩾ 0, if

f0, f1, f2, . . . , fn

are finite, define

µn(F ) = fn − fn−1 + fn−2 − · · ·+ (−1)nf0.

If there exists a resolution F such that µn(F ) is defined, we let µn(G) be the infimum
of µn(F ) over all such resolutions F . We call the truncated free resolution

Fn → · · · → F1 → F0 → Z → 0

an algebraic n-complex if each Fi is finitely generated as a ZG-module (following the
terminology of Johnson [8]).

For a finitely presentable group G, the deficiency def(G) is the maximum of d− k
over all presentations ⟨g1, g2, . . . , gd | r1, r2, . . . , rk⟩ of G. It is not hard to see that

def(G) ⩽ 1− µ2(G) (1)

[16, Proposition 1]. However, Swan mentions in [16] that “the problem of determining
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when def(G) = 1− µ2(G) seems very difficult even if G is a finite p-group”.

Next, we consider Wall’s D(2) problem (cf. [17]). The cohomological dimension
cd(X) of a CW complex X is defined as the largest integer n such that Hn(X,M) ̸= 0
for some Z[π1(X)]-module M . For a 3-dimensional CW complex X of cohomological
dimension cd(X) = 2, Wall’s D(2) problem asks whether X is homotopy equivalent
to a 2-dimensional CW complex. A positive answer to this problem will imply the
Eilenberg-Ganea conjecture, which says that a group of cohomological dimension two
has a 2-dimensional classifying space. A finitely presentable group G is said to have
D(2) property if any finite 3-dimensional CW complex X, of cohomological dimension
2 with fundamental group G, is homotopy equivalent to a 2-dimensional CW complex.
For the status of D(2) problem, see Johnson [8, 9] (see also [5, 7] for some recent
work).

It is well-known that a finite perfect group G is normally generated by one element
[11, 4.2]. The Wiegold conjecture (cf. [1, FP14] and [15, 5.52]) asserts that the same
holds for any finitely generated perfect group:

Conjecture 1.1 (Wiegold conjecture). Let G be any finitely generated perfect group,
i.e. G = [G,G], the commutator subgroup of G. Then G can be normally generated by
a single element.

Our main result is the following, which gives a relaxed lower bound of def(G)
assuming the Wiegold conjecture.

Theorem 1.2. Assume that Conjecture 1.1 is true. Let X be a finite 3-dimensional
CW complex of cohomological dimension 2 with finite fundamental group. We have
the following:

(i) the complex X is homotopy equivalent to a finite 3-dimensional complex with
just one 3-cell;

(ii) the wedge X ∨ S2 is homotopy equivalent to a finite 2-dimensional complex;

(iii) 1− µ2(G) ⩾ def(G) ⩾ −µ2(G) for any finite group G.

Our discussions are based on the study of a stable version of the D(2) problem
(for details, see Section 3). For a group G having a finite classifying space BG of
dimension at most 2, we have def(G) = 1− µ2(G), which confirms the equality of
partial Euler characteristic and deficiency (cf. Theorem 4.3 (i)). A famous conjecture
of Whitehead says that any subcomplex of an aspherical 2-dimensional CW complex
is aspherical (cf. [2]). As an application of the results proved, we reprove the following
(cf. Bogley [2]).

Corollary 1.3. A subcomplex X of a finite aspherical 2-dimensional CW complex is
aspherical if and only if the fundamental group π1(X) has a finite classifying space
Bπ1(X) of dimension at most 2.

The article is organized as follows. In Section 2, we discuss the Quillen plus con-
struction of 2-dimensional CW complexes. This motivates the stable Wall’s D(2)
property being discussed in Section 3. In the last section, the Euler characteristics
are studied for groups of low geometric dimensions.
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2. Quillen’s plus construction of 2-dimensional CW complexes

Let X be a CW complex with fundamental group G and P a perfect normal
subgroup of G, i.e. P = [P, P ]. Quillen shows that there exists a CW complex X+

P ,
whose fundamental group is G/P ; and an inclusion f : X → X+

P such that

Hn(X; f∗M) ∼= Hn(X
+
P ;M),

for any integer n and local coefficient system M over X+
P . Here X+

P is called the plus-
construction of X with respect to P . It is unique up to homotopy equivalence. One of
the main applications of the plus construction is to define higher algebraic K-theory.
In general, the space X+

P is obtained from X by attaching 2-cells and 3-cells. We need
the following definition.

Definition 2.1. The cohomological dimension cd(X) of a CW complex X is defined
as the smallest integer n such that Hm(X,M) = 0 for any integer m > n and any
Z[π1(X)]-moduleM . If no such n exists, the cohomological dimension cd(X) is defined
to be ∞.

It is obvious that an n-dimensional CW complex is of cohomological dimension
at most n. The following well-known lemma gives a property enjoyed by any 3-
dimensional CW complex with cohomological dimension 2.

Lemma 2.2. Suppose that X is a 3-dimensional CW complex and X̃ is the universal
cover of X. Let C∗(X̃) be the cellular chain complex of X̃. Then X is of cohomological
dimension 2 if and only if the image of C3(X̃) is a direct summand of C2(X̃) as
Z[π1(X)]-modules.

The following result shows that for certain 2-dimensional CW complexes, the
Quillen plus construction is homotopy equivalent to a 2-dimensional CW complex.
Let X be a finite 2-dimensional CW complex. Suppose that a perfect normal sub-
group P in π1(X) is normally generated by n elements. With respect these normal
generators, there is a canonical construction Y for X+ that attaches a 2-cell bounded
by each generator and a 3-cell to kill the resulting homology. Moreover, the number
of attached 3-cells and the number of attached 2-cells are both n (cf. the proof of
Theorem 1 in [18]). The cellular chain complex C∗(Ỹ ) of the universal cover Ỹ is

0 → Z[π1(Y )]n → Z[π1(Y )]n ⊕ C2(X̃)⊗Z[π1(X)] Z[π1(Y )]

→ C1(X̃)⊗Z[π1(X)] Z[π1(Y )] → C0(X̃)⊗Z[π1(X)] Z[π1(Y )] → 0,

with the first map the inclusion of a direct summand. This is homotopy equivalent to

0 → C2(X̃)⊗Z[π1(X)] Z[π1(Y )] → C1(X̃)⊗Z[π1(X)] Z[π1(Y )]

→ C0(X̃)⊗Z[π1(X)] Z[π1(Y )] → 0.

It follows that

Lemma 2.3. The plus construction (X ∨ (S2)∨n)+ of the wedge of X and n copies
of S2, taken with respect to P , is homotopy equivalent to the 2-skeleton of Y .

The following lemma is from Johnson [8, 59.4, p. 228]. Although the original version
is stated for complexes with finite groups, it does hold for complexes with finitely
presentable groups (cf. [8, appendix B] and Mannan [14]).
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Lemma 2.4. Let Y be a finite 3-dimensional CW complex of cohomological dimen-
sion 2. If the reduced chain complex of the universal cover

0 → C2(Ỹ )/C3(Ỹ ) → C1(Ỹ ) → Zπ1(Y ) → Z → 0

is homotopy equivalent to the chain complex of the universal cover of a 2-dimensional
CW complex X, then Y is homotopy equivalent to X.

3. Wall’s D(2) problem and its stable version

In this section, we apply the results obtained in the previous section to study the
D(2) problem. Let us recall the D(2) problem raised in [17].

Conjecture 3.1 (The D(2) problem). If X is a finite 3-dimensional CW complex of
cohomological dimension at most 2, then X is homotopy equivalent to a 2-dimensional
CW complex.

In [8], Johnson proposes to systematically study the problem by parameterizing
3-dimensional CW complexes by their fundamental groups. For a finitely presentable
group G, we say the D(2) problem is true for G, if any finite 3-dimensional CW
complex X, of cohomological dimension at most 2 with fundamental group π1(X) =
G, is homotopy equivalent to a 2-dimensional CW complex.

The D(2) problem is very difficult in general. It is known to be true for a limited
amount of groups (for an updated state, see [4, 12] and [9, p. 261]). We propose the
following stable version by allowing taking wedge with copies of S2.

Conjecture 3.2 (The D(2, n) problem). Let n ⩾ 0 be an integer. If X is a finite
3-dimensional CW complex of cohomological dimension at most 2, then X ∨ (S2)∨n

is homotopy equivalent to a 2-dimensional CW complex.

For a finitely presentable group G and an integer n ⩾ 0, we say that G has the
D(2, n) property (or the D(2, n) problem holds for G) if Conjecture 3.2 is true for
all those X with fundamental group G. The D(2, 0) problem is the original D(2)
problem. It is immediate that property D(2) implies D(2, n); and D(2, n) implies
D(2, n+ 1) for any group G and any integer n ⩾ 0.

We now study the relation between the stabilization by wedging copies of S2 with
that by attaching 3-cells.

Proposition 3.3. Suppose that X is a finite 3-dimensional CW complex of coho-
mological dimension at most 2. Then X ∨ (S2)∨n is homotopy equivalent to a finite
2-dimensional CW complex if and only if X is homotopy equivalent to a 3-dimensional
CW complex with n 3-cells.

Proof. Assume that X is homotopy equivalent to a 3-dimensional CW complex X ′

with n 3-cells. Denote by X ′(2) the 2-skeleton of X ′ and let Z = X ′ ∨ (S2)n. It is not
hard to see that the reduced chain complex

0 → C2(Z̃)/C3(Z̃) → C1(Z̃) → Zπ1(Z) → Z → 0

is homotopy equivalent to the chain complex of the universal cover of X ′(2). By
Lemma 2.4, X ∨ (S2)∨n is homotopy equivalent to a 2-dimensional CW complex.

Conversely, suppose that X ∨ (S2)∨n is homotopy equivalent to a finite 2-complex
Y via a map f : X ∨ (S2)∨n → Y . It is clear that
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π1(X) = π1(X ∨ (S2)∨n) ∼= π1(Y ).

Let G = π1(X) and X̃, Ỹ be the universal covering spaces of X,Y respectively. By
the Hurewicz theorem, we have isomorphisms

π2(Y ) ∼= π2(Ỹ ) ∼= H2(Ỹ ) ∼= π2(X̃)⊕ ZGn.

Therefore, there are n maps fi : S
2 → Y, 1 ⩽ i ⩽ n, corresponding to the inclusion

onto the second factor (for a fixed basis of ZGn)

ZGn → H2(Ỹ ) ∼= π2(X̃)⊕ ZGn.

Attaching 3-cells to Y along these fi (1 ⩽ i ⩽ n), we obtain a 3-dimensional CW com-

plex Y ∪n
i=1 e

3
i . Let i : X

i→ X ∨ (S2)∨n be the natural inclusion. By our construction,
the canonical composition

f ′ : X
i→ X ∨ (S2)∨n f→ Y → Y ∪n

i=1 e
3
i

induces isomorphisms on both π1 and π2 (the same as the second homology groups
of the universal covers). It is not hard to see that

H3(X̃) = H3( ˜Y ∪n
i=1 e

3
i ) = 0.

Therefore, f ′ induces a homotopy equivalence between the chain complexes of the
universal covering spaces. By the Whitehead theorem, f ′ is a homotopy equivalence.

Proof of Theorem 1.2 (i) and (ii). By Proposition 3.3, (i) is equivalent to (ii). We
prove (ii) as follows. By a result of Mannan [13], X is the plus construction of a finite
2-complex Y with respect to a perfect normal subgroup P ⩽ π1(Y ). Therefore, we
have a short exact sequence of groups

1 → P → π1(Y ) → π1(X) → 1.

Since π1(Y )/P = π1(X) is finite and Y is finite, the covering space of Y with
fundamental group P is again a finite CW complex. Hence P is finitely generated.
If the normal generation conjecture (Conjecture 1.1) holds, P is normally generated
by a single element. Lemma 2.3 says that X ∨ S2 is homotopy equivalent to a 2-
dimensional CW complex.

Without the assumption of the Wiegold conjecture we only know that a finite
group G has property D(2, n) for n = max{1, 1− def(G)− µ2(G)}, which follows the
Swan-Jacobinski theorem in [8, 29.3, 29.4] and Browning’s results [3].

4. Partial Euler characteristic and the Whitehead conjecture

Recall definitions of µn(F ) for an algebraic n-complex F∗ and µn(G) from Intro-
duction. For a finitely presentable group G, the following lemma follows from Swan
[16] easily.

Lemma 4.1. Assume that G is finitely presentable. The invariant µ2(G) can be real-
ized by an algebraic 2-complex. In other words, there exists an algebraic 2-complex

F2 → F1 → F0 → Z → 0
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such that

µ2(G) = dimZG F2 + dimZG F0 − dimZG F1.

Proof. It is enough to notice that µ2(G) is finite by Theorem 1.2 in [16].

Proof of Theorem 1.2 (iii). We prove a more general result: if a finitely presentable
group G satisfies the D(2, n) problem, then

def(G) ⩾ (1− n)− µ2(G).

By Lemma 4.1, we can choose an algebraic 2-complex

(F∗) : F2 → F1 → F0 → Z → 0

such that

µ2(G) = dimZG F2 + dimZG F0 − dimZG F1.

Since every algebraic 2-complex is geometric realizable by a 3-dimensional CW com-
plex (cf. Johnson [8, Theorem 60.2]), there is a finite 3-dimensional CW complex of
cohomological dimension 2 such that the reduced chain complex

C2(Ỹ )/C3(Ỹ ) → C1(Ỹ ) → Zπ1(Y ) → Z → 0

is homotopy equivalent to (F∗). Assuming that G has the D(2, n) property, the wedge
X ∨ (S2)∨n is homotopy equivalent to a 2-dimensional CW complex, which gives a
presentation of G. This implies that µ2(G) + n ⩾ 1− def(G), i.e. def(G) ⩾ (1− n)−
µ2(G). When Wiegold’s Conjecture holds, the complex X has property D(2, 1), which
gives (iii).

It is possible to place µ2(G) in the broader setting of (G,n)-complexes, as follows
(cf. [6]). Recall that a (G,n)-complex is a finite n-dimensional CW complex X with
fundamental groupG and vanishing homotopy group πi(X) = 0 for i = 2, 3, . . . , n− 1.
In particular, a (G, 2)-complex is a usual finite 2-dimensional CW complex with
fundamental group G.

Definition 4.2. Let G be a finitely presentable group. Define

µg
n(G) = min{(−1)nχ(X) | X is a (G,n)-complex}.

If there is no such X exists, define µg
n(G) = +∞. We call that a (G,n)-complex X

with (−1)nχ(X) = µg
n(G) is a complex realizing µg

n(G).

A few observations are immediate. It is clearly true that µn(G) ⩽ µg
n(G). Therefore,

µg
n(G) > −∞ since µn(G) > −∞ (cf. Swan [16]). Moreover, µ2(G) = µg

2(G) if and
only if µ2(G) = 1− def(G).

Now we study the partial Euler characteristic and deficiency for groups of low
geometric dimensions. Recall that for a group G, the classifying space BG of G is
defined as the connected CW complex with π1(BG) = G and πi(BG) = 0, i ⩾ 2. It is
unique up to homotopy.

Theorem 4.3. Let G be a group having a finite n-dimensional classifying space BG.
We have the following:
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(i) µn(G) = µg
n(G); In particular, µ2(G) = 1− def(G) if G has a finite 2-dimen-

sional BG;

(ii) Any finite CW complex X with π1(X) = G satisfying the following properties:

a) the dimension is at most n+ 1;
b) the cohomological dimension cd(X) is at most n;
c) if n ⩾ 3, the homotopy group πi(X) = 0 for 2 ⩽ i ⩽ n− 1;
d) (−1)nχ(X) = µg

n(G),

is homotopy equivalent to BG.

Proof. Let EG be the universal cover of BG. Since EG is contractible, one obtains
the exact cellular chain complex of EG:

C∗(EG) : 0 → Cn(EG) → Cn−1(EG) → · · · → ZG → 0.

This gives a (truncated) free resolution of G. In order to prove (i), it suffices to show
that this resolution gives the minimal Euler characteristic µn(G) since we notice
earlier that µn(G) ⩽ µg

n(G).
Suppose that µn(G) is obtained from the following partial resolution of finitely

generated free ZG-modules:

F∗ : Fn
d→ Fn−1 → · · · → F1 → ZG → 0.

We claim that F∗ is exact at Fn, i.e. ker d = 0. Once this is proved, C∗(EG) and F∗
are chain homotopic to each other and hence have the same Euler characteristic.

To prove the claim, let J be the kernel of d. By Schanuel’s lemma, there is an
isomorphism

J ⊕ Cn(EG)⊕ Fn−1 ⊕ · · · ∼= Fn ⊕ Cn−1(EG)⊕ · · · .

Applying the functor −⊗ZG Z to both sides of this isomorphism, we see that µn(F ) =
(−1)nχ(BG) and J ⊗ZG Z = 0 by noticing the fact that the complex F∗ attains mini-
mal Euler characteristic after multiplying (−1)n among all the algebraic n-complexes.
This implies that Cn(EG)⊕ Fn−1 ⊕ · · · and Fn ⊕ Cn−1(EG)⊕ · · · have the same
finite free ZG-rank. By Kaplansky’s theorem, J is the trivial ZG-module(cf. [10],
p. 328). This proves (i).

We now prove (ii). Let C∗(X̃) be the chain complex of the universal covering
space of X. Since cd(X) ⩽ n, Cn+1(X̃) is a direct summand of Cn(X̃), by the same
argument given in Lemma 2.2. Let F 1 be the chain complex

F 1
∗ : Cn(X̃)/Cn+1(X̃)

d→ Cn−1(X̃) → · · · → C1(X̃) → ZG → 0.

It is not hard to see that πn(X) ∼= ker d. Note that

µn(F
1) = (−1)nχ(X) = µn(G).

By the same argument as the first part of the proof, we get ker d = 0. This implies
that X̃ is n-connected. Since Hn+1(X̃) = 0, X̃ is contractible and X is homotopy
equivalent to BG.

Remark 4.4. Under the condition of Theorem 4.3, Harlander and Jensen [6] already
prove that a (G,n)-complex realizing µg

n(G) is homotopy equivalent to BG. Note that
a (G,n)-complex is a special case of X in Theorem 4.3.
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We conclude with an application. Suppose thatG is a finitely presentable group and

P = ⟨x1, . . . , xn | r1, . . . , rm⟩

is a presentation ofG. Denote byGP the group given by the presentationP. From each
finite 2-dimensional CW complex X, one shrinks a spanning tree in the 1-skeleton to
make X have only a single 0-cell and obtains a finite presentation of π1(X). Namely,
the 1-cells correspond one-one to a set of generators while the 2-cells correspond one-
one to a set of relators. Therefore, any counter-example to the Whitehead conjecture
gives rise to a 2-complex with a single 0-cell. For a presentation P, we will denote by
χ(P) = m− n+ 1. A sub-presentation of P = ⟨x1, . . . , xn | r1, . . . , rm⟩ is a presenta-
tion ⟨y1, . . . , yn′ | s1, . . . , sm′⟩ with each yi ∈ {x1, . . . , xn} and each si ∈ {r1, . . . , rm}
is only a word of y1, . . . , yn′ .

Lemma 4.5. Suppose that P′ = ⟨y1, . . . , yn′ | s1, . . . , sm′⟩ is a sub-presentation of
P = ⟨x1, . . . , xn | r1, . . . , rm⟩ of a group GP. If P

′′ is another finite presentation of
GP′ , then one can obtain a presentation of GP from P′′ by adding n− n′ generators
and m−m′ relations. In particular, if P realizes µg

2(GP), then P′ realizes µg
2(GP′).

Proof. Re-indexing and re-naming if necessary, we assume that

y1 = x1, . . . , yn′ = xn′ , n′ ⩽ n

and

s1 = r1, . . . , sm′ = rm′ ,m′ ⩽ m.

It is clear that the words corresponding to s1, . . . , sm′ do not involve xn′+1, . . . , xn. If

P′′ = ⟨y′1, . . . , y′u | s′1, . . . , s′v⟩

is another presentation of GP′ , we form a group G′′ with the presentation

⟨y′1, . . . , y′u, xn′+1, . . . , xn | s′1, . . . , s′v⟩

by adding n− n′ free generators to P′′. For each 1 ⩽ i ⩽ n′, the letter xi, viewed as
an element in GP′ , has a lifting wi in the free group ⟨y′1, . . . , y′u⟩. In other words,
we choose wi on the generators y′1, . . . , y

′
u such that the bijection xi 7→ wi, 1 ⩽ i ⩽ n′

induces an isomorphism GP′ → GP′′ .
For each 1 ⩽ i ⩽ n, define the word ωi of {y′1, . . . , y′u, xn′+1, . . . , xn} as

ωi =

{
wi, 1 ⩽ i ⩽ n′;
xi, n′ < i ⩽ n.

Denote by ϕ the bijection

ϕ : {x1, . . . , xn} → {ω1, . . . , ωn}

given by xi 7→ ωi. For each m′ < i ⩽ m, write ri = Πki
j=1xij as a reduced word of

{x1, . . . , xn}, where xij ∈ {x±
1 , . . . , x

±
n }. Let r′i = Πki

j=1ϕ(xij) be the corresponding
word of

{y′1, . . . , y′u, xn′+1, . . . , xn}.

Let K be the normal subgroup of G′′ normally generated by the m−m′ elements
r′m′+1, . . . , r

′
m. We obtain a short exact sequence of groups
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1 → K → G′′ → GP → 1,

where the third arrow is induced by the map GP′ → GP from the natural inclu-
sions of generators and relators. From this exact sequence, one obtains the desired
presentation

P0 = ⟨y′1, . . . , y′u, xn′+1, . . . , xn | s′1, . . . , s′v, r′m′+1, . . . , r
′
m⟩

of GP.
Assume that P realizes µg

2(GP), while a sub-presentation P′ does not realize
µg
2(GP′). Suppose that µg

2(GP′) is realized by a 2-dimensional complex X, which
gives a presentation P′′. We obtain a new presentation P0 of GP by adding relators
and generators to P′′. However,

χ(P0) = χ(P′′) +m−m′ − (n− n′) = χ(P′′)− χ(P′) + χ(P) < µg
2(GP).

This is a contradiction to the fact that P realizes µg
2(GP). Therefore, P

′ realizes
µg
2(GP′).

Recall that a CW complex X is aspherical if the universal cover X̃ is contractible.
A famous conjecture of Whitehead says that any subcomplex Y of an aspherical 2-
dimensional complex X is aspherical as well (for more details, see the survey article
[2]). As an application of results proved above, we give an equivalent condition of the
asphericity of Y , as follows.

Corollary 4.6. Suppose that X is a finite aspherical 2-complex and Y is a subcomplex
of X. We have the following:

(i) The complex Y realizes µg
2(π1(Y ));

(ii) The complex Y is aspherical if and only if the fundamental group π1(Y ) has a
finite classifying space Bπ1(Y ) of dimension at most 2.

Proof. Since X is aspherical, it realizes µg
2(π1(X)) by Theorem 4.3. Notice that Y

gives a presentation of π1(Y ), which is a sub-presentation of the presentation given
by X. Lemma 4.5 implies that Y realizes µg

2(π1(Y )). This proves part (i).
If Y is aspherical, it is Bπ1(Y ) and hence is of dimension at most 2. Conversely,

assume that π1(Y ) has a finite classifying space Bπ1(Y ) of dimension at most 2.
By Theorem 4.3, all the (π1(Y ), 2)-complexes realizing µg

2(π1(Y )) are homotopic to
Bπ1(Y ). Therefore, Y is aspherical by part (i).

Corollary 1.3 is Corollary 4.6 (ii).
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