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GENERALIZED STEENROD HOMOLOGY THEORIES ARE
IDENTICAL WITH PARTIALLY CONTINUOUS HOMOLOGY

THEORIES

PETER MROZIK

(communicated by George Janelidze)

Abstract
It is shown that generalized Steenrod homology theories are

identical with partially continuous homology theories which are
characterized by a short exact lim←−

1-sequence.

1. Introduction

In [22] Milnor gave an axiomatic characterization of classic Steenrod homology as
an ordinary homology theory on the category CM2 of compact metric pairs which
in addition satisfies the strong excision axiom and the cluster axiom. An important
feature of Steenrod homology is that for any (X,A) ∈ CM2 and any inverse sequence
(X,A) in CM2 such that (X,A) = lim←−(X,A) one obtains a short exact sequence (cf.
[22, Theorem 4])

0→ lim←−
1hn+1(X,A)

β→ hn(X,A)
γ→ lim←−hn(X,A)→ 0.

There are two obvious ways of generalizing Milnor’s axiomatic approach to Steenrod
homology: (1) Enlarging the domain on which ordinary homology theories are defined
and (2) dropping the dimension axiom. Both are success stories.

(1) Milnor’s characterization of Steenrod homology has been considerably extended
by Berikashvili [2, 3, 4], Inassaridze [11, 12] and Mdzinarishvili [12, 18, 19, 20, 21]
who specified various collections A of axioms assuring the uniqueness of ordinary
homology theories on the category Com2 of compact Hausdorff pairs which satisfy A.
See [20, 21] for an overview. Most of the concrete ordinary homology theories on
Com2 constructed in the literature satisfy the Berikashvili axioms so that they are
essentially identical. The unique theory satisfying the Berikashvili axioms is called
the ordinary Steenrod homology theory on Com2. An elegant characterization of this
homology theory is based on the axiom of partial continuity introduced by Inassaridze
and Mdzinarishvili [11, 12]. This axiom says that for any (X,A) ∈ Com2 and any
inverse system (X,A) of compact polyhedral pairs such that (X,A) = lim←−(X,A)
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there exists a short exact sequence

0→ lim←−
1hn+1(X,A)

β→ hn(X,A)
p#→ lim←−hn(X,A)→ 0,

in which p : (X,A)→ (X,A) is the canonical inverse limit morphism and β is nat-
ural with respect to level morphisms between inverse systems. This is a variation of
Milnor’s lim←−

1-sequence which is far more subtle than a straightforward transfer from

CM2 to Com2. On the one hand it is more special since it only deals with inverse
systems of compact polyhedral pairs. On the other hand it is more precise because it
involves the canonical homomorphism p# and requires β to be natural in a specific
sense.

(2) Dropping the dimension axiom leads to the concept of generalized Steenrod
homology theories. Originally they were introduced in [14] by Kaminker and Schochet
as single space theories for unpointed compact metric spaces (concerning unpointed
single space theories see Kelly [15]). In the subsequent paper [13] the perspective was
changed by defining them as single space theories for pointed compact metric spaces.
See Section 2 for details.

For generalized homology theories it does not make sense to search for uniqueness
theorems. Instead it is of interest to clarify the status of additional axioms imposed on
such theories. Focusing on generalized homology theories for compact metric spaces,
we proved in [23] that the strong excision axiom is equivalent to strong shape invari-
ance. In this paper we continue this program by showing that the strong excision
axiom plus the cluster axiom are equivalent to an adequate version of the axiom of
partial continuity.

2. Preliminaries

Let CM, CM0 and CM2 denote the categories of compacta (= compact metric
spaces), pointed compacta and pairs of compacta, respectively. We regard CM and
CM0 as full subcategories of CM2 by identifying X ∈ CM with (X, ∅) and (X,x0) ∈
CM0 with (X, {x0}). Let CMne denote the category of nonempty compacta.

A reduced homology system [23] on one of the categoriesC = CMne,CM0 is a sys-
tem (hn, σn)n∈Z of covariant homotopy invariant functors hn : C→ Ab (= category
of abelian groups) and of natural isomorphisms σn : hn → hn+1 ◦ S, where S denotes
the suspension functor on C (i.e. unreduced suspension on CMne and reduced sus-
pension on CM0). A reduced homology system is called exact resp. quotient exact if
for each pair (X,A) with components in C the natural sequence

hn(A)
i∗→ hn(X)

j∗→ hn(X ∪ CA) resp. hn(A)
i∗→ hn(X)

p∗→ hn(X/A)

is exact for all n ∈ Z. Here, X ∪ CA denotes the adjunction space obtained by attach-
ing the cone CA to X via the inclusion A ↪→ CA (CA denotes the unreduced cone
CMne and the reduced cone on CM0. In the pointed case X ∪ CA and X/A are
understood as pointed spaces in the obvious way).

Exact reduced homology systems are customarily denoted as reduced homology
theories. Since each quotient exact reduced homology system is a reduced homology
theory (cf. [23]), we also use the phrase quotient exact reduced homology theory.
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An (unreduced) homology theory on CM2 is a system (hn, ∂n)n∈Z of covariant
homotopy invariant functors hn : CM2 → Ab and of natural transformations
∂n : hn+1(X,A)→ hn(A, ∅) = hn(A) such that the exactness axiom and the excision
axiom are satisfied. If the hn satisfy the strong excision axiom:

(SE) For each compact metric pair (X,A), the quotient map p : (X,A)→ (X/A, ∗)
induces isomorphisms p∗ : hn(X,A)→ hn(X/A, ∗) for all n ∈ Z

we call (hn, ∂n) a strongly excisive homology theory. Note that we set (X/∅, ∗) =
(X+, ∗) where X+ is the disjoint union of X and a single point space ∗.

Definition 2.1. Let h be a homology theory on C = CMne,CM0,CM2.

1. h is said to be of strong type if it is quotient exact for C = CMne,CM0 resp.
strongly excisive for C = CM2.

2. h is called a Steenrod homology theory if it is of strong type and in addition
satisfies the following cluster axiom:

(Cl) For each sequence Xi = (Xi, xi) of pointed compacta the projections

πk : Cl∞i=1(Xi, xi)→ Xk

defined on the cluster Cl∞i=1(Xi, xi) induce isomorphisms for all n ∈ Z

Π: hn(Cl∞i=1(Xi, xi))→
∞∏
k=1

hn(Xk),Π(x) = ((πk)∗(x)).

Domain and range of πk are regarded as unpointed spaces for C = CMne and
as pointed spaces for C = CM0,CM2.

3. h is called strong shape invariant (cf. [23]) if its homology functors hn take
strong shape equivalences in C to isomorphisms in Ab.
This is equivalent to the assertion that h extends uniquely to a homology theory
defined on the appropriate strong shape category. For unreduced homology the-
ories on CM2 it suffices to assume that the hn take strong shape equivalences
in CM ⊂ CM2 to isomorphisms.

4. h is called Holsztynski shape invariant if the hn take (ordinary) shape equiva-
lences in C to isomorphisms in Ab.
This is equivalent to the assertion that h extends uniquely to a homology theory
defined on the appropriate universal shape category introduced by Holsztyn-
ski [10]. These categories are not identical with the corresponding (ordinary)
shape categories. See [5, Proposition 6.4].

We have defined three kinds of homology theories of strong type and three kinds of
Steenrod homology theories living on the three categories C. In [23] we have shown
that

• The homology theories of strong type are precisely the strong shape invariant
homology theories.

• The three kinds of homology theories of strong type are equivalent by the trans-
formation processes unred and red described in Appendix B. In fact, they occur
as associated triples in the sense of Definition B.1.

By looking at these transformation processes we immediately obtain
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Lemma 2.2. Let (h(ne), h(0), h) be an associated triple of homology theories of strong
type living on CMne,CM0,CM2, respectively. If one component is a Steenrod homol-
ogy theory, then so are the other two components.

For each Steenrod homology theory on C = CMne,CM0,CM2 there exists a
short exact sequence

(LIM1) 0→ lim←−
1 hn+1(X)

β→ hn(X)
γ→ lim←−hn(X)→ 0,

for any X ∈ C and any inverse sequence X in C such that X = lim←−X.
This was proved by Milnor [22] for ordinary unreduced Steenrod homology the-

ory and by Kaminker and Schochet [14] for reduced Steenrod homology theories on
CMne. Milnor’s proof does not refer to a specific construction of ordinary Steenrod
homology but is based on the axioms except the dimension axiom. The proof is there-
fore valid also for generalized unreduced Steenrod homology theories and can easily
be transferred to the case of reduced Steenrod homology theories on CMne and CM0

as it was done in [14]. However, two important issues have not been addressed so far.

1. β and γ are constructed by a lot of diagram chasing which does not make trans-
parent what these homomorphisms “really” look like. In particular, it remains
open whether one may take γ = p# (which is the canonical candidate).

2. The categorical framework of the lim←−
1-sequence needs to be clarified. On which

category of inverse sequences do the three functors in the lim←−
1-sequence live and

are β and γ natural? On the categoryCN of level maps between inverse sequences
everything works smoothly – the naturalness of β and γ follows immediately
from their construction. On the pro-category of towers tow-C (cf. Appendix A)
as the “optimal habitat” of the above three functors the naturalness of β and γ
is not obvious and has not been established in the literature (the proof of [14,
Proposition 2.11] contains a gap – in the crucial case of cofinal subsequences
it does not incorporate how the identifications of the lim←−

1-terms and lim←−-terms
work exactly and fails to show that β and γ respect these identifications).

In this paper we clarify these issues and supply a refined version of the lim←−
1-sequence.

As a consequence we shall see that Steenrod homology theories are nothing else than
partially continuous homology theories. See Definition 3.1 and Theorem 3.7 below.

3. Partially continuous homology theories

The axiom of partial continuity was introduced in [12] (see also [11]). We need
it in a slightly modified form. Let ANR(CM), ANR(CMne), ANR(CM0) and
ANR(CM2) denote the categories of compact ANRs, compact nonempty ANRs,
compact pointed ANRs and pairs of compact ANRs, respectively.

In the sequel let C denote one of the categories CMne,CM0,CM2 and let tow-C
denote the category of towers over C (cf. [8]) which is a subcategory of the category
of inverse systems pro-C over C. The inverse limit is a functor

lim←− : tow-C→ C

coming along with a natural transformation p : X = lim←−X→ X in pro-C. For any
X = (Xi, pi : Xi+1 → Xi)i⩾1 in tow-C we write p = (p∞i : X → Xi). p induces a
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morphism p∗ : hn(X)→ hn(X) = (hn(Xi), (pi)∗) in pro-Ab and thus a homomor-
phism p# = lim←−p∗ : hn(X)→ lim←−hn(X) which is clearly a natural transformation
hn ◦ lim←−→ lim←−◦ hn of functors on tow-C.

Definition 3.1. Let C′ ⊂ C be a full subcategory. A homology theory h on C with
homology functors hn is called C′-partially continuous if there exist natural transfor-
mations βn : lim←−

1 ◦ hn+1 → hn ◦ lim←− between functors on tow-C′ ⊂ tow-C, n ∈ Z,
such that the following sequence is exact for all X ∈ tow-C′:

0→ lim←−
1hn+1(X)

βn→ hn(X)
p#→ lim←−hn(X)→ 0.

A C-partially continuous homology theory is called maximally partially continuous.
An ANR(C)-partially continuous homology theory is called ANR-partially continu-
ous.

Proposition 3.2. 1. Each ANR-partially continuous homology theory is Holsztyn-
ski shape invariant and therefore of strong type. In case C = CM2 it suffices to
assume ANR(CM)- or ANR(CM0)-partial continuity.

2. Each maximally partially continuous homology theory is a Steenrod homology
theory.

Proof. (1) For any map f : X → Y in C there exists a morphism f : X→ Y in
tow-ANR(C) such that X = lim←−X, Y = lim←−Y and f = lim←− f . The map f is a shape
equivalence in C if and only if f induces an isomorphism in the pro-homotopy cat-
egory tow-Ho(C). The functors hk : tow-C→ Ab (and a fortiori also the functors
lim←−

1 ◦ hk and lim←−◦ hk) factorize through tow-Ho(C). Thus if f is a shape equiva-

lence, then the above f induces isomorphisms f∗ : lim←−
1 hn+1(X)→ lim←−

1 hn+1(Y) and
f∗ : lim←−hn(X)→ lim←−hn(Y). The five lemma shows therefore that ANR-partially con-
tinuous homology theories are Holsztynski shape invariant and a fortiori strong shape
invariant (cf. proof of [5, Proposition 6.1]).

Consider C = CM2. The above argument shows that (a) ANR(CM)-partial con-
tinuity resp. (b) ANR(CM0)-partial continuity implies that the following types of
maps induce isomorphisms in homology: (a) shape equivalences f : X → Y between
single spaces resp. (b) pointed shape equivalences f : (X,x0)→ (Y, y0). In case (a) the
five lemma applied to the long exact sequences of pairs covers the general case of shape
equivalences f : (X,A)→ (Y,B). Moreover, (b) implies (a): Any shape equivalence
f : X → Y yields a pointed shape equivalence f+ : (X+, ∗)→ (Y +, ∗) which induces
isomorphisms in homology. Excision shows that f itself induces an isomorphism in
homology.

(2) The cluster axiom for maximally partially continuous homology theories follows
from the fact that a cluster is the inverse limit of a tower of finite wedges (which is
movable and thus has a vanishing lim←−

1-term; see the proof of [8, Corollary 8.5.3]).

Remark 3.3. The only property of the functors Fn = lim←−
1 ◦ hn+1 : tow-C→ Ab used

in the proof of part (1) of the above proposition is that they factorize through the
pro-homotopy category tow-Ho(C). The only property used in the proof of (2) is
that they vanish on the class of movable towers. An essential ingredient in the proof
of (2) is that the exact lim←−

1-sequence contains p#. Working with an abstract γ would
not show that the cluster homomorphism Π is an isomorphism.
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Remark 3.4. An alternative proof of part (2) can be given by showing as in the proof
[20, Theorem 1.2] that the strong excision axiom is satisfied instead of using part (1).

Lemma 3.5. For a homology theory h on CM2 the following are equivalent:

1. h is maximally partially continuous (resp. ANR-partially continuous).

2. h is CM-partially continuous (resp. ANR(CM)-partially continuous).

3. h is CM0-partially continuous (resp. ANR(CM0)-partially continuous).

Proof. (1)⇒ (2): Trivial.
(2)⇒ (3) (cf. proof of [22, Theorem 4]): For objects of CM0 there is a natu-

ral isomorphism hn(Z) ≈ hn(Z, z0)⊕ hn(z0). Let X = ((Xi, xi0), pi) be a tower in
CM0 ⊂ CM2 and let X′ = (Xi, pi) denote the tower in tow-CM obtained by for-
getting basepoints. If p : (X,x0) = lim←−X→ X is the limit morphism in pro-CM0,
we denote by p′ : X = lim←−X′ → X′ the limit morphism in pro-CM which is identical
with p if basepoints are forgotten. There is a commutative diagram with exact top
row

0 // lim←−
1hn+1(X

′)
β′
n // hn(X)

p′
# // lim←−hn(X

′) // 0

lim←−
1hn+1(X)

≈

OO

hn(X,x0)⊕ hn(x0)

≈

OO

p#⊕id// lim←−hn(X)⊕ hn(x0)

≈

OO

Because the kernel of p′
# can be identified with ker(p#)⊕ 0, we have im(β′

n) =

ker(p#)⊕ 0 so that β′
n induces a natural homomorphism βn : lim←−

1 hn+1X→ hn(X,x0)
making the appropriate sequence exact.

(3)⇒ (1): h satisfies the strong excision axiom by Proposition 3.2. Let X =
((Xi, Ai), pi) be a tower in CM2. Then X′ = ((Xi/Ai, ∗), p′i) is a tower in CM0,
and if all (Xi, Ai) are ANR-pairs, then all (Xi/Ai, ∗) are pointed ANRs. The nat-
ural level quotient map q : X→ X′ induces isomorphisms lim←−

1 q∗ : lim←−
1 hn+1(X)→

lim←−
1hn+1(X

′) and lim←−q∗ : lim←−hn+1(X)→ lim←−hn+1(X
′). The limitmap lim←−q : (X,A)=

lim←−X→ lim←−X′ = (X/A, ∗) is nothing else than the quotient map and thus also induces
isomorphisms in homology. This proves (1).

Lemma 3.6. Let (h(ne), h(0), h) be an associated triple of homology theories of strong
type living on CMne,CM0,CM2, respectively. If one component is a maximally
partially continuous homology theory (resp. an ANR-partially continuous homology
theory), then so are the other two components.

Proof. Consulting Appendix B, it is clear that maximal partial continuity of h(0)

is equivalent to CM0-partial continuity of h and hence by Lemma 3.5 to maximal
partial continuity of h. Similarly, maximal partial continuity of h(ne) implies CM-
partial continuity of h and thus maximal partial continuity of h. It remains to show
that if h is maximally partially continuous, then red(h) ≈ h(ne) is maximally partially

continuous. There is a natural isomorphism hn(X) ≈ h(ne)n (X)⊕ hn(∗). The argument
goes now as in the proof of Lemma 3.5.

Here is the main result of this paper.
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Theorem 3.7. A homology theory h is maximally partially continuous if and only if
it is a Steenrod homology theory.

Proof. It remains to show that Steenrod homology theories are maximally partially
continuous. We shall do this by proving that Milnor’s original lim←−

1-sequence is indeed
a sequence as required in Definition 3.1. Since each Steenrod homology theory occurs
as a component of an associated triple, Lemmas 2.2, 3.5 and 3.6 imply that it suffices
to show that a Steenrod homology theory h = (hn, ∂n) on CM2 is CM-partially
continuous.

We begin with some notation. Each inverse sequence X = (Xi, pi)i⩾1 in CM can
be augmented to a sequence (Xi, pi)i⩾0 with X0 = ∗ and p0 : X1 → X0 the unique
map. Morphisms f = (φ, fi) : X→ Y in seq-CM (cf. Appendix A) can be extended
to the augmented sequences by letting φ(0) = 0 and f0 : X0 → Y0 be the unique map.

Let X = lim←−X. The contractible telescope T = TX as constructed in [16] is a
compactum T ⊃ X represented as

T =M0 ∪M1 ∪M2 ∪ · · · ∪X,

such that

1. Mi is a copy of the mapping cylinder of pi having Xi as the base and Xi+1 as
the top,

2. Mi ∩Mi+1 = Xi+1,

3. Mi ∩Mj = ∅ for j > i+ 1,

4. Mi ∩X = ∅.
There are strong deformation retractions

ri : T → Ti =

{
X0 for i = 0,

M0 ∪ · · · ∪Mi−1 for i > 0

uniquely characterized by

ri |Mj= rji : Mj
retr→ Xj

pji→ Xi ⊂ Ti for j ⩾ i,

ri |X= p∞i : X → Xi ⊂ Ti.

Let us define a compact subspace |X| ⊂ TX by

|X| = X0 ∪X1 ∪X2 ∪ · · · ∪X.

This extends to a functor

|−| : seq-CM→ CM,

such that for a morphism f = (φ, fi) : X→ Y

|f | |X= lim←− f and |f | |Xj= fi ◦ pjφ(i) for φ(i) ⩽ j < φ(i+ 1).

Also T is a functor on seq-CM, but this is irrelevant for our purposes.
Let us define compact subspaces T 1, T 2 ⊂ T by

T 1 = X0 ∪M1 ∪M3 ∪ · · · ∪X,

T 2 =M0 ∪M2 ∪M4 ∪ · · · ∪X.
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We have T 1 ∪ T 2 = T and T 1 ∩ T 2 = |X|. For i ⩾ 1 set

Ri = Xi ∪Xi+1 ⊂Mi with inclusions lik : Xk → Ri, k = i, i+ 1.

For any compact Z ⊂ T −X0 = T − ∗, let Z+ = Z ∪ ∗. Concerning diagrams of
homology groups we adopt the following conventions:

• Unnamed arrows are induced by inclusions.

• Isomorphisms are characterized by the symbol ≈.
• Unnamed isomorphisms are inclusion-induced excision isomorphisms.

• Isomorphisms named by p∗ are strong excision isomorphisms induced by quo-
tient maps p.

• Isomorphisms named by h
(Z,C)
∗ are induced by a canonical homeomorphism

h(Z,C) from (Z/C, ∗) to an appropriate cluster.

By Milnor’s construction in [22], the exact sequence (LIM1) is obtained by using the
Mayer-Vietoris sequence of the excisive triad (T ;T 1, T 2) with subspace X+ ⊂ |X| =
T 1 ∩ T 2 and the exact sequence of the triple (T,X+, ∗). We recall the construction
of γ:

hn+1(T,X
+)

∆ //

∂ ≈
��

hn(|X|, X+)

C

≈

((

p∗

≈
// hn(|X|/X+, ∗)

h(|X|,X+)
∗

≈
// hn(cl∞i=1(X

+
i , ∗), ∗)

Π≈
��

I
≈

zz

hn(X
+, ∗)

∏∞
i=1 hn(X

+
i , ∗)

∏∞
i=1 hn(Xi)

≈

OO

ν≈
��

hn(X)

≈

OO

γ // ∏∞
i=1 hn(Xi)

∆ is part of the Mayer-Vietoris sequence and the automorphism ν is given by ν((xi)) =
((−1)ixi). The isomorphisms C and I are defined as the appropriate compositions. It
is shown in [22] that the map γ occurring as the unique filler is an epimorphism onto
lim←−hn(X) ⊂

∏∞
i=1 hn(Xi). Let us also recall that ∆ is the following composition

hn+1(T,X
+) // hn+1(T, T

2) hn+1(T
1, |X|)≈

oo ∂ //

∂

��

hn(|X|, X+)

hn(|X|)

66

Here, the horizontal ∂ comes from exact sequence of the triple (T 1, |X|, X+) and the
vertical ∂ from exact sequence of the pair (T 1, |X|).

Our objective is to prove that γ = p#. To do this it suffices to show that for each
odd j
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(ψj ◦ ν ◦ γ)(x) = (−(p∞j )∗(x), (p
∞
j+1)∗(x)) ∈ hn(Xj)× hn(Xj+1),

with projection ψj :
∏∞
i=1 hn(Xi)→ hn(Xj)× hn(Xj+1).

For a given odd j, let ρj : (T
1, |X|)→ (M+

j , R
+
j ) be the retraction sending T 1 −Mj

to ∗ and qj : (T, T 2)→ (Mj/Rj , ∗) be the map which is the identity on intMj and col-
lapses T − intMj to a point. Moreover, let αj : hn(Xj ∪Xj+1)→ hn(Xj)× hn(Xj+1)

be the isomorphism given by (αj)
−1(g, h) = (ljj)∗(g) + (ljj+1)∗(h). We obtain the fol-

lowing two commutative diagrams:

hn(cl
∞
i=1(X

+
i , ∗)), ∗)

I

≈
**

(π′
j)∗

��

Π

≈
// ∏∞

i=1 hn(X
+
i , ∗)

proj

��

∏∞
i=1 hn(Xi)≈

oo

ψj

��

hn(X
+
j , ∗)× hn(X

+
j+1, ∗)

hn((X
+
j ∨X

+
j+1, ∗)

Πj

≈

44

hn(Xj ∪Xj+1)
e∗

≈
oo αj

≈
// hn(Xj)× hn(Xj+1)

(ej)∗×(ej+1)∗

≈

jj

Here, e, ej , ej+1 denote excisions. We have Πje∗(x) = ((π̂j)∗e∗(x), (π̂j+1)∗e∗(x)) so
that

Πje∗α
−1
j (g, h) = ((π̂j)∗e∗(l

j
j)∗(g) + (π̂j)∗e∗(l

j
j+1)∗(h), (π̂j+1)∗e∗(l

j
j)∗(g)

+(π̂j+1)∗e∗(l
j
j+1)∗(h))

= ((ej)∗(g), (ej+1)∗(g))

because π̂kel
j
k′ = ek for k = k′ and π̂kel

j
k′ = c for k ̸= k′, where c maps Xk′ to ∗ ∈ X+

k

and thus induces the zero map in homology.

hn+1(T, T
2)

(qi)∗

((

hn+1(T
1, |X|)≈

oo ∂ //

p∗ ≈
��

(ρj)∗

{{

hn(|X|)

(ρj)∗

��

// hn(|X|, X+)

p∗ ≈
��

hn+1(T
1/|X|, ∗)

h(T1,|X|)
∗≈

��

hn(|X|/X+, ∗)

h(|X|,X+)
∗

≈
��

hn+1(cli odd(Mi/Ri, ∗), ∗)

(πj)∗

��

hn(cl
∞
i=1(X

+
i , ∗)), ∗)

(π′
j)∗

��

ψjI

zz

hn+1(Mj/Rj , ∗) hn((X
+
j ∨X

+
j+1, ∗)

hn+1(M
+
j , R

+
j )

p∗ ≈

OO

∂ // hn(R
+
j )

88

hn(Xj ∪Xj+1)

≈

OO

αj ≈
��

hn+1(Mj , Rj)

≈

OO
p∗ ≈

66

∂ // hn(Rj)

OO

=

88

αj

≈
// hn(Xj)× hn(Xj+1)
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In particular, we can conclude that the image of ψj ◦ ν ◦ γ is contained in the
image of αj ◦ ∂ : hn+1(Mj , Rj)→ hn(Xj)× hn(Xj+1). We claim that im(αj ◦ ∂)
= αj(im(∂)) = {(g, h) ∈ hn(Xj)× hn(Xj+1) | g = −(pj)∗(h)}. To see this, let r : Mj

→ Xj be a strong deformation retraction and l : Rj →Mj the inclusion. We

have α−1
j (g, h) ∈ im(∂) iff (ljj)∗(g) + (ljj+1)∗(h) ∈ im(∂) = ker(l∗) = ker((rl)∗) iff

g + (pj)∗(h) = (rl)∗((l
j
j)∗(g)) + (rl)∗((l

j
j+1)∗(h) = 0. It therefore suffices to prove

(proj ◦ ψj ◦ ν ◦ γ)(x) = (p∞j+1)∗(x) ∈ hn(Xj+1),

with projection proj : hn(Xj)× hn(Xj+1)→ hn(Xj+1). We have the following com-
mutative diagram:

hn+1(Mj/Rj , ∗)

=

��

hn+1(Mj , Rj)

∂

��

p∗

≈
oo

≈

vv

hn+1(T,X) //

∂ ≈
��

hn+1(T, T
2)

(qj)∗
66

(rj+1)∗ ((
∂ ≈
��

hn+1(Tj+1/(Tj ∪Xj+1), ∗)

hn(X, ∗) // hn(T 2, ∗)

(rj+1)∗ ((

hn+1(Tj+1, Tj ∪Xj+1)

∂ ≈
��

p∗ ≈

OO

hn(Tj ∪Xj+1, Tj) hn(Rj)

αj
≈

||

oo

ι∗

��
hn(Rj , Xj)

≈

ii

hn(X)

≈

OO

(p∞j+1)∗

// hn(Xj+1)

≈

OO

≈

55

hn(Xj)× hn(Xj+1)
proj

oo

In the lower right square note ι∗((αj)
−1(g, h)) = (ιljj)∗(g) + (ιljj+1)∗(h) = (ιljj+1)∗(h)

= (ιljj+1)∗(proj(g, h)) since (ιljj)∗ : hn(Xj)→ hn(Rj , Xj) is zero.
Putting all pieces together we obtain the desired equation

(proj ◦ ψj ◦ ν ◦ γ)(x)) = (p∞j+1)∗(x).

It remains to show that the map β : lim←−
1 hn+1(X)→ hn(X) in Milnor’s exact

sequence (LIM1) is natural. We recall its construction. For this purpose let

|X|1 = ∗ ∪X1 ∪X3 ∪ · · · ∪X,

|X|2 = ∗ ∪X2 ∪X4 ∪ · · · ∪X.

The inclusions |X|k → T k embed |X|k as strong deformation retracts into T k.
In the following commutative diagram the top row belongs to the Mayer-Vietoris-
sequence of the excisive triad (T ;T 1, T 2) with subspace X+ ⊂ |X| = T 1 ∩ T 2.
Explicitly we have u(x) = (−incl1∗(x), incl2∗(x)) and the maps s are given as s(y, z) =
incl1∗(y) + incl2∗(z) with the appropriate inclusions inclk.
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hn+1(|X|, X+)

C ≈

��

u // hn+1(T
1, X+)⊕ hn+1(T

2, X+)
s // hn+1(T,X

+)

∂ ≈

��

hn+1(|X|1, X+)⊕ hn+1(|X|2, X+)

≈

OO
s

44

s ≈
��∏∞

i=1 hn+1(Xi)

ν ≈
��

hn+1(|X|, X+)

C ≈
��

∂ //

??

hn(X
+, ∗)

∏∞
i=1 hn+1(Xi)

d // ∏∞
i=1 hn+1(Xi)

β′
// hn(X)

≈

OO

The maps d and β′ are defined as the unique fillers. It is easily verified that (cf. [22])
d((ξi)) = (ξi − (pi)∗(ξi+1)) so that the cokernel of d is nothing else than lim←−

1 hn+1(X).

Hence β′ induces a monomorphism β : lim←−
1 hn+1(X)→ hn(X).

Define two functors Θ,Ω: seq-CM→ CM2 by Θ(X) = hn+1(|X|, X+), Θ(f) =

|f |∗ and Ω(X) =
∏∞
i=1 hn+1(Xi), (Ω(f)(g))i =

∑φ(i+1)−1
j=φ(i) (fip

j
φ(i))∗(gj), where f =

(φ, fi) : X→ Y.
The isomorphism C : Θ(X)→ Ω(X) is easily seen to be natural on seq-CM. Since

∂ : Θ(X)→ hn(X
+, ∗) is natural on seq-CM, the same is true for β′ : Ω(X)→ hn(X).

Let f : X→ Y be a morphism in seq-CM and let f∗ : hn+1(X)→ hn+1(Y) be
the induced morphism in seq-Ab. We have Ω(f) = L1(f∗), where L

1 is defined in
Appendix A. We therefore have a commutative diagram

Ω(X)
Ω(f) //

π

��

Ω(Y)

π

��
lim←−

1hn+1(X)
lim←−

1f∗

// lim←−
1hn+1(Y)

Since π is an epimorphism, also β is natural on seq-CM. The naturalness on tow-CM
follows from the fact that equivalent morphisms in seq-CM induce the same mor-
phism between the domains and ranges of β, respectively.

The strong excision axiom and the cluster axiom produce an isomorphism
C ′ : hn+1(|X|, X)→

∏∞
i=0 hn+1(Xi) which extends the above C in the sense that

hn(X)

incl∗ ≈
��

hn+1(|X|, X)
∂oo

incl∗

��

C′

≈
// ∏∞

i=0 hn+1(Xi)

proj

��
hn(X

+, ∗) hn+1(|X|, X+)
∂

oo
C

≈ // ∏∞
i=1 hn+1(Xi)

is a commutative diagram which is natural on seq-CM. Let π′ :
∏∞
i=0 hn+1(Xi)

proj→∏∞
i=1 hn+1(Xi)

π→ lim←−
1 hn+1(X).

Corollary 3.8. For any Steenrod homology theory h on CM2 the natural transfor-
mation β : lim←−

1 hn+1(X)→ hn(X) can be chosen as the unique filler in the following
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diagram (which is natural on seq-CM):∏∞
i=0 hn+1(Xi)

π′

��

hn+1(|X|, X)

∂

��

C′

≈
oo

lim←−
1 hn+1(X)

β
// hn(X)

Hence there is a commutative diagram which is natural on seq-CM:

hn+1(|X|, X)/ker(∂)

∂̂

��

Ĉ

≈
tt

lim←−
1hn+1(X)

β
// hn(X)

Thus β is essentially the map induced by the boundary operator ∂ : hn+1(|X|, X)→
hn(X) on its coimage coim(∂) = hn+1(|X|, X)/ker(∂).

Proof. That β can be chosen as a filler follows from the above proof and the defi-
nition of C ′. The uniqueness of β is trivial since π′ is an epimorphism. Since β is a
monomorphism, we have ker(π′C ′) = ker(∂). This produces the second diagram.

There is a commutative diagram with exact rows

hn+1(|X|, X)

proj

��

∂ // hn(X)
i∗ // hn(|X|)

0 // coim(∂)
∂̂ //

Ĉ ≈
��

hn(X)
î∗ // im(i∗)

incl

OO

//

γ≈
��

0

0 // lim←−
1hn+1(X)

β
// hn(X)

p#

// lim←−hn(X) // 0

where γ is the composition of the canonical isomorphisms im(i∗) ≈ hn(X)/ker(i∗) =
hn(X)/ker(p#) ≈ lim←−hn(X). This yields a nice alternative interpretation of the lim←−

1-
sequence. It also shows that i∗ : hn(X)→ hn(|X|) is in general not injective which
contradicts a claim made in [1, Lemma 5.4(2)] in order to prove that Steenrod homol-
ogy theories are uniquely determined by their restriction to ANR objects. In this
context see also [13, Remark 7.7] and [14, Remark 2.18].

Proposition 3.9. For any Steenrod homology theory h on CMne or CM0 the natural
transformation β : lim←−

1 hn+1(X)→ hn(X) can be chosen as the unique filler making
the following diagram commute:∏∞

i=0 hn+1(Xi)

π′

��

hn+1(|X|/X)

∆

��

C

≈
oo

lim←−
1hn+1(X)

β
// hn(X)
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Here, C is the obvious isomorphism induced by the cluster isomorphism (concerning
∆ see Appendix B). Hence there is a commutative diagram

hn+1(|X|/X)/ker(∆)

∆̂

��

Ĉ

≈
tt

lim←−
1hn+1(X)

β
// hn(X)

with an isomorphism Ĉ which is natural on seq-CMne resp. seq-CM0.

Proof. Can safely be left to the reader.

Recall that a homology theory h is called continuous if the natural homomorphism
p# : hn(X)→ lim←−hn(X) is an isomorphism for all n ∈ Z and all X ∈ tow-C. We
emphasize that we require h to satisfy the exactness axiom, although continuity and
exactness hold potential for conflict; e.g. ordinary Cech homology is exact only for a
certain class of coefficient groups (including all algebraically compact groups). It is
obvious that a maximally partially continuous homology theory is continuous if and
only if lim←−

1 hn(X) vanishes for all X ∈ tow-C.

Corollary 3.10. Each continuous homology theory is maximally partially continu-
ous. In particular, lim←−

1 hn(X) vanishes for all X ∈ tow-C.

Proof. By Remark 3.3 we see that each continuous homology theory is a Steenrod
homology theory (take Fn = 0). This implies maximal partial continuity.

Milnor’s axiomatic characterization of ordinary Steenrod homology uses the cluster
axiom for arbitrary sequences of pointed compacta. Inspection of Milnor’s proof shows
that it suffices to use the ANR cluster axiom, i.e. the cluster axiom for arbitrary
sequences of pointed compact ANRs.

It is then easy to see that homology theories satisfying the strong excision axiom
and the ANR cluster axiom are the same as ANR-partially continuous homology the-
ories. This variant of our main theorem is the straight extension of [20, Corollary 1.5]
from ordinary to generalized homology theories.

4. Strong shape invariant homology theories

As already pointed out, homology theories of strong type are known to be strong
shape invariant and Steenrod homology theories are known to be Holsztynski shape
invariant which at first glance seems to be more than strong shape invariant. But
is it really more? This question could be answered by a brute “no” if it were true
that each shape equivalence is a strong shape equivalence. However, this problem is
still open (although there exists partial results, e.g. for finite-dimensional compacta).
Irrespective of a final solution we have the following result.

Proposition 4.1. A homology theory is strong shape invariant if and only if it is
Holsztynski shape invariant.

Proof. We show that a homology theory which inverts strong shape equivalences
also inverts shape equivalences. Let us first consider the case of a reduced pointed
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homology theory on CM0. An immediate offspring of [6, Corollary 3.3] is this:

(1) If f : S(X,x0)→ S(Y, y0) is a pointed shape equivalence, then f is a pointed
strong shape equivalence.

Since suspensions of pointed shape equivalences are pointed shape equivalences and
hence pointed strong shape equivalences, the suspension isomorphism σ : hn(X,x0)→
hn+1(S(X,x0))) proves the result.

Let us now consider unpointed homology. We show

(2) IfX and Y are connected compacta and f : SX → SY is a shape equivalence,
then f is a strong shape equivalence.

Choose a basepoint ξ0 ∈ SX and let η0 = f(ξ0) ∈ SY . SY is path connected and
representable as the inverse limit of simply connected compact polyhedra. Hence
pro-π1(SY, η0) = 0 so that SY is pointed 1-movable. Hence f : (SX, ξ0)→ (SY, η0) is
a pointed shape equivalence by [7, Theorem 5.1]. We have ξ0 = [x0, t0] and η0 = [y0, t

′
0]

with x0 ∈ X and y0 ∈ Y . Let pX : (SX, ξ0)→ S(X,x0) and pY : (SY, η0)→ S(Y, y0)
be the canonical quotient maps collapsing the segments through x0 resp. y0 to points.
These maps are pointed strong shape equivalences (cf. [9, Corollaries 2, 3] or [17,
Corollaries 10.7, 10.8]). Letting s denote the pointed strong shape functor, we see that
the pointed strong shape morphism ϕ = s(pY ) ◦ s(f) ◦ s(pX)−1 : S(X,x0)→ S(Y, y0)
induces an isomorphism in the pointed shape category, hence by [6, Corollary 3.3] is
an isomorphism in the pointed strong shape category. This implies that f : (SX, ξ0)→
(SY, η0) is a pointed strong shape equivalence so that f : SX → SY is a strong shape
equivalence.

Now (2) applies to show that double suspensions of shape equivalences are strong
shape equivalences, and we are done again.

Appendix A. The first derived limit as a functor on tow-Ab

For any category D let seq-D denote the following category of inverse sequences
overD. The morphisms f : X→ Y in seq-D are the systems f = (φ, fi) where φ : N→
N is strictly increasing and fi : Xφ(i) → Yi are morphisms in D such that fip

φ(i+1)
φ(i) =

qifφ(i+1) for all i ∈ N. A morphism f = (φ, fi) is called a level morphism if φ = id.

The level morphisms form a subcategory DN of seq-D. The category tow-D of towers
over D has as morphisms equivalence classes of morphisms in seq-D, where f =
(φ, fi), f

′ = (φ′, f ′i) : X→ Y are equivalent if there exists a strictly increasing function

ψ ⩾ φ,φ′ such that fip
ψ(i)
φ(i) = f ′ip

ψ(i)
φ′(i) for all i ∈ N. tow-D can be identified with a

full subcategory of the pro-category pro-D whose objects are all inverse systems over
D indexed by cofiltered small categories. See [8, 17, 24].

For an inverse sequenceG = (Gi, γi) of abelian groups the first derived limit lim←−
1 G

occurs in form of the well-known definition

lim←−
1G = coker(dG) with dG :

∞∏
i=1

Gi →
∞∏
i=1

Gi, dG(g)i = gi − γ(gi+1).

It is clear that lim←−
1 is a functor on AbN. We are in need of a pro-extension lim←−

1 :
tow-Ab→ Ab making the following diagram commute:
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AbN

Π

��

lim←−
1

// Ab

tow-Ab
lim←−

1

::

The existence of such a pro-extension is well-known; it occurs as the first right
derived functor of lim←− : tow-Ab→ Ab. In [24] this is concretized by showing that

lim←−
1 : tow-Ab→ Ab is given as follows. Define a functor L1 : seq-Ab→ Ab by

L1(G) =
∞∏
i=1

Gi, L
1(f) :

∞∏
i=1

Gi →
∞∏
i=1

Hi, L
1(f)(g)i =

φ(i+1)−1∑
j=φ(i)

fi(γ
j
φ(i)(gj)),

where f = (φ, fi) : G→ H. Then

lim←−
1([f ])([g]) = [L1(f)(g)].

Appendix B. Homology theories of strong type

We recall some useful facts from [23] about homology theories of strong type.

1. To each homology theory of strong type h = (hn, σn) on C = CMne,CM0 one
can associate natural transformations ∆n : hn+1(X/A)→ hn(A) such that there
is a long exact sequence

· · · ∆n→ hn(A)
i∗→ hn(X)

p∗→ hn(X/A)
∆n−1→ hn−1(A)

i∗→ · · · .

This association between natural isomorphisms σn and natural transformations
∆n with the above property is 1-1.

2. To each homology theory of strong type h = (hn, σn) on C = CMne,CM0 one

can associate a homology theory of strong type unred(h) = (ĥn, ∂n) on CM2

such that

ĥn(X,A) = hn(X/A).

In particular, we have on CM ⊂ CM2

ĥn(X) = hn(X
+).

X/A and X+ are regarded as a pointed spaces in the canonical way for C =
CM0. Similarly we have on CM0 ⊂ CM2

ĥn(X,x0) = hn(X) for C = CMne,

ĥn(X,x0) = hn(X,x0) for C = CM0.

3. To each homology theory of strong type h = (hn, ∂n) on CM2 one can associate
a homology theory of strong type red(h) = (h′n, σ

′
n) on CMne resp. CM0 such

that

h′n(X) = ker(c∗ : hn(X)→ hn(∗)) on CMne,

h′n(X,x0) = hn(X, {x0}) on CM0.



76 PETER MROZIK

4. The above transformation procedures are inverse to each other in the sense that
red(unred(h)) and unred(red(h)) are naturally isomorphic to the original h.
In that sense the three kinds of homology theories of strong type living on
CMne,CM0,CM2 are equivalent.

Definition B.1. A triple of homology theories of strong type (h(ne), h(0), h) living on
CMne, CM0, CM2, respectively, is called an associated triple if unred(h(ne)) and
unred(h(0)) are naturally isomorphic to h.

Each homology theory of strong type living on one of the categories CMne, CM0,
CM2 occurs in an associated triple which is up to natural isomorphism unique.

For homology theories which are not of strong type there are only partial analogues.
Whereas homology theories on CMne and CM2 are equivalent (see Kelly [15]), this
is not true for homology theories on CM0 and CM2.
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