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DECOMPOSING MANIFOLDS INTO CARTESIAN PRODUCTS
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(communicated by Jonathan M. Rosenberg)

Abstract
The decomposability of a Cartesian product of two nonde-

composable manifolds into products of lower dimensional mani-
folds is studied. For 3-manifolds we obtain an analog of a result
due to Borsuk for surfaces, and in higher dimensions we show
that similar analogs do not exist unless one imposes further
restrictions such as simple connectivity.

1. Introduction

There are plenty of examples which show the nonuniqueness of splitting a space
(manifold) into Cartesian products. For example, there is the well known Bing space,
a generalized 3-manifoldX (cf. [Bi]) such thatX ̸= R3 andX × R = R4 = R3 × R, or
the open 3-manifold W of Whitehead (cf. [He]), where W ̸= R3 and again W × R =
R4 = R3 × R (here = stands for homeomorphic). More dramatic examples are pairs
of two homotopy inequivalent 3-dimensional Seifert manifolds M and N such that
M× S1 = N × S1 (cf. [CR, KR2]).

However, on the positive side there is an old result of Borsuk (cf. [Bo]) that a
closed, n-dimensional manifold has at most one decomposition into the Cartesian
product of indecomposable factors of dimension ⩽ 2.

Now suppose we that have two closed, oriented n-dimensional manifolds Mn and
Nn which cannot be split into products of closed, oriented manifolds (̸= {pt}) of
lower dimension. Here is one natural question: Can Mn ×Nn be decomposed into
products of manifolds of dimension ⩽ n− 1?

More generally, we shall consider the following situation (we recall that we are
working in the TOP category, i.e., topological manifolds and homeomorphisms):

Let Mn, N k be closed, oriented, indecomposable (into nontrivial Cartesian prod-
ucts) manifolds of dimension n and k respectively, k ⩽ n. One says that the manifold
N k stably decomposes Mn if Mn ×N k can be written as a Cartesian product
of manifolds of dimension ⩽ n− 1 (i.e. Mn ×N k = Π

i
Y ni
i such that each Y ni

i is a

closed manifold of dimension ni, where 1 ⩽ ni ⩽ n− 1 and Σ
i
ni = n+ k). If for a

given manifold Mn, there is no such N k, then Mn is called stably nondecompos-
able.
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If n = 1 or n = 2, then Borsuk’s result shows that every Mn is stably nondecom-
posable. It turns out that this is also true for n = 3:

Theorem 1.1. Let M3 be an oriented, closed, nondecomposable 3-manifold. Then
M3 is stably nondecomposable.

On the other hand, for n = 4 we have the following:

Theorem 1.2. There exists an oriented, closed, nondecomposable 4-manifold M4

such that M4 × Sk = S1 × Sk × RP3 (k = 2, 3, 4). Moreover there are infinitely many
non-decomposable 4-manifolds M4

i (i = 1, 2, . . . , n, . . .) with M4
i ̸= M4

j , i ̸= j and

M4 × Sk = S1 × Sk × RP3 (k = 2, 3, 4).

The manifold M4 in the above theorem is not simply connected. It turns out that
this is an essential condition in our proof. Indeed, for simply connected 4-manifolds
we have the following addendum to Theorem 1.2.

Theorem 1.3. Let M4 be a closed, simply connected nondecomposable manifold.
Then Sk (k = 2, 3, 4) cannot stably decompose M4.

2. Proofs

This section contains proofs of our results. The methods and techniques employed
in these proofs form a curious combination of high-dimensional surgery theory and
low-dimensional topology.

Proof of Theorem 1.1. We first consider the case of M3 and N 3. Let M3 and N 3 be
oriented, closed, nondecomposable 3-manifolds.

Suppose M3 ×N 3 is decomposable, so we can write M3 ×N 3 = S1 × S2 × S3,
where dim Si = 2 (i = 1, 2, 3).

Our first observation is that without loss of generality we can assume π1(M3),
π1(N 3) are infinite. Our second observation is that because the Euler characteristic
χ(M3) = χ(N 3) = 0, then at least one of the Si (i = 1, 2, 3) must be a torus T 2 =
S1 × S1.

Suppose that exactly one of the Si (say S3) is a torus. Then M3 ×N 3 = S1 ×
S2 × S1 × S1. It follows that the center C(π1(M3 ×N 3)) of π1(M3 ×N 3) is given
by C(π1(M3 ×N 3)) ∼= C(π1(M3))⊕ C(π1(N 3)) ∼= Z⊕ Z.

Now suppose that the center of π1(M3) or the center of π1(N 3) is trivial, say
C(π1(M3)) ∼= 0. Consequently, C(π1(N 3)) ∼= Z⊕ Z. This implies that N 3 = S1 ×
S1 × S1 (i.e., Theorem 12.10, p. 131 in [He]), and we are done.

Assume now that C(π1(M3)) ∼= C(π1(N 3)) ∼= Z. This implies that both M3 and

N 3 are Seifert manifolds (cf. [CJ, G]). Let h : M3 ×N 3 ≈→ S1 × S2 × S1 × S1 be a
homeomorphism. The induced homomorphism

h∗ : π1(M3 ×N 3) → π1(S1 × S2 × S1 × S1)

is an isomorphism and

h∗| : C(π1(M3 ×N 3)) → C(π1(S1 × S2 × S1 × S1))
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is an isomorphism as well, i.e.,

h∗| : Z⊕ Z
∼=−→ Z⊕ Z .

To go further we resort to the following simple torus trick: Since every automorphism

Z⊕ Z
∼=−→ Z⊕ Z can be realized by a homeomorphism S1 × S1 → S1 × S1, that is,

π0(Homeo(T 2)) ∼= GL(2,Z) (e.g., see Theorem 4, p. 26 in [R]). Then by composing

h : M3 ×N 3 −→ S1 × S2 × S1 × S1

with h′ = idS1×S2 ×f : S1 × S2 × S1 × S1 −→ S1 ×S2 ×S1 × S1 for some homeomor-
phism f : S1 × S1 → S1 × S1, we can assume that there is a homeomorphism

h : M3 ×N 3 −→ S1 × S2 × S1 × S1

with the isomorphism h∗| : Z⊕ Z
∼=−→ Z⊕ Z given by

h∗| : h
′
∗ ⊕ h′

∗ .

This implies that there is an induced homeomorphism

h̃ : M̃3 × Ñ 3 −→ S1 × S2 × R× R ,

where M̃3, Ñ 3 are infinite cyclic coverings determined by the corresponding centers.

The fundamental groups π1(M̃3) ∼= π1(M3)/C(π1(M3)) and π1(Ñ 3) ∼= π1(N 3)/
C(π1(N 3)) are Fuchsian groups (since both M3, N 3 are Seifert manifolds) and there
is an isomorphism

π1(M̃3)× π1(Ñ 3) ∼= π1(S1)× π1(S2) .

This implies (by Proposition II.37, p. 19, in [JS]) that π1(M̃3) and π1(Ñ 3) are isomor-
phic to fundamental groups of closed surfaces. It is not difficult to see (for example
using the cohomology ring structure of closed surfaces) that corresponding groups
must be isomorphic, say

π1(M̃3) ∼= π1(S1) and π1(Ñ 3) ∼= π1(S2) .

In particular,

M̃3 ×N 3 = S1 × S2 × R× S1

and since π1(M̃3) ∼= π1(S1) then we have a homotopy equivalence

S1 ×N 3 ≃ S1 × S2 × S1

and by symmetry

M3 × Ñ 3 = S1 × S2 × S1 × R

which gives

M3 × S2 ≃ S1 × S2 × S1 .

If one of the Si, i = 1, 2 is S2, say S1 = S2, then S2 ×N 3 ≃ S2 × S2 × S1 and

π1(N 3) ∼= π1(S2 × S1) ∼= π1(S2)⊕ π1(S
1) .

Consequently N 3 = S2 × S1 (cf. [He, p. 114]). In particular, we can assume S1 ̸= S2,
S2 ̸= S2.
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Going back to the homotopy equivalence

S1 ×N 3 ≃ S1 × S2 × S1

we observe that S1 × S2 × S1 admits a metric (the standard product metric) of non-
positive curvature. The results of Farrell-Jones (cf. [FJ]) imply S1 ×N 3 = S1 × (S2 ×
S1). We claim that this is impossible given the indecomposability of N 3.

To see this we need the following slight adjustment in the conclusion of [KR1,
Theorem 1].

Claim 2.1. Let X,Y be closed oriented surfaces of genus at least 2, and N 3 be a
Seifert manifold. If N 3 ×X = (Y × S1)×X then N 3 = Y × S1.

Proof of Claim 2.1. Let M3 = Y × S1. Let β ∈ π1(X) be a fixed non-trivial element
and α ∈ π1(N 3) be an arbitrary element. We recall (cf. [T]) that the centralizer of
each nontrivial element of π1(X) is an infinite cyclic subgroup.

Now the homeomorphism g : N 3 ×X −→ M3 ×X induces an isomorphism
g∗ : π1(N 3 ×X) −→ π1(M3 ×X) with g∗(α, 1) = (α′, α′′) and g∗(1, β) = (β′, β′′).

Denote by Z(β′′) the centralizer of β′′ and let γ be its generator, i.e., ⟨γ⟩ ∼= Z(β′′).
Since (α, 1)(1, β) = (1, β)(α, 1), then (α′, α′′)(β′, β′′) = (β′, β′′)(α′, α′′). In partic-

ular, α′β′ = β′α′ and α′′β′′ = β′′α′′, and hence α′′ ∈ Z(β′′). Therefore there exist
integers m,n such that α′′ = γn and β′′ = γm. Since π1(N 3) is finitely generated (let
us say by α1, . . . , αk with g∗(αi, 1) = (α′

i, α
′′
i )) then α′′

i = γni for some i = 1, . . . , k.
We claim that γni = 1 for all i = 1, . . . , k; i.e., ni = 0, for i = 1, 2, . . . , k.
To see this we argue by contradiction. Suppose the contrary. Then all γni generate

an infinite cyclic subgroup of Z(β′′), namely a subgroup generated by γr where r =
gcd(n1, . . . , nk). In this case we have an isomorphism

π1(N 3) ∼= g∗(π1(N 3), 1) ∼= G× Z ,

where G ⊆ π1(M3) and Z ⊆ π1(X). This forces N 3 = Y × S1 (cf. [He, p. 114]).
Suppose then that all ni = 0. Then

g∗(π1(N 3), 1) ⊆ π1(M3)× 1 .

If the above inclusion is proper then

π1(X) ∼= π1(M3)/p1g∗(π1(N 3), 1)× π1(X) ,

where p1 : π1(M3)× π1(X) −→ π1(M3) is the projection. This however is impossi-
ble. Consequently g∗(π1(N 3), 1) = π1(M3), and hence π1(N 3) ∼= π1(M3) and N 3 =
M3 = Y × S1.

This finishes the case when the genus of S1 and S2 is at least 2.
Finally, if one of Si, i = 1, 2 (or both) is a torus, then the center of one or both of

π1(M3) and π1(N 3) contains at least two copies of Z. This implies that one or both
of M3, N 3 must be the torus S1 × S1 × S1 and we are done.

Let us consider now the case of M3 and N 2. Suppose M3 ×N 2 is decomposable,
i.e.

M3 ×N 2 = S1 × S2 × S1 ,

where S1, S2 are surfaces.
Our considerations are divided into two cases:
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(a) N 2 = S2.

(b) N 2 has genus > 1.

Case (a): It follows that one of the Si, i = 1, 2 must be S2, say S1 = S2. This gives
M3 × S2 = (S2 × S1)× S2 and then M3 = S2 × S1 because π1(M3) ∼= π1(S2)⊕ Z.
Case (b): In analogy with the case of M3,N 3 it follows that, say S1 = N 2 and hence

M3 ×N 2 = (S1 × S1)×N 2

which implies M3 = S1 × S1.
Finally we are left with the case M3,N 1, so that N 1 = S1. Then M3 × S1 =

S1 × S2. It follows that say S1 = S1 × S1 and we can assume S2 ̸= S1 × S1. Indeed,
if S1 = S2 = S1 × S1 then M3 = S1 × S1 × S1. Now

M3 × S1 = (S1 × S2)× S1 .

Using the torus trick once again, we can arrange M3 × R = (S1 × S2)× R and hence
π1(M3) ∼= π1(S2) ⊕ Z. This again implies M3 = S1 × S2 contradicting the inde-
composability of M3.

Proof of Theorem 1.2. In our proof we use a 4-manifold first constructed by Wein-
berger in [We] (see also [KS1, Theorem 2.1]). For completeness of this paper, we
include a brief sketch of the construction with somewhat different reasoning. Let Σ3

be a Seifert homology 3-sphere with a natural free involution (i.e., free Z2-action) and
Rochlin invariant µ(Σ3) = 1. For example, we can let Σ3 = {Σ(5, 7, 11),Σ(3, 5, 13),
Σ(3, 7, 17),Σ(5, 7, 27) etc. . . .} (cf. [NR]).

Now Σ3/Z2 is a Z-homology RP3, and there is a Z[Z2]-homology equivalence
(see [KL, p. 35])

f : Σ3/Z2 −→ RP3 .

Let I denote the interval [0,1], and consider the map h = f × idI : Σ
3/Z2 × I −→

RP3 × I. This map h is a Z[Z2] = Z[π]-homology equivalence. If Γ0(F ), for F =
id: Z[π] → Z[π], is the Cappell-Shaneson homological surgery group (cf. [CS]) then
obviously λ(h) = 0 in Γ0(F ), here λ(h) is the surgery obstruction associated with h.

But Ls,h
0 (π) ∼= Γ0(F ) (cf. [CS, p. 289]) and hence λ(h) = 0 in Ls,h

0 (π).
Consequently

h : Σ3/Z2 × I −→ RP3 × I

is normally bordant to a homotopy equivalence (rel boundary). By identifying the
corresponding boundaries (using the identity mapping) we obtain a homotopy equiv-
alence M −→ RP3 × S1 which we shall also call h.

Claim 2.2. If M̃ is the infinite cyclic covering then there is no closed 3-manifold
N 3 with M̃ = N 3 × R.

Proof of Claim 2.2. Suppose M̃ = N 3 × R. Then there is no difficulty to see that
there is a copy of Σ3/Z2 far away in the R-direction, which is disjoint with say
N 3 × {0} in N 3 × R.

The region between N 3 × {0} and embedded Σ3/Z2 is a homological Z[Z2] h-
cobordism (W;N 3; Σ3/Z2). SinceN 3 and Σ3/Z2 are parallelizable there is a preferred
spin structure on N 3 and Σ3/Z2. One can ask about the possibility of extending this
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structure to the entire W. Whether one can do this or not is determined by the
obstruction in H4(W; ∂W;Z2) ≃ Z2 (cf. [KS1, p. 448]).

There is an analogous obstruction for the existence of a spin structure on the 2-
fold cover (W̃ ;∂W̃ ). By the naturality, the obstruction in H4(W̃ ;∂W̃ ;Z2) ≃ Z2 is the
image of the obstruction in H4(W; ∂W;Z2) under the homomorphism

H4(W; ∂W;Z2) −→ H4(W̃ ;∂W̃ ;Z2)

and hence the obstruction in H4(W̃ ;∂W̃ ;Z2) is trivial. In other words the manifold

(W̃ ;∂W̃ ) is quasi-spin in the terminology of [KS1, p. 449].

In our case (W̃ ;∂W̃ ) is a Z-homological h-cobordism between Σ3 and a homotopy

3-sphere Ñ 3. The Rochlin µ-invariant is invariant with respect to topological quasi-

spin Z-homological-h-cobordism [KS1] and hence µ(Ñ 3) = µ(Σ3). However, this is

a contradiction since µ(Σ3) = 1 and µ(Ñ 3) = 0 by the Casson’s results (cf. [AM]),
and hence Claim 2.2 has been established.

Now let h : M → RP3 × S1 be the constructed homotopy equivalence.

Claim 2.3. The homotopy equivalence h : M → RP3 × S1 is normally bordant to the
identity.

Proof of Claim 2.3. Consider the Wall-Sullivan exact surgery sequence (cf. [Wa]),
which extends to dimension 4 by the results of [FQ]:

· · · −→ Ls
1(Z× Z2)

γ−→ STOP(S1 × RP3)
η−→ [S1 × RP3;G/TOP]

λ−→ Ls
0(Z× Z2)

Here [S1 × RP3;G/TOP] ∼= H2(S1 × RP3;Z2)⊕H4(S1 × RP3;Z) ∼= Z2 ⊕ Z2 ⊕ Z.
By [Sh] and the triviality of Wh(Z2) we have

Ls
1(Z× Z2) ∼= Ls

1(Z2)⊕ Ls
0(Z2)

and

Ls
0(Z× Z2) ∼= Ls

0(Z2)⊕ Ls
3(Z2) ∼= Ls

0(0)⊕ L̃s
0(Z2)⊕ Z2

in which Ls
0(0) and L̃s

0(Z2) are both isomorphic to Z.
Let us briefly analyze the subgroup Ooze(Z× Z2) ⊂ Ls

0(Z× Z2). We recall that
the Ooze(−) subgroup is represented by surgery obstructions determined by closed
manifolds (cf. [HMTW]).

It turns out that Ooze(Z× Z2) ∼= Ls
0(0)⊕ Ls

3(Z2) ∼= Z⊕ Z2. To see this, just note
that Z ∼= Ls

0(0) is represented by the difference of signatures and the existence of the
E8 manifold (cf. [FQ]) implies Ls

0(0) ⊂ Ooze(Z× Z2).

The copy of Z2
∼= Ls

3(Z2) is determined by the codimension one Arf invariant

(cf. [HMTW, Theorem A]) in [RP3;Z2]
λ−→ Ls

3(Z2).

In fact, Z2
∼= [RP3;G/TOP] ∼= H2(RP3;Z2) corresponds to the copy of Z2 ⊂

H2(S1 × RP3;Z2) given by H0(S1;Z2)⊗H2(RP3;Z2).

The remaining copy of Z2 ⊂ H2(S1 × RP3;Z2) corresponds to H1(S1;Z2)⊗
H1(RP3;Z2).
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It turns out that this remaining copy of Z2 is represented by a self-homotopy
equivalence

s : S1 × RP3 −→ S1 × RP3

given by the pinching construction. To be more specific the self-homotopy equivalence
s is given by

s : S1 × RP3 ∨−→ S1 × RP3 ∨ S4 id∨v−→ S1 × RP3 ,

where v : S4 → S1 × RP3 is the nontrivial homotopy class of π4(S
3) ∼= Z2.

The homotopy theoretic argument for this is given in [KS2, Theorem 2.1, Case II,
p. 531].

The argument in [KS2] is given for a self-homotopy equivalence (rel boundary) of
RP3 × I, but it works in precisely the same way for S1 × RP3.

A consequence of the above considerations is that the homotopy (simple) equiva-
lence

h : M −→ S1 × RP3

being an element of STOP(S1 × RP3) must be normally bordant to the identity.

(We recall that Wh(Z× Z2) ∼= Wh(Z2)⊕ K̃0(Z[Z2]) ∼= 0; see [BHS] and [Ha].)
Let (W;M, S1 × RP3) be the corresponding normal bordism:

Figure 1: The normal cobordism (W;M, S1 × RP3).

Multiplying the above normal bordism by idSi : Si → Si (i = 2, 3, 4) we get the
surgery obstruction (cf. [M]):

λ(F × idSi) = λ(F ) · σ∗(Si) = 0.

In particular, S1 × RP3 × Si is s-cobordant to M× Si and hence M× Si = S1 ×
RP3 × Si.

This finishes the proof of Theorem 1.2, once we know that the manifold M is
indecomposable. This however follows from the Claim 2.2. We are then left with the
construction of infinitely many corresponding examples.

To do this we follow [KS1]. Consider the extension of the Wall-Sullivan exact
sequence to dimensional 3 (cf. [JK]):

· · · −→ Ls
0(Z2) −→ SH(RP3) −→ [RP3;G/TOP] −→ Ls

3(Z2) .

Now Ls
0(Z2)∼=Ls

0(0)⊕L̃s
0(Z2)∼=Z⊕Z and L̃s

0(Z2) acts freely on SH(RP3). This implies



8 SLAWOMIR KWASIK and REINHARD SCHULTZ

(a) the existence of infinitely many homology 3-spheres (Σ3
i , ti), i = 1, 2, . . . with

µ(Σ3
i ) = 1 and a free involution ti : Σi → Σi

(b) the ρ-invariant associated with these actions are different, i.e. ρ(Σ3
i , ti)−

ρ(Σ3
j , tj) ̸= 0 for i ̸= j.

The crucial fact needed here is the congruence

µ(Σ3
i ) ≡ ρ(Σ3

i , ti) mod 16

(cf. [NR]).
Given the above we start with Σ3

i /Z2 × I and convert it by topological surgery to
a homotopy equivalence

(Wi, ∂) −→ (RP3 × I, ∂)

which is a Z[Z2]-homology equivalence of boundaries.

Next form a two ended open manifold W̃i by taking infinitely many copies of Wi,
one on the top of the another.

Figure 2: Open manifold W̃i.

There is a natural free proper action of Z on W̃i and we shall let

Wi := W̃i/Z .

The manifold Wi (i = 1, 2, . . .) has the required properties, more precisely, we have
the following:

(1) Wi ≃ S1 × RP3 (i = 1, 2, . . .).

(2) Wi is indecomposable.

(3) Wi ̸= Wj , i ̸= j.

(4) Wi × Sk = S1 × RP3 × Sk (k = 2, 3, 4).

Proof of Theorem 1.3. Suppose M4 × S4 is decomposable. Then there are two cases:

(a) M4 × S4 = S2 ×K6

(b) M4 × S4 = Σ3 ×K5

for some closed manifolds K6 and K5, and a homotopy 3-sphere Σ3.
The case (b) cannot occur because χ(M4 × S4) ̸= 0 and χ(Σ3 ×K5) = 0.
Consider now case (a). Note that one can assume H2(M4) ̸= 0,Z. Suppose then

that H2(M4) ∼= Z⊕ Z. Then

H2(M4 × S4) ∼= H2(M) ∼= H2(S2)⊕H2(K6) .

It follows that the matrix for the standard intersection form on H2(M) is given by
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0 1
1 0

)
. This however implies M = S2 × S2 which is a contradiction.

Next, suppose H2(M4) ∼= ⊕
r
Z, where r ⩾ 3. In this case the matrix for the inter-

section form on H2(M4) is given by
0 1 1 · · · 1
1 0 0 · · · 0
1 0 0
...

...
. . .

1 0 0

 .

This again is a contradiction because the determinant of the displayed matrix is zero.
The case of M4 × S3 is easier. The only possible decomposition of M4 × S3 is

given by M4 × S3 = Σ3 × S2 × S2 for a homotopy 3-sphere Σ3.
Finally, M4 × S2 can only be decomposed as M4 × S2 = S2 × S2 × S2.
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