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Abstract
We introduce the symmetricity notions of symmetric h-

monoidality, symmetroidality, and symmetric flatness. As shown
in our paper [PS14a], these properties lie at the heart of the
homotopy theory of colored symmetric operads and their alge-
bras. In particular, the former property can be seen as the analog
of Schwede and Shipley’s monoid axiom for algebras over sym-
metric operads and allows one to equip categories of such alge-
bras with model structures, whereas the latter ensures that weak
equivalences of operads induce Quillen equivalences of categories
of algebras. We discuss these properties for elementary model
categories such as simplicial sets, simplicial presheaves, and
chain complexes. Moreover, we provide powerful tools to pro-
mote these properties from such basic model categories to more
involved ones, such as the stable model structure on symmetric
spectra. This paper is also available at arXiv:1510.04969v3.

1. Introduction

Model categories provide an important framework for homotopy-theoretic com-
putations. Algebraic structures such as monoids, their modules, and more generally
operads and their algebras provide means to concisely encode multiplication maps
and their properties such as unitality, associativity, and commutativity. Homotopy
coherent versions of such algebraic structures form the foundation of a variety of
mathematical areas, such as algebraic topology, homological algebra, derived alge-
braic geometry, higher category theory, and derived differential geometry. This moti-
vates the following question: what conditions on a monoidal model category (C,⊗)
are needed for a meaningful homotopy theory of monoids, modules, etc.? The first
answer to this type of question was given by Schwede and Shipley’s monoid axiom,
which guarantees that for a monoid R in C, the category ModR(C) of R-modules
carries a model structure transferred from C, see [SS00]. The monoid axiom asks
that transfinite compositions of pushouts of maps of the form Y ⊗ s, where s is an
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acyclic cofibration and Y is any object are again weak equivalences. Moreover, given
two weakly equivalent monoids R

∼→ S, the categories ModR and ModS are Quillen
equivalent if Y ⊗X → Y ′ ⊗X is a weak equivalence for any weak equivalence Y → Y ′

and any cofibrant object X.

This paper is devoted to a thorough study of the homotopy-theoretic behavior of
more general algebraic expressions in a model category, such as

X⊗n
Σn

, Y ⊗Σn
X⊗n, Z ⊗Σn1×···×Σne

(X⊗n1
1 ⊗ · · · ⊗X⊗ne

e ), (1.1)

where X,Y, Z ∈ C, Y has an action of Σn, Z has an action of
∏

Σni , and the sub-
scripts denote coinvariants by the corresponding group actions. More specifically,
we introduce symmetricity properties for a symmetric monoidal model category C:
symmetric h-monoidality, symmetroidality, and symmetric flatness.

Symmetric h-monoidality requires, in particular, that for any object Y as above
and any acyclic cofibration s in C, the map

Y ⊗Σn s□n (1.2)

is a couniversal weak equivalence, i.e., a map whose cobase changes are weak equiv-
alences. Here s□n is the n-fold pushout product of s, which is a monoidal product
on morphisms. Symmetric h-monoidality is a natural enhancement of h-monoidality
introduced by Batanin and Berger in [BB13].

Symmetric flatness requires that for any Σn-equivariant map y whose underlying
map in C is a weak equivalence and any cofibration s ∈ C, the map

y □Σn s□n (1.3)

is a weak equivalence. This implies that y ⊗Σn X⊗n is a weak equivalence for any
cofibrant object X. Among other things this means that the Σn-quotients in (1.1)
are also homotopy quotients. See Definitions 4.2.4, 4.2.2 for the precise definitions.

Expressions as in (1.1) are of paramount importance for handling monoids and,
more generally, algebras over colored symmetric operads. Indeed, a free commutative
monoid, more generally, a free algebra over a (colored) symmetric operad, involves
such terms. In [PS14a], we show that symmetric h-monoidality ensures the existence
of a transferred model structure on algebras over any symmetric colored operad, while
symmetric flatness yields a Quillen equivalence of algebras over weakly equivalent
operads. We also introduce symmetroidality in this paper, which can be used to
govern the behavior of cofibrant algebras over operads.

Up to transfinite compositions present in the monoid axiom, which we treat sep-
arately, symmetric h-monoidality and symmetric flatness can be regarded as natural
enhancements of the above conditions of Schwede and Shipley. However, it turns out
to be hard to establish the symmetric h-monoidality, symmetroidality, and symmetric
flatness for a given model category C directly. Therefore, the main goal of this paper
is to provide a powerful and convenient set of tools that enable us to quickly promote
these properties through various constructions on model categories.

Theorem 1.4. (See Theorem 4.3.8 for the precise statement.) To check that C is
symmetric h-monoidal or symmetric flat it is enough to consider (1.2) and (1.3) for
generating cofibrations s.
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Theorem 1.5. (See Theorem 5.8 for the precise statement.) Suppose F : C ⇄ D :G
is an adjunction of symmetric monoidal model categories that is sufficiently compat-
ible with the monoidal products, such as D = ModR(C), where R is a commutative
monoid in C. Then the symmetric h-monoidality and symmetric flatness of C imply
the one of D.

Theorem 1.6. (See Theorem 6.5 for the precise statement.) Given a monoidal left
Bousfield localization

C ⇄ D = L⊗
S (C),

the symmetric h-monoidality and symmetric flatness of C imply the one of D.

As an illustration of these principles, consider the problem of establishing the
symmetric h-monoidality, symmetroidality, and symmetric flatness for the monoidal
model category of simplicial symmetric spectra. This allows one to establish the
homotopy theory of operads and their algebras in spectra, such as commutative ring
spectra or E∞-ring spectra. First, by direct inspection (§7.1) one establishes these
properties for the generating (acyclic) cofibrations of simplicial sets, i.e., ∂∆n → ∆n

and Λn
k → ∆n. By Theorem 4.3.8, this shows that sSet is symmetric h-monoidal,

symmetroidal, and flat. Next, again by direct inspection, one can show that pos-
itive cofibrations of symmetric sequences (i.e., cofibrations that are isomorphisms
in degree 0) form a symmetric h-monoidal, symmetric flat class. Via Theorem 5.8
these properties can be transferred to modules over a (fixed) commutative monoid
in symmetric sequences (specifically, the sphere spectrum), equipped with the pos-
itive unstable (i.e., transferred) model structure. Finally, by applying Theorem 6.5,
one establishes them for the left Bousfield localization of the positive unstable model
structure with respect to the stabilizing maps, which gives the positive stable model
structure on simplicial symmetric spectra. These steps are carried out in detail for
spectra in an abstract model category in [PS14b].

We begin by recalling some basic notions pertaining to model categories in Sec-
tion 2 and the monoidal structure on the arrow category Ar(C) (§3.1). We then recall
the notion of h-monoidality due to Batanin and Berger [BB13], and the concept
of flatness, which is well-known and has been independently studied by Hovey, for
example, see [Hov14]. In Section 4, we define the above-mentioned symmetricity con-
cepts. This extends the work of Lurie [Lur] and Gorchinskiy and Guletskĭı [GG16].
An important technical key is Theorem 4.3.8, which shows the stability of these prop-
erties under weak saturation. This extends a similar statement of Gorchinskiy and
Guletskĭı [GG16, Theorem 5] about stability under weak saturation of a special case
of symmetroidality (which we also prove in Theorem 4.3.8). More recent accounts of
this result include White [Whi17, Appendix A] and Pereira [Per16, §4.2]. Our proof
uses similar ideas, but is shorter. The stability of the symmetricity and various other
model-theoretic properties under transfers and left Bousfield localizations is shown
in §5 and §6. Given that these two methods are the most commonly used tools to
construct model structures, the main results of these sections (Proposition 5.7, Theo-
rem 5.8, Proposition 6.4, Theorem 6.5) should be useful to establish the symmetricity
for many other model categories not considered in this paper. For example, the com-
bination of h-monoidality and flatness allows to carry through the monoid axiom to a
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left Bousfield localization. This is illustrated in Section 7, where we discuss the sym-
metricity properties of model categories such as simplicial sets, simplicial modules,
and simplicial (pre)sheaves, as well as topological spaces and chain complexes.

Acknowledgments
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White for helpful conversations. This work was partially supported by the SFB 878
grant.

2. Model categories

In this section we recall parts of the language of model categories that is used
throughout this paper. As for the definition of a model category we follow [Hov99]
or [Hir03]. The classes of acyclic (co)fibrations are denoted AF (AC, respectively).
The weak saturation (closure under pushouts, transfinite compositions, and retracts
[Lur09, Definition A.1.2.2]) of some class M of morphisms is denoted cof(M). The
class of maps having the right lifting property with respect to all maps in M is
denoted inj(M). Different model structures on the same category are distinguished
using superscripts.

Definition 2.1. A model category is quasi-tractable if its (acyclic) cofibrations are
contained in the weak saturation of (acyclic) cofibrations with cofibrant source (and
target).

A model category C is pretty small if there is a cofibrantly generated model cat-
egory structure C′ on the same category as C such that WC = WC′ , CC ⊃ CC′ and
the domains and codomains X of some set of generating cofibrations of C′ are com-
pact (also known as finitely presentable), i.e., Mor(X,−) preserves arbitrary filtered
colimits.

Pretty smallness differs from the notion of compact generatedness [MP12, Defini-
tion 15.2.1] only at the level of technical detail. It is a convenient assumption ensuring
that weak equivalences are stable under colimits of chains (Lemma 2.2). Moreover, all
the basic model categories in Section 7 (except for topological spaces, which can be
treated by a more narrowly tailored compactness condition). Moreover, pretty small-
ness is stable under transfer and localization. Any other compactness condition on a
model category satisfying these properties can be used instead of pretty smallness.

Lemma 2.2. Let λ be an ordinal and f : λ→ Ar(C) a cocontinuous chain of mor-
phisms in a model category, i.e., a sequence of commutative squares

Xi

fi
��

xi // Xi+1

fi+1
��

Yi yi

// Yi+1

indexed by i ∈ λ such that fi = colimj<i fj for all limit ordinals i ∈ λ. Set f∞ =
colim fi.
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(i) [CS02, Proposition I.2.6.3] If every fi (equivalently, only f0) and every map
Xi+1 ⊔Xi Yi → Yi+1 is an (acyclic) cofibration, then so is f∞.

(ii) If cofibrations in C are generated by cofibrations with compact domain and
codomain and every fi is an acyclic fibration, then so is f∞.

(iii) If C is pretty small and every fi is a weak equivalence, then so is f∞. In partic-
ular, colimits of chains are homotopy colimits. The same is true for arbitrary
filtered colimits.

(iv) If C is pretty small then weak equivalences are stable under transfinite composi-
tions, i.e., for any cocontinuous chain X : λ→ C of weak equivalences the map
X0 → colimX is also a weak equivalence.

Proof. (ii): Following the proof of [Hov99, Corollary 7.4.2], consider

A //

��

Xs

��

B // Ys,

where A→ B is a generating cofibration and s =∞. Since A and B are compact, the
horizontal maps factor through some finite stage Xα, and Yβ . We can take α = β,
increasing them if necessary. By further increasing α we can make the above diagram
commutative for s = α. Since Xα → Yα is an acyclic fibration, we have a lifting B →
Xα, which gives a lifting of the original diagram after postcomposing with Xα → X∞.

(iii): We may assume that C is such that its generating cofibrations have compact
(co)domains. Suppose Qf → f is a cofibrant replacement of f in the projective struc-
ture. Part (i) shows that the transfinite composition of Qf is a weak equivalences,
whereas part (ii) shows that the filtered colimit of the maps QXi → Xi and QYi → Yi

is a weak equivalence. (iv) is a particular case of (iii).

The notion of h-cofibrations due to Batanin and Berger recalled below is the basis
of (symmetric) h-monoidality (Definitions 3.2.2, 4.2.4), which is a key condition in the
admissibility results of a subsequent paper [PS14a, Theorem 5.11] The key point of
h-cofibrations is that in left proper model categories h-cofibrations coincide with maps
along which cobase changes are homotopy cobase changes. In fact, many results of this
paper still hold for nonproper model categories if we replace h-cofibrations with such
maps, however, our main supply of h-cofibrations comes from h-monoidal categories,
which are automatically left proper.

Definition 2.3. [BB13, Definition 1.1] A map f : X → X ′ in a model category C is
an h-cofibration if for any pushout diagram

X
f ��

// A

��

g
// B

��

X ′ // A′ g′
// B′

with a weak equivalence g, g′ is also a weak equivalence. An acyclic h-cofibration is
a map that is both an h-cofibration and a weak equivalence.

Example 2.4. In the category sSet, equipped with its standard model structure,
a map is an (acyclic) cofibration if and only if it is an (acyclic) h-cofibration.



364 DMITRI PAVLOV and JAKOB SCHOLBACH

By Lemma 2.5(i), we only need to prove the if-part. Suppose a noninjective map
f : A→ B is an h-cofibration. Then A has two nondegenerate simplices a, a′ ∈ An

with f(a) = f(a′). Since any cofibration is an h-cofibration and h-cofibrations are
stable under composition by Lemma 2.5(ii), we may first replace A by the union of all
faces of a and a′ and then by Sn ∨ Sn, using the pushout along the map A→ Sn ∨ Sn

collapsing all proper faces of a and a′ to the base point. The pushout of B ⊔Sn∨Sn Sn

(using the obvious collapsing map) is isomorphic to B. If B was also the homotopy
pushout, there was a homotopy fiber square of derived mapping spaces

RMap(Sn ∨ Sn,K(Z, n)) RMap(Sn,K(Z, n))oo

RMap(B,K(Z, n))

f∗
OO

RMap(B,K(Z, n)),

OO

id
oo

contradicting the fact that the path components of these spaces are Z⊕ Z, Z, and
Hn(B,Z), respectively.

Usually, h-cofibrations form a strictly larger class than cofibrations, though. We
don’t know an effective criterion characterizing h-cofibrations.

In the following lemma, we write Ch and ACh for the classes of h-cofibrations and
acyclic h-cofibrations. We denote the class of maps f such that all pushouts along f
are homotopy pushouts by Ci. Similarly, ACi := Ci ∩W.

Lemma 2.5. Suppose C is a model category.

(i) We have inclusions

Ci ⊂ Ch, AC ⊂ ACi ⊂ ACh.

Moreover, C is left proper if and only if C ⊂ Ci (equivalently, C ⊂ Ch), in which
case we have

Ci = Ch, AC ⊂ ACi = ACh.

(ii) The classes of Ci, Ch, and ACi are stable under composition, pushouts, and
retracts. The same is true for ACh if C is left proper.

(iii) The class ACi consists precisely of the couniversal weak equivalences, i.e., weak
equivalences that are stable under arbitrary pushouts.

(iv) If weak equivalences are stable under colimits of chains (e.g., if C is pretty small,
see Lemma 2.2(iii)), then so are Ch, Ci, ACi, and ACh. Thus, the first three
among these classes are weakly saturated, and the same is true for ACh if C is
in addition left proper.

Proof. We use the following well-known fact: given a weak equivalence f : A→ B, a
pushout f ′ : A′ → A′ ⊔A B is a homotopy pushout if and only if f ′ is a weak equiva-
lence. This follows from applying the 2-out-of-3-property of weak equivalences to

f ′ : A′ ∼→ A′ ⊔hA A
∼→ A′ ⊔hA B → A′ ⊔A B.

(The first map is always a weak equivalence by computing A′ ⊔hA A as QA′ ⊔QA QA,
where QA→ QA′ is a cofibrant replacement of the map A→ A′, i.e., a cofibration
with cofibrant source.)
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Parts (i) and (ii) are due to Batanin and Berger [BB13, Proposition 1.6, Lemmas
1.2, 1.3, 1.7]. (The characterization of left properness in (i) is formulated for Ch

instead of Ci in loc. cit., but holds as stated above by the above fact.) (ii) also implies
the “⇒” implication of (iii). The converse follows from the above fact.

(iv): It is enough to treat the non-acyclic classes. We first show the claim for Ch,
using the notation of Lemma 2.2. For an object S under X∞, there is a functorial
isomorphism S ⊔X∞ Y∞ = colimS ⊔Xi Yi. Therefore, the pushout of a weak equiva-
lence s : S → S′ under X∞ along f∞ is the filtered colimit of the pushouts of s ⊔Xi Yi.
Each of those is a weak equivalence since fi is an h-cofibration. By assumption, their
colimit is also a weak equivalence, so f∞ is an h-cofibration. A similar argument
works for Ci by commuting filtered homotopy colimits and homotopy pushouts.

Lemma 2.6. Suppose G : D → C is a functor between model categories that creates
weak equivalences (for example, if the model structure on D is transferred from C). If
G preserves pushouts along a map d ∈ Mor(D) and G(d) is an (acyclic) h-cofibration,
then d is an (acyclic) h-cofibration.

Proof. Given a pushout f ′ in D of a weak equivalence f under dom(d), we apply G
and get a pushout in C. As G(d) is an h-cofibration, G(f ′) is a weak equivalence,
hence f ′ is a weak equivalence and therefore d is an h-cofibration. The acyclic part
is similar, using that G detects weak equivalences.

3. Monoidal model categories

In this section, we study certain properties of monoidal model categories. We begin
with a discussion of the pushout product, which is the relevant monoidal structure
on arrows in a monoidal category. We then recall the concepts of h-monoidality (due
to Batanin and Berger) and flatness (due to Hovey) and establish a weak saturation
property. In the case of a symmetric monoidal model category, these notions will be
refined in Section 4.

3.1. The pushout product
In this section, we define an endofunctor Ar on the bicategory of cocomplete mon-

oidal categories, cocontinuous strong monoidal functors, and monoidal natural trans-
formations. Roughly speaking, Ar sends a category C to its category of morphisms
equipped with a new monoidal structure, the pushout product. The underlying cate-
gory of Ar(C) is the category of functors Fun(2, C), where 2 := {0→ 1} is the arrow
category. Its objects are morphisms in C and its morphisms are commutative squares
in C. If C is (co)complete, then Ar(C) is also (co)complete, because (co)limits in cate-
gories of functors are computed componentwise. In this section we study the monoidal
structure of Ar(C) given by the pushout product and the projective model structure
on Ar(C).

Definition 3.1.1. Given a cocomplete monoidal category C, its (cocomplete) cate-
gory Ar(C) of morphisms can be endowed with a monoidal structure (the pushout
product) as follows. Interpret an object in Ar(C) as a functor 2→ C. A finite fam-
ily f : I → Ar(C) of objects in Ar(C) (i.e., morphisms fi : Xi → Yi in C) gives a
functor 2I → CI → C, where CI → C is the monoidal product on C. We interpret this
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functor as a cocone on the category 2I \ {1I} (observe that 1I is the terminal object
of the category 2I) and the monoidal product of f is defined to be the universal map

□ fi : ⊡ fi →
⊗

i Yi associated to this cocone, interpreted as an object in Ar(C).
This defines a monoidal structure on Ar(C).

For example, the pushout product of two morphisms f1 and f2 is

f1 □ f2 : f1 ⊡ f2 = X1 ⊗ Y2 ⊔X1⊗X2 Y1 ⊗X2 → Y1 ⊗ Y2.

We obtain a bifunctor

□ : Ar(C)×Ar(C)→ Ar(C). (3.1.2)

Remark 3.1.3. If (C,⊗) is braided or symmetric, then so is (Ar(C),□). Moreover, if ⊗
preserves colimits of a certain type (e.g., sifted colimits) in one or both variables, then
so does □. For example, if C is a closed monoidal category, then so is Ar(C), with the
internal hom Hom(f1, f2) (which one can call the pullback hom from f1 to f2) being
the morphism Hom(Y1, X2)→ Hom(Y1, Y2)×Hom(X1,Y2) Hom(X1, X2). For brevity of
the exposition, we only spell out the nonsymmetric, nonclosed case in the sequel.

Proposition 3.1.4. If F is a cocontinuous strong monoidal functor between cocom-
plete monoidal categories, then so is Ar(F ).

Proof. The functorAr(F ) is cocontinuous because colimits of diagrams are computed
componentwise. To prove strong monoidality, suppose f : I → Ar(C) is a finite family
of objects in Ar(C). The diagram

2I
f

//

id
��

CI ⊗
//

F I

��

C

F
��

2I
F (f)

// DI ⊗
// D

is commutative, meaning the left square is strictly commutative and the right square
is commutative up to the canonical natural isomorphism coming from the monoidal
structure on the functor F . The pushout product□ f is the universal map associated

to the cocone 2I
f−→CI ⊗−→C with the apex 1I ∈ 2I , and similarly for □Ar(F )(f).

Since F is cocontinuous, it preserves universal maps associated to cocones. Thus, the
image of the universal morphism associated to the cocone 2I → CI → C is also the
universal morphism associated to the cocone 2I → CI → C → D. The latter cocone
is canonically isomorphic to the cocone 2I → DI → D, which is the cocone defin-
ing □Ar(F )(f).

Definition 3.1.5. A morphism in the category Ar(C) for some monoidal category C
is a pushout morphism if the corresponding commutative square in C is cocartesian.

Proposition 3.1.6. For any cocomplete closed monoidal category C pushout mor-
phisms in Ar(C) are closed under the pushout product.

Proof. A pushout morphism can be presented as a functor 2× 2→ C, where the first 2
is responsible for the morphism direction in Ar(C) and the second 2 is responsible
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for the morphism direction in C. Schematically, we denote this by the commutative
diagram

00 //

��

10

��

01 // 11.

A finite family of pushout morphisms f : I → Mor(Ar(C)) gives a functor (2× 2)I →
CI , which we compose with the monoidal product CI → C to obtain a functor F : (2×
2)I → C. Consider now the category DC of all full subcategories A of (2× 2)I that are
downward closed (or convex in the sense of Goodwillie): if Y ∈ A andX → Y is a mor-
phism in (2× 2)I , then also X ∈ A. Morphisms in DC are inclusions of subcategories.
Taking the colimit of the functor F restricted to the given full subcategory A yields
a cocontinuous functor Q : DC→ C. In particular, the set of all inclusions A→ B
in DC that are mapped to isomorphisms by Q forms a subcategory of DC closed
under cobase changes of the underlying sets.

Suppose that B ∈ DC is obtained from A ∈ DC by adding an element W × 11
and taking the downward closure, where W ∈ (2× 2)I\i for some i ∈ I is such that
W × {00, 01, 10} ⊂ A. The resulting inclusion A→ B gives an isomorphism after we

apply Q because the commutative square 2× 2
×W−−→(2× 2)I

F−−→C is a cocartesian
square because each fi is a cocartesian square and the monoidal product with a
fixed object preserves cocartesian squares. This uses the closedness of the monoidal
product.

Consider the commutative square in DC, whose right entries are obtained by taking
the left entries, replacing 0 in the first components by 1, and downward closing:

{00, 01}I \ {01}I //

��

{00, 01, 10, 11}I \ {01, 11}I

��

{00, 01}I // {00, 01, 10, 11}I .

The pushout product □fi is obtained by applying Q to the following map:

{00, 01, 10, 11}I \ {01, 11}I ⊔{00,01}I\{01}I {00, 01}I → {00, 01, 10, 11}I .

We present this morphism in DC as a composition of pushouts of generating maps
explained in the previous paragraph, which implies that the map itself is sent to an
isomorphism by Q. Such a presentation can be obtained by using the rule explained
above to add all elements of {01, 11}I \ {01}I to the source by induction on the num-
ber of 11’s. If there are no 11’s, the element {01}I belongs to the bottom left corner,
proving our claim. By induction, assuming that all tuples with less than k elements
equal to 11 have already been added, take any tuple with exactly k components equal
to 11 and observe that by replacing this component with 00, 01, or 10 we obtain a
tuple already present in our set. Thus, we can also add the tuple under consideration
to our set.

The elementary proof of the following lemma is left to the reader. Together with
Proposition 3.1.6, it can be rephrased by saying that x□− preserves finite cellular
maps.
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Lemma 3.1.7. Given two composable maps y and z, and another map x, x□ (y ◦
z) is the composition of the pushout of x□ z along x⊡ z → x⊡ (y ◦ z), followed by
x□ y.

We now extend the formation of arrow categories to monoidal model categories.
A strong monoidal left Quillen functor between monoidal model categories is a left
Quillen functor F that is also equipped with the structure of a strong monoidal func-
tor, i.e., functorial isomorphisms F (X ⊗ Y ) ∼= F (X)⊗ F (Y ) compatible with the unit
and associativity of ⊗. Monoidal model categories, strong monoidal left Quillen func-
tors, and monoidal natural transformations form a bicategory. (As in Remark 3.1.3,
there are obvious variants for (symmetric) monoidal model categories, which we will
not spell out explicitly.)

The following proposition was shown independently by Hovey under the additional
assumption that C is cofibrantly generated [Hov14, Proposition 3.1].

Proposition 3.1.8. The functor Ar (Definition 3.1.1) descends to the bicategory of
monoidal model categories, as described in the proof below.

Proof. Given a closed monoidal model category C, the monoidal category Ar(C) is
complete and cocomplete. We equipAr(C) with the projective model structure, which
coincides with the Reedy model structure, where the nonidentity arrow 0→ 1 in 2 is
declared to be positive. In particular, the projective model structure on Ar(C) exists.
Fibrations and weak equivalences are defined componentwise. (Acyclic) cofibrations
f : g → h are commutative squares

W
p−−→ Yyg

yh

X
q−−→ Z

such that p and the universal map Y ⊔W X → Z are both (acyclic) cofibrations,
hence q is also an (acyclic) cofibration. In particular, cofibrant objects in Ar(C) are
morphisms g : W → X such that W is cofibrant and g is a cofibration in C.

We now prove the pushout product axiom for Ar(C) from the one of C (Defini-
tion 3.2.1). Actually, we show that the pushout product of a finite nonempty fam-
ily f : I → Mor(Ar(C)) of cofibrations in Ar(C) is a cofibration, and if one of the
cofibrations is acyclic, then the resulting cofibration is also acyclic. The infrastruc-
ture of the following proof is the same as in the proof of Proposition 3.1.6. Just like
there we get a functor F : (2× 2)I → C and a cocontinuous functor Q : DC→ C. Let

A −−→ A′ya

ya′

B −−→ B′

be a cocartesian square in DC, i.e., B′ = A′ ∪A B. If Q(a) is a cofibration, then
so is Q(a′). Suppose that for every i ∈ I we select one of the morphisms {00} →
{00, 10} or {00, 01, 10} → {00, 01, 10, 11} in DC(2× 2). Then the pushout product of
these morphisms belongs to the above subcategory because of the pushout product
axiom for C. The first morphism above expresses the fact that the top arrow of a
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cofibration in Ar(C) is itself a cofibration and the second morphism corresponds
to the canonical map from the pushout to the bottom right corner, which is also a
cofibration. The pushout product mentioned above always has the form A \ {x} → A,
where the individual components of x are 10 respectively 11, according to the choice
made above.

The pushout product of f is the functor Q applied to the commutative square

{00, 01, 10, 11}I \ {10, 11}I \ {01, 11}I //

��

{00, 01, 10, 11}I \ {01, 11}I

��

{00, 01, 10, 11}I \ {10, 11}I // {00, 01, 10, 11}I .

It remains to prove that Q applied to the top map and the map from the pushout
of the left and top arrows (i.e., the union of all corners except for the bottom right
corner) to the bottom right corner is a cofibration. We present the morphism in DC
under consideration as a composition of pushouts of generating maps explained in
the previous paragraph. This implies that the map itself is sent by Q to a cofibration.

For the top map, such a presentation can be obtained by using the rule explained
above to add all elements of {10, 11}I \ {11}I to the source by induction on the
number of 11’s. Assume that all tuples with less than k 11’s have already been added
and take any tuple with exactly k 11’s. By applying the rule explained in the previous
paragraph to the family of maps that are either {00} → {00, 10} if the corresponding
component is 10 or {00, 01, 10} → {00, 01, 10, 11} if the corresponding component
is 11 we can conclude that the tuple under consideration can be added to our set.

For the map from the pushout of the top and left arrows to the bottom right corner
observe that we only need to add the element {11}I , which is possible because the
conditions for the corresponding rule are satisfied.

For acyclic cofibrations observe that the rule in the previous paragraph now guar-
antees that the resulting map is an acyclic cofibration after we apply Q, precisely
because the pushout product in C of a family of cofibrations, at least one of which
is acyclic, is again an acyclic cofibration. The rest of the proof is exactly the same,
because the category of acyclic cofibrations is also closed under pushouts.

Finally, Ar descends to strong monoidal left Quillen functors: if F : C → D is such
a functor, then the induced functor Ar(F ) : Ar(C)→ Ar(D) is cocontinuous and
strong monoidal (Proposition 3.1.4). It is a left Quillen functor because F preserves
(acyclic) cofibrations and pushouts.

3.2. h-monoidality and flatness

Definition 3.2.1. A (symmetric) monoidal model category is a closed (symmetric)
monoidal category C such that ⊗ : C × C → C is a left Quillen bifunctor [Hov99,
Definition 4.2.6]. This is also referred to as the pushout product axiom. (Thus, unlike
[Hov99, Definition 4.2.6], we do not require the unit axiom, which asks that (Q(1)→
1)⊗X is a weak equivalence for any cofibrant object X, because it is a special case
of flatness, see Definition 3.2.4).

We say C satisfies the monoid axiom if the class cof(C ⊗ACC) consists of weak
equivalences in C [SS00, Definition 3.3].

In this section, we discuss the notion of h-monoidality and flatness of a monoidal
model category C. The notion of h-monoidality was introduced by Batanin and Berger
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[BB13, Definition 1.7]. Essentially, h-monoidality ensures that category of modules
over some monoid R ∈ C carries a model structure. This statement is referred to as
the admissibility of the monoid R. The admissibility of monoids is also guaranteed
by the monoid axiom [SS00, Theorem 4.1], which is a combination of two weak
saturation properties, namely weak saturation by transfinite compositions and by
pushouts. In this paper, we focus on admissibility conditions using pretty smallness
and h-monoidality, which individually govern the homotopical behavior of transfinite
compositions and of (certain) pushouts, respectively. The standard basic model cat-
egories are h-monoidal (Section 7). On the other hand, h-monoidality is very robust
since is stable under transfer and localization (Propositions 5.7(i), and 6.4(iv)). We
don’t know a similar statement for the monoid axiom (without the detour via pretty
smallness and h-monoidality).

Definition 3.2.2. A class S of (acyclic) cofibrations in a monoidal category C is
(acyclic) h-monoidal if for any object C ∈ C and any s : S1 → S2 in S, the map

C ⊗ s : C ⊗ S1 → C ⊗ S2

is an (acyclic) h-cofibration (Definition 2.3). The category C is h-monoidal if the
classes of (acyclic) cofibrations are (acyclic) h-monoidal.

Any h-monoidal model category is left proper [BB13, Lemma 1.8]. The following
immediate consequence of Lemma 2.5(iii), (iv) is very similar to [BB13, Proposi-
tion 2.5].

Lemma 3.2.3. If C is a h-monoidal model category whose acyclic h-cofibrations are
stable under transfinite compositions (for example, C is pretty small), then C satisfies
the monoid axiom.

We now define flatness, which is the main condition in rectification of modules over
monoids. Its symmetric strengthening, symmetric flatness, plays the corresponding
role for algebras over symmetric operads [PS14a, Theorem 7.5].

Definition 3.2.4. A class S of cofibrations in a monoidal model category C is flat if
for all weak equivalences y : Y1 → Y2 in C and all s : S1 → S2 in S, the following map
is a weak equivalence:

y □ s : Y2 ⊗ S1 ⊔Y1⊗S1 Y1 ⊗ S2 → Y2 ⊗ S2.

The category C is flat if the class of all cofibrations is flat.

For example, if C is flat then for any cofibrant object X ∈ C and any weak equiva-
lence y ∈ C, the map y ⊗X is a weak equivalence. In this slightly weaker form, flatness
is independently due to Hovey [Hov14, Definition 2.4]. Actually, the notion appears
already in [SS00, Theorem 4.3]. We use the above slightly stronger definition since
it is stable under weak saturation of S (Theorem 3.2.7(ii)). This is useful to show
the stability of flatness under transfer (Proposition 5.7(ii)) and localization (Propo-
sition 6.4(ii)).

If all objects in a monoidal model category C are cofibrant then C is left proper
[Hir03, Corollary 13.1.3], quasi-tractable, h-monoidal [BB13, Lemma 1.8], and flat
[SS00, Remark 3.4]. In general, though, we avoid cofibrancy hypotheses where possi-
ble, in particular, we do not in general assume that the monoidal unit 1 is cofibrant.
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We finish this section with two weak saturation properties. A slightly weaker state-
ment than Theorem 3.2.7(ii) is independently due to Hovey [Hov14, Theorem A.2].
The following lemma is the basis of the interaction of h-monoidality and flatness, see,
for example, the proof of Theorem 3.2.7(ii).

Lemma 3.2.5. Let C be a left proper monoidal model category. Let

A //

a

��

B

b
��

A′ // B′

be a cocartesian square in C. Let y : Y → Y ′ ∈ C be any morphism such that y □ a is a
weak equivalence in C, and both Y ⊗ a and Y ′ ⊗ a are h-cofibrations (Definition 2.3).
Then y □ b is a weak equivalence.

Proof. Consider the commutative diagram

Y ⊗A
y⊗A

//

Y⊗a

��

Y ′ ⊗A

α

��

Y ′⊗a

((

Y ⊗A′ // y ⊡ a
y□a

// Y ′ ⊗A′.

(3.2.6)

As usual, ⊡ denotes the domain of the pushout product □. By assumption, Y ⊗ a is
an h-cofibration, hence so is α by Lemma 2.5(ii). Likewise, Y ′ ⊗ a is an h-cofibration.
Hence, the top square and outer rectangle in the diagram below are homotopy
pushouts (Lemma 2.5(i)) and so is the bottom square. The map y □ b is therefore
also a weak equivalence:

Y ′ ⊗A //

α h-cofib.

��

h-cofib.

��

Y ′ ⊗B

��

y ⊡ a //

y□a∼
��

y ⊡ b

y□b

��

Y ′ ⊗A′ // Y ′ ⊗B′.

Theorem 3.2.7. Let C be a left proper, pretty small monoidal model category. We
say some property of a class S of morphisms in C is stable under saturation if it also
holds for the weak saturation cof(S).

(i) The property of S of being (acyclic) h-monoidal is stable under saturation.

(ii) If S is h-monoidal, then the flatness of S is stable under saturation. In partic-
ular, if some class of generating cofibrations in C is flat and h-monoidal, then
C is flat.

Remark 3.2.8. The proof below shows that the left properness assumption on C is not
necessary to show the non-acyclic part in (i). This also implies that C is h-monoidal
(asssuming pretty smallness, but not left properness) if some sets IC (respectively, JC)
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of generating (acyclic) cofibrations are (acyclic) h-monoidal, since any h-monoidal
model category is left proper.

Proof. (i): This follows from Lemma 2.5(iv) and the cocontinuity of ⊗.
(ii): For a weak equivalence y : Y → Y ′ in C and any s ∈ S, y □ s is a weak equiv-

alence by assumption. By h-monoidality of S, Y ⊗ s and Y ′ ⊗ s are h-cofibrations.
Thus, for any pushout s′ of s, y □ s′ is a weak equivalence by Lemma 3.2.5. For a
transfinite composition s∞ of maps si, y □ s∞ is the transfinite composition of y □ si
by preservation of filtered colimits in the second variable. Therefore it is again a weak
equivalence using pretty smallness (Lemma 2.2). As usual, retracts are clear.

Corollary 3.2.9. Any quasi-tractable, flat, pretty small monoidal model category C
that satisfies the nonacyclic part of h-monoidality also satisfies the acyclic part of
h-monoidality.

Proof. The nonacyclic part of h-monoidality implies left properness by Lemma 2.5(i).
We can thus apply Theorem 3.2.7(i): it is enough to show that for any object X and
any generating acyclic cofibration s : S → S′, the map X ⊗ s is a weak equivalence.
By quasi-tractability we may assume that S (and S′) is cofibrant. Pick a cofibrant
replacement q : QX → X. Then X ⊗ s is a weak equivalence since QX ⊗ s is one (by
the pushout product axiom) and q ⊗ S and q ⊗ S′ are weak equivalences in C by
flatness.

Remark 3.2.10. One shows similarly that any quasi-tractable flat model category that
satisfies the nonacyclic part of the pushout product axiom also satisfies the acyclic
part of the pushout product axiom.

4. Symmetricity properties

In this section we study three properties of a symmetric monoidal model category
C: symmetric h-monoidality, symmetroidality and symmetric flatness. As the name
indicates, these involve the formation of pushout powers, i.e., expressions of the form

□
n

f := f□n := f □ · · ·□ f︸ ︷︷ ︸
n times

.

After settling preliminaries on objects with a finite group action, these properties are
defined in §4.2. The main result of §4.3 is Theorem 4.3.8 which shows the stability of
these notions under weak saturation. This is a key step in showing that the properties
also interact well with transfer and localization of model structures. Examples of
model categories satisfying these properties are given in Section 7.

4.1. Objects with a finite group action
We first examine model-theoretic properties of objects with an action of a finite

group, for example, the permutation action of Σn on f□n. Given a finite group G,
considered as a category with one object, and any category C, define

GC := Fun(G, C). (4.1.1)

This is the category of objects in C with a left G-action. It is symmetric monoidal if
C is, by letting G act diagonally on the monoidal product. Given some X ∈ GC and
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any subgroup H ⊂ G, we write XH = colimH X for the coinvariants.
For any X ∈ C we define G/H ·X :=

⨿
G/H X ∈ GC on which G-acts by the left

G-action on G/H. More generally, given any X ∈ HC and any morphism of groups
H → G, we define G ·H X := (G ·X)H , where H acts on the right on G and on the
left on X.

Lemma 4.1.2. Suppose C is a cocomplete category and H is a subgroup of a finite
group G. Any choice of a partition G =

⨿
i H · gi of G into H-cosets induces a natural

isomorphism

φ(G ·H −)→ (G/H) · φ(−)

of functors HC → C, where φ denotes the forgetful functor to C.

Proof. The canonical projection G · φX → G/H · φX factors over φ(G ·H X). Con-
versely, given g ∈ G, the partition gives a unique h ∈ H and i such that g = hgi.
Define G/H · φX → G ·H φX by xgH 7→ (h−1x)gi .

Proposition 4.1.3. Suppose C is a cofibrantly generated model category. The cate-
gory GC carries the projective model structure, denoted GproC, whose weak equiva-
lences and fibrations are precisely those maps in GC that are mapped to weak equiva-
lences, respectively, fibrations in C by the forgetful functor GC → C. The cofibrations
of GproC are generated by the maps of the form G · f , where f runs over generating
cofibrations of C.

Given a morphism of groups H → G, there is a Quillen adjunction

G ·H − : HproC ⇄ GproC :R, (4.1.4)

where the right adjoint functor is the restriction.
Finally, suppose C is a symmetric monoidal model category. Given two groups

G and H, the monoidal product on C induces a left Quillen bifunctor

GproC ×HproC → (G×H)proC. (4.1.5)

Proof. The existence of this model structure is standard, see, for example, Hirschhorn
[Hir03, Theorem 11.6.1]. The adjunction (4.1.4) is seen to be a Quillen adjunction
by looking at the right adjoint. The functor (4.1.5) is a left Quillen bifunctor because
(G · IC)□ (H · IC) = (G×H) · (IC □ IC) ⊂ (G×H) · CC , using the cocontinuity and
monoidality of the functor G · − and the pushout product axiom for C.

4.2. Definitions of symmetricity properties
We now define three properties of (morphisms in) a symmetric monoidal model

category C: symmetric flatness, symmetric h-monoidality and symmetroidality. They
are appropriate strengthenings of flatness (Definition 3.2.4), h-monoidality (Defini-
tion 3.2.2) and the pushout product axiom. Symmetric flatness is the key condition
required to obtain a rectification result for operadic algebras [PS14a, Theorem 7.1].
Approximately, it says that for any cofibrant object X ∈ C, the map

y ⊗Σn X⊗n : Y ⊗Σn X⊗n → Y ′ ⊗Σn X⊗n

is a weak equivalence for any weak equivalence y : Y → Y ′ in ΣnC. Slightly more
accurately, the definition is phrased in terms of more general cofibrations s using
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instead

y □Σn s□n.

For s : ∅ → X this gives back the previous expressions. In order to ensure that the
three symmetricity properties are stable under weak saturation (Theorem 4.3.8), we
actually define them for a class of morphisms instead of a single morphism. In such
cases, we use the following notational conventions.

Definition 4.2.1. Let v := (v1, . . . , ve) be a finite family of morphisms. For any se-

quence of nonnegative integers n := (ni)i⩽e, we write Σn :=
∏

Σni , v
□n := v□n1

1 □
· · ·□ v□ne

e , and v⊗n := v⊗n1
1 ⊗ · · · ⊗ v⊗ne

e . We write m ⩽ n if mi ⩽ ni for all i and
m < n if m ⩽ n and m ̸= n. Given a class S of morphisms, we write v ⊂ S if all vi
are in S. Given another sequence of integers (mi)

e
i=1, we write mn :=

∑
mini and

Σn
m :=

∏
Σni

mi
and Σn ⋊ Σn

m :=
∏

Σni ⋊ Σni
mi

.

Definition 4.2.2. A class S of cofibrations in C is called symmetric flat with respect
to some class Y = (Yn) of morphisms Yn ⊂ MorΣnC if

y □Σn s□n := (y □ s□n)Σn

is a weak equivalence in C for any y ∈ Yn, any finite multi-index n ⩾ 1 and any
s ∈ S. We say S is symmetric flat if it is symmetric flat with respect to the classes
Yn = (WΣpro

n C) of projective weak equivalences (i.e., those maps in ΣnC which are
weak equivalences after forgetting the Σn-action). We say C is symmetric flat if the
class of cofibrations is symmetric flat.

Example 4.2.3. A class S is symmetric flat (i.e., with respect to WΣpro
n C) if and only

if y □Σn s□n is a weak equivalence for a single map s ∈ S, i.e., no multi-indices are
necessary in this case. The reader is encouraged to mainly think of this case.

The notions of symmetric h-monoidal maps (respectively, symmetroidal maps)
presented next are designed to ultimately address the (strong) admissibility of operads
[PS14a, Theorem 5.11].

Definition 4.2.4. A class S of morphisms in a symmetric monoidal category C is
called (acyclic) symmetric h-monoidal if for any finite family s ⊂ S and any multi-
index n ̸= 0, and any object Y ∈ ΣnC the morphism Y ⊗Σn s□n is an (acyclic) h-
cofibration. We say C is symmetric h-monoidal if the class of (acyclic) cofibrations is
(acyclic) symmetric h-monoidal.

The notion of power cofibrations presented next is due to Lurie [Lur, Defini-
tion 4.5.4.2] and Gorchinskiy and Guletskĭı [GG16, Section 3], who also introduced
symmetrizable maps.

Definition 4.2.5. Let Y = (Yn)n>0 be a collection of classes Yn of morphisms in
ΣnC, where n > 0 is any finite multi-index. We suppose that for y ∈ Yn, y □− pre-
serves injective (acyclic) cofibrations in ΣnC, i.e., those maps which are (acyclic)
cofibrations in C.
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A class S of morphisms in a symmetric monoidal category C is called (acyclic)
Y-symmetroidal if for all multi-indices n > 0 and all maps y ∈ Yn, the morphism

y □Σn s□n (4.2.6)

is an (acyclic) cofibration in C for all s ∈ S. If Yn = CΣin
n C , we say that S is (acyclic)

symmetroidal. For Yn = {∅ → 1C}, we say S is (acyclic) symmetrizable.
A map f ∈ C is called an (acyclic) power cofibration if the morphism f□n is an

(acyclic) cofibration in Σpro
n C for all integers n > 0 (i.e., a projective cofibration with

respect to the Σn-action).
The category C is called symmetric h-monoidal/Y-symmetroidal/freely powered

if the class of all (acyclic) cofibrations is (acyclic) symmetric h-cofibrant/(acyclic)
Y-symmetroidal/(acyclic) power cofibration.

Remark 4.2.7. In the definition of power cofibrations, no multi-indices are necessary:
for power cofibrations si and any multi-index n = (ni), s

□n :=□i
s□ni is a Σn :=∏

Σni projective cofibration by the pushout product axiom.
Unlike the definition of power cofibrations in [Lur], we exclude the case n = 0,

for this would require 1 to be cofibrant, which is not always satisfied. In fact, it is
never satisfied for the positive model structures on symmetric spectra which is a main
motivating example for us [PS14b].

We have the following implications (where symmetroidality is with respect to the
classes Yn of injective cofibrations in ΣnC):

power cofibration +3 symmetroidal map +3

��

cofibration

��
symmetric h-cofibration +3 h-cofibration.

(4.2.8)

The vertical implication holds if C is left proper. The dotted arrow is not an impli-
cation in the strict sense unless all objects in C are cofibrant. A symmetroidal map
x is such that for all cofibrant objects Y ∈ Σin

n C, the map Y ⊗Σn x□n is a cofibra-
tion and therefore (again if C is left proper) an h-cofibration. Being a symmetric
h-cofibration demands the latter for any object Y ∈ ΣnC. Every power cofibration is
a symmetrizable cofibration since the coinvariants Σpro

n C → C are a left Quillen func-
tor. The implications in (4.2.8) are in general strict: in a monoidal model category C
with cofibrant monoidal unit or, more generally, one satisfying the strong unit axiom,
every object is h-cofibrant [BB13, Proposition 1.17], but of course not necessarily
cofibrant. In the category sSet of simplicial sets every cofibration is a symmetrizable
cofibration, but not a power cofibration (see §7.1).

The homotopy orbit hocolimΣn X⊗n can be computed by applying the derived
functor of the either of the following two left Quillen bifunctors to (1V , X

⊗n) [Gam10,
Theorem 3.2 and Theorem 3.3]:

Σop,in
n V × Σpro

n C
⊗−→C, (4.2.9)

Σop,pro
n V × Σin

n C
⊗−→C. (4.2.10)

Here V denotes the symmetric monoidal model category used for the enrichment
and the monoidal unit 1V ∈ V is equipped with the trivial Σn-action. If C is freely
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powered, then for any cofibrant object X ∈ C, X⊗n is projectively cofibrant, i.e.,
cofibrant in Σpro

n C. Thus, the homotopy orbit is given by (X⊗n)Σn , provided that
1V is cofibrant [Lur, Lemma 4.5.4.11]. However, most model categories appearing
in practice are not freely powered, so that X⊗n needs to be projectively cofibrantly
replaced to compute the homotopy colimit. This is usually a difficult task. On the
other hand, when using (4.2.10), one needs to cofibrantly replace 1 in Σop,pro

n V, but
no cofibrant replacement has to be applied to X⊗n, provided that X is cofibrant in C.
This makes the second approach to computing homotopy colimits much more easily
applicable. This observation is used in Lemma 4.3.3 below, which in its turn is the
key technical step in establishing the compatibility of symmetric h-monoidality and
Bousfield localizations (Theorem 6.5(ii)).

4.3. Weak saturation of symmetricity properties
In this section, we provide a few elementary facts concerning the symmetricity

notions defined in §4.2. After this, we show the main theorem of this section (Theo-
rem 4.3.8), which asserts that the symmetricity notions behave well with respect to
weak saturation.

The following two results have a similar spirit: we show that symmetric flatness
can be reduced to (projective) acyclic fibrations, and that the class Y appearing in
the definition of Y-symmetroidality can be weakly saturated.

Lemma 4.3.1. Let S, Y, C be as in Definition 4.2.5. If S is Y-symmetroidal, it is
also cof(Y)-symmetroidal.

Proof. For a fixed s ∈ S, the functor Fs : y 7→ y □Σn s□n is cocontinuous. In par-
ticular, Fs(cof(Y)) ⊂ cof(Fs(Y)) ⊂ cof(C)C = CC and likewise for acyclic Y-symmet-
roidal maps.

Definition 4.3.2. The cofibrant replacement of 1 in Σop,pro
n V is denoted by EΣn. (For

V = sSet, this coincides with the usual definition of EΣn as a weakly contractible
simplicial set with a free Σn-action.)

Proposition 4.3.4 is a key step in the proof of stability of symmetric h-monoidality
and symmetroidality under left Bousfield localizations. It relies on the following tech-
nical lemma.

Lemma 4.3.3. Suppose C is a symmetric monoidal, h-monoidal, flat model category,
y ∈ ΣnC is any map, s is a finite family of acyclic cofibrations with cofibrant domain
that lies in some symmetric flat class S, and y □ s□n is a weak equivalence in C for
some multiindex n > 0. Then y □Σn s□n is also a weak equivalence.

Proof. Let

A′ a
∼

//

y′

��

A

y

��

B′
b

∼ // B

be the functorial cofibrant replacement of y : A→ B ∈ Ar(C) (in the projective model
structure, so that y′ is a cofibration with a cofibrant domain). Functoriality and
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the fact that y ∈ Ar(ΣnC) imply that y′ ∈ Ar(ΣnC). We claim that y′ □ s□n is a
cofibrant replacement of y □ s□n in Ar(C). Let t := s□n : T → S. The map b⊗ S
is a weak equivalence by the flatness assumption. To see that B′ ⊗ T ⊔A′⊗T A′ ⊗
S → B ⊗ T ⊔A⊗T A⊗ S is a weak equivalence we first note that these pushouts are
homotopy pushouts by Lemma 2.5(i) since A⊗ t is an h-cofibration. Thus, it suffices
that the three individual terms in the pushouts are weakly equivalent, which again
follows from flatness. The claim is shown.

Thus, we have

hocolim
Σn

(y □ s□n) = (EΣn ⊗ y′ □ s□n)Σn
∼ y □Σn

s□n.

The last weak equivalence holds by symmetric flatness of S since EΣn ⊗ y′ → y′ → y
is a weak equivalence by the unit axiom for the V-enrichment (note that the cofibrant
replacement EΣn → 1 in Σpro

n V is, in particular, a cofibrant replacement in V). Finally,
y □ s□n is a weak equivalence in C by assumption. Therefore, the above homotopy
colimit is a weak equivalence in C.

Proposition 4.3.4. The class of acyclic power cofibrations coincides with the inter-
section of W with the class of power cofibrations.

A Y-symmetroidal class S which consists of acyclic cofibrations with cofibrant
source is acyclic Y-symmetroidal, provided that C is h-monoidal and flat and S is
symmetric flat in C.

Proof. The first claim follows from the pushout product axiom.

For any s ∈ S and any map y ∈ Yn ⊂ Mor(ΣnC), y □ s□n is a weak equivalence in
ΣnC by assumption on the class Y (see Definition 4.2.5). Now apply Lemma 4.3.3.

We now establish the compatibility of the three symmetricity properties with weak
saturation. Parts (iii) and (iv) of Theorem 4.3.8 are due to Gorchinskiy and Gulet-
skĭı [GG16, Theorem 5]. Part (i) extends arguments in [GG17, Theorem 9], which
shows a weak saturation property for symmetrically cofibrant objects in a stable
model category. Of course, it also extends the analogous statement for nonsymmetric
flatness (Theorem 3.2.7(ii)). Likewise, (ii) extends the weak saturation property of
h-cofibrations (see Lemma 2.5). The proof of the closure under transfinite compo-
sitions in (iii) is reminiscent of [GG16, §4]. See also the more recent accounts by
White [Whi17, Appendix A] and Pereira [Per16, §4.2]. In the proof of the theorem,
we will need a combinatorial lemma that we establish first. Recall the conventions for
multiindices in Definition 4.2.1.

Lemma 4.3.5. Let X
(i)
0

v
(i)
0−−→X

(i)
1

v
(i)
1−−→X

(i)
2 , 1 ⩽ i ⩽ e be a finite family of composable

maps in a symmetric monoidal category. For a pair of multiindices 0 ⩽ k ⩽ n of
length e, we set

mk := Σn ·Σn−k×Σk
v□n−k
0 □ v□k

1 . (4.3.6)

(i) The map (v1v0)
□n : ⊡n

(v1v0)→ X⊗n
2 is the composition of pushouts (with the

attaching maps constructed in the proof) of the maps mk (0 ⩽ k < n), and the
map mn = v□n

1 .



378 DMITRI PAVLOV and JAKOB SCHOLBACH

(ii) The map κ : ⊡n
(v1v0) ⊔⊡n

v0
X⊗n

1 → X⊗n
2 is the composition of pushouts of

the maps mk for 1 ⩽ k < n, and the map mn. (Here 1 denotes the multiindex
whose components are all equal to 1.)

Proof. We interpret the composable pair (v0, v1) as a functor v : 3 = {0→ 1→ 2} →
CI , where I = {1, . . . , e}. Let E be the category of posets C lying over 3n =

∏
i 3

ni and
let ΣnE be those posets with a Σn-action which is compatible with the Σn-action on
3n. For all posets considered below, the map to 3n will be obvious from the context.
Consider the following functor:

Q : ΣnE → ΣnC, (C → 3n) 7→ colim
(
C −−→ 3n

vn

−−→Cn ⊗−−→C
)
.

Being the composition of the two cocontinuous functors

posets/3n−−−−→posets/C colim−−−−→C,

Q is also cocontinuous. The map (v1v0)
□n is obtained by applying Q to the map

ι : {0, 1, 2}n\{1, 2}n → {0, 1, 2}n,

which adds all tuples containing only 1’s and 2’s. It is the composition of the maps

ιk : {0, 1, 2}n \ {1, 2}n ∪ {Σn1
∗2<k} → {0, 1, 2}n \ {1, 2}n ∪ {Σn1

∗2⩽k},

for 0 ⩽ k ⩽ n, with
∏

i(ni + 1) maps in total. The superscript ∗ means that one
adds as many elements as needed to get an n-multituple. For multiindices the above
statements should be interpreted separately for each component. The map ιk adds
the Σn-orbit O consisting of tuples with k 2’s and n− k 1’s, i.e., Σn1

n−k2k. The
cardinality of O is

(
n
k

)
. For o ∈ O, consider the downward closure Do of o and Co :=

Do\{o}.
There is a pushout diagram in ΣnE

A :=
⨿

o∈O Co
αk //

µk

��

{0, 1, 2}n \ {1, 2}n ∪ {Σn1
∗2<k}

ιk

��

B :=
⨿

o∈O Do
// {0, 1, 2}n \ {1, 2}n ∪ {Σn1

∗2⩽k}.

(4.3.7)

(For k = n the top horizontal row is an identity, so ιn = µn in this case.) Any o ∈
O determines a partition of

⨿
i ni into

⨿
i{1 ⩽ j ⩽ ni | oi,j = 1} and

⨿
i{1 ⩽ j ⩽

ni | oi,j = 2}. Using this partition, we have Do = Σn−k0
∗1∗ × Σk0

∗1∗2∗ and Co =
Σn−k0

∗1<n−k × Σk0
∗1∗2∗ ∪ Σn−k0

∗1∗ × Σk0
∗1∗2<k. Thus, the map Q(Co → Do) is

just v□n−k
0 □ v□k

1 . Using the cocontinuity of Q, this shows Q(µk) = mk.
The second part now follows immediately from the above once we observe that the

codomain of ι0 is precisely the domain of the map under consideration.

Theorem 4.3.8. Let S be a class of morphisms in a symmetric monoidal model
category C. We say some property of S is stable under saturation if it also holds for
the weak saturation cof(S).

(i) If C is pretty small and left proper, and S is symmetric h-monoidal, then sym-
metric flatness of S relative to a class Y = (Yn) of weak equivalences in ΣnC is
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stable under saturation. In particular, if some class of generating cofibrations
in C is symmetric flat and symmetric h-monoidal, then C is symmetric flat.

(ii) If C is pretty small and left proper, then the property of being (acyclic) symmetric
h-monoidal is stable under saturation. In particular, if some class of generating
(acyclic) cofibrations consists of (acyclic) symmetric h-cofibrations, then C is
symmetric h-monoidal.

(iii) Being Y-symmetroidal (Definition 4.2.5) is stable under saturation. In particu-
lar, if some class of generating (acyclic) cofibrations is (acyclic) Y-symmetroi-
dal, then C is Y-symmetroidal.

(iv) The same statement holds for power cofibrations.

Proof. For a finite family of maps v = (v(1), . . . , v(e)) we use the multi-index notation
of Definition 4.2.1. We prove the statements by cellular induction, indicating the
necessary arguments for each statement individually in each step. The acyclic parts
of (ii) and (iii) are the same as the nonacyclic parts, so they will be omitted. Fix an
object Y ∈ ΣnC, respectively, a map y ∈ Yn ⊂ MorΣnC. For (i) and (iii) and (ii), we
write

g(v, n) := y □Σn v□n, respectively, g(v, n) := Y ⊗Σn v□n.

By [Har09, Proposition 6.13] or Proposition 3.1.6, g(−, n) preserves pushout mor-
phisms φ : v → v′ (in the sense that, say, φ(1) is a pushout morphism and all other
φ(j)’s are identities) and retracts. Thus, if g(v, n) is an (acyclic) h-cofibration or
(acyclic) cofibration, so is g(v′, n) by Lemma 2.5(ii) (which uses left properness).
This shows the stability of the properties of being symmetric h-monoidal and sym-
metroidal under cobase changes. For (i), we additionally observe that Y ⊗Σn v□n is
an h-cofibration and similarly with Y ′ since S is symmetric h-monoidal by assump-
tion. By Lemma 3.2.5 (more precisely, replace ⊗ there by ⊗Σn), applied to a = v□n

and b = v′□n, we see that g(v′, n) is a weak equivalence since g(v, n) is one.
We now show the stability of the three symmetricity properties relative to a class

under transfinite composition: suppose v(1) is the transfinite composition

v(1) : X
(1)
0

v
(1)
0−−→· · · → X

(1)
i

v
(1)
i−−→X

(1)
i+1 → · · · → X(1)

∞ = colimX
(1)
i ,

whose maps are obtained as pushouts

A

��

s∈S
//

(∗)

A′

��

X := X
(1)
i

x:=v
(1)
i // X ′ := X

(1)
i+1.

(4.3.9)

For the statements (i), (ii), respectively, (iii) we need to show that the map g(v, n) =
g((v(1), . . . , v(e), n) is a weak equivalence, h-cofibration, or cofibration, respectively,
provided that

{v(1)i , i ⩽∞, v(2), . . . , v(e))}

is a symmetric flat, symmetric h-monoidal, respectively, symmetroidal class. Applying
this argument e times gives the desired stability under transfinite compositions. We
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write r
(1)
i : X

(1)
0 → X

(1)
i for the (finite) compositions of the v

(1)
i . Consider

id
(X

(1)
0 )⊗n = (r

(1)
0 )□n → (r

(1)
1 )□n → · · · → (v(1))□n. (4.3.10)

As an object of ΣnAr(C),

g(v, n) = colim
i

g((r
(1)
i , v(2), . . . , v(e))︸ ︷︷ ︸

=:vi

, n) = colim
i

g(vi, n), (4.3.11)

since −□n preserves filtered colimits [GJ14, Corollary 4.4.5]. We now show that
vi is a symmetric flat (respectively, symmetric h-monoidal or symmetroidal) fam-
ily, so that g(vi) is a weak equivalence (h-cofibration, cofibration, respectively). We

consider the composition of two morphisms r
(1)
0 and r

(1)
1 only and leave the sim-

ilar case of a finite composition of more than two maps to the reader. By Lem-
mas 3.1.7 and 4.3.5, v□n

1 is the (finite) composition of pushouts of Σn ·Σm w□m,

where w = (r
(1)
0 , r

(1)
1 , v(2), . . . , v(e)), and m runs through multi-indices of length e+ 1

such that 0 ⩽ m(1) ⩽ n(1), m(1) +m(2) = n(1), and m(k) = n(k−1) for 2 ⩽ k ⩽ e+ 1.

For (ii), each g(w,m) = y □Σm w□m is an h-cofibration. Hence, so is g(v1, n) since
h-cofibrations are stable under pushouts and (finite) compositions by Lemma 2.5.
By Lemma 2.5(iv), g(v, n) is also an h-cofibration then.

Similarly, for (iii), each g(w,m) is a cofibration, so that g(v1, n) is a cofibration.

By Lemma 4.3.5, (v
(1)
1 ◦ v

(1)
0 )□n is the composition of a pushout of (v

(1)
0 )□n and the

map

⊡n(1)

(v
(1)
1 ◦ v

(1)
0 ) ⊔⊡n(1)

(v
(1)
0 )

(X
(1)
1 )⊗n → (X

(1)
2 )⊗n.

Here, as usual, ⊡n(1)

− denotes the domain of the −□n(1)

. The latter map is the
composition of pushouts of the maps g(w,m), where w andm are as above, except that
now 0 ⩽ m(1) < n(1). Again, these are cofibrations, so the above map is a cofibration.
By Lemma 2.2(i), g(v, n) is therefore a cofibration.

For (i), each g(w,m) is a weak equivalence. The map g(v1, n) is the composition of
pushouts of g(w,m) along Y ⊗Σn Σn ·Σm w□m = Y ⊗Σm w□m. The latter map (and
similarly for Y ′) instead of Y is an h-cofibration by the symmetric h-monoidality
assumption. Thus, the pushouts of g(w,m), the compositions of which are g(v1, n),
are weak equivalences by Lemma 3.2.5 (again, replace ⊗ by ⊗Σn there). We have
shown that g(v1, n) is a weak equivalence. By Lemma 2.2(iii), g(v, n) is then also
weak equivalence.

(iv) can be shown using the same argument but considering g(v) := v□n ∈ ΣnC
instead. By Remark 4.2.7 it is unnecessary to use multi-indices in this proof.

5. Transfer of model structures

In this section, we fix an adjunction

F : C ⇄ D :G (5.1)

such that C is a model category and D is complete and cocomplete.
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Definition 5.2. A model structure on D is transferred along G if the weak equiv-
alences and fibrations in D are those morphisms which are mapped by G to weak
equivalences and fibrations in C, respectively.

If a transferred model structure on D exists, it is unique, so we also speak of the
transferred model structure. In the sequel, we fix a Quillen adjunction as above such
that the model structure on D is transferred from C.

The next proposition describes basic properties of transferred model structures.
Part (iii) is a special case of much more general left properness results by Batanin
and Berger [BB13, Theorem 2.11].

Proposition 5.3. The following properties hold for a transferred model structure
on D. We write I (respectively, J) for a class of generating (acyclic) cofibrations
of C.
(i) The class F (I) (respectively, F (J)) generates (acyclic) cofibrations of D. In

particular, if C is quasi-tractable, then so is D. Moreover, if C is combinatorial
[Lur09, Definition A.2.6.1], then so is D, provided that D is locally presentable.

(ii) Suppose that G preserves filtered colimits. If C is pretty small, then so is D, pro-
vided that D is locally presentable, or, more generally, F (I ′) and F (J ′) permit
the small object argument, where I ′ and J ′ come from pretty smallness.

(iii) Suppose that G is cocontinuous and suppose that (a) G(F (I)) consists of cofi-
brations or (b) C is pretty small and G(F (I)) consists of h-cofibrations. Then,
if C is left proper, so is D.

(iv) If G preserves filtered colimits and sends cobase changes of F (I) (respectively,
cobase changes of F (I) along maps with cofibrant targets) to cofibrations, then
G preserves cofibrations (respectively, cofibrations with cofibrant source).

Proof. (i): Follows from inj(C) = AF and inj(AC) = F.
(ii): By Definition 2.1, there is another model structure C′ on the underlying cate-

gory of C with the same weak equivalences and a smaller class of cofibrations that is
generated by a set of morphisms with compact domains and codomains. By assump-
tion F (CC′) permits the small object argument and similarly for acyclic cofibrations.
This verifies the condition for the existence of the transfer of the model structure C′.
Thus, the model structure C′ transfers to a model structure D′ on the category under-
lying D and its cofibrations are a subset of cofibrations of D. The (co)domains of the
generating set of cofibrations F (I ′) are compact because G preserves filtered colimits
and therefore F preserves compact objects.

(iii): By Lemma 2.5(i) and Lemma 2.6 we have to show that G(CD) consists of
h-cofibrations in C. This follows from the assumptions (in case (b) use Lemma 2.5(iv)).

(iv): Cofibrations in D are retracts of transfinite compositions of cobase changes of
elements in F (I). All three operations are preserved by the functor G by assumption.
Thus, it is sufficient to observe that G(F (I)) consists of cofibrations in C, which are
weakly saturated, hence G preserves cofibrations. The preservation of cofibrations
with cofibrant source is shown in the same way.

From now on, we assume in addition that C and D are symmetric monoidal cat-
egories. By Proposition 5.3(i), D is a monoidal model category provided that F is
strong monoidal.
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Definition 5.4. A Hopf adjunction is an adjunction between monoidal categories
such that there is a functorial isomorphism for C ∈ C, D ∈ D,

G(F (C)⊗D) ∼= C ⊗G(D). (5.5)

Remark 5.6. If the monoidal products ⊗C and ⊗D are closed, this is equivalent to G
being strong closed, i.e., internal homs are preserved up to a coherent isomorphism.

Proposition 5.7. Suppose the adjunction (F,G) is a Hopf adjunction. Also suppose
that G preserves pushouts along maps of the form D ⊗ F (s), where D ∈ D is any
object and s is any morphism in S. Let S be a class of cofibrations in C. We say that
a property of the class S transfers, if the same property holds for F (S).

(i) Suppose D is left proper. Then the (acyclic) h-monoidality of S transfers. The
h-monoidality of C transfers to D if D is pretty small.

(ii) The flatness of S transfers. The flatness of C transfers to D if D is pretty small
and h-monoidal.

(iii) If G also preserves filtered colimits then the monoid axiom transfers from C
to D.

Proof. (i) and (ii) are shown exactly the same way as their symmetric counterparts,
see Parts (i) and (ii) of Theorem 5.8, using Theorem 3.2.7 instead.

(iii): The preservation of colimits under ⊗D and Proposition 5.3(i), the assumption
that G preserves the weak saturation, the Hopf adjunction property, and the monoid
axiom for C imply G(cof(D ⊗ACD)) ⊂ G(cof(D ⊗ F (ACC))) ⊂ cof(G(D ⊗ F (ACC))
= cof(G(D)⊗ACC) ⊂ cof(C ⊗ACC) ⊂WC .

The following theorem shows that the three symmetricity properties interact well
with transfers. It is the symmetric counterpart of Proposition 5.7.

Theorem 5.8. Let F : C ⇄ D :G be a Quillen adjunction of symmetric monoidal
model categories such that the model structure on D is transferred from C. We assume
F is strong monoidal. For parts (i) and (ii), we also assume

(a) the adjunction is a Hopf adjunction,

(b) G preserves finite colimits (including pushouts and Σn-coinvariants).

Let S be a class of cofibrations in C. We say that a property of the class S transfers,
if the same property holds for F (S).

(i) Suppose D is left proper (a sufficient criterion is given in Proposition 5.3(iii)).
Then the (acyclic) symmetric h-monoidality of S transfers. The symmetric h-
monoidality of C transfers if, in addition, D is pretty small.

(ii) Symmetric flatness of S transfers. Moreover, the symmetric flatness of C trans-
fers to D if, in addition, D is pretty small and symmetric h-monoidal.

(iii) For some class Y of morphisms as in Definition 4.2.5, the Y-symmetroidality
of S transfers in the sense that cof(F (S)) is F (Y)-symmetroidal. In particular,
if C is Y-symmetroidal, then D is cof(F (Y))-symmetroidal.

(iv) Then the property of being freely powered transfers. In particular, if C is freely
powered, then so is D.



HOMOTOPY THEORY OF SYMMETRIC POWERS 383

Proof. For all properties, the transfer for the given class S is proven using a specific
argument. The transfer of the property from C to D follows from the fact that F (CC)
generates the cofibrations of D (Proposition 5.3(i)), and likewise for acyclic cofibra-
tions. Then, a weak saturation property (indicated below) is used. Let s ∈ S be any
map.

(i): We need to show that Y ⊗Σn F (s)□n = Y ⊗Σn F (s□n) is an (acyclic) h-cofi-
bration for all Y ∈ ΣnD. By Lemma 2.6 it is enough to show G(Y ⊗Σn F (s□n)) is
an (acyclic) h-cofibration. Using the Hopf adjunction property, strong monoidality
of F (which ensures that F commutes with pushout products by Proposition 3.1.4),
and preservation of finite colimits under G, we compute this as G(Y )⊗Σn s□n, which
indeed is an (acyclic) h-cofibration by the (acyclic) symmetric h-monoidality of S.
The symmetric h-monoidality of C transfers to D by Theorem 4.3.8(ii), using the left
properness of D.

(ii): For any weak equivalence y in ΣnD we have to show that y □Σn F (s)□n is a
weak equivalence. As above, we have an isomorphism G(y □Σn F (s)□n) = G(y)□Σn

s□n. This is a weak equivalence since C is symmetric flat. To transfer the symmetric
flatness of C we apply Theorem 4.3.8(i) to S = IC , noting that D is h-monoidal by
assumption and therefore left proper.

(iii): As F is strong monoidal and cocontinuous, F (y)□Σn F (s□n) = F (y □Σn

s□n). This shows the F (Y)-symmetroidality since F preserves cofibrations and acyclic
cofibrations. Then apply Lemma 4.3.1. The claim about the symmetroidality of D
follows from Theorem 4.3.8(iii).

(iv): Replace y □Σn s□n by s□n in (iii) and use Theorem 4.3.8(iv).

Remark 5.9. If C is symmetroidal (i.e., symmetroidal with respect to the injective
cofibrations in ΣnC), D need not be symmetroidal: for example, for C = sSet and D =
ModR(sSet) with R = Z/4, i.e., simplicial sets with an action of Z/4. In this case, R
has a Z/2-action, so R is injectively cofibrant in Σ2ModR, but R⊗R,Σ2 R

⊗R2 = R/2
is not cofibrant as an R-module.

We conclude this section by applying the criteria developed above to the case of the
category of modules over a commutative monoid R in a symmetric monoidal model
category C. An example of this situation occurs in the construction of unstable model
structures on symmetric spectra, which are by definition modules over a commutative
monoid in symmetric sequences [HSS00, Theorem 5.1.2].

As R is commutative, the category ModR of R-modules has a symmetric monoidal
structure:

X ⊗R Y := coeq(X ⊗R⊗ Y ⇒ X ⊗ Y ).

The free-forgetful adjunction F = R⊗− : C ⇄ ModR :U has the following proper-
ties: R⊗− is strong monoidal since (R⊗X)⊗R (R⊗ Y ) ∼= R⊗ (X ⊗ Y ). Moreover,
it is a Hopf adjunction: (R⊗ C)⊗R D ∼= C ⊗D. Finally, U also has a right adjoint,
the internal hom functor Hom(R,−) (also known as the cofree R-module functor). In
particular, U is cocontinuous.

The following theorem summarizes the properties of the transferred model struc-
ture on ModR. The existence of the model structure is due to Schwede and Shipley
[SS00, Theorem 4.1(2)]. As in Theorem 5.8, we say that some model-theoretic prop-
erty transfers if it holds for ModR, provided that it does for C. The transfer of left
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properness to ModR (and much more general algebraic structures) was established
by Batanin and Berger under the assumption that C is strong h-monoidal [BB13,
Theorems 2.11, 3.1b]. The transfer of symmetric flatness, symmetric h-monoidality
and symmetroidality is new.

Theorem 5.10. Suppose C is a cofibrantly generated symmetric monoidal model cat-
egory that satisfies the monoid axiom and R is a commutative monoid in C. The
transferred model structure on ModR exists and is a cofibrantly generated symmetric
monoidal model category.

Combinatoriality, (quasi)tractability, admissible generation, pretty smallness, V-
enrichedness, and the property of being freely powered transfer from C to ModR.
Moreover, if C is symmetroidal with respect to some class Y (Definition 4.2.5), then
ModR is symmetroidal with respect to cof(R⊗ Y), the weak saturation of maps of
free R-module maps generated by all y ∈ Y.

If either R is a cofibrant object in C or if C is pretty small and h-monoidal, then
left properness transfers.

If C is pretty small and h-monoidal, then flatness, symmetric flatness, h-mon-
oidality, symmetric h-monoidality, and the monoid axiom transfer from C to ModR.

Proof. The existence of the transferred model structure follows from [Hir03, Theo-
rem 11.3.2] since F (J) = R⊗ J and the class of F (J)-cellular maps consists of weak
equivalences by the monoid axiom. The transfer of combinatoriality, (quasi)tractabil-
ity, pretty smallness, enrichedness, and left properness were established in Propo-
sition 5.3. The transfer of flatness, h-monoidality, and the monoid axiom is shown
in Proposition 5.7, while their symmetric counterparts are treated in Theorem 5.8.
(We don’t need an additional left properness assumption on C since any h-monoidal
model category is left proper [BB13, Lemma 1.8].)

6. Left Bousfield localization

Left Bousfield localizations of various types (e.g., ordinary, enriched, monoidal)
of model categories present reflective localizations of the corresponding locally pre-
sentable ∞-categories, i.e., they invert the reflective saturation of a given class of
maps in a (homotopy) universal fashion. If the Bousfield localization of a given model
category exists, it can be constructed as a model structure on the same underlying
category, with a larger class of weak equivalences and the same class of cofibra-
tions. Examples for left Bousfield localizations abound, e.g., local model structures
on simplicial presheaves (see Section 7) and the stable model structure on symmetric
spectra are left Bousfield localizations. In this section, we carry h-monoidality and
flatness and their symmetric counterparts along a Bousfield localization. An example
application in the context of symmetric spectra is given in [PS14b, §3]. The idea of
combining h-monoidality and flatness was independently used by White [Whi14].

Definition 6.1. [Hir03, Theorem 3.3.19], [Bar10, Definitions 4.2, 4.42] Let W be
either of the following bicategories (specified by their objects, 1-morphisms, and 2-
morphisms):

(a) model categories, left Quillen functors, and natural transformations;
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(b) (symmetric) monoidal model categories, strong (symmetric) monoidal left Quillen
functors, and (symmetric) monoidal natural transformations;

Suppose C ∈W and S is a class of morphisms in C. A left Bousfield localization of C
with respect to S is a 1-morphism j : C → LSC such that precomposition with j induces
an equality between the category of morphisms LSC → E (which are, in particular, left
Quillen functors) and the category of morphisms C → E whose left derived functors
send elements of S to weak equivalences in E .

In case (b), we write L⊗ instead of L and refer to this as a monoidal Bousfield
localization (the terminology is due to White [Whi14]). By [GG16, Lemma 26], the
underlying model category of a monoidal localization is given by U(L⊗

S C) = LS⊗U(C),
where S⊗ is the monoidal saturation of S, which consists of the derived monoidal
products of the elements of S and the objects of C (or some class of homotopy
generators of C, e.g., the set of domains and codomains of some set of generating
cofibrations of C). Fibrant objects in LS⊗C are those fibrant objects W in C such that
the derived internal hom (as opposed to the derived mapping space, which appears
in nonmonoidal localizations) RHomC(ξ,W ) is a weak equivalence in C for any ξ ∈ S
[Bar10, 4.46.4].

Remark 6.2. The above definition talks about equality of categories to ensure that
the underlying category of a left Bousfield localization does not change. One can
replace equality with isomorphism or equivalence, which would yield an isomorphic
or equivalent underlying category.

Remark 6.3. The above definition admits an obvious variant for V-enriched localiza-
tions. If C is V-enriched and monoidal, then monoidal localizations and V-enriched
monoidal localizations agree, which immediately follows from the description of the
monoidal saturations above and its enriched analog.

In the following two theorems, we say that a property of a class S of cofibrations in
C localizes if it holds for S regarded as a class of cofibrations in D := L⊗

T C. Likewise,
we say that some property of C localizes, if it also holds for D.

Proposition 6.4. Let C be a (symmetric) monoidal model category such that the
monoidal left Bousfield localization D := L⊗

T C with respect to some class T exists.

(i) [Hir03, Proposition 3.4.4] Left properness of C localizes.

(ii) Flatness of S localizes. In particular, the flatness of C localizes.

(iii) If C is left proper, any (acyclic) h-cofibration f in C is also an (acyclic) h-
cofibration in D.

(iv) If C is left proper, quasi-tractable, pretty small, and flat, then the h-monoidality
of S or of C localizes.

(v) Pretty smallness localizes. If D is pretty small and h-monoidal, then D satisfies
the monoid axiom.

Proof. (ii): We have to show that y □ s is a weak equivalence in D for all weak
equivalences y in D and s ∈ S. By the pushout product axiom (of D), we may assume
y is a trivial fibration in D or, equivalently, one in C. Now invoke the flatness of S in
C and use WC ⊂WD.
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(iii): The acyclic part follows from the nonacyclic one and the inclusion WC ⊂WD.

Given a diagram A← B
f−→C, where f is an h-cofibration in C, we have to show by (i)

and Lemma 2.5(i) that C ⊔B A is a homotopy pushout in D. The identity functor
Fun(• ← • → •, C)→ Fun(• ← • → •,D) is a left Quillen functor if we equip both
functor categories with the projective model structure. Since it also preserves all
weak equivalences, it preserves homotopy colimits, i.e., sends the homotopy pushout
C ⊔B A ∼ C ⊔h,CB A to a homotopy pushout in D.

(iv): As the cofibrations in C and D are the same, the nonacyclic part of the h-
monoidality of D follows from (iii). The acyclic part of h-monoidality of D now follows
from (i) and Corollary 3.2.9.

(v): The first claim is clear since CC = CD. The second is Lemma 3.2.3 again.

Theorem 6.5. Let C be a (symmetric) monoidal model category such that the mon-
oidal left Bousfield localization D := L⊗

T C with respect to some class T exists.

(i) Let Y = (Yn) be some classes of morphisms in ΣnC. The property of S of being
symmetric flat with respect to Y localizes. Moreover, the symmetric flatness of
S and of C localizes.

(ii) If C is left proper and D is quasi-tractable, pretty small and symmetric flat, then
the symmetric h-monoidality of S or of C localizes.

(iii) The property of S of being (acyclic) Y-symmetroidal localizes provided that D
is flat and h-monoidal and provided that S consists of cofibrations with cofi-
brant source and is symmetric flat in D. In particular, if D is h-monoidal and
symmetric flat and C is Y-symmetroidal then D is also Y-symmetroidal.

(iv) The property of being freely powered localizes.

Proof. (i): The first claim is obvious from WC ⊂WD. For the second claim we have
to show that z □Σn s□n is a weak equivalence in C for all z ∈WΣpro

n D and s ∈ S. We

write z = y ◦ c, where y ∈ AFΣpro
n D = AFΣpro

n C , and c ∈ ACΣpro
n D. The map z □Σn s□n

is the composition of a pushout of c□Σn s□n, followed by y □Σn s□n. The latter is a
weak equivalence since S is symmetric flat with respect to WΣpro

n C by assumption. The
former is an acyclic cofibration: for this we may by cocontinuity assume c = Σn · h
is a generating trivial cofibration, which yields h□ s□n, itself an acyclic cofibration
in C by the pushout product axiom.

(ii): As (acyclic) h-cofibrations of C are contained in the ones of D (Proposi-
tion 6.4(iii)), a class S which is (acyclic) symmetric h-monoidal in C is also (acyclic)
symmetric h-monoidal in D.

Now suppose that C is symmetric h-monoidal. We want to show that (acyclic)
D-cofibrations form an (acyclic) symmetric h-monoidal class (in D). Again using the
above fact, it is enough to show the acyclic part. Once again, we may restrict to
generating acyclic cofibrations (Theorem 4.3.8(ii)). Thus, let s be a finite family of
generating acyclic cofibrations in D. By quasi-tractability, we may assume they have
cofibrant domains. Setting y : ∅ → Y , the pushout product y □ s□n is just Y ⊗ s□n,
which is a weak equivalence by the h-monoidality of D ensured by Proposition 6.4(iv).
Using the flatness and h-monoidality of D (Proposition 6.4(ii), (iv)), Lemma 4.3.3
applies to s and y and shows that Y ⊗Σn s□n is a weak equivalence.

(iii): The stability of the nonacyclic part of Y-symmetroidality is obvious. The
acyclic part follows from Proposition 4.3.4, using the cofibrancy assumption and the
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symmetric flatness of S in D. Similarly, by Theorem 4.3.8(iii), the symmetroidality
of D follows by using a set S of generating acyclic cofibrations (of D) with cofibrant
domain, which is possible thanks to the tractability of D.

(iv): This follows from Proposition 4.3.4.

7. Examples of model categories

We discuss the model-theoretic properties of Section 2, §3.2, and Section 4 for
simplicial sets, simplicial presheaves, simplicial modules, topological spaces, chain
complexes, and symmetric spectra.

7.1. Simplicial sets

The most basic example of a monoidal model category is the category sSet of sim-
plicial sets equipped with the cartesian monoidal structure A⊗B = A×B and the
Quillen model structure, see, e.g., [GJ99, Theorem I.11.3]. All objects are cofibrant,
so sSet is left proper, flat, and h-monoidal.

Simplicial sets are symmetroidal: given any monomorphism y ∈ ΣnsSet and a finite
family of monomorphisms v ∈ sSet, y □Σn v□n is a monomorphism. Indeed, y □ v□n

is a Σn-equivariant monomorphism and passing to Σn-orbits preserves monomor-
phisms. By Theorem 4.3.8(iii), the acyclic part of symmetroidality follows if y □Σn

v□n is a weak equivalence for any y as above and any finite family of horn inclu-
sions v : Λm

k → ∆m (where m and k are multiindices). To this end we first construct
a homotopy h : Λ×∆m → ∆m from the identity map ∆m → ∆m to the composi-

tion ∆m−→∆0 k−→∆m such that Λm
k ⊂ ∆m is preserved by the homotopy. Here Λ

is the 2-horn, which can be depicted as 0→ 1← 2. We parametrize h by Λ and
not by the usual ∆1 since ∆m is not fibrant. The map h is uniquely specified by
its value on vertices, i.e., {0, 1, 2} × {0, . . . ,m} → {0, . . . ,m}. We have (0, i) 7→ i,
(1, i) 7→ max(k, i), (2, i) 7→ k. Thus, we have constructed a simplicial deformation
retraction Λ× (Λm

k → ∆m)→ (Λm
k → ∆m) that contracts the inclusion Λm

k → ∆m

to the identity map ∆0 → ∆0. (Morphisms of maps are commutative squares, as
usual.) The map h gives rise to a simplicial deformation retraction

Λ× (y □Σn v□n)
∆→ (Λ×n × (y □ v□n))Σn

∼= y □Σn (Λ× v)□n h→ y □Σn v□n

using the fact that the diagonal ∆: Λ→ Λ×n is Σn-equivariant. It contracts the map
y □Σn v□n to the map y □Σn (id∆0)

□n. For n > 0 the latter map is the identity map
on the codomain of y, in particular, a weak equivalence, hence so is y □Σn v□n.

Symmetroidality and cofibrancy of all objects implies that sSet is symmetric h-
monoidal. The category sSet is far from freely powered: the map (∂∆1 → ∆1)□2 is
not a Σ2-projective cofibration, since Σ2 does not act freely on the complement of
the image. Simplicial sets are not symmetric flat: EΣn → ∗ is Σn-equivariant and a
weak equivalence of the underlying simplicial sets, but BΣn := (EΣn)Σn → ∗ is not
a weak equivalence: recall that BΣ2 is weakly equivalent to RP∞, the infinite real
projective space.

Similar statements hold for pointed simplicial sets equipped with the smash
product.
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The category sSet also carries the Joyal model structure [Lur09, Theorem 2.2.5.1].
It is an interesting question whether it is symmetric h-monoidal.

7.2. Simplicial presheaves
A more general example is the category sPSh(S) = Fun(Sop, sSet) of simplicial

presheaves on some site S. The projective model structure on this category is trans-
ferred from the Quillen model structure on sSet along∏

X∈S

sSet ⇄ sPSh(S). (7.2.1)

It is pretty small by Proposition 5.3(ii) and left proper by Proposition 5.3(iii). The
monoid axiom, h-monoidality, flatness, and symmetric h-monoidality follow from
the corresponding properties of the injective model structure (note that the class
of h-cofibrations only depends on the weak equivalences). Alternatively, even
though (7.2.1) is not a Hopf adjunction, the arguments of Proposition 5.7 can be
generalized to (7.2.1). The projective model structure is not in general symmetroidal
(for X ∈ S, (Xn)Σn is in general not projectively cofibrant).

In the injective model structure on sPSh(S), weak equivalences and cofibrations
are checked pointwise. It is combinatorial [Lur09, Proposition A.2.8.2] and therefore
tractable. It is pretty small (as the second model structure in Definition 2.1, take
the projective structure). Since all objects are cofibrant, it is left proper, h-monoidal
and flat. The symmetric monoidality, symmetric h-monoidality and symmetroidality
(with respect to injective cofibrations Yn = CΣin

n sPSh(S)) follows from the one of sSet.
There are various intermediate model structures on sPSh(S) (see [Jar06]), such as

Isaksen’s flasque model structure [Isa05]. They also have pointwise weak equivalences
but other choices of cofibrations which lie between projective and injective cofibra-
tions. For such intermediate model structures, monoidality, h-monoidality, symmetric
h-monoidality, symmetroidality, the monoid axiom, and flatness follow from the injec-
tive case and pretty smallness follows from the projective case.

The properties mentioned above are stable under Bousfield localization. For exam-
ple, given some Grothendieck topology τ on the site S, the τ -local projective model
structure is the left Bousfield localization of the projective model structure with
respect to τ -hypercovers [DHI04, Theorem 6.2]. Since hypercovers are stable under
product with any X ∈ S by [DHI04, Proposition 3.1], this is a monoidal localiza-
tion. It is also sSet-enriched by [Hir03, Theorem 4.1.1(4)]. By Proposition 6.4, the
localized model structure is again left proper, tractable, monoidal and h-monoidal,
pretty small, flat, and satisfies the monoid axiom. It is symmetric h-monoidal at least
if τ has enough points, for in this case local weak equivalences are maps which are
stalkwise weak equivalences [Jar87, page 39].

7.3. Simplicial modules
Let R be a commutative simplicial ring and consider the transferred model struc-

ture on simplicial R-modules via the free-forgetful adjunction

R[−] : sSet ⇄ sModR :U.

The model category sModR is pretty small by Proposition 5.3. As for chain com-
plexes, sModR is flat, but not symmetric flat (unless R is a rational algebra).
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Simplicial R-modules are symmetric h-monoidal. The nonacyclic part follows from
the fact that monomorphisms, i.e., injective cofibrations, of simplicial R-modules are
h-cofibrations.

We reduce the acyclic part of symmetric h-monoidality of sModR to the one of
sSet via the cocontinuous strong monoidal functor R[−] : (sSet,×)→ (sModR,⊗),
which preserves weak equivalences. Given any object Y ∈ ΣnsModR and any finite
family w of generating cofibrations of sModR, i.e., w = R[v], we have a deformation
retraction

R[Λ]⊗ (Y ⊗Σn R[v]□n)
R[∆]−−−→(R[Λ]⊗n ⊗ Y ⊗Σn R[v]□n)Σn

∼= Y ⊗Σn
(R[Λ× v])□n R[h]−−−→Y ⊗Σn

R[v]□n

of Y ⊗Σn w□n to a weak equivalence, which shows that the former is also a weak
equivalence.

Simplicial R-modules are symmetroidal with respect to the class {R[CΣin
n sSet]},

which follows immediately from the symmetroidality of simplicial sets and coconti-
nuity and strong monoidality of R[−]. Note that sModR is not symmetroidal, as can
be shown as in Remark 5.9.

7.4. Chain complexes

The category ChR := Ch(ModR) of unbounded chain complexes of R-modules,
for some commutative ring R, carries the projective model structure whose weak equiv-
alences are the quasiisomorphisms and fibrations are the degreewise epimorphisms.
It is enriched over Ch(ModZ) (equipped with the projective model structure). The
generating (acyclic) cofibrations are given by all shifts of the canonical inclusion

[0→ R]→ [R
id−−→R] ([0→ 0]→ [R

id−−→R], respectively) [Hov99, Definition 2.3.3,
Theorem 2.3.11]. In particular, the model structure is tractable and pretty small. It
is flat, as can be seen using Theorem 3.2.7(ii). The category is h-monoidal by [BB13,
Corollary 1.14].

It is not symmetric flat, for the same reason as sSet above. Moreover, it is neither

symmetric h-monoidal nor symmetroidal: for the chain complex A = [Z
id−−→Z] in

degrees 1 and 0, we have

A⊗2 = [Z
(1,−1)−−−−−→Z⊕ Z

+−−−−−→Z],

where from left to right we have the sign representation, the regular and the trivial

representation of Σ2. However, (A
⊗2)Σ2 = [Z/2−−→Z

id−−→Z] is not exact nor cofi-
brant.

By the Dold-Kan correspondence N : (sModR,×) ⇄ (Ch+
R,⊗) between simplicial

R-modules and connective chain complexes of R-modules, the projective model struc-
tures correspond to each other. However, N fails to be a strong symmetric monoidal
functor. Instead, × corresponds to the shuffle tensor product ⊗̃ of chain complexes,
which is much bigger than the usual tensor product. According to §7.3, (Ch+

R, ⊗̃)
is symmetric h-monoidal. The reason why a similar argument fails for ⊗ is that the
(smaller) ordinary tensor product fails to allow for a Σn-equivariant diagonal map for
an interval object.
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If R contains Q, the picture changes drastically: every R-module M with a Σn-
action is projective as an R-module if and only if it is projective as an R[Σn]-module
(Maschke’s theorem). Thus, the projective and injective model structure (with respect
to the Σn-action) on ΣnCh(ModR) agree. Therefore, Ch(ModR) is symmetric flat
and freely powered (and therefore symmetroidal and symmetric h-monoidal).

With appropriate additional assumptions, the statements above can be generalized
to chain complexes in a Grothendieck abelian category A. For example, flatness and
h-monoidality of Ch(A) require that projective objects P ∈ A are flat, i.e., P ⊗− is
an exact functor.

7.5. Topological spaces
The category Top of compactly generated weakly Hausdorff topological spaces

carries the Quillen model structure which is transferred from sSet via the singular
simplicial set functor. This model category is left proper [Hir03, Theorem 13.1.10],
monoidal [Hov99, Corollary 4.2.12], and h-monoidal [BB13, Example 1.15]. It is
cellular [Hir03, Propositions 4.1.4], though not locally presentable and therefore not
combinatorial. However, it is admissibly generated. Alternatively, one can use Smith’s
∆-generated topological spaces, which are combinatorial.

Topological spaces are not pretty small. However, since closed inclusions are stable
under Σn-coinvariants, products with arbitrary spaces and pushout products, and
compact spaces are compact relative to closed inclusions [Hov99, Lemma 2.4.1],
they are strongly admissibly generated in the sense below.

Recall from the definition of smallness of an object A ∈ C relative to a subcategory
D ⊂ C from [Hir03, Definition 10.4.1] or [Hov99, Definition 2.1.3]. By definition,
any object in a combinatorial model category is small with respect to C, so C is
automatically admissibly generated in the sense below. Topological spaces are not
combinatorial, but strongly admissibly generated by the above remarks and Propo-
sition 7.5.4(i).

Definition 7.5.1. A cofibrantly generated symmetric monoidal model category C is
admissibly generated (respectively, strongly admissibly generated) relative to a class S
of morphisms in C if all (co)domains of a set of generating cofibrations are small
(respectively, compact) with respect to the subcategory

cell(Y ⊗Σn s□n) (7.5.2)

for any finite family s ⊂ S, any multi-index n > 0, and any object Y ∈ ΣnC. We call C
(strongly) admissibly generated if it is (strongly) admissibly generated relative to the
cofibrations CC .

For the purposes of this paper and also [PS14a], [PS14b], strongly admissibly
generated model categories are just as good as pretty small combinatorial model
categories, as shown by the following results. Proposition 7.5.4 shows that (strong)
admissible generation is easy to establish in practice and robust under standard oper-
ations on model categories.

Proposition 7.5.3. Suppose C is a symmetric monoidal model category.

(i) (Weak saturation of (symmetric) h-monoidality and (symmetric) flatness) The-
orem 3.2.7(ii), (i), Theorem 4.3.8(i), (ii) continue to hold if we replace “pretty
small” in these statements by “strongly admissibly generated”.



HOMOTOPY THEORY OF SYMMETRIC POWERS 391

(ii) (Transfer and localization of symmetric flatness and symmetric h-monoidality)
Proposition 5.7, Theorem 5.8, Proposition 6.4, and Theorem 6.5, continue to
hold if we replace “pretty small” by “strongly admissibly generated”.

(iii) (Transfer of left properness) Proposition 5.3(iii) continues to hold if we replace
“pretty small” by the condition that (co)domains of a set I of generating cofi-
brations of C are compact relative to pushouts of maps F (I).

Proof. Analogously to Lemma 2.2(iii), a filtered colimit f∞ of weak equivalences fi is
a weak equivalence, provided that (co)domains of the generating cofibrations of C are
compact relative to the class spanned by the acyclic cofibrations and the transition
maps xi, yi. Similarly, if this size condition is satisfied, f∞ is an h-cofibration pro-
vided that the fi and the maps Xi+1 ⊔Xi Yi → Yi+1 are h-cofibrations. This refines
Lemma 2.5(iv).

(i): To show the weak saturation of symmetric h-monoidality as inTheorem 4.3.8(ii)
using only that C is strongly admissibly generated, we use (cf. the proof of Theo-
rem 4.3.8(iii)) that the transition maps appearing in the proof of Theorem 4.3.8(ii)
are precisely of the form as in (7.5.2).

As for the stability of symmetric flatness under weak saturation (Theorem 4.3.8(i)),
it is enough to show that for a transfinite composition s of symmetric flat maps sj ,
and a weak equivalence y, the filtered colimit y □Σn s□n = colimi y □Σn t□n

i is also a
filtered homotopy colimit, where ti = si ◦ · · · ◦ s0 are the (finite) compositions of sj .
By the above variant of Lemma 2.2(iii), this is true if the (co)domains of generat-
ing cofibrations are compact relative to the transition maps of this filtered colimit.
By Lemma 4.3.5 and its proof, especially (4.3.7), these transition maps are given by
y □Σn

Q(αk), so this is true again since C is strongly admissibly generated.

(ii): The indicated statements use pretty smallness only to invoke Theorem 4.3.8.

(iii): This follows from the above variant of Lemma 2.5 and the proof of Proposi-
tion 5.3(iii).

Proposition 7.5.4. Suppose C is a symmetric monoidal model category.

(i) As in Theorem 4.3.8, the property of being admissibly generated relative to S
is stable under saturation. Therefore, if C is cofibrantly generated and admis-
sibly generated relative to some set of generating cofibrations, it is admissibly
generated.

(ii) In the situation of Theorem 5.8 (including the assumptions (a)–(b) there), sup-
pose G preserves filtered colimits. If C is (strongly) admissibly generated, then
so is D.

(iii) In the situation of Theorem 6.5, suppose D is quasi-tractable. Then the property
of being (strongly) admissibly generated localizes.

Proof. (i): The proof is similar to the one of Theorem 4.3.8. In addition, we that an
object X is small relative to some class cell(T ) if and only if it is small relative to its
weak saturation [Hir03, Proposition 10.5.13].

(ii): The cofibrant generation transfers to D by Proposition 5.3(i). By Part (i),
we only have to show that (co)dom(F (I)) are small with respect to cell(Y ⊗Σn s□n),
where s = F (t) are finite families of generating cofibrations, i.e., t are cofibrations
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in C. By adjunction, this is equivalent to (co)dom(I) being small with respect to

G(cell(Y ⊗Σn F (t)□n)) ⊂ cell(G(Y ⊗Σn F (t)□n)) = cell(G(Y )⊗Σn t□n),

which holds by assumption.
(iii): This is clear since CC = CD.

By Proposition 7.5.3, flatness and (symmetric) h-monoidality of Top only needs to
be checked for generating cofibrations, which is easy. Hence,Top is flat and symmetric
h-monoidal (but not symmetric flat).

7.6. Symmetric spectra
The positive stable model structure on symmetric spectra valued in an abstract

model category C is both symmetric flat and symmetric h-monoidal. With a care-
ful choice of the model structure on symmetric sequences, it is also symmetroidal.
As a special case, this shows that any model category is Quillen equivalent to one
which is symmetric flat and symmetroidal. For this, only mild conditions on C are
necessary (such as flatness and h-monoidality, but not their symmetric counterparts).
See [PS14b, §3.5] for the precise statement.

7.7. Equivariant homotopy theory
For a symmetric monoidal model category C, and a finite discrete group G, we

can work with G-equivariant homotopy theory in C in two ways, namely by using the
category GC of G-objects (§4.1) in C and the orbit presheaf category OrbGC defined
as Fun(Orbop

G , C). In this section, we list the (symmetric) monoidal properties of
these two categories.

Recall from [Ste16] that the objects of the orbit category OrbG are G-orbits
of the form G/H. Here and below H and K denote subgroups of G. Morphisms
are G-equivariant maps. The obvious functors

⨿
H⊂G{∗} → OrbG ← {G} induce the

evaluation functors in the following pair of adjunctions:∏
H C

// OrbGC
ev

oo
evG // GC.oo (7.7.1)

The left adjoint of ev is the unique cocontinuous functor that sends an object X ∈
C concentrated in degree H for some fixed H ⊂ G to X ·HomOrbG

(−, G/H). This
object is denoted by hG/H,X and (by a slight abuse of language) called a representable
object. The right adjoint of evG sends X to the orbit object G/K 7→ XK , where the
superscript denotes the fixed point functor (i.e., the composition GC → HC → C of
the restriction and limit functors). There is a unique closed monoidal structure on
OrbGC that satisfies

hG/H,X ⊗ hG/K,Y =
⨿

hG/Hi,X⊗Y , (7.7.2)

where G/H ×G/K =
⊔

G/Hi is a decomposition of the cartesian (regarded as a
G-space with the diagonal G-action) product into G-orbits.

The monoidal structure on GC is given by the one of C on the underlying level and
the diagonal G-action.

Definition 7.7.3. The projective model structure on OrbGC is the one transferred
from

∏
C along this adjunction. The equivariant model structure on GC is the one
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transferred from OrbGC (equivalently from
∏
C along the composite adjunction).

That is, weak equivalences and (acyclic) fibrations on GC are maps f such that fH

is a weak equivalence, respectively, (acyclic) fibration for any H ⊂ G.

We now show that the orbit presheaf category always has very good monoidal
properties.

Proposition 7.7.4. (i) The projective model structure on OrbGC exists whenever
C is cofibrantly generated.

(ii) If C is combinatorial, quasi-tractable, pretty small, monoidal, or (symmetric)
h-monoidal, then the same is true for OrbGC. If weak equivalences in C are
stable under finite coproducts, the (symmetric) flatness of C implies the one of
OrbGC.

Proof. The first three properties of (ii) follow from Proposition 5.3. The monoidality
of OrbGC immediately follows from (7.7.2) since the maps hG/H,s, for a generating
(acyclic) cofibration s of C, are the generating (acyclic) cofibrations of OrbGC.

For h-monoidality, observe that for any C ∈ OrbGC, we have C ⊗ (G/H ⊗ s) =
(C ⊗G/H)⊗ s, which allows us to invoke the h-monoidality of C objectwise. For
flatness, y □ (G/H ⊗ i) = (y ⊗G/H)□ i, and y ⊗G/H is an objectwise weak equiv-
alence because its components are coproducts of y, thus they are weak equivalences
by assumption. The symmetric counterparts are treated similarly.

By contrast, the category of G-objects requires much more restrictive hypotheses
on C to behave well. Below, the three technical cellularity conditions are specifically
designed to ensure the existence of a transferred model structure. The conditions in
the main statement below and part (iii) are satisfied for C = sSet, ChQ, but not for
sAb or ChZ.

Proposition 7.7.5. Suppose a model category C is finitely combinatorial, the fixed
point functor (−)H : GC → C preserves pushouts along G/K ⊗ f , where H,K ⊂ G,
and f is a generating cofibration in C, and Y ⊗ (G/K)H → (Y ⊗G/K)H is an iso-
morphism in C for any Y ∈ C, K,H ⊂ G.

(i) [Ste16, Proposition 2.6] The equivariant model structure on GC exists. The
adjunction OrbGC ⇄ GC is a Quillen equivalence.

(ii) If C is combinatorial, quasi-tractable, pretty small, or (symmetric) h-monoidal,
then so is GC.

(iii) Suppose that C is pretty small and that for any H the functor (−)H preserves
pushouts along maps of the form Y ⊗G/K ⊗ s, where Y ∈ GC and s is a cofi-
bration in C. If C is h-monoidal, then GC is h-monoidal. If, moreover, C is flat,
then GC is flat as well.

Proof. Proposition 5.3 implies (ii). By Remark 3.2.8, h-monoidality only has to be
checked for generating (acyclic) cofibrations in GC. These are of the form G/K ⊗ s,
where s is a generating (acyclic) cofibration of C. For an arbitrary object Y ∈ GC, the
map Y ⊗G/K ⊗ s is an h-cofibration. By Lemma 2.6, it is enough to computeH-fixed
points, which are (by assumption) (Y ⊗G/K)H ⊗ s. This is an (acyclic) h-cofibration
by the h-monoidality of C. Similarly, flatness only has to be checked on generating
cofibrations, where it follows by using the assumptions in the same way.
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8. Applications to D-modules

In this section, we establish model structures on operadic algebras in D-modules.
In particular, we recover the main theorem of [dBPP15].

Let X be a smooth algebraic variety over a field of characteristic zero. (Entirely
analogously, X could be a complex manifold.) Let D be the sheaf of differential opera-
tors on X. The category ModD(X) is defined to be the category of left D-modules in
the category PSh(X) := PSh(X,Ch(ModQ)), i.e., presheaves of unbounded com-
plexes of Q-vector spaces. The usual tensor product [HTT08, Proposition 1.2.9] of
left D-modules is denoted by ⊗O. We don’t impose any quasi-coherence condition on
D-modules.

The local projective model structure on ModD(X) is constructed by means of the
following adjunctions:∏

U⊂X

Ch(ModQ) ⇄ PSh(X)pro ⇄ PSh(X)loc,pro ⇄ ModO(X) ⇄ ModD(X).

(8.1)
The projectivemodel structure onCh(ModQ) satisfies the following conditions (§7.4):

(*) pretty small, tractable, symmetric h-monoidal, and symmetric flat.

The first adjunction is the chain complex analogue of (7.2.1).

Lemma 8.2. The projective model structure PSh(X)pro satisfies the properties (*).

Proof. Pretty smallness and tractability follow from Proposition 5.3. Theorem 4.3.8
implies that it is enough to show the symmetric h-monoidality for generating (acyclic)
cofibrations s. These are of the form s = Q[U ]⊗ f , where U ⊂ X is open, Q[−] :
PSh(Set)→ PSh(ModQ) denotes the Q-linearization functor, and f ∈ Ch(ModQ)
is a generating (acyclic) cofibration. The functor Q[−] is strong monoidal. Therefore,
for any presheaf of complexes Y , any finite family of generating (acyclic) cofibrations f
of Ch(ModQ), and any finite family U of open subsets of X, we have Y ⊗Σn (Q[U ]⊗
f)□n = Y ⊗Σn

(
Q[U×n]⊗ f□n

)
. (Here we are using the same notation as in Defini-

tion 4.2.1, so U×n stands for
∏e

i=1 U
×ni
i .) The evaluation functor is strong monoidal:

for any open V ⊂ X, we get Y (V )⊗Σn

(
(U×n)(V )⊗ f□n

)
= (Y (V )⊗ U×n(V ))⊗Σn

f□n, which is an (acyclic) h-cofibration by symmetric h-monoidality of Ch(ModQ).
The symmetric flatness is shown similarly, using that U×n(V ) is either Q or 0.

The second adjunction in (8.1) is the monoidal Bousfield localization with respect
to the Zariski topology, similarly to §7.2. By Proposition 6.4 and Theorem 6.5, the
properties (*) remain valid. The right adjoint in the third adjunction is the forgetful
functor, along which the model structure is transferred toModO(X). This adjunction
satisfies the conditions of Theorem 5.10, so the properties (*) transfer to O-modules.
The final right adjoint is again the forgetful functor. Its left adjoint, M 7→ D⊗O M ,
is not strong monoidal, so we cannot apply Theorem 5.10 as is, which forces us to
give the following proof.

Theorem 8.3. The local projective model structure on ModD(X) satisfies the
properties (*).
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Proof. Again invoking Proposition 5.3 and Theorem 4.3.8, the two symmetricity prop-
erties only have to be checked for generating (acyclic) cofibrations. These are of the
form s = D⊗O f , where f is a generating (acyclic) cofibration of ModO(X). For
symmetric h-monoidality, we have to check that Y ⊗Σn,O s□On is an (acyclic) h-
cofibration for any multi-index n, any familiy f of generating (acyclic) cofibrations
and any Σn-equivariant object Y ∈ModD(X). Here ⊗O and □O refer to the tensor
product and pushout product of left D-modules. Being a weak equivalence, and there-
fore also being an (acyclic) h-cofibration, is a local condition on X. We may therefore
assume that Θ is a free O-module. Hence, D is (non-canonically) isomorphic to a free
O-module as well. The forgetful functor ModD(X)→ModO(X) preserves pushouts
and creates weak equivalences. It therefore also detects (acyclic) h-cofibrations. Con-
sequently, it is enough to show that the above map, i.e., Y ⊗Σn,O (D⊗O f)□On, is
an (acyclic) h-cofibration of O-modules. Indeed, D⊗O f is an (acyclic) cofibration of
O-modules by the freeness of D as an O-module, so we are done by the symmetric
h-monoidality of ModO(X).

The same technique works for symmetric flatness.

Remark 8.4. In order to obtain a similar statement for symmetroidality of D-modules,
one has to work with a model structure whose cofibrations are local, i.e., satisfy
descent. We leave this to the reader.

The following theorem extends the existence of the model structure on commuta-
tive D-algebras due to di Brino, Pistalo, and Poncin [dBPP15], which amounts to
the case O = Comm, the commutative operad. It also provides a means for rectifying
multiplicative structures on D-modules.

Corollary 8.5. For any symmetric operad O in ModD(X), the category of O-alge-
bras admits a model structure transferred along the forgetful functor

ModD(X)← AlgO(ModD(X)).

Moreover, any weak equivalence O → P of symmetric operads induces a Quillen equiv-
alence

AlgO(ModD(X)) ⇄ AlgP (ModD(X)).

Proof. By Theorem 8.3, we can apply [PS14a, Theorems 5.11, 6.7, 7.5].
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