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Abstract
This paper proves that the two homotopy theories for orbi-

spaces given by Gepner and Henriques and by Schwede, respec-
tively, agree by providing a zig-zag of Dwyer-Kan equivalences
between the respective topologically enriched index categories.
The aforementioned authors establish various models for unsta-
ble global homotopy theory with compact Lie group isotropy, and
orbispaces serve as a common denominator for their particular
approaches. Although the two flavors of orbispaces are expected
to agree with each other, a concrete comparison zig-zag has not
been known so far. We bridge this gap by providing such a zig-
zag which asserts that all those models for unstable global homo-
topy theory with compact Lie group isotropy which have been
described by the authors named above agree with each other.

On our way, we provide a result which is of independent inter-
est. For a large class of free actions of a compact Lie group, we
prove that the homotopy quotient by the group action is weakly
equivalent to the strict quotient. This is a known result under
more restrictive conditions, e.g., for free actions on a manifold.
We broadly extend these results to all free actions of a compact
Lie group on a compactly generated Hausdorff space.
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3 The zig-zag of Dwyer-Kan equivalences 340
3.1 Compositions on Orb′ and on Orb . . . . . . . . . . . . . . . . . . . . 341
3.2 Compatibility with the composition on Ogl . . . . . . . . . . . . . . . 345

4 Generalizations of the main results 346
4.1 F-relative versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
4.2 Monomorphism variants . . . . . . . . . . . . . . . . . . . . . . . . . . 347

A Point-set topology 348
A.1 Compactly generated weak Hausdorff spaces . . . . . . . . . . . . . . . 349
A.2 Closed inclusions and CGWH colimits . . . . . . . . . . . . . . . . . . 349
A.3 Normal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
A.4 Homotopy quotients of free G-spaces . . . . . . . . . . . . . . . . . . . 351
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1. Introduction

Global homotopy theory is concerned with global spaces which can be thought of
as spaces that are simultaneously equipped with compatible actions of all compact
Lie groups. For any such group G, a global space admits a notion of G-fixed points,
and a map between two global spaces is a global equivalence if it induces a weak
equivalence on all of these fixed point spaces. There are also versions for other classes
of groups which we elaborate on in Subsection 4.1.

In order to make the notion of global spaces more precise, various models have
emerged: In [3], Gepner and Henriques equip stacks and topological groupoids with
certain homotopical structures and prove that they yield homotopy theories that are
equivalent to their version of orbispaces. This gives rise to three different models for
global spaces.

In [9], Schwede introduces L-spaces and orthogonal spaces along with his version
of orbispaces, together with model category structures on all of these categories, and
verifies that they are Quillen equivalent. Therefore, he also describes three models for
global spaces.

In both cases, orbispaces are space-valued enriched presheaves on a topologically
enriched small category, the orbit category, equipped with the projective model struc-
ture. However, the two variants of orbispaces mentioned above are not equal on the
nose because the respective orbit categories differ.

The orbit category used in [3] is called Orb, and the one from [9] is denoted by
Ogl. As we will recall, there is significant evidence that the two versions of orbispaces
should be equivalent. The objects of both Orb and Ogl are given by compact Lie
groups. Given two such groups H,G, the mapping spaces Ogl(H,G) and Orb(H,G)
have the same weak homotopy type, see Remark 2.11, but, at least to the author’s
knowledge, no concrete zig-zag of maps has been written down so far.

This exposition shows that there is a zig-zag of weak equivalences between the
respective mapping spaces which is compatible with the given structures of topologi-
cally enriched categories. We deduce that there is a zig-zag of Dwyer-Kan equivalences
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between the orbit category Ogl from [9] and the orbit category Orb from [3]. This
implies by [3, 5] that the associated presheaf categories are Quillen equivalent via a
zig-zag, and as a consequence, all the models for global homotopy theory from both
papers are equivalent to each other.

1.1. Results

For two universal subgroups (see Definition 2.6) G,H ⊆ L(R∞,R∞), set

Ogl(H,G) := (L(R∞
G ,R∞

H )/G)H ,

where L denotes the space of isometric linear embeddings and R
∞
G ,R∞

H are both just
R

∞ equipped with the canonical G- and H-action respectively. Moreover, let

Orb(H,G) := map(H,G)×G EG,

where map(H,G) denotes the space of continuous (and hence smooth) group homo-
morphisms from H to G.

These are the mapping spaces of the topologically enriched categories Ogl and
Orb which share the same set of objects, namely obOgl = obOrb is the set of all
universal subgroups of L(R∞,R∞). Note that a topologically enriched functor which
is the identity on objects is a Dwyer-Kan equivalence if and only if it is a weak
equivalence on all mapping spaces (see Definition 3.2 for the generic definition of a
Dwyer-Kan equivalence).

Theorem. There is a zig-zag of two Dwyer-Kan equivalences, both of which are the
identity on objects, between Ogl and Orb.

This appears as Corollary 3.13.

Corollary. There is a zig-zag of Quillen equivalences between the projective model
structures on the enriched presheaf categories Pre(Ogl,Top) and Pre(Orb,Top).

This follows immediately using [3, Lemma A.6] or the in-depth account [5, The-
orem 3.5]. Here, the first model category, Pre(Ogl,Top) is the variant of orbispaces
used in [9] while the second one, Pre(Orb,Top) is used in [3].

We will discuss generalizations of these results for a monomorphism variant of the
orbit category and for global family versions in Section 4.

1.2. Organization of the paper

The promised zig-zag of Dwyer-Kan equivalences between Ogl and Orb will consist
of a third topologically enriched category Orb′ with obOrb′ = obOgl = obOrb.

Section 2 focuses on the mapping space Orb′(H,G) for two fixed universal sub-
groups H,G ⊆ L(R∞,R∞) and its relation to the mapping spaces Ogl(H,G) and
Orb(H,G). While Subsection 2.1 recalls the definition of Orb(H,G) along with aux-
iliary results, Subsection 2.2 proceeds similarly for Ogl(H,G).

In Subsection 2.3, we construct a free G-space Ẽ(H,G), see Definition 2.12, and

set Orb′(H,G) := Ẽ(H,G)×G EG. This space admits a canonical map to Orb(H,G),
which is readily seen to be a weak equivalence, see Proposition 2.18.
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Therefore, it remains to specify a weak equivalence Orb′(H,G)→ Ogl(H,G), which

is the content of Subsection 2.4. We show that the quotient space Ẽ(H,G)/G is canon-
ically homeomorphic to Ogl(H,G), see Proposition 2.20. After showing that the G-

action on Ẽ(H,G) is free, we deduce that the natural map Orb′(H,G) = Ẽ(H,G)×G

EG→ Ẽ(H,G)/G ∼= Ogl(H,G) is a weak equivalence (Proposition 2.22). This con-
cludes the construction of the zig-zag on the level of individual mapping spaces:

Orb(H,G) Ẽ(H,G)×G EG = Orb′(H,G) Ẽ(H,G)/G ∼= Ogl(H,G).≃ ≃

The goal of Section 3 is the extension of this zig-zag to a zig-zag of Dwyer-
Kan equivalences. However, the construction of the topologically enriched category
Orb′(H,G) is not complete since we have not specified composition laws yet. This is
amended in Subsection 3.1: As the composition law on Orb′ is similar to the one on
Orb, we simultaneously recall the composition on Orb and define the one on Orb′.
In the end, we conclude that the maps Orb′(H,G)→ Orb(H,G) from Subsection 2.3
extend to a Dwyer-Kan equivalence Orb′ → Orb. Finally, it is left to verify that the
composition law on Ogl is compatible with the maps Orb′(H,G)→ Ogl(H,G) intro-
duced in Subsection 2.4, which is the content of Subsection 3.2. In conclusion, we
deduce that there is a zig-zag of Dwyer-Kan equivalences:

Orb Orb′ Ogl.
≃ ≃

From the various auxiliary results of the appendix, we would like to highlight a
particular one: Theorem A.7 proves that whenever a compact Lie group G acts freely
on a Hausdorff space X, the canonical map

X ×G EG→ X/G

is a weak equivalence.
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2. The intermediate mapping space

Throughout the main body of this paper, the term space will always refer to a
compactly generated weak Hausdorff space. This convention is explained in more
detail in Subsection A.1 of the appendix.

2.1. A reminder on Orb(H,G)

Definition 2.1. Let H,G be Lie groups.
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(i) Denote by map(H,G) the space of all continuous (hence smooth) group homo-
morphisms. It comes with a continuous G-action from the right by conjugation,
i.e., for α : H → G and g ∈ G, define (α · g)(h) := g−1α(h)g.

(ii) The quotient of map(H,G) by this (usually non-free) G-action is Rep(H,G).

(iii) Using the bar construction as a model for EG, we set

Orb(H,G) := map(H,G)×G EG := |n 7→ map(H,G)×Gn|

as the realization of a simplicial topological space.

Remark 2.2. Gepner and Henriques define Orb(H,G) as the fat geometric realization
of the simplicial topological space {n 7→ map(H,G)×Gn}, which is weakly equivalent
to our definition. We prefer the non-fat realization as it behaves better from a technical
point of view for our purposes because it commutes with products on the nose. We
will elaborate on the consequences in Remark 3.10.

In preparation for later results, we derive an important property of the topology
on map(H,G).

Lemma 2.3 (“Close Maps are Conjugate”, [2, Lemma 38.1]). Let H be a compact
Lie group and G a Lie group. For each α ∈ map(H,G), there is an open neighborhood
U ⊆ H ×G of graph(α) such that for each β ∈ map(H,G) with graph(β) ⊆ U , β is
conjugate to α.

Proposition 2.4.

(i) Let H be a compact Lie group and G a Lie group. For each α ∈ map(H,G),
there is an open neighborhood V of α in map(H,G) such that each β ∈ V is
conjugate to α.

(ii) The quotient topology on Rep(H,G) = map(H,G)/G is discrete.

(iii) All G-orbits αG are open. In particular, there is a G-equivariant decomposition

map(H,G) ∼=
∐

i∈I

αiG,

where {αi}i∈I is a choice of representatives of equivalence classes in Rep(H,G).

Proof. (i) Pick a metric dG on G. As H is compact, the topology on map(H,G)
coincides with the one induced by the metric d which is defined as follows:

d(α, β) := max
h∈H

dG(α(h), β(h)).

Fix α ∈ map(H,G) and choose an open U as in the previous Lemma. For each
h ∈ H, pick an open neighborhood Uh = Ah ×Bε(h)(α(h)) of (h, α(h)) inside U
where Bε(α(h)) denotes an ε-ball around α(h) with respect to dG. By replacing
Ah with Ah ∩ α−1(Bε(h)/2(α(h))), we may assume without loss of generality that
α(Ah) ⊆ Bε(h)/2(α(h)).
The Ah cover the compact space H. Therefore, we find a finite set H0 ⊆ H such
that {Ah | h ∈ H0} covers H. Set ε := minh∈H0

ε(h) and denote by

V = Bε/2(α) = {β ∈ map(H,G) | d(α, β) = max
h∈H

dG(α(h), β(h)) < ε/2}

the ε/2-ball around α in map(H,G).
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Pick β ∈ V . We claim that graph(β) ⊆ U . Let h ∈ H, then h ∈ Ah′ for some h′ ∈
H0. Also, dG(α(h), β(h)) < ε/2 6 ε(h′)/2 because β ∈ V . As α(Ah′) is contained
in Bε(h′)/2(α(h

′)), we obtain dG(α(h
′), α(h)) < ε(h′)/2. By the triangle inequality,

dG(α(h
′), β(h)) 6 dG(α(h

′), α(h)) + dG(α(h), β(h)) < ε(h′)/2 + ε(h′)/2 = ε(h′).

Therefore, (h, β(h)) ∈ Ah′ ×Bε(h′)(α(h
′)) ⊆ U , and graph(β) ⊆ U . This implies

that β is conjugate to α by the choice of U .

(ii) The quotient projection map(H,G)→ Rep(H,G) = map(H,G)/G is open. For
α ∈ map(H,G), an open neighborhood V as in the previous part is sent to the
singleton {[α]}. Hence, all singletons are open in Rep(H,G).

(iii) As each [α] ∈ Rep(H,G) is open, so is its preimage αG. The αG are compact,
too, as they are the images of the compact sets {α} ×G under the action map
map(H,G)×G→ map(H,G). Since map(H,G) is metrizable, it is Hausdorff,
and the compact sets αG must be closed. Choosing {αi}i∈I as in the statement
of this proposition, this implies that the canonical map

∐

i∈I

αiG→ map(H,G)

is a homeomorphism. The G-action on map(H,G) restricts to G-actions on the
orbits αiG, and the canonical map is G-equivariant with respect to these actions.

Of course, the above decomposition always exists on the set level. The new insight
is its compatibility with the topology on map(H,G). This allows us to determine the
weak homotopy type of Orb(H,G):

Proposition 2.5. Let {αi}i∈I be a choice of representatives of equivalence classes in
Rep(H,G). Then the weak homotopy type of Orb(H,G) = map(H,G)×G EG is

∐

i∈I

BC(αi),

where C(αi) ⊆ G denotes the centralizer subgroup of the image of αi : H → G.

Proof. We follow the argumentation in [7, Remark 2.2.1]: By Proposition 2.4(iii), we
have a G-equivariant decomposition map(H,G) ∼=

∐
i∈I αiG. As the functor −×G

EG commutes with coproducts in the category of G-spaces, we obtain

Orb(H,G) = map(H,G)×G EG ∼=
∐

i∈I

(αiG×G EG) ,

and it is left to verify that αiG×G EG is a BC(αi). Note that αiG ∼= C(αi)\G
because C(αi) is the stabilizer of αi with respect to the G-action on map(H,G).

The realization of the simplicial space EG•, given by EGn = G×Gn, is the space
EG. It has a free G-action which is the realization of the G-action on EG• through
the first factor of the product. The restriction of this action to C(αi) ⊆ G is free, so
C(αi)\EG is a BC(αi).

We claim that C(αi)\EG is exactly αiG×G EG = C(αi)\G×G EG. Restricting
the G-action on EG• to C(αi) yields a C(αi)-action on EG•. The quotient by this
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action is the simplicial topological space with n-th level C(αi)\G×Gn whose realiza-
tion is precisely C(αi)\G×G EG. Taking quotients by C(αi)-actions commutes with
realization, so

C(αi)\G×G EG = |n 7→ C(αi)\G×Gn| = |C(αi) \EG•| ∼= C(αi)\EG.

Therefore, C(αi)\G×G EG is a BC(αi), concluding the proof.

2.2. A reminder on Ogl(H,G)

We briefly recall some definitions from [9]:

Definition 2.6.

(i) For real inner product spaces V,W of finite or countably infinite dimension,
L(V,W ) is the space of linear isometric embeddings topologized as in Observa-
tion A.15.
In the special case V = W = R

∞, we abbreviate L := L(R∞,R∞) and observe
that composition endows L with the structure of a unital topological monoid.

(ii) A compact subgroup G ⊆ L is a universal subgroup [9, Definition 1.4] if

(a) it admits a necessarily unique structure of a Lie group,
(b) the induced orthogonal G-representation on R

∞, denoted by R
∞
G , is a com-

plete G-universe, i.e., every finite-dimensional G-representation embeds into
R

∞
G via a G-equivariant linear isometry.

(iii) If H,G are such universal subgroups of L, we denote by E(H,G) = L(R∞
G ,R∞

H )
the right H ×G-space with underlying space L = L(R∞,R∞) and

(f · (h, g))(x) := h−1 · f(gx)

for f ∈ L(R∞,R∞), (h, g) ∈ H ×G, and x ∈ R
∞, using the G- and H-actions

on R
∞.

Finally [9, Definition 2.1],

Ogl(H,G) := (L(R∞
G ,R∞

H )/G)H = (E(H,G)/G)H .

Remark 2.7. (i) The concept of universal subgroups of L from Definition 2.6 encom-
passes all compact Lie groups in the sense that isomorphism classes of compact
Lie groups are in bijection with conjugacy classes of universal subgroups of L [9,
Proposition 1.5].

(ii) An alternative definition ofOgl(H,G) can be given by the space of L-equivariant
maps

mapL(L/H,L/G),

see also [9, Definition 2.1]. The evaluation at [idR∞ ] ∈ L/H induces a homeo-
morphism from this space to our definition of Ogl(H,G).

The crucial property of E(H,G), allowing for an identification of the weak homo-
topy type of Ogl(H,G), is its universality with respect to graph subgroups.

Definition 2.8. Let H,G be compact Lie groups.
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(i) The family of graph subgroups ([8, Definition 1.1.25]) is defined to be

F(H,G) := { graph(α) ⊆ H ×G | α : L→ G a Lie group

homomorphism for some closed L 6 H}.

(ii) If E is an H ×G-space and α : L→ G, L 6 H closed, then we set Eα :=
Egraph(α) and, as in Proposition 2.5, we let C(α) ⊆ G denote the centralizer
of the image of α.

Proposition 2.9 ([8, Proposition 1.1.26(i)] and [9, Proposition A.10]). Given uni-
versal subgroups H,G of L, the H ×G-space E(H,G) is a universal space for the
family F(H,G), i.e., for K 6 H ×G,

E(H,G)K ≃

{
∗ if K ∈ F(H,G),

∅ if K /∈ F(H,G).

Proposition 2.10 ([8, Proposition 1.5.12(i)]). For any choice of representatives
{αi}i∈I of equivalence classes in Rep(H,G) = map(H,G)/G, the canonical map

λ :
∐

i∈I

E(H,G)αi/C(αi)→ (E(H,G)/G)H

is well-defined and a homeomorphism. Furthermore, E(H,G)αi/C(αi) is a BC(αi).

Remark 2.11.

(i) Therefore, the weak homotopy type of Ogl(H,G) is
∐

i∈I BC(αi) (see also [9,
Remark 2.2]). This agrees with the weak homotopy type of Orb(H,G) by Propo-
sition 2.5.

(ii) Of course, the map λ from before depends on the groups H,G and should be
called λH,G. However, in order to reduce notational clutter, we chose to only
decorate those maps with subscripts that will be considered again for varying
groups H,G as we discuss the composition law in the next section (such as
the map p̃H,G from Definition 2.12). Henceforth, this principle will be applied
without further remarks.

2.3. The intermediate mapping space Orb′(H,G)
In order to compare Orb(H,G) to Ogl(H,G), we introduce a fattened up version

of map(H,G) that incorporates E(H,G). Its homotopy quotient will be Orb′(H,G).

Convention. For the remainder of this section, let H and G be universal subgroups
of L unless otherwise stated.

Definition 2.12. The G-space Ẽ(H,G) has underlying set

{(α, x) ∈ map(H,G)× E(H,G) | x ∈ E(H,G)α}

topologized as a subspace of map(H,G)× E(H,G) and equipped with the diagonal

action. It comes with a canonical projection map p̃H,G : Ẽ(H,G)→ map(H,G).

Remark 2.13. Lemma A.17 will show that this is a CGWH space.

Lemma 2.14. The G-action on Ẽ(H,G) is well-defined.
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Proof. Let α ∈ map(H,G) and x ∈ E(H,G)α. We need to show that xg ∈ E(H,G)αg.
Spelling out the definitions, this amount to verifying that for each h ∈ H, the point
xg = x · (1, g) is fixed under the action of (h, g−1α(h)g). We compute

x · (1, g) · (h, g−1α(h)g) = x · (h, α(h)g) = x · (h, α(h)) · (1, g) = x · (1, g) = xg.

The G-action is automatically continuous because it is the restriction of the con-
tinuous diagonal action on map(H,G)× E(H,G).

Proposition 2.15. The map p̃H,G is a fiber bundle.

Proof. Let us write p̃ = p̃H,G within this proof. By Proposition 2.4, it suffices to show
that the restriction

p̃−1(αG)→ αG

is a fiber bundle for any α ∈ map(H,G), where αG ⊆ map(H,G) is the G-orbit of α.

The canonical map Stab(α)\G→ αG is a continuous bijection from a compact
space to αG ⊆ map(H,G). Since the space map(H,G) is metrizable, it is Hausdorff
and so is its subspace αG. Thus, the map is a homeomorphism. Therefore, the map
p̃−1(αG)→ αG from before is homeomorphic to the projection map

p̃α : {(g, x) ∈ (Stab(α)\G)× E(H,G) | x ∈ E(H,G)αg} → Stab(α)\G.

Fix a point g ∈ Stab(α)\G. The stabilizer Stab(α) ⊆ G is a closed subgroup of the
Lie group G. In particular, the quotient map π : G→ Stab(α)\G has local sections,
and we can choose a neighborhood U of g and a section s : U → G. We are now in
the position to write down a local trivialization of p̃α:

p̃−1
α (U) = {(h, x) ∈ U × E(H,G) | x ∈ E(H,G)αh} ∼= U × E(H,G)α,

(h, x) 7→ (h, x · s(h)−1),

(h, x · s(h)) ← [ (h, x).

The maps are continuous because the section s is continuous and it is easy to see that
they are mutually inverse. It is left to verify that they are well-defined. For (h, x) ∈
U × E(H,G)α, we have to check that x · s(h) ∈ E(H,G)αh. As s is a section, we
can write s(h) = th for some t ∈ Stab(α). Hence, x · s(h) ∈ E(H,G)αth = E(H,G)αh.
Well-definedness for the other map works in the same fashion. Finally, it is evident
that the homeomorphisms are compatible with the projections to U . Therefore, they
constitute a local trivialization of p̃α, concluding the proof.

Corollary 2.16. The map p̃H,G is a weak equivalence.

Proof. By the previous proposition, p̃H,G is a Serre fibration. Over any point α ∈
map(H,G), its fiber is exactly E(H,G)α, which is contractible by Proposition 2.9.
Consequently, p̃H,G is a weak equivalence.

Definition 2.17. Using the bar construction as a model for EG, we define

Orb′(H,G) := Ẽ(H,G)×G EG.
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The map p̃H,G : Ẽ(H,G)→ map(H,G) from Definition 2.12 induces a map

lH,G : Orb′(H,G) = Ẽ(H,G)×G EG→ map(H,G)×G EG = Orb(H,G)

by passing to homotopy quotients

Proposition 2.18. The map lH,G is a weak equivalence.

Proof. The weak equivalence p̃H,G : Ẽ(H,G)→ map(H,G) induces a levelwise weak
equivalence

Ẽ(H,G)×Gn → map(H,G)×Gn

between those simplicial topological spaces that realize to the homotopy quotients
Ẽ(H,G)×G EG and map(H,G)×G EG respectively.

The unit map ∗ → G is a Hurewicz cofibration because G is a smooth manifold.
Therefore, any degeneracy map of the two simplicial topological spaces is a Hurewicz
cofibration, and both simplicial topological spaces are good. Goodness implies proper-
ness, and levelwise weak equivalences between proper simplicial topological spaces
realize to weak equivalences. Hence, the induced map lH,G on realizations is a weak
equivalence.

2.4. The map to Ogl(H,G)

To complete our desired zig-zag of mapping spaces, we still have to construct a
map from Orb′(H,G) to Ogl(H,G). At the end of this subsection, we will have proven

that Ẽ(H,G)/G = Ogl(H,G) so that we can use the canonical map

Orb′(H,G) = Ẽ(H,G)×G EG→ Ẽ(H,G)/G = Ogl(H,G).

Proposition 2.19. Fix a set {αi}i∈I of representatives of equivalence classes in
map(H,G)/G = Rep(H,G). Then the canonical map

µ :
∐

i∈I

E(H,G)αi/C(αi)→ Ẽ(H,G)/G,

given by its components µi([x]) = [αi, x], is a homeomorphism.

Proof. We have to show that the components µi are well-defined, implying continuity
for µ, and that µ is bijective with continuous inverse.

For well-definedness, observe that C(αi) = Stab(αi) with respect to the action of
G on map(H,G). Pick g ∈ Stab(αi) and x ∈ E(H,G)αi . Then µi([xg]) = [αi, xg] =
[αig, xg] = µi([x]). Thus, µi is well-defined, and µ is automatically continuous.

In order to prove surjectivity, pick [α, x] in the codomain of µ. We have α = αig for
some i ∈ I and g ∈ G. So, [α, x] = [αig, x] = [αi, xg

−1] = µi([xg
−1]) is in the image

of µ.

Considering injectivity, suppose that for i, j ∈ I, we have x ∈ E(H,G)αi and y ∈
E(H,G)αj such that µi([x]) = µj([y]). This means that [αi, x] = [αj , y] so there is

g ∈ G such that (αi, x) = (αjg, yg) ∈ Ẽ(H,G). In particular, αi and αj are in the
same orbit and we must have i = j. Furthermore, αi = αig implies that g ∈ Stab(αi).
As we have x = yg, we obtain [x] = [y] ∈ E(H,G)αi/Stab(αi) = E(H,G)αi/C(αi).



A COMPARISON OF TWO MODELS OF ORBISPACES 339

It remains to show that the inverse map is continuous. To this end, consider the
G-equivariant decomposition map(H,G) ∼=

∐
i αiG, see Proposition 2.4. Each com-

ponent αiG is canonically homeomorphic to Stab(αi)\G. Set

Ẽ(H,G)i := {(g, x) ∈ Stab(αi)\G× E(H,G) | x ∈ Eαig}.

This is a G-space via the diagonal action, and we have Ẽ(H,G) ∼=
∐

i Ẽ(H,G)i equi-
variantly. As coproducts commute with quotients, the codomain of µ is a coproduct
of the Ẽ(H,G)i/G with respect to the maps

ιi : Ẽ(H,G)i/G → Ẽ(H,G)/G,
[g, x] 7→ [αig, x].

A computation reveals that the set-theoretic inverse of µ has components

ξi : Ẽ(H,G)i/G → E(H,G)αi/Stab(αi),
[g, x] 7→ [xg−1]

with respect to the coproduct decomposition of Ẽ(H,G)/G from before. To conclude
the proof, we need to show that the ξi are continuous. This will be achieved by
identifying their domains Ẽ(H,G)i/G as certain quotients.

Fix i ∈ I. Since the fixed points E(H,G)αi are closed in E(H,G), the subset
G× E(H,G)αi ⊆ G× E(H,G) is closed as well. The map ̺ : G× E(H,G)→ G×
E(H,G), (g, x) 7→ (g, xg−1), is continuous. Hence, A := ̺−1(G× E(H,G)αi) must
be closed. The set A can easily be identified as

A = {(g, x) ∈ G× E(H,G) | x ∈ E(H,G)αig}.

Next, let us consider the quotient map p from G× E(H,G) to (Stab(αi)\G)×
E(H,G). The subset A of G× E(H,G) is p-saturated, i.e., p−1(p(A)) = A. To see
this, we must show that (g, x) ∈ A implies (gh, xh) ∈ A for any h ∈ G. But from
x ∈ E(H,G)αig, it follows that xh ∈ E(H,G)αigh and (gh, xh) ∈ A. Now, since A is
closed and saturated, the quotient map p restricts to a quotient map p|A : A→ p(A).

Moreover, p(A) = Ẽ(H,G)i. In the commutative diagram

(g, x) [x · g−1]

A E(H,G)αi/Stab(αi)

p(A)

p(A)/G

∈ ∈

ξi

the vertical maps are quotient maps, and the horizontal map is continuous. Therefore,
ξi is continuous, and µ is a homeomorphism because its set-theoretic inverse is the
coproduct of the continuous maps ξi.
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Proposition 2.20. Define νH,G : Ẽ(H,G)/G→ (E(H,G)/G)H by sending [α, x] to
[x]. Then νH,G is a well-defined homeomorphism and fits into a commutative diagram

Ẽ(H,G)/G

∐
i∈I E(H,G)αi/C(αi)

(E(H,G)/G)H = Ogl(H,G)

νH,G

µ

∼=

λ

∼=

where λ is as in Proposition 2.10.

Proof. The map µ is a homeomorphism by Proposition 2.19, and λ is a homeomor-
phism by Proposition 2.10. Hence, there is a unique homeomorphism νH,G making
the diagram commute, and one readily checks that the formula is correct.

We have now completed the necessary preparations to define the map that was
promised in the beginning of this subsection.

Definition 2.21. The map kH,G is the composition

Orb′(H,G) = Ẽ(H,G)×G EG Ẽ(H,G)×G ∗ ∼= Ẽ(H,G)/G Ogl(H,G).
∼=

νH,G

Proposition 2.22. The map kH,G is a weak equivalence.

Proof. We claim that theG-action on Ẽ(H,G) is free. Indeed, if there were α, g, x such
that (α, x)g = (α, x), then xg = x would imply that x ∈ E(H,G)〈g〉 where 〈g〉 ⊆ G
denotes the cyclic group generated by g. If g 6= 1, then 1× 〈g〉 cannot be a graph
subgroup ofH ×G. As E(H,G) is a universal space for the family of graph subgroups,
x ∈ E(H,G)〈g〉 = ∅, a contradiction. Hence, g = 1 and the action is free as desired.

The freeness of the action, Theorem A.7, and Lemma A.17 imply that the com-
parison map between the homotopy quotient and the point-set quotient is a weak
equivalence. Thus, kH,G is a weak equivalence.

For the reader’s convenience, we restate the main result of this section: There is a
zig-zag of weak equivalences

Orb(H,G) Orb′(H,G) Ogl(H,G).≃

lH,G

≃

kH,G

The map lH,G and its properties have been established in Subsection 2.3 while kH,G

has been discussed in this subsection.

3. The zig-zag of Dwyer-Kan equivalences

In this section, we will upgrade our results on mapping spaces to Dwyer-Kan
equivalences. In particular, we will interpret the spaces Orb(H,G), Orb′(H,G), and
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Ogl(H,G) as mapping spaces of topologically enriched categories and verify that the
comparison maps from the previous section give rise to functors sitting in a zig-zag

Orb Orb′ Ogl
≃

l

≃

k

of Dwyer-Kan equivalences.

Definition 3.1. The topological categories Orb, Orb′, and Ogl all have the set of
objects

{G ⊆ L(R∞,R∞) | G a universal subgroup},

and mapping spaces as defined (or suggested by notation) in the previous section.

It remains to specify composition laws and to verify that identity morphisms exist.
We will start by reinterpreting the mapping spaces of Orb′ and of Orb as realizations
of topological groupoids. This allows for a sleek definition of the respective composi-
tions, and we will also be able to verify compatibility with the maps lH,G easily.

Afterward, we will recall the composition law onOgl and check that it is compatible
with the maps kH,G. This will imply that our comparison zig-zag from the previous
section gives rise to a zig-zag of topologically enriched functors. Recall the following

Definition 3.2. Let C be topologically enriched category. Then the ordinary category
π0C has obπ0C = ob C and (π0C)(c, c

′) = π0(C(c, c
′)) with composition defined in the

obvious way.
A functor f : C → D of topologically enriched categories is a Dwyer-Kan equiva-

lence if the induced functor π0f : π0C → π0D is an equivalence of categories and f is
a weak equivalence on all mapping spaces.

As we have already verified that the maps in our desired zig-zag of functors are
weak equivalences on mapping spaces, and since the object functions are identities,
we will immediately be able to deduce that the zig-zag of functors is a zig-zag of
Dwyer-Kan equivalences.

Convention. For the remainder of this section, L,K,H,G shall be universal subgroups
of L(R∞,R∞) unless otherwise specified.

3.1. Compositions on Orb′ and on Orb
Recall that a topological groupoid G consists of topological spaces G0,G1 together

with source and target maps s, t : G1 → G0 and a composition ◦ : G1 ×s t G1 → G0,
subject to associativity and identity conditions. The category of topological groupoids
is denoted by GrpdTop.

Definition 3.3. Let G be a topological group and X be a right G-space. Then the
action groupoid X//G is given by (X//G)0 = X, (X//G)1 = X ×G with s(x, g) = x,
t(x, g) = x · g and (x′, g′) ◦ (x, g) = (x, gg′).

Given a G-equivariant map f : K → L of right G-spaces, we define a functor
f//G : K//G→ L//G of topological groupoids by (f//G)0 = f and (f//G)1 = f ×G.

Some straightforward computations prove



342 ALEXANDER KÖRSCHGEN

Proposition 3.4. The construction from the previous definition gives rise to a func-
tor −//G : G-Top→ GrpdTop. Furthermore, the following diagram commutes

G-Top GrpdTop Top∆ Top
−//G

−×GEG

N• |·|

where N• is the topologically enriched version of the nerve functor.

Thus, we see that the morphism spaces of Orb′ and of Orb can be described as
realizations of certain action groupoids, namely

Orb(H,G) = |N•(map(H,G)//G)|, Orb′(H,G) = |N•(Ẽ(H,G)//G)|.

Definition 3.5. We define two functors of topological groupoids which will yield
composition laws:

(i) The functor ⋄ : (map(H,G)//G)× (map(K,H)//H)→ map(K,G)//G is given
by composition in level 0 and by the formula

map(H,G)×G×map(K,H)×H → map(K,G)×G,
(β, g), (α, h) 7→ (β ◦ α, β(h)g)

in level 1.

(ii) The functor ⋄ : (Ẽ(H,G)//G)× (Ẽ(K,H)//H)→ Ẽ(K,G)//G is defined by

(β, y), (α, x) 7→ (β ◦ α, x ◦ y)

in level 0 and by

(β, y, g), (α, x, h) 7→ (β ◦ α, x ◦ y, β(h)g)

in level 1, where β ∈ map(H,G), y ∈ E(H,G)β , g ∈ G, α ∈ map(K,H), x ∈
E(K,H)α, and h ∈ H. In both formulae, we use the composition of L which is
the underlying space of both E(H,G) and E(K,H).

Remark 3.6. Denote by BG = ∗//G the action groupoid associated to the unique
action of G on the one-point space ∗. Then one can show that map(H,G)//G is
isomorphic to the internal mapping topological groupoid mapGrpdTop

(BH,BG), and

the composition ⋄ from part (i) of the previous definition is precisely the composition
coming from this enrichment of GrpdTop over itself.

Proposition 3.7. The maps from the previous definition are functors.

Proof. We have to verify well-definedness and compatibility with composition and
identities for both candidate functors ⋄. We will do this for the second one only
because the necessary verifications for the first one are part of the verifications for
the second one.

In order to check well-definedness in level 0, we have to prove that for β, y, α, x as
above, x ◦ y ∈ Eβ◦α. This means that x ◦ y is fixed under the action of graph(β ◦ α) ⊆
K ×G. Pick k ∈ K. We would like to show that (x ◦ y)(k, β(α(k))) = (x ◦ y). Choose
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v ∈ R
∞. Spelling out the left hand side and evaluating at v, we obtain

(x ◦ y)(k, β(α(k))(v) = k−1 · (x ◦ y)(β(α(k))v) = k−1 · (x(y(β(α(k))v))).

We have y ∈ Eβ by assumption and α(k) ∈ H. Thus, (α(k), β(α(k))) ∈ graph(β) and
y · (α(k), β(α(k))) = y. Concretely,

α(k)−1 · y(β(α(k))v) = y(v),

and, therefore, y(β(α(k))v) = α(k)y(v). Plugging this into the previous computation,

(x ◦ y)(k, β(α(k)))(v) = k−1(x(α(k)y(v))).

As x ∈ Eα, we have x · (k, α(k)) = x. Evaluating at y(v) ∈ R
∞ proves that the right

hand side becomes x(y(v)), and we have proven that x ◦ y ∈ Eβ◦α.
For the well-definedness in level 1, it is left to verify that the morphism of the topo-

logical groupoid Ẽ(K,G)//G specified by (β ◦ α, x ◦ y, β(h)g) has the correct source
and the correct target. The source is (β ◦ α, x ◦ y) = s(β, y, g) ⋄ s(α, x, h) as desired.
The target is ((β ◦ α) · (β(h)g), (x ◦ y)(β(h)g)) and this should agree with t(β, y, g) ⋄
t(α, x, h) = (β · g, y · g) ⋄ (α · h, x · h) = ((β · g) ◦ (α · h), (x · h) ◦ (y · g)). One readily
calculates that (β ◦ α) · (β(h)g) = (β · g) ◦ (α · h) ∈ map(K,G), so the first compo-
nents agree. For the second components, pick v ∈ R

∞. We have

((x · h) ◦ (y · g))(v) = (x · h)(y(gv)) = x(hy(gv)).

As before, y ∈ Eβ , and hy(gv) = y(β(h)gv) consequently. Plugging this in,

((x · h) ◦ (y · g))(v) = x(y(β(h)gv)) = (x ◦ y)(β(h)gv) = ((x ◦ y)(β(h)g))(v).

Thus, the candidate functor ⋄ is compatible with sources and targets.
Given an object ((β, y), (α, x)) in the product groupoid on the left hand side, its

identity is the morphism ((β, y, 1), (α, x, 1)), and applying ⋄ yields (β ◦ α, x ◦ y, 1)
which is the identity of the object (β ◦ α, x ◦ y).

Pick two composable morphisms in (Ẽ(H,G)//G)× (Ẽ(K,H)//H). Necessarily,
they are of the form ((β, y, g), (α, x, h)) and ((β · g, y · g, g′), (α · h, x · h, h′)). Their
composition inside the source groupoid is ((β, y, gg′), (α, x, hh′)) which is mapped to
(β ◦ α, x ◦ y, β(hh′)gg′) by ⋄. On the other hand, the composition of the individual
images under ⋄ inside the target groupoid is

((β · g) ◦ (α · h), (x · h) ◦ (y · g), ((β · g)(h′))g′) ◦ (β ◦ α, x ◦ y, β(h)g)

= (β ◦ α, x ◦ y, β(h)g((β · g)(h′))g′)

= (β ◦ α, x ◦ y, β(h)gg−1β(h′)gg′),

which agrees with (β ◦ α, x ◦ y, β(hh′)gg′).

Proposition 3.8. The composition laws ⋄ defined before give rise to the categories
OrbGrpd and Orb′Grpd enriched in topological groupoids with

obOrbGrpd = obOrb′Grpd = obOrb = obOrb′,

and

OrbGrpd(H,G) = map(H,G)//G, Orb′Grpd(H,G) = Ẽ(H,G)//G.

Furthermore, the maps p̃H,G : Ẽ(H,G)→ map(H,G) from Definition 2.12 give rise
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to a functor p : Orb′Grpd → OrbGrpd which is the identity on objects and pH,G :=
p̃H,G//G on morphism groupoids.

Proof. We have to verify that the composition laws ⋄ are associative and unital.
Again, we will do this for the second case Orb′Grpd only.

Unitality means that there is a, necessarily unique, functor ∗ → Orb′Grpd(G,G) for
the topological groupoid ∗ consisting of one object ∗ and its identity. Specifying such
a functor amounts to the selection of an object

idG ∈ Orb′Grpd(G,G)0 = Ẽ(G,G) = {(α, x) ∈ map(G,G)× E(G,G) | x ∈ E(G,G)α}.

The underlying space of E(G,G) is just L = L(R∞,R∞), and it is easily verified
that id : R∞ → R

∞ ∈ L lives in the subspace Eid. Thus, we claim that idG := (id, id)
yields a unit for ⋄.

Let (α, x) ∈ Orb′Grpd(H,G). Then idG ⋄(α, x) = (id, id) ⋄ (α, x) = (id ◦α, x ◦ id) =
(α, x) as desired. Similarly, (α, x) ⋄ idH = (α, x). On the level of morphisms, the func-
tor ∗ → Orb′Grpd(G,G) selects the identity of idG which is the morphism (id, id, 1) ∈

Orb′Grpd(G,G)(idG, idG) ⊆ Ẽ(G,G)×G. For a morphism (α, x, h) ∈ Orb′Grpd(H,G),
we compute (id, id, 1) ⋄ (α, x, h) = (id ◦α, x ◦ id, id(h)1) = (α, x, h) as desired. To ver-
ify unitality from the right, we have (α, x, h) ⋄ (id, id, 1) = (α, x, α(1)h) = (α, x, h)
using the identity of idH .

We prove associativity on the level of morphisms only because the statement on
objects follows from that. Thus, pick elements (α, x, k) ∈ Orb′Grpd(L,K)1, (β, y, h) ∈

Orb′Grpd(K,H)1, and (γ, z, g) ∈ Orb′Grpd(H,G)1. We calculate

((γ, z, g) ⋄ (β, y, h)) ⋄ (α, x, k) = (γ ◦ β, y ◦ z, γ(h)g) ⋄ (α, x, k)

= (γ ◦ β ◦ α, x ◦ y ◦ z, (γ ◦ β)(k)γ(h)g)

= (γ ◦ β ◦ α, x ◦ y ◦ z, γ(β(k)h)g)

= (γ, z, g) ⋄ (β ◦ α, x ◦ y, β(k)h)

= (γ, z, g) ⋄ ((β, y, h) ⋄ (α, x, k))

concluding the verification of associativity.
Spelling out the definitions, we see that the map pH,G = p̃H,G//G of topological

groupoids is given by

Orb′Grpd(H,G)0 → OrbGrpd(H,G)0,
(α, x) 7→ α,

Orb′Grpd(H,G)1 → OrbGrpd(H,G)1,
(α, x, g) 7→ (α, g),

and it is evident that these formulae are compatible with the composition laws in
OrbGrpd and Orb′Grpd, respectively, as H,G vary. Therefore, the maps pH,G assemble

into a functor p : Orb′Grpd → OrbGrpd as claimed.

Proposition 3.9. Applying the functor | · | ◦N• as in Proposition 3.4 to the com-
position laws from Definition 3.5 gives rise to categories Orb′ and Orb enriched in
topological spaces.

Moreover, the functor p from Proposition 3.8 yields a topologically enriched functor
l : Orb′ → Orb whose mapping space components lH,G : Orb′(H,G)→ Orb(H,G) are
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exactly the maps lH,G from Definition 2.17. In particular, the functor l is a Dwyer-
Kan equivalence.

Proof. Both | · | and N• are strongly monoidal. This is straightforward for the functor
N•. A reference for the monoidality of | · | is [6, Corollary 11.6].

Therefore, applying these functors to the individual mapping spaces of Orb′Grpd

and OrbGrpd and keeping the object sets the same turns these categories enriched
over topological groupoids into categories Orb′ and Orb enriched over topological
spaces.

We have |N• Orb′Grpd(H,G)| = |N•(Ẽ(H,G)//G)| = Ẽ(H,G)×G EG and, simi-
larly, |N• OrbGrpd(H,G)| = map(H,G)×G EG by Proposition 3.4. Hence, the map-
ping spaces Orb′(H,G) and Orb(H,G) agree with our definitions from Section 2.

Applying | · | ◦N• to p yields a functor l : Orb′ → Orb. As the mapping groupoid
components pH,G : Orb′Grpd(H,G)→ OrbGrpd(H,G) of p come from maps p̃H,G of
G-spaces, we may apply Proposition 3.4 again and deduce that the mapping space
components of l = |N•(p)| are |N•(p)|H,G = |N•(pH,G)| = p̃H,G ×G EG which agree
with the maps lH,G from Definition 2.17. These are weak equivalences by Proposi-
tion 2.18. Consequently, l is a Dwyer-Kan equivalence.

Remark 3.10. In [3, Remark 4.3], Gepner and Henriques choose Orb(H,G) to be
the fat geometric realization ||N•(map(H,G)//G)||. Let us denote this space by
Orb||·||(H,G) for the moment. For any good simplicial space X, the canonical map
||X|| → |X| is a homotopy equivalence, see [10, Proposition A.1(iv)]. In particular,
Orb||·||(H,G)→ Orb(H,G) is a homotopy equivalence.

The composition in Orb||·|| depends on a choice of maps i : ||X × Y || → ||X|| × ||Y ||
and r : ||X|| × ||Y || → ||X × Y || such that ||X × Y || is a retract of ||X|| × ||Y || via
these maps and such that certain associativity conditions hold, see [3, Remarks 2.23
and 4.3]. If one chooses these maps in such a way that the diagram

||X|| × ||Y || ||X × Y ||

|X| × |Y | |X × Y |

r
≃

≃ ≃

∼=

commutes, then one obtains a Dwyer-Kan equivalence Orb||·|| → Orb.

3.2. Compatibility with the composition on Ogl

We begin by recalling the composition on Ogl. Having established explicit descrip-
tions of the maps and objects in question, it will be straightforward to verify that the
remaining maps kH,G are compatible with identities and composition.

Definition 3.11 ([9, Definition 2.1]). The topologically enriched category Ogl has
objects as in Definition 3.1 and mapping spaces Ogl(H,G) = (E(H,G)/G)H as in
Definition 2.6. Composition is defined as

Ogl(H,G)×Ogl(K,H) → Ogl(K,G),

([y], [x]) 7→ [x ◦ y].

The identity morphism inOgl(G,G) is given by [idR∞ ], the class of the neutral element

of the topological monoid L = L(R∞,R∞), which is the underlying space of Ẽ(G,G).
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Proposition 3.12. The maps kH,G : Orb′(H,G)→ Ogl(H,G) from Definition 2.21
give rise to a functor k : Orb′ → Ogl that is the identity on objects.

Proof. Recall that kH,G is defined as the composition

Orb′(H,G) = Ẽ(H,G)×G EG Ẽ(H,G)×G ∗ ∼= Ẽ(H,G)/G Ogl(H,G)
∼=

νH,G

where νH,G is given by [α, x] 7→ [x], see Proposition 2.20, and the first map is given
by [α, x, u] 7→ [α, x].

We have used the bar construction model |N•(Ẽ(H,G)//G)| for Ẽ(H,G)×G EG =
Orb′(H,G), and an arbitrary element of this space is of the form [α, x,~g, s] for

(α, x) ∈ Ẽ(H,G), ~g ∈ Gn, s ∈ ∆n. The map Ẽ(H,G)×G EG→ Ẽ(H,G)/G becomes
[α, x,~g, s] 7→ [α, x] under this implicit isomorphism. We conclude that the composite
map kH,G has the formula [α, x,~g, s] 7→ [x].

In this description, the composition on Orb′, which is given by realizing the maps
⋄ from Definition 3.5, is given by

Orb′(H,G)×Orb′(K,H) → Orb′(K,H),

[β, y,~g, t], [α, x,~h, s] 7→ [β ◦ α, x ◦ y, ?],

where the unspecified value ? is irrelevant to our following considerations.
Namely, we need to verify that k is compatible with identities and composition.

We leave the straightforward computation for identities to the inclined reader and
proceed to the composition. Consider the following diagram:

Orb′(H,G)×Orb′(K,H) Orb′(K,G)

Ogl(H,G)×Ogl(K,H) Ogl(K,G)

◦K,H,G

kH,G×kK,H kK,G

◦K,H,G

Starting with [β, y,~g, t], [α, x,~h, s] in the upper left corner, we check that it is mapped
to [x ◦ y] under kK,G ◦ (◦K,H,G) which is equal to its value under ◦K,H,G ◦ (kH,G ×
kK,H). This concludes the proof.

Corollary 3.13. There is a zig-zag of Dwyer-Kan equivalences

Orb Orb′ Ogl
≃

l

≃

k

as promised at the beginning of this section.

Proof. The functor l exists and is a Dwyer-Kan equivalence by Proposition 3.9. The
existence of k was discussed in the previous Proposition. It is a Dwyer-Kan equivalence
by Proposition 2.22.

4. Generalizations of the main results

4.1. F-relative versions
At the beginning of the introduction, we have described global homotopy theory

with respect to the class of all compact Lie groups. More generally, one can study
global homotopy theory with respect to a chosen global family F , i.e., a non-empty
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class of compact Lie groups which is closed under isomorphisms, subgroups, and
quotients, see [9, Remark 3.11]. An F-global space should be thought of as a space
that is equipped with simultaneous and compatible actions of all G ∈ F , and F-global
equivalences are defined using G-fixed points for G ∈ F .

Aside from the class Fall of all compact Lie groups, examples for global families
are given by compact abelian Lie groups, finite groups, or trivial groups, respectively.

In our setup, the set of objects of both Ogl and Orb is given by the set of all
universal subgroups G ⊆ L(R∞,R∞). While this set is not isomorphism-closed, it
contains a representative for every isomorphism class of compact Lie groups, see
Remark 2.7. In particular, we can define versions of Ogl and Orb relative to a global
family and generalize our comparison result: Let F be a global family, and define OF

to be the intersection of obOgl = obOrb with F . Note that for the global family of
all compact Lie groups, we have OFall

= obOgl = obOrb.

Corollary 4.1. Let O be a subset of obOgl = obOrb and denote by OO

gl and OrbO

the full subcategories of Ogl and Orb, respectively, on this set of objects.

There is a zig-zag of two Dwyer-Kan equivalences, both of which are the identity
on objects, between OO

gl and OrbO. This zig-zag induces a zig-zag of Quillen equiv-
alences between the projective model structures on the enriched presheaf categories
Pre(OO

gl,Top) and Pre(OrbO,Top). In particular, this is true for O = OF where F is
a global family.

Given a global family F , the category OOF

gl is called OF
gl in [9, Remark 3.11]. There,

Schwede also equips both the category of L-spaces and the category of orthogonal
spaces with model structures relative to F and establishes that these are equivalent
to the projective model structure on Pre(OF

gl,Top). This yields three different models
for F-global homotopy theory.

The setup of Gepner and Henriques is based on the choice of a family of allowed
isotropy groups ([3, Subsection 1.3]) that allows for even more general classes of groups
which do not necessarily consist of compact Lie groups only. Any global family F is
a family of allowed isotropy groups in their sense, and the category Pre(OrbOF ,Top)
is a model for orbispaces with respect to F in their setup, see [3, Subsection 4.1].
In particular, the cited paper compares this category with two different models for
F-global homotopy theory.

4.2. Monomorphism variants

Another variant of orbispaces can be obtained by modifying the morphism spaces of
the orbit category as discussed in [3, Subsection 2.1]. The morphism space Orb(H,G)
is constructed from the space map(H,G) of all morphisms from H to G by taking
the homotopy quotient by the G-action. Gepner and Henriques define another orbit
category by taking the subspace mono(H,G) ⊆ map(H,G) of monomorphisms and
using Orbmono(H,G) := mono(H,G)×G EG as the space of maps from H to G in a
new index category Orbmono.

In order to define a monomorphism variant of Ogl(H,G), consider a decomposi-
tion map(H,G) ∼=

∐
i∈I αiG as in Proposition 2.4. Since the subspace mono(H,G) ⊆

map(H,G) is invariant under the G-action, there exists a subset J ⊆ I such that
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mono(H,G) ∼=
∐

i∈J αiG. By Proposition 2.10, there is a homeomorphism

λ :
∐

i∈I

E(H,G)αi/C(αi)→ (E(H,G)/G)H = Ogl(H,G),

and we define Omono
gl (H,G) to be the image of

∐
i∈J E(H,G)αi/C(αi) under λ. This

construction was explained to the author by Stefan Schwede.
It remains to find an analogon of Orb′(H,G) for monomorphisms to complete the

zig-zag. Similarly to Subsection 2.3, set

Ẽmono(H,G) := {(α, x) ∈ mono(H,G)× E(H,G) | x ∈ E(H,G)α},

and Orb′,mono(H,G) := Ẽmono(H,G)×G EG.
By imposing composition laws in analogy to Section 3, we obtain topologically

enriched categories Orbmono,Omono
gl , and Orb′,mono which have the same set of objects

as the non-monomorphism versions. The proof of Corollary 3.13 can be adapted
without complications to yield

Corollary 4.2. There is a zig-zag

Orbmono Orb′,mono Omono
gl

≃ ≃

of Dwyer-Kan equivalences, both of which are the identity on objects. This zig-zag
induces a zig-zag of Quillen equivalences between the projective model structures on
Pre(Orbmono,Top) and Pre(Omono

gl ,Top).

As in the previous subsection, we can restrict to a fixed subset O of objects in
order to account for global families other than Fall:

Corollary 4.3. Let O be a subset of obOmono
gl = obOrbmono and denote by OO,mono

gl

and OrbO,mono the full subcategories of Omono
gl and Orbmono, respectively, on this set

of objects.
There is a zig-zag of two Dwyer-Kan equivalences, both of which are the iden-

tity on objects, between OO,mono
gl and OrbO,mono. This zig-zag induces a zig-zag of

Quillen equivalences between the projective model structures on the enriched presheaf
categories Pre(OO,mono

gl ,Top) and Pre(OrbO,mono,Top). In particular, this is true for
O = OF where F is a global family.

Appendix A. Point-set topology

This appendix is concerned with several technical topics which be deemed to be
too distracting for the flow of arguments to be included in the main part of this
exposition.

After stating our conventions on the usage of the adjectives compact and com-
pactly generated in Subsection A.1, we proceed by providing helpful statements on
the interaction of closed inclusions with colimits in CGWH spaces in Subsection A.2.
Afterward, we will recall normal spaces in Subsection A.3 and show that EG is normal
as a preparatory result.

Subsection A.4 will show that for a free G-space, which is Hausdorff, the compari-
son map from the homotopy quotient to the point-set quotient is a weak equivalence
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(Theorem A.7). This result is well-known for manifolds or free G-CW-complexes,
but we could not find a sufficiently general statement in the literature that applies
to our circumstances. Therefore, we provide a proof that works for every compactly
generated Hausdorff space.

In the remaining Subsection A.5, we will investigate the topology of the spaces
Ẽ(H,G) in order to finalize some proofs from the main body of this paper.

A.1. Compactly generated weak Hausdorff spaces

The main body of this paper takes place in the category of compactly generated
weak Hausdorff spaces, also referred to as CGWH spaces. Before we deal with the
necessary point-set arguments, let us make the used terminology precise.

A space is compact if every open cover admits a finite subcover. This is also being
referred to as quasi-compact in other sources which include the Hausdorff property
into the definition of compactness.

Moreover, a space X is compactly generated if, for any subset Y ⊆ X, Y is closed
if and only if u−1(Y ) is closed for every compact Hausdorff K and every continuous
u : K → X. The space X is weak Hausdorff if for every such u and K, the image
u(K) is closed in X.

These definitions are taken from [11]. Note that this terminology varies within the
literature, and some sources refer to compactly generated spaces as k-spaces while
they take compactly generated spaces to be compactly generated weak Hausdorff
spaces in our sense.

Note that the property of being compactly generated is a local property, i.e., a
space is compactly generated if and only if each point has a compactly generated
neighborhood. The property of being weak Hausdorff is not local, though.

In this paper, we refer to CGWH spaces as (topological) spaces and denote the
corresponding category by Top. Within the next subsections, we will have to deal with
their point-set subtleties and cite statements about not necessarily CGWH spaces.
To this end, we will use the term general topological space for a space that is not
necessarily CGWH.

The category of CGWH spaces is cocomplete. Limits and colimits may, however,
differ from those computed in the category of general topological spaces. Our conven-
tion is that limits and colimits are computed in CGWH unless it is explicitly declared
that the diagram in consideration lives in the category of general topological spaces.
In this case, limits and colimits are to be taken in the category of general topological
spaces. The latter situation does only occur within this Appendix.

For the special case of products, we adopt the following notation from [11]: Given
two spaces X and Y , we denote by X ×0 Y the product taken in the category of
general topological spaces, which is not necessarily compactly generated. In contrast,
X × Y shall denote the product in the category of CGWH spaces.

A.2. Closed inclusions and CGWH colimits

We will now shed some light on situations where specific colimits agree regardless
of whether they are computed in CGWH or in the category of general topological
spaces.
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Lemma A.1 ([4, Section 2.4, p. 59]). The category of topological spaces is cocom-
plete. In the case of pushouts along closed inclusions or transfinite compositions of
injections, colimits may be computed in the category of general topological spaces since
they are already weak Hausdorff.

Lemma A.2. In the category of topological spaces, closed inclusions are closed under
pushouts, transfinite compositions, and retracts.

Proof. As weak Hausdorff spaces are automatically T1, a closed inclusion in the cate-
gory of topological spaces is a closed T1 inclusion in the category of general topological
spaces. Retracts of maps of topological spaces are also retracts of maps of general
topological spaces. Also, the relevant pushouts and transfinite compositions can be
computed in the category of general topological spaces.

The claim follows from the proof of [4, Lemma 2.4.5] for the cases of pushouts
and transfinite compositions and from the proof of [4, Corollary 2.4.6] for the case of
retracts.

A.3. Normal spaces
In this subsection, we will recall the definition of a normal space. Afterward, we will

show that normal spaces are abundant and that the class of normal spaces, in contrast
to the class of Hausdorff spaces, is closed under certain colimit constructions. As
normality implies Hausdorffness for T1 spaces, we will use our results to deduce that
EG and Ẽ(H,G) are Hausdorff spaces (Lemma A.6 and Lemma A.17 respectively).

Definition A.3. A general topological space X is normal if for any two disjoint
closed subsets A,B ⊆ X, there are open sets U, V ⊆ X such that U ∩ V = ∅, A ⊆ U ,
and B ⊆ V .

There is a very useful characterization of normal spaces:

Theorem A.4 (Tietze Extension Theorem). X is normal if and only if any contin-
uous map A→ R, A ⊆ X closed, can be extended to a map X → R.

This theorem easily allows us to deduce a few properties of and recognition criteria
for normal spaces:

Lemma A.5.

(i) Metrizable spaces and compact Hausdorff spaces are normal.

(ii) Closed subspaces of normal spaces are normal.

(iii) If A ⊆ B is a closed inclusion, B and X are normal spaces, then for any pushout
diagram

A X

B Y

the space Y is normal.

(iv) If λ is an ordinal and (Xβ)β<λ is a λ-sequence of normal spaces along closed
inclusions, then the space colimβ<λ Xβ is normal.
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(v) Normal T1 spaces are Hausdorff.

(vi) Retracts of normal T1 spaces are normal.

(vii) Quillen cofibrant topological spaces are normal.

Proof. (i) is classical, and (ii)–(iv) can easily be shown using the Tietze Extension
Theorem.

For example, let us show (iv): Given (Xβ)β<λ, a closed subspace A of the space
colimβ<λ Xβ =: X, and a continuous map f : A→ R, we wish to find an extension
F : X → R of f . We start a transfinite recursion in degree 0. As A ∩X0 is closed and
X0 is normal, we may find an extension F0 : X0 → R of f|A∩X0

. Assume that β = γ + 1
is a successor ordinal and that there is an extension Fγ : Xγ → R of F|A∩Xγ

. Then
Xγ ∪ (A ∩Xβ) ⊆ Xβ is closed (because the map Xγ → Xβ has closed image), and
the function Fγ ∪ f|A∩Xβ

: Xγ ∪ (A ∩Xβ)→ R is continuous (because Xγ → Xβ is
a homeomorphism onto its image). Hence, by the normality of Xβ , we may extend
this function to Fβ : Xβ → R. If β is a limit ordinal and we have already chosen
compatible extensions Fγ : Xγ → R, thenXβ = colimγ<β Xγ and we extend fA∩Xβ

by
colimγ<β Fγ : Xβ → R. Finally, taking F := colimβ<λ Fλ : X → R yields the desired
extension of f .

Part (v) is immediate because points are closed in T1 spaces. For part (vi), if

A
i
→ X

p
→ A is a retract diagram, then i is automatically a homeomorphism onto its

image. As X is Hausdorff, its retract subspace i(A) is closed. Therefore, it is normal
by (ii). The last part follows from (i), (iii), (iv), (vi), and the characterization of
cofibrant objects in cofibrantly generated model categories, see [5, Lemma A.4].

Lemma A.6. Let G be a compact Lie group. Then EG is normal and Hausdorff.

Proof. The space EG is the geometric realization of the simplicial topological space
EG• which is given by EGn = Gn+1. As for every geometric realization, EG is the
sequential colimit of its skeleta skn EG, which sit in pushouts

LnEG• ×∆n ∪LnEG•×∂∆n EGn × ∂∆n skn−1 EG

EGn ×∆n skn EG

where LnEG• → EGn is the n-th latching map. Since EG• is proper, cf. the Proof of
Proposition 2.18, the latching maps are closed Hurewicz cofibrations. The same is true
for the vertical pushout-product morphism on the left hand side. In particular, these
pushout-product morphisms are closed inclusions. As EGn ×∆n = Gn+1 ×∆n and
sk−1 EG• = ∅ are normal, it follows inductively from Lemma A.5 that the skn EG
are normal.

Moreover, the pushout diagram tells us that the morphisms skn−1 EG→ skn EG
are closed inclusions, using Lemma A.2. Hence, EG = colimn skn EG is normal by
Lemma A.5. As EG is CGWH, it is T1. Thus, by Lemma A.5, it is Hausdorff.

A.4. Homotopy quotients of free G-spaces
The goal of this subsection is proving the following theorem:
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Theorem A.7. Let G be a compact Lie group and X a compactly generated Hausdorff
space, endowed with a free right G-action. Then the canonical map X ×G EG→ X/G
from the homotopy quotient to the quotient is a weak equivalence.

The crucial point in the proof of this theorem is gaining homotopical control over
the quotient maps X × EG→ X ×G EG and X → X/G. Let us begin by citing sev-
eral facts about G-spaces.

Theorem A.8. Let G be a compact Lie group acting on a general topological space
X. Denote by q : X → X/G the quotient map. Then the following hold:

(i) For any closed subset A ⊂ X, the set AG = {ag | a ∈ A, g ∈ G} is closed in X.

(ii) The quotient map q is closed.

(iii) Let A be any G-invariant subset of X. Then the birestriction A→ q(A) of q
agrees with the quotient map A→ A/G, i.e., the subspace topology on q(A) is
the quotient topology of A/G.

(iv) If X is a CGWH space, then so is X/G. Put differently, the quotient computed
in general topological spaces agrees with the quotient taken in CGWH spaces.

(v) If X is Hausdorff, then the quotient map q is proper.

(vi) If X is Hausdorff, then so is X/G.

(vii) Assume that the following two conditions are satisfied:

(a) For some fixed H 6 G, the stabilizer subgroups of all points in X are con-
jugate to H.

(b) The space X is Tychonoff, i.e., completely regular and Hausdorff.

Then q is a fiber bundle with typical fiber H\G.

Proof. Statement (i) is a special case of [12, Proposition I.3.1(iii)], and the second
assertion (ii) follows from (i) by the definition of the quotient topology. An alternative
argument can be found in [8, Proposition B.13(ii)]. Statements (iv) and (iii) are
precisely [8, Proposition B.13, (i) and (iii)].

The crucial step in proving (v) is ensuring that the fibers q−1(q(x)) are compact.
This is rendered possible by the Hausdorff property because it implies that, for any
x ∈ X, the canonical map Stab(x)\G→ xG = q−1(q(x)) is a homeomorphism. A full
argument can be found in [12, Section I.3] or [1, Section I.3]. These two sources also
provide a reference for (vi). Note that [1] exclusively works in the setting of general
topological spaces that are Hausdorff.

Finally, condition (a) is a rephrasing of the requirement that all orbits have type
H\G, therefore [1, Theorem II.5.8] applies verbatim.

However, the point-set property of being Tychonoff is very inconvenient from a
homotopy theorist’s point of view because one does not seem to have any grasp
on it under limits. Complete regularity means that closed sets can be separated
from points by Urysohn functions. Most limits in CGWH spaces necessitate usage of
the k-ification functor, which potentially introduces more closed sets and, therefore,
destroys complete regularity.

On the other hand, compact Hausdorff spaces are automatically Tychonoff, and
the topology on a CGWH space is generated by its compact Hausdorff subspaces.
This will be the main argument in the proof of the following theorem.
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Theorem A.9. Let G be a compact Lie group acting on a compactly generated Haus-
dorff space X. Assume that for some fixed H 6 G, all stabilizers subgroups of points
in X are conjugate to H. Then the quotient map q : X → X/G is a fibration.

Proof. The topology on X is generated by its compact subspaces, which are auto-
matically Hausdorff, in the sense that the canonical map

colim
K⊆Xcompact

K → X

is a homeomorphism. For any compact set K ⊆ X, there is a G-invariant, compact
superset KG. In particular, the G-invariant, compact sets form a cofinal subcategory
of the compact sets, and the natural map

colim
K⊆Xcompact
and G-invariant

K → X

is a homeomorphism. This colimit commutes with taking G-quotients. Hence,

X/G = colim
K⊆Xcompact
and G-invariant

(K/G).

For any G-invariant, compact K ⊆ X, the space K is compact Hausdorff which
implies normal Hausdorff and, consequently, the Tychonoff property. The stabilizer
subgroups of the G-action on K are conjugate to a fixed H, so we may apply The-
orem A.8(vii) and deduce that the quotient map K → K/G is a fiber bundle and,
therefore, a fibration. Moreover, note that this quotient map is exactly the birestric-
tion q|K of q : X → X/G to K and its image q(K) = K/G, see Theorem A.8(iv).

Having made the necessary preparations, let us consider a generating acyclic cofi-
bration of topological spaces i : A →֒ B and a lifting problem

A X

B X/G

f

i q

g

As B is compact, its image g(B) ⊆ X/G is compact. Since q is proper by Theo-
rem A.8(v), the G-invariant subset K := q−1(g(B)) is compact, too. Also, g(B) =
q(q−1(g(B))) = q(K) = K/G. By corestriction, our lifting problem reduces to the
left-hand square of

A K X

B K/G X/G

f

i q|K q

g

The middle vertical map q|K is a fibration by our previous considerations, and we
may find a lift as indicated. Postcomposing with the inclusion K →֒ X immediately
solves our original lifting problem.

Remark A.10. In the previous proof, the Hausdorff property for X ensures that the
spaceK = q−1(g(B)) is compact Hausdorff. Compactness follows from the properness
of q, which necessitates the Hausdorff property, and the Hausdorff property forK itself
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is inherited from X. Despite several efforts, we were unable to eliminate the Hausdorff
requirement for X. However, we believe that the statement in its current form may
prove useful for other applications as compact Lie group actions on Hausdorff spaces
are ubiquitous.

Before we proceed to the proof of Theorem A.7, let us record some preparations
which will help us to establish isomorphisms on π0 and π1.

Proposition A.11. Let X and G be as before. The G-action on X induces a π0(G)-
action on π0(X), and there is a dashed arrow making the following triangle commute:

π0(X) π0(X/G)

π0(X)/π0(G)

π0(q)

̺
π0(q)

This arrow is an isomorphism and natural with respect to morphisms of G-spaces.

Proof. The π0(G)-action on π0(X) is well-defined because π0 commutes with prod-
ucts, and G-morphisms X → Y give rise to morphisms π0(X)→ π0(Y ) of π0(G)-sets.
If it exists, the arrow π0(q) is unique which implies naturality.

Denote path-components by [·]. In order to show that π0(q) exists, pick [x] ∈
π0(X). Then for all [g] ∈ π0(G), we have π0(q)([x]) = [q(x)] = [q(xg)] = π0(q)([xg]) =
π0(q)([x] · [g]) where · denotes the π0(G)-action on π0(X). Thus, π0(q) factors through
the quotient map ̺.

If X = ∅, then both domain and codomain of π0(q) are one-point sets and the
map is an isomorphism. Otherwise, the quotient map q : X → X/G is surjective and
induces a surjection on π0. Consequently, the map π0(q) is surjective as well, and it
remains to show that the map is injective.

Assume that for x, y ∈ X, we have π0(q)(̺([x])) = π0(q)(̺([y])), i.e., π0(q)([x]) =
π0(q)([y]), which can be rephrased as [q(x)] = [q(y)]. This means that there is a path
γ : [0; 1]→ X/G from q(x) to q(y). As the quotient map X → X/G is a fibration, we
can lift γ to a path γ̃ : [0; 1]→ X from γ̃(0) = x to some point γ̃(1) with q(γ̃(1)) =
q(y). This implies that there is g ∈ G with γ̃(1) = yg. In particular, we have

̺([x]) = ̺([γ̃(1)]) = ̺([yg]) = ̺([y] · [g]) = ̺([y]) ∈ π0(X)/π0(G),

and we deduce that π0(q) is injective.

Definition A.12. Let X and G be as before. Assume additionally that X 6= ∅ and
that the G-action on X is free. Picking x ∈ X, denote by fibq(x)(q) the fiber of
q : X → X/G over q(x) ∈ X/G. We equip this fiber with a group structure using
the homeomorphism

G
∼=
→ fibq(x)(q), g 7→ xg−1.

Remark A.13. The assignment g 7→ xg is a homeomorphism as well and could have
been used to define the group structure. However, the convention described above
ensures that the group structure is compatible with the standard conventions for
homotopy groups. Moreover, note that this group structure is natural with respect
to G-equivariant pointed maps of pointed free G-spaces.
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Proposition A.14. Let X, x, and G be as in Definition A.12. The boundary map

π1(X/G, q(x))
∂
→ π0(fibq(x)(q))

associated to the fibration q : X → X/G is a group homomorphism with respect to the
group structure which is induced by the group structure from Definition A.12 under
the functor π0.

Proof. We interpret π1(X/G, q(x)) as classes of maps (D1, S0)→ (X/G, q(x)) of pairs
of spaces and employ the notation [·] for classes in π0 or π1. Let α1 be such a map. As
q is a fibration, we may find a lift α̃1 : D

1 → X such that q ◦ α̃1 = α1 and α̃1(0) = x.
Then ∂[α1] = [α̃1(1)] ∈ fibq(x)(q). There is a unique g ∈ G such that α̃1(1) = xg−1.

Given another α2 : (D
1, S0)→ (X/G, q(x)), choose a lift α̃2 as before such that

∂[α2] = [α̃2(1)]. Let h ∈ G be the unique element with α̃2(1) = xh−1. We wish to show
that ∂([α1] · [α2]) agrees with ∂([α1]) · ∂([α2]) = [xg−1] · [xh−1] which is [x(gh)−1] =
[xh−1g−1] by definition of the group structure on π0(fibq(x)(q)).

The product [α1] · [α2] in π1(X,x) is represented by the concatenation α1 ∗ α2

with the standard convention (α1 ∗ α2)(0) = α1(0), (α1 ∗ α2)(1) = α2(1). Denote by
α̃2 · g

−1 the path t 7→ α̃2(t) · g
−1 from xg−1 to xh−1g−1. Then α̃1 and α̃2 · g

−1 are
concatenable and their concatenation γ := α̃1 ∗ (α̃2 · g

−1) satisfies q ◦ γ = α1 ∗ α2 and
γ(0) = x. Hence, ∂([α1] · [α2]) = ∂([α1 ∗ α2)] = [γ(1)] = [xh−1g−1] as desired.

Proof of Theorem A.7. In the trivial case X = ∅, the statement holds. Let us exclude
this case from the following considerations.

Observe that X and EG are Hausdorff by assumption and by Lemma A.6, respec-
tively. Therefore, their product X ×0 EG in the category of general topological spaces
is Hausdorff. As all open sets in X ×0 EG are also open in its k-ification X × EG =
k(X ×0 EG), we deduce that X × EG is Hausdorff as well.

Denote the projection X × EG→ X by pr and pick (x, e) ∈ X × EG. We obtain
a commutative diagram of fiber sequences:

fibq1(x,e)(q1) X × EG X ×G EG

fibq2(x)(q2) X X/G

fib(pr,pr /G)

q1

pr pr /G

q2

Using homeomorphisms as in Definition A.12, we obtain a commutative triangle

fibq1(x,e)(q1) = (x, e)G

G/{1} ∼= G

fibq2(x)(q2) = xG

fib(pr,pr /G)

∼=

∼=

Thus, fib(pr, pr /G) is a homeomorphism. Since EG is contractible, pr : X × EG→ X
is a weak equivalence. By Theorem A.9, the quotient maps q1 and q2 are fibra-
tions. In the associated long exact sequences on π∗,the terms π0(fibq1(x,e)(q1)) and
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π0(fibq2(x)(q2)) inherit group structures, and the appropriate boundary maps are
group homomorphisms, see Definition A.12 and Proposition A.14. This is sufficient
to deduce that pr /G induces an isomorphism on πn for n > 1 and all basepoints by
the four lemmas.

Finally, the weak equivalence pr : X × EG→ X is G-equivariant and induces an
isomorphism of π0(G)-sets on π0. Thus, it yields an isomorphism π0(pr)/π0(G) from
π0(X × EG)/π0(G) to π0(X)/π0(G). The diagram

π0(X × EG)/π0(G) π0(X)/π0(G)

π0(X ×G EG) π0(X/G)

π0(pr)/π0(G)

∼=

π0(q1) ∼= π0(q2)∼=

π0(pr /G)

commutes, and the vertical arrows are isomorphisms, see Proposition A.11. Therefore,
the map pr /G is an isomorphism on π0, too, and it is a weak equivalence.

A.5. The topology of Ẽ(H,G)

In order to apply Theorem A.7 to Ẽ(H,G), which is necessary for the proof of
Proposition 2.22, we need to verify that this is a Hausdorff space. Let us start by
recalling the topology on E(H,G).

Observation A.15. The underlying space of the (H ×G)-space E(H,G) is the space
of linear isometries L(R∞,R∞), whose topology we will define now. First, given finite-
dimensional real inner product spaces V,W , the space L(V,W ) of linear isometric
embeddings is topologized by choosing an orthonormal basis (v1, . . . , vk) of V and
using the bijection

L(V,W ) → Stiefelk(W ),
f 7→ (f(v1), . . . , f(vk))

to the Stiefel manifold of k-frames in W . This Stiefel manifold is a subset of W k and
endowed with the subspace topology.

Having established the topology on L(V,W ) for V and W finite-dimensional, we
move on to the case where the second argument is of countably infinite dimension.
For such a W, we define

L(V,W) := colim
W∈s(W)

L(V,W ),

where s(W) is the poset of finite-dimensional subspaces of W. For W 6 W ′ ∈ s(W),
the induced map L(V,W )→ L(V,W ′) is a closed inclusion. Furthermore, If W0 ⊆
W1 ⊆ · · · ⊆ W is a strictly increasing sequence of finite-dimensional subspaces such
that ∪lWl =W, it is cofinal, and we have

L(V,W) = colim
l

L(V,Wl).

As this colimit is taken along closed inclusions, it agrees with the colimit computed
in general topological spaces (Lemma A.1).
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It remains to upgrade the first variable to vector spaces of countably infinite dimen-
sion. For such a vector space V, we set

L(V,W) = lim
V ∈s(V)

L(V,W),

where the limit is taken in the category of CGWH spaces. Again, for an exhaustive
sequence V0 ⊆ V1 ⊆ . . . of finite dimensional subspaces of V, we have

L(V,W) = lim
l
L(Vl,W).

By [9, Appendix A], this is the same topology as the subspace topology inherited from
the inclusion L(V,W) ⊆ map(V,W) into the space of all continuous maps.

Lemma A.16. The space L(R∞,R∞) is Hausdorff.

Proof. First, the spaces L(Rn,Rm) are normal as they are metrizable. Therefore,
L(Rn,R∞), which is defined as colimm L(Rn,Rm), is a sequential colimit of normal
spaces along closed inclusions. Thus, L(Rn,R∞) is normal by Lemma A.5. The space
L(Rn,R∞) is T1, too, so it is Hausdorff.

The limit L(R∞,R∞) = limn L(R
n,R∞) can be modeled as a (closed) subspace of

the infinite product
∏

n L(R
n,R∞) of Hausdorff spaces. As subspaces of Hausdorff

spaces are Hausdorff, it suffices to show that
∏

n L(R
n,R∞) is Hausdorff. This is true

for the product computed in general topological spaces. The product in the category
of CGWH spaces can then be obtained by k-ification. However, this procedure does
not destroy Hausdorffness because k-ification preserves open sets. We conclude that∏

n L(R
n,R∞) and its subspace L(R∞,R∞) are Hausdorff.

We are now ready to obtain a few important facts about the topology on Ẽ(H,G).

Lemma A.17. The two product topologies map(H,G)× E(H,G) and map(H,G)×0

E(H,G) agree, and they are Hausdorff. The subspace Ẽ(H,G) is compactly generated
and Hausdorff. In particular, it is CGWH.

Proof. The space map(H,G) is metrizable and hence locally compact Hausdorff.
Therefore, the product map(H,G)× E(H,G) agrees with the product map(H,G)×0

E(H,G) taken in general topological spaces.
For the second statement, first observe that map(H,G) is Hausdorff by the dis-

cussion above and that the space E(H,G) is Hausdorff by Lemma A.16. Therefore,

map(H,G)× E(H,G) is Hausdorff and so is its subspace Ẽ(H,G). This implies the
weak Hausdorff property of course.

In order to prove that Ẽ(H,G) is compactly generated, recall that Ẽ(H,G) is a
fiber bundle over map(H,G) by Proposition 2.15. In particular, the proof shows that

each point of Ẽ(H,G) has a neighborhood that is homeomorphic to U × E(H,G)α

for U ⊆ map(H,G) open and α ∈ map(H,G).
According to our convention, the product U × E(H,G)α is computed in the cat-

egory of CGWH spaces, and therefore automatically compactly generated. As U is
locally compact Hausdorff, we actually have U × E(H,G)α = U ×0 E(H,G)α.

In any case, the space Ẽ(H,G) is locally compactly generated which implies that
it is compactly generated, concluding the proof.
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