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Abstract
It was observed recently that for a fixed finite group G, the set

of all Drinfeld centres of G twisted by 3-cocycles form a group, the
so-called group of modular extensions (of the representation cate-
gory of G), which is isomorphic to the third cohomology group of
G. We show that for an abelianG, pointed twisted Drinfeld centres
ofG form a subgroup of the group of modular extensions. We iden-
tify this subgroup with a group of quadratic extensions containing
G as a Lagrangian subgroup, the so-called group of Lagrangian
extensions of G. We compute the group of Lagrangian extensions,
thereby providing an interpretation of the internal structure of the
third cohomology group of an abelian G in terms of fusion cate-
gories. Our computations also allow us to describe associators of
Lagrangian algebra in pointed braided fusion categories.
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1. Introduction

In this paper, we are interested in a special class of monoidal categories—the class
of fusion categories, i.e., k-linear, semi-simple, rigid monoidal categories with finitely
many simple objects and finite-dimensional spaces of morphisms and such that the
endomorphism algebra of the unit object coincides with the ground field k. Due to
the applications in representation theory, theoretical physics, and quantum computing
the theory of fusion categories is experiencing a period of rapid development (see [7]
and the references therein).

Relations between low-dimensional group cohomology and monoidal categories in
general (and fusion categories, in particular) have a long history, going back to the
beginning of at least the latter subject. A model example is the fact that associativity
constraints on the monoidal category of vector spaces graded by a groupG are nothing
but 3-cocycles of G with coefficients in the multiplicative group of the ground field.
This observation goes back to S. Mac Lane, one of the founders of both subjects.

A more sophisticated example is the relation between constraints of a braided
monoidal category on vector spaces graded by an abelian group A (a so-called braided
pointed fusion category) and the third abelian cohomology (see [9]). The structure
of the braided monoidal category of A-graded vector spaces (the so-called braided
pointed category) corresponds to a pair (α, c), where α is a 3-cocycle of A (associa-
tivity constraint), and c is a 2-cochain of A (braiding). The hexagon axioms for the
braiding are equivalent to certain equations on (α, c) known as the abelian 3-cocycle
condition. The Eilenberg–Mac Lane interpretation of the third abelian cohomology as
the group of quadratic functions has a natural manifestation on the level of categories:
equivalence classes of braided pointed fusion categories are labeled by pairs (A, q),
where q : A→ k∗ is the quadratic function computing the self-braiding q(x) = c(x, x).

From the perspective of applications—especially in theoretical physics—the most
interesting are braided fusion categories with a braiding as far from being symmet-
ric as possible, i.e., the so-called non-degenerate braided fusion categories or modular
categories. For example, a braided pointed category is non-degenerate iff the kernel
of the corresponding quadratic function is trivial. Another source of non-degenerate
braided fusion categories is provided by the monoidal centre construction. Applied to
a fusion category S of a certain type, it produces a non-degenerate braided fusion cat-
egory Z(S). The most studied examples of this type are twisted Drinfeld centres. The
twisted Drinfeld centre Z(G,α) of a finite group G is the monoidal centre Z(V(G,α))
of the category of G-graded vector spaces V(G,α) with the associativity constraint
defined by the 3-cocycle. Recently, twisted Drinfeld centres of G were interpreted as
non-degenerate braided categories containing the representation category Rep(G) as
the maximal symmetric subcategory. Moreover, the classes of such non-degenerate or
modular extensions are shown to form a group (in [11]), a fact which we use in this
paper.

The main objects of study for us are Lagrangian algebras in non-degenerate braided
categories. The relative tensor product ⊗R turns the category CR of modules of a
commutative algebra R in a braided category C in to a tensor category. The original
braiding of C does not make the whole category CR braided, it only works on a
subcategory ClocR of so-called local modules. A commutative algebra R is Lagrangian
if the only local modules over R are direct sums of R. Lagrangian algebras play a



THIRD COHOMOLOGY AND FUSION CATEGORIES 277

special role in the theory of modular categories. Namely, a Lagrangian algebra R ∈ C
allows us to identify C with the monoidal centre Z(CR) of the category CR of R-
modules in C. For example, when all simple modules over a Lagrangian algebra are
invertible, the category C can be identified with a twisted Drinfeld centre

C ≃ Z(G,α),

where G is the group of (isomorphism classes of) invertible R-modules and α is the
associator of the pointed category CR.

In this paper, we examine the case of non-degenerate braided pointed categories. In
this case, all Lagrangian algebras correspond to Lagrangian subgroups of the grading
group. Moreover, all simple modules over Lagrangian algebras are invertible and the
group of invertible modules is the quotient by the corresponding Lagrangian subgroup.
Thus a Lagrangian subgroup L ⊂ A gives rise to a braided equivalence

C(A, q) ≃ Z(A/L, β).

The primary purpose of the paper is to describe the associator β ∈ H3(A/L, k∗) as
a function of A, q and L. We derive a formula for (a cocycle representing) it (see
Appendix A):

β(x, y, z) =

α(s(x), s(y), s(z))α(γ(x, y), s(x+ y), s(z))c(s(x+ y) + s(z), γ(x, y))η(γ(x, y + z), γ(y, z))

α(s(x), s(y + z), γ(y, z))c(s(x+ y), γ(x, y))η(γ(x+ y, z), γ(x, y))
,

where s : A/L→ A is a section of the canonical projection, γ is a 2-cocycle repre-
senting the class of the abelian group extension L→ A→ A/L, η ∈ C2(L, k∗) is such
that ∂η = α|L, and c ∈ C2(A, k∗) is the coefficient for the braiding in the ambient
category.

The above explicit expression is not very easy to use. For example, the formula
does not immediately tell when the cohomology class of the associator is nontrivial.
In order to find a more useful description of the associator, we look at the correspon-
dence between triples (A, q, L) (a non-degenerate quadratic group and a Lagrangian
subgroup) and the cohomology classes in H3(A/L, k∗) from a different perspective.
By fixing L and varying (A, q) we turn this correspondence into a homomorphism
of groups. Namely we define a natural group structure on the set of isomorphism
classes of Lagrangian extensions of L (non-degenerate quadratic group (A, q) con-
taining L as a Lagrangian subgroup). Assigning the associator to the triple (A, q, L)
now becomes a homomorphism from the group Lex(L) of Lagrangian extensions to
the third cohomology

Lex(L) −→ H3(L̂, k∗). (∗)

Here, we use the natural identification of A/L with the character group L̂ =
Hom(L, k∗) induced by the quadratic function on A. The homomorphism (∗) is a
convenient way of expressing the associator β ∈ H3(A/L, k∗) as a function of A, q
and L.

More precisely, according to [11], we can identify H3(L̂, k∗) with the group of

modular extensions of the representation category Rep(L̂) = V(L). Under this iden-
tification the subgroup of pointed modular extensions corresponds to Lex(L). The
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homomorphism (∗) fits into a short exact sequence

1 // Lex(L) // H3(L̂, k∗)
Alt3 // Hom(Λ3L̂, k∗) // 1,

i.e., Lex(L) is the kernel of the alternation map Alt3 : H
3(L̂, k∗)→ Hom(Λ3L̂, k∗).

We denote by Hom(ΛnB,M) the group of alternating n-linear forms on B with
values in an abelian group M . Assigning to a Lagrangian extension L ⊂ A the class
of a short exact sequence 0→ L→ A→ L̂→ 1 gives a homomorphism of groups

ϕ : Lex(L) −→ Ext(L̂, L)τ .

Here, Ext(L̂, L)τ is the subgroup of invariants of the involution τ : Ext(L̂, L)→
Ext(L̂, L), given by taking the dual.

When L is 2-torsion-free, the map ϕ is an isomorphism. For a general finite abelian
L, the situation is a bit more complicated. We have an exact sequence

0 // L/2L
ψ // Lex(L)

ϕ // Ext(L̂, L)τ // L2
// 0.

The map ψ : L/2L→Lex(L) sends x∈L into the Lagrangian extension (L× L̂, qstdq̃),
where q̃ is a quadratic function L̂→ k∗ such that q̃(χ)2 = χ(x) for all χ ∈ L̂ and

qstd(y, ξ) = ξ(y). In order to define the map Ext(L̂, L)τ → L2, we find it useful to

promote Ext(L̂, L) (as well as the groups of Lagrangian and modular extensions) to
categorical groups.

Altogether, these give a decomposition of degree-three cohomology into natural
polynomial functors of degrees three, two, and one:

0

��
B̂2

ψ

��
0 // Lex(B̂)

ϕ

��

// H3(B,Q/Z) Alt3 // Hom(Λ3B,Q/Z) // 0

Ext(B, B̂)τ

��

B̂/2B

��
0

Here, we write L̂ = B. Since our ground field k is algebraically closed of characteristic
zero, we can trade k∗ for the universal torsion group Q/Z as the coefficient group for
cohomology of a finite B. Note that the answers for cohomology in degree one and
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two are much easier:

H1(B,Q/Z) = B̂, H2(B,Q/Z) = Hom(Λ2B,Q/Z).

The rise in complexity in degree three reflects the more involved decomposition of
the homology H3(B) in terms of natural polynomial functors (see [1]).

We will deal with fusion categories. We will use the language of categorical groups
(see, e.g. [9, Section 3.1]). This language will be very helpful in comparing the groups

Lex(L) and Ext(L̂, L). A categorical group is a monoidal category G in which all
morphisms and all objects are invertible. The standard invariants of G are the zeroth
and first homotopy groups π0(G) and π1(G); π0(G) is the group of isomorphism classes
of objects of G, and π1(G) is the group of automorphisms of the unit object of G.

Remark 1.1. For any X ∈ G, there is an isomorphism AutG(I)→ AutG(X) defined
as follows. For a ∈ AutG(I), define α ∈ AutG(X) by the diagram

I⊗X λX //

a⊗1

��

X

α

��
I⊗X

λX

// X

Here, λ denotes the left unit isomorphism in G. Let gX : AutG(X)→ AutG(I) denote
the inverse of this map. Note that, for any Y ∈ G and any morphism x : X → Y , we
have gX(a) = gY (xax

−1).

Throughout the paper we try to follow the convention according to which lower
case Latin is used for elements and morphisms, upper case Latin is for objects and
functors, calligraphic is for categories and 2-functors, and bold is for 2-categories.

Acknowledgments

The authors would like to thank Larry Breen, Ronnie Brown, and the anonymous
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2. Drinfeld centres of finite groups

In this section, we follow [11] to interpretH3(G, k∗) as the group of modular exten-
sions of the representation category Rep(G), and then we consider pointed modular
extensions of Rep(G).

2.1. The categorical group Mex(S)
Recall (e.g. from [3]) that a braided fusion category D is non-degenerate if its

symmetric centre

Zsym(D) = {X ∈ D | cX,Y ◦ cY,X = 1Y⊗X ∀Y ∈ D}

coincides with Vect . Let S be a symmetric fusion category. Following [11], we say
that a non-degenerate braided fusion category D containing S as a full subcategory
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is a modular extension1 of S if the symmetric centraliser

CD(S) = {X ∈ D | cX,Y ◦ cY,X = 1Y⊗X ∀Y ∈ S} (1)

coincides with S.

Remark 2.1. A non-degenerate braided category D containing S as a full subcate-
gory is a modular extension if and only if dim(D) = (dim(S))2. Indeed, S is always
a subcategory of its symmetric centraliser CD(S), and the relation between dimen-
sions dim(D) = dim(S) · dim(CD(S)) makes dim(CD(S)) = dim(S) equivalent to the
condition S = CD(S).

Define the category Mex(S) as follows. Objects of Mex(S) are modular exten-
sions of S. Morphisms are isomorphism classes of braided equivalences preserving the
subcategory S, i.e., making the diagram

C // D

S

__ ??

commute on the nose.

Remark 2.2. If we consider isomorphisms between braided equivalences of modular
extensions as 2-cells, we naturally end up with a 2-category Mex(S).

To describe the monoidal structure onMex(S), we recall some basic facts about
commutative algebras in braided fusion categories.

Following [3], we call a commutative algebra R in a braided fusion category D
etale if it is indecomposable and separable. The category DR of (right) R-modules
over an etale algebra R is fusion with respect to the relative tensor product ⊗R. The
categorical dimension of DR satisfies dim(D) = dim(Dr)dim(R). An R-module M is
said to be local if the following diagram commutes:

M ⊗R ν //

cM,R

��

M

R⊗M
cR,M

// M ⊗R

ν

OO

The full subcategory DlocR of local right R-modules is braided [13]. In terms of cat-
egorical dimension dim(D) = dim(DlocR )dim(R)2. An algebra R in a braided fusion
category D is Lagrangian if any local R-module is a direct sum of copies of the
regular module R, i.e. ClocR is equivalent to the category Vect of vector spaces. For
a Lagrangian R, the natural braided tensor functor into the monoidal centre D →
Z(DR) is an equivalence. Dimension-wise, we have dim(D) = dim(R)2.

For D,D′ ∈Mex(S), the Deligne product S ⊠ S is a full subcategory of D ⊠D′.
The tensor product functor ⊗ : S ⊠ S → S has a two-sided adjoint F : S → S ⊠ S.
This gives rise to an etale algebra R = F (I) ∈ S ⊠ S, where I ∈ S is the monoidal

1
We are abusing language here; what we call a “modular extension” would more properly be termed

a “non-degenerate braided extension”.
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unit object. The category of local modules (D ⊠D′)locR is a modular extension of S.
Indeed, (S ⊠ S)locR = (S ⊠ S)R = S, so that (D ⊠D′)locR is an extension of S. Since
dim(R) = dim(S), we have dim((D ⊠D′)locR ) = dim(D ⊠D′)dim(R)−2 = dim(S)2.
Define an operation

⊙S :Mex(S)×Mex(S)→Mex(S), D ⊙S D′ = (D ⊠D′)locR .

The groupoid Mex(S) is monoidal with respect to ⊙S . The monoidal unit is the
monoidal (or Drinfeld) centre Z(S) of S, considered as a modular extension of S
with respect to the natural embedding S → Z(S). Moreover,Mex(S) is a categorical
group. Indeed, the quasi-inverse of a modular extension C with respect to ⊙S is C,
i.e., the category C with the inverse braiding.

The zeroth homotopy group π0(Mex(S)) = Mex (S) was called in [11] the group
of modular extensions of S. By the definition, the first homotopy group π1(Mex(S))
coincides with the group Autbr(Z(S)/S) of isomorphism classes of braided tensor
autoequivalences of Z(S) fixing objects of S on the nose.

Remark 2.3. The 2-category Mex(S) from remark 2.2 is clearly a 2-categorical group.
The standard invariants π0 and π1 of Mex(S) are the same as forMex(S). It follows
from the definition that π2(Mex(S)) = ker

(
Aut⊗(IdZ(S))→ Aut⊗(IdS)

)
.

We will be interested in the case when the base symmetric category S is the
category Rep(G) of finite-dimensional representations of a finite group G. Modular
extensions of Rep(G) turn out to be twisted Drinfeld centres of G, which we are going
to describe now.

Denote by V(G,α) the category of G-graded vector spaces with the usual graded
tensor product and associativity twisted by the 3-cocycle α ∈ Z3(G, k∗):

αV,U,W (v⊗(u⊗w)) = α(x, y, z)(v⊗u)⊗w, v ∈ Vx, u ∈ Uy, w ∈Ww. (2)

An α-projective G-action2 on a G-graded vector space V is a collection of auto-
morphisms x : V → V, v 7→ x.v such that x(Vy) = Vxyx−1 , and

(xy).v = α(x, y|z)x.(y.v), v ∈ Vz. (3)

Here,

α(x, y|z) = α(x, yzy−1, y)

α(x, y, z)α(xyz(xy)−1, x, y)
.

Similarly, define

α(x|y, z) = α(x, y, z)α(xyx−1, xzx−1, x)

α(xyx−1, x, z)
.

The following identities follow directly from the 3-cocycle condition for normalised α:

α(x, yz|w)α(y, z|w) = α(xy, z|w)α(x, y|zwz−1),

α(xy|z, w)α(x, y|z)α(x, y|w) = α(x, y|zw)α(y|z, w)α(x|yzy−1, ywy−1),

α(y, z, w)α(x|yz, w)α(x|y, z) = α(x|y, zw)α(x|z, w)α(xyx−1, xzx−1, xwx−1).

(4)

Define the twisted Drinfeld centre Z(G,α) as follows. Objects of Z(G,α) are G-
graded vector spaces together with α-projective G-action. Morphisms are grading and

2
See [4, § 2.1].
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action-preserving homomorphisms of vector spaces. The tensor product in Z(G,α) is
the tensor product of G-graded vector spaces, with α-projective G-action defined by

x.(u⊗ v) = α(x|y, z)(x.u⊗ x.v), u ∈ Ux, v ∈ Vy. (5)

The associativity is given by (2). The monoidal unit is I = Ie = k with trivial G-
action. The braiding is given by

cU,V (u⊗ v) = x.v ⊗ u, u ∈ Ux, v ∈ V. (6)

Note that Z(G,α) is equivalent to the monoidal centre Z(V(G,α)) (see [4] for
details). Note also that Rep(G) is a full symmetric subcategory of Z(G,α) (consist-
ing of trivially graded objects). Moreover, dim(Z(G,α)) = |G|2 = dim(Rep(G))2, so
Z(G,α) is a modular extension of Rep(G) by remark 2.1.

The following was proved in [11, Theorem 4.22]. We add (a sketch of) a proof here.

Proposition 2.4. The assignment α 7→ Z(G,α) gives an isomorphism

H3(G, k∗) → Mex (Rep(G)).

Proof. The homomorphism property of the assignment is established by a braided
equivalence

Z(G,α)⊙Rep(G) Z(G, β) → Z(G,αβ).

Note that Z(G,α)⊠ Z(G, β) ≃ Z(G×G,α× β) as braided fusion categories. Let
δ : G→ G×G be the diagonal embedding. The tensor product functor ⊗ : Rep(G)⊠
Rep(G)→Rep(G) corresponds to the inverse image functor δ∗ : Rep(G×G)→
Rep(G) upon the identification Rep(G)⊠Rep(G) = Rep(G×G). By Frobenius reci-
procity its adjoint δ∗ is the induction with respect to δ. In particular, δ∗(k) is the
function algebra k((G×G)/δ(G)) ∈ Z(G×G,α× β). By [4, Theorem 3.7], its cate-
gory of local modules is equivalent to Z(G,αβ). Let now D be a modular extension
of Rep(G). The function algebra A = k(G) with the regular G-action is etale in
Rep(G) and in D. Since dim(A) = dim(Rep(G)), the algebra A is Lagrangian. Thus
D ≃ Z(DA). Moreover, the group of algebra automorphisms is Autalg(A) = G. Hence

the category of modules DA is G-graded ⊕g∈GDg-locA into g-local modules and as the
result is tensor equivalent to V(G,α) for some α ∈ Z3(G, k∗) (see [10] for details).
Thus we have D = Z(DA) ≃ Z(V(G,α)) ≃ Z(G,α) which shows that the assignment
of the proposition is bijective.

The first homotopy group π1(Mex(Rep(G))) also has a cohomological description.

Lemma 2.5. π1(Mex(Rep(G))) ≃ H2(G, k∗).

Proof. π1(Mex(Rep(G))) is the group Autbr(Z(Rep(G))/Rep(G)) of braided autoe-
quivalences of the monoidal centre Z(Rep(G)) that fix the full subcategoryRep(G) ⊆
Z(Rep(G)) on the nose. The monoidal centre Z(Rep(G)) is equivalent, as a braided
monoidal category, to the untwisted Drinfeld centre Z(G). The algebra of functions
k(G) ∈ Rep(G) is an etale algebra in Z(G); its category of right modules Z(G)k(G) is
equivalent to the category V(G) of G-graded vector spaces. This equivalence gives rise
to a homomorphism Autbr(Z(Rep(G))/Rep(G))→ Aut⊗(V(G)). It follows from [12,
Corollary 6.9] that it is an isomorphism with the group Aut1⊗(V(G)) of isomorphism
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classes of tensor structures on the identity functor (the so-called soft autoequiva-
lences). The group Aut1⊗(V(G)) is, in turn, isomorphic to H2(G, k∗) by [2, Proposi-
tion 2.5].

Remark 2.6. The group π2(Mex(Rep(G))) is isomorphic to the first cohomology
group H1(G, k∗). Indeed, according to remark 2.3, the group π2(Mex(Rep(G))) coin-
cides with ker(Aut⊗(IdZ(Rep(G)))→ Aut⊗(IdRep(G))). As was pointed out to us by
L. Breen the 2-categorical group is the truncation of a 3-categorical group with π3
being H0(G, k∗).

We end this section with a crossed-module representing the categorical group
Mex(Rep(G)). Denote by (C∗(G, k∗), ∂) the standard complex computing the coho-
mology of G with coefficients in k∗.

Lemma 2.7. The categorical group G associated with the crossed-module

Z3(G, k∗) C2(G, k∗)/B2(G, k∗)
∂oo

is equivalent toMex(Rep(G)).

Proof. Objects of the categorical group G are elements of Z3(G, k∗). A morphism
between α, β ∈ Z3(G, k∗) is a 2-cochain c ∈ C2(G, k∗)/B2(G, k∗) such that ∂(c) =
α · β−1. Define a functor F : G →Mex(Rep(G)) by F (α) = Z(G,α). For a mor-
phism c : α→ β define a braided tensor functor Id(c) : V(G,α)→ V(G, β), which
is the identity functor with the tensor structure given by the 2-cochain c. Define
F (c) : Z(G,α)→ Z(G, β) to be the functor Z(Id(c)) : Z(V(G,α))→ Z(V(G, β)) in-
duced by Id(c). By proposition 2.4 and lemma 2.5, the effects of F on both π0 and
π1 are bijective. Hence F is an equivalence of categorical groups.

Remark 2.8. Similarly Mex(Rep(G)) corresponds to the crossed-complex

Z3(G, k∗) C2(G, k∗)
∂oo C1(G, k∗).

∂oo

2.2. Invertible objects of Z(G,α)
Here we determine when the category Z(G,α) is pointed, i.e., when all simple

objects of Z(G,α) are invertible.
Denote

A(G,α) =
{
(z, c) ∈ Z(G)× C1(G, k∗)

∣∣ c(x)c(y) = α(x, y|z)c(xy) ∀x, y ∈ G
}
.

It follows from identities (4) that the operation

(z, c)(w, d) = (zw, cdα(−|z, w)) (7)

makes A(G,α) a group.

Proposition 2.9. Inv(Z(G,α)) ≃ A(G,α).

Proof. As a G-graded vector space, an invertible object of Inv(Z(G,α)) has to be
one dimensional and concentrated in a single degree z ∈ Z(G). The α-projective
G-action (3) on such object is given by multiplication by c ∈ C1(G, k∗), satisfying
c(x)c(y) = α(x, y|z)c(xy). The tensor product (5) in Z(G,α) corresponds to (7).
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Remark 2.10. Recall from [8] that the group of isomorphism classes of invertible
objects Inv(Z(C)) of the monoidal centre Z(C) fits into an exact sequence

1 −→ Hom(Aut⊗(IdC), k
∗) −→ Inv(Z(C)) −→ Inv(C).

For the Drinfeld centre Z(G,α), this takes the form

1 −→ Ĝ
ι−→ A(G,α)

π−→ Zα(G) −→ 1,

where Zα(G) is the following subgroup of the centre of G:

Zα(G)=
{
z ∈ Z(G)

∣∣∃c ∈ C1(G, k∗) such that c(x)c(y)=α(x, y|z)c(xy) ∀x, y ∈ G
}
.

We call a 3-cocycle α ∈ Z3(G, k∗) soft if, for any g ∈ G, there is a c ∈ C1(G, k∗)
such that c(x)c(y) = α(x, y|g)c(xy) for all x, y ∈ G.

A fusion category C is pointed if every simple object of C is invertible.

Corollary 2.11. The category Z(G,α) is pointed if and only if G is abelian and α
is soft.

Proof. The category Z(G,α) is pointed iff its group of invertible objects is of order

|G|2. From proposition 2.9, |Ĝ| = |G| = |Zα(G)|. Both equalities imply that G is
abelian; the second also implies that α is soft.

Now assume that G = B is abelian. Denote by Z3
soft(B, k

∗) the group of soft 3-

cocycles. It is straightforward that 3-coboundaries are soft. Write H3
soft(B, k

∗) =

Z3
soft(B,M)/B3(B, k∗).

Lemma 2.12. Let B be an abelian group. Then the third soft cohomology group
H3
soft(B, k

∗) is the kernel of the alternation map Alt3 : H
3(B, k∗)→ Hom

(
Λ3B, k∗

)
.

Proof. The assignment α 7→ α(−,−|−) gives a homomorphism

H3(B, k∗)→ H2(B,Map(B, k∗))

into the second cohomology of B with coefficients in the (trivial) B-module of set-
theoretic maps Map(B, k∗). The soft cohomology H3

soft(B, k
∗) is the kernel of this

homomorphism. Since k∗ (and Map(B, k∗)) is divisible, the universal coefficient for-
mula implies that the alternation map Alt2 gives an isomorphism

H2(B,Map(B, k∗)) ≃ Hom
(
Λ2B,Map(B, k∗)

)
.

The commutative diagram

0 // H3
soft(B, k

∗) // H3(B, k∗) //

Alt3

��

H2(B,Map(B, k∗))

Alt2

��
Hom(Λ3B, k∗) // // Hom

(
Λ2B,Map(B, k∗)

)
gives the result.

For an abelian group B, define Mexpt(Rep(B)) to be the full categorical sub-
group of Mex(Rep(B)) consisting of those modular extensions D of Rep(B) that
are pointed categories. The computations above give the following:
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Theorem 2.13. The group of connected components π0(Mexpt(B))=Mexpt(Rep(B))
coincides with H3

soft(B, k
∗) and fits into the short exact sequence

0 −→ Mexpt(Rep(B)) −→ H3(B, k∗) −→ Hom
(
Λ3B, k∗

)
−→ 0.

3. Lagrangian extensions of abelian groups

3.1. Pointed braided fusion categories
Here we quickly recall a description of pointed braided fusion categories, i.e.,

braided fusion categories with invertible simple objects.
The isomorphism classes of simple objects of a pointed braided fusion category C

form an abelian group A = Inv(C). The category C is equivalent to the category of
A-graded vector spaces with associativity constraint and braiding given by

αV,U,W (v ⊗ (u⊗ w)) = α(x, y, z)((v ⊗ u)⊗ w), v ∈ Vx, u ∈ Uy, w ∈Wz, x, y, z ∈ A,
cV,W (v ⊗ w) = c(x, y)(w ⊗ v), v ∈ Vx, w ∈Wy,

(8)
correspondingly. The unit object conditions mean that α ∈ C3(A, k∗) and c ∈
C2(A, k∗) are normalised cochains. The pentagon axiom is equivalent to the 3-cocycle
condition for α. The hexagon axioms amount to

c(x, z)c(y, z)α(x, z, y) = c(x+ y, z)α(x, y, z)α(z, x, y),

c(x, z)c(x, y)α(x, y, z) = c(x, y + z)α(y, x, z)α(y, z, x),

for all a, b, c ∈ A. A pair (α, c) ∈ Z3(A, k∗)× C2(A, k∗) satisfying to the above con-
ditions is called an abelian 3-cocycle. We denote the corresponding pointed braided
fusion category by C(A,α, c).

Structures of braided equivalences on the identity functor correspond to the fol-
lowing coboundary relation on abelian 3-cocycles. An abelian 3-cocycle (α, c) is an
abelian 3-coboundary if (α, c) = (∂u(x, y, z), u(z, y)u(y, z)−1) for some u ∈ C2(A, k∗).
The third abelian cohomology is the quotient H3

ab(A, k
∗) = Z3

ab(A, k
∗)/B3

ab(A, k
∗).

Eilenberg and Mac Lane gave a convenient description of H3
ab(A, k

∗). A function

q : A→ k∗ is quadratic if q(nx) = q(x)n
2

for all n ∈ Z and x ∈ A, and the function
σ : A×A→ k∗ defined by σ(x, y) = q(x+ y)−1q(x)q(y) (the polarisation of q) is bi-
multiplicative. Denote by Q(A, k∗) the group of quadratic functions. It was shown
in [6] (see also [9]) that the assignment (α, c) 7→ q, where q : A→ k∗ is defined by
q(x) = c(x, x), gives an isomorphism

H3
ab(A, k

∗)
∼−→ Q(A, k∗).

Slightly abusing notation, we will write C(A, q) instead of C(A,α, c). Where the
quadratic function q is trivial, we write C(A, q) = C(A). The category C(A) is sym-

metric and coincides with Rep(Â).
A quadratic function q : A→ k∗ is non-degenerate if its polarisation σ is non-

degenerate, i.e.,

ker(σ) = {x ∈ A | q(x+ y) = q(x)q(y) ∀y ∈ A} = 0.

The pointed category C(A, q) is non-degenerate as a braided fusion category if and
only if q is non-degenerate.
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The orthogonal complement of a subgroup B in a quadratic abelian group (A, q)
is

B⊥ = {x ∈ A | q(x+ y) = q(x)q(y) ∀y ∈ B}.

Note that the symmetric centraliser (1) of C(B, q|B) in C(A, q) is C(B⊥, q|B⊥).
A subgroup B ⊂ A is isotropic if q|B = 0. If B is an isotropic subgroup of A, then

B ⊂ B⊥. In this case, we call the quotient group B⊥/B the isotropic contraction
along B. The quadratic function q descends to the isotropic contraction B⊥/B. An
isotropic subgroup L of a non-degenerate quadratic group (A, q) is Lagrangian if
L = L⊥. Note that L is Lagrangian if and only if |L|2 = |A|. In other words, the
pointed category C(A, q) is a modular extension of the symmetric category C(L) if
and only if L is a Lagrangian subgroup of a non-degenerate quadratic group (A, q).

Remark 3.1. The braiding (6) on Z(G,α) induces a quadratic function on the group
of invertible objects q : A(G,α)→ k∗ given by q(z, c) = c(z). When B is abelian and

α ∈ Z3(B, k∗) is soft, the group A(B,α) is a Lagrangian extension of B̂ with respect
to the quadratic function q.

We finish this preliminary section by recalling basic facts about etale algebras in
pointed braided fusion categories (see, e.g., [3] for details).

The graded support of an indecomposable separable algebra in a pointed fusion
category is a subgroup of the grading group. Etale algebras in the pointed category
C(A, q) correspond to isotropic subgroups of A. The category of modules C(A, q)R over
the etale algebra R = R(B) corresponding to an isotropic B ⊂ A is pointed with the
group of invertible objects A/B. The category of local modules C(A, q)locR(B) is braided

equivalent to C(B⊥/B, q). In particular, Lagrangian algebras in C(A, q) correspond
to Lagrangian subgroups of A.

3.2. Lagrangian extensions
Let B be an abelian group. A Lagrangian extension of B is a triple (A, q, ι),

where A is an abelian group, ι : B ↪→ A is an embedding of groups, and q : A→ k∗

is a non-degenerate quadratic function such that B ⊂ A is a Lagrangian subgroup
with respect to q. Lagrangian extensions of B form a category Lex(B). A morphism
(A, q, ι)→ (A′, q′, ι′) in Lex(B) is a homomorphism ω : A→ A′ such that q′ ◦ ω = q
and ω ◦ ι = ι′. Note that all morphisms in Lex(B) are invertible, i.e. Lex(B) is a
groupoid.

The results of the previous section imply the following.

Proposition 3.2. The functor

Lex(B) → Mexpt(C(B)), (A, q, ι) 7→ C(A, q), (9)

is an equivalence of groupoids.

Proof. Indeed, any pointed modular extension of C(B) has a form C(A, q) for some
Lagrangian extension C(A, q) of B. Any equivalence of extensions C(A, q)→ C(A′, q′)
corresponds to an isomorphism of Lagrangian extensions (A, q)→ (A′, q′).

The equivalences (9) allows us to transfer the monoidal structure ⊙C(B) from
Mexpt(C(B)) to Lex(B). Note first that the etale algebra R = F (I) ∈ C(B)⊠ C(B)
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corresponds under identification C(B)⊠ C(B) ≃ C(B⊕B) to the anti-diagonal sub-
group δ̄(B) = {(b,−b)| b ∈ B} ⊂ B⊕B. Indeed,the tensor product functor C(B)⊠
C(B)→ C(B) corresponds to the direct image of the addition homomorphism a : B ×
B → B, (x, y) 7→ x+ y. Thus R is the inverse image a∗(I) = R(δ̄(B)).

Now the chain of braided equivalences

C(A, q)⊙C(B) C(A′, q′) = (C(A, q)⊠ C(A′, q′))locR ≃ C(A×A′, q × q′)loc
R(δ(B))

≃ C
(
δ(B)⊥/δ(B), q × q′

)
identifies C(A, q)⊙C(B) C(A′, q′) with the pointed category corresponding to the iso-
tropic contraction of δ̄(B) in the quadratic group (A×A′, q × q′). We denote this
isotropic contraction by (A, q, ι)⊞ (A′, q′, ι′) and call it the sum of Lagrangian exten-
sions (A, q, ι) and (A′, q′, ι′). Note also that the embedding B ⊂ δ(B)⊥/δ(B) given
by b 7→ (b, 0) makes the sum a Lagrangian extension of B.

Remark 3.3. Here is a more explicit description of the orthogonal complement:

δ(B)⊥ = {(a, a′) ∈ A×A′| q(a+ ι(x))q′(a′ − ι′(x)) = q(a)q′(a′) ∀x ∈ B}.

Note that it also coincides with the fibered product A×B̂ A
′ with respect to the

natural surjections A→ B̂ ← A′.

By the trivial Lagrangian extension, we mean (B × B̂, qstd, ι), with qstd(b, χ) =
χ(b) and ι(b) = (b, 0). The trivial Lagrangian extension is the quadratic group corre-
sponding to the monoidal centre Z(C(B)) and is the monoidal unit object in Lex(B).
Define the conjugate of the Lagrangian extension (A, q, ι) by (A, q, ι) = (A,−q, ι).
The conjugate is the dual object in Lex(B).

We denote by Lex(B) = π0(Lex(B)) the group of Lagrangian extensions. The
equivalence (9) implies that Lex(B) is isomorphic toMexpt(C(B)). Using that C(B) ≃
Rep(B̂) as symmetric fusion categories, we have Lex(B) = Mexpt(Rep(B̂)). Theo-
rem 2.13 now gives the following.

Corollary 3.4. The group of Lagrangian extensions fits into the short exact sequence

0 −→ Lex(B̂) −→ H3(B, k∗) −→ Hom(Λ3B, k∗) −→ 0.

Corollary 3.4 can be used to describe the third cohomology H3(B, k∗). But here
we are going to use it in the opposite way to get some basic information about groups
of Lagrangian extensions.

Remark 3.5. The third cohomology group H3(Z/nZ, k∗) is cyclic of order n. Since
Λ3(Z/nZ) = 0, corollary 3.4 gives Lex(Z/nZ) ≃ Z/nZ.

In what follows we replace k∗ by Q/Z to simplify the exposition.

Example 3.6. Here, we describe explicitly Lagrangian extensions from Lex(Z/2Z).
Since a Lagrangian extension A ⊃ Z/2Z is an abelian group extension of Z/2Z by
Z/2Z, A is of order 4, and is isomorphic to either (Z/2Z)2 or Z/4Z.
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Let A = (Z/2Z)2. The matrices of possible non-degenerate symmetric bilinear
forms σ : A×A→ Q/Z such that the first summand Z/2Z is Lagrangian are(

0 1
2

1
2

1
2

)
and

(
0 1

2
1
2 0

)
.

Here entries are in Q/Z. For the first one, a compatible quadratic function q± : A→
Q/Z has the form

q±(e1) = 0, q±(e2) = ±
1

4
, q±(e1 + e2) = ∓

1

4
.

The corresponding classes in Lex(Z/2Z) are isomorphic and nontrivial. The second
bilinear form corresponds to the trivial Lagrangian extension. Since all classes in
Lex(Z/2Z) are represented by Lagrangian extensions A ⊃ Z/2Z with A = (Z/2Z)2,
the second possibility, A = Z/4Z, does not realise.

Example 3.7. More generally, let B = Z/2ℓZ for some positive integer ℓ. As in exam-
ple 3.6 above, a Lagrangian extension A ⊃ Z/2ℓZ is an abelian group extension of
Z/2ℓZ by Z/2ℓZ, whence |A| = 22ℓ. If A = Z/22ℓZ, then the only possible Lagrangian
subgroup of A is ⟨2⟩. But a straightforward computation shows that if q : A→ Q/Z
is a quadratic function with respect to which the subgroup ⟨2⟩ is isotropic, then
the associated bilinear form σ is degenerate. Thus Z/22ℓZ is not realizable as a
Lagrangian extension of Z/2ℓZ. In particular, this shows that Z/4Z is not realiz-
able as a Lagrangian extension of Z/2Z (cf. example 3.6 above).

Example 3.8. Let now A = Z/22ℓ−1Z× Z/2Z. Consider a non-degenerate quadratic
function q : A→ Q/Z given by

q(a, b) =
a2

22ℓ
− b2

4
.

The subgroup L ⊂ A generated by the pair
(
2ℓ−1, 1

)
is Lagrangian with respect to q

and is isomorphic to Z/2ℓZ.

We finish this section with a quick discussion of the functoriality property of Lex.
Namely, for a homomorphism of abelian groups f : B → D, we will define a functor
between symmetric categorical groups Lex(B)→ Lex(D).

For a Lagrangian extension (A, q, ι) of B, set

A′ =
(A×B̂ D̂)×D

∆(B)
,

where ∆(B) is the antidiagonal subgroup {(b,−b)|b ∈ B}. Now define a Lagrangian
extension of D

Lex(f)(A, q, ι) =

(
(A×B̂ D̂)×D

∆(B)
, q′, ι′

)
, (10)

where q′ : A′ → Q/Z is given by q′(a, χ, d) = q(a) + χ(d).

Remark 3.9. Suppose now that f is surjective, and let K = ker(f). One can check

that in this case A×B̂ D̂ coincides with the orthogonal complement K⊥ of K in A.
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Moreover, the quotient
(A×B̂ D̂)×D

∆(B)
coincides with the isotropic contractionK⊥/K

along K. This contains B/K, which is isomorphic to D. Thus (10) reduces to

Lex(f)(A, q, ι) =
(
K⊥/K, q|K⊥ , ι′

)
,

where ι′ : D ≃ B/K → K⊥/K is induced by ι : B → K⊥.

3.3. The categorical group Ext(B,D)
Let B and D be abelian groups. Denote by Ext(B,D) the category whose objects

are abelian group extensions D
ι−→ A

π−→ B and whose morphisms are group homo-
morphisms ξ : A→ A′ making the diagram

A

π

  
ξ

��

0 // D

ι

>>

ι′   

B // 0

A′
π′

>>

commute. Note that such ξ is necessarily an isomorphism, i.e., Ext(B,D) is a groupoid.
The category Ext(B,D) is monoidal with respect to the Baer sum. Recall that the

Baer sum of extensions is(
D

ι−→ A
π−→ B

)
⊞
(
D

ι′−→ A′ π′

−→ B
)
=
(
D

i−→ A×B A′/δ̄(D)
p−→ B

)
,

where A×B A′ is the fibered product, δ̄(D) is the antidiagonal subgroup, i = ι = ι′

and p = π = π′.
The unit object in Ext(B,D) is the trivial extension D → D ⊕B → B with the

canonical embedding and projection maps. The opposite extension to D
ι−→ A

π−→ B

is the extension D
ι−→ A

−π−→ B. Altogether, this makes the category Ext(B,D) into a
categorical group with respect to ⊞. The standard invariants of the categorical group
Ext(B,D) are

π0(Ext(B,D)) = Ext(B,D)

and

π1(Ext(B,D)) = Hom(B,D).

The functor Ext is functorial in each of its arguments; it is contravariant in its first
argument and covariant in its second argument.

In the special case when the arguments B and D are dual to each other, the
categorical group Ext(B,D) has a natural symmetry. Namely, define the contravariant

functor T : Ext(B̂, B)→ Ext(B̂, B) by

T

(
B

ι // A
π // B̂

)
=

(
B

π̂e // Â
ι̂ // B̂

)
,

where e : B → ̂̂
B is the canonical evaluation isomorphism. The functor T is an invo-

lutive autoequivalence. More precisely, we have a natural isomorphism i : Id→ T 2
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(given by e : A→ ̂̂
A) such that iT (X) = T (iX)−1. Namely, let X ∈ Ext(B̂, B) be the

Lagrangian extension B
ι // A

π // B̂ , so that T (X) is the extension

̂̂
B

π̂ // Â
ι̂ // B̂.

Define a map X → T 2(X) by the following diagram:

B
ι //

eL
��

A
π //

eA
��

B̂

̂̂
B ̂̂ι // ̂̂A ̂̂π //

̂̂̂
B

êB

OO

The left-hand square of this diagram commutes due to naturality of the evaluation

map e : Id→ ̂̂
( ). Note that eB̂ = êB

−1
. Indeed, eB̂ : χ 7→ (e(a) 7→ e(a)(χ) = χ(a)) for

a ∈ B, whence êB ◦ eB̂ : χ 7→ (a 7→ χ(a)) for a ∈ B. This implies that the right-hand

square of the diagram also commutes, and therefore the extensions X and T 2(X) are
equivalent.

More generally, let G be a categorical group. Let T : G → G be a contravariant
monoidal autoequivalence with a natural isomorphism i : Id→ T 2 such that iT (X) =

T (iX)−1 for any X ∈ G. We say that an object X ∈ G is T -equivariant if there is an
isomorphism x : X → T (X) making the following diagram commute:

X

x
!!

iX // T 2(X)

T (x)zz
T (X)

(11)

Let τ be the effect of T on π0(G), and denote by π0(G)τ0 the subgroup of classes of
T -equivariant objects.

Proposition 3.10. The sequence

0 // π0(G)τ0 // π0(G)τ // H1(Z/2Z, π1(G))

is exact.

Proof. The class of an object X ∈ G is τ -invariant if there is a morphism x : X →
T (X). Define a = a(x) ∈ AutG(X) as the counterclockwise composition of the dia-
gram (11). Let α(x) ∈ AutG(I) = π1(G) be the corresponding (in the sense of re-
mark 1.1) automorphism of the monoidal unit I. Then we have τ(α) = T (α) = T (a).
Applying the functor T to the diagram (11) gives

T (X) T 3(X)
T (iX)oo

T 2(X)

T (x)

cc

T 2(x)

::
(12)

Note that T (a) ∈ AutG(T (X)) is the clockwise composition of the diagram (12).
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We claim that

T (a) = xa−1x−1. (13)

In terms of elements of AutG(I) we have τ(α) = α−1.

Consider the diagram

X
x //

iX

��

T (X)

iT (X)tt

T (a)

��

T 3(X)

T (iX)

44

T 2(X)

T 2(x)

::

T (x)
))

X

a

OO

x
// T (X)

(14)

The rightmost cell of (14) commutes by definition of T (a). The bottom left cell
commutes by definition of a. The top centre cell commutes by naturality of i, and
so the diagram commutes overall. Equation (13) follows from commutativity of (14).
Now letX ∈ G be τ -invariant with an isomorphism x : X → T (X). Let x′ : X → T (X)
be another isomorphism. Define b ∈ Aut(X) by the diagram

X
x // T (X)

X

b

__

x′

<<

It follows from the diagram

X
a(x′) //

b ""

x′

��

X

iX

��

X

x

��

X
xT (b)x−1

oo
a(x)

;;

x||
T (X)

T (b)vv
T (X) T 2(X)

T (x)

hh

T (x′)

oo

that a(x′) = a(x)xT (b)−1x−1b. This translates to α(x′) = α(x)τ(β)−1β, where β ∈
AutG(I) is the automorphism corresponding to b ∈ AutG(X).

Thus we have a map

π0(G)τ → H1(Z/2Z, π1(G)),
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sending X ∈ π0(G)τ to the class of α(x) in

H1(Z/2Z, π1(G)) = {α ∈ π1(G) |τ(α) = α−1}/{βτ(β)−1 | β ∈ π1(G)}.

Now we check that this map is a homomorphism. Given X,Y ∈ π0(G)τ , choose
x : X → T (X) and y : Y → T (Y ). Then

X⊗Y
x⊗y // T (X)⊗T (Y )

TX,Y // T (X⊗Y )

is a weak equivariance structure for X ⊗ Y . Compute a(x⊗y) = a(x|y) according to
the following diagram:

X⊗Y

iX⊗iY

��

iX⊗Y

++

x⊗y

%%

x|y

((

T 2(X ⊗ Y )

T (TX,Y )

xx

T (x|y)

qq

T (T (X)⊗T (Y ))
TT (X),T (Y )

vv

T (x⊗y)

zz

T 2(X)⊗T 2(Y )

T (x)⊗T (y)

��
T (X)⊗T (Y )

T (X⊗Y )

TX,Y

OO

It follows from the above diagram that a(x|y) = a(x)⊗a(y). Finally, by the construc-
tion, the class of α(X) is trivial iff a τ -invariant structure on X can be promoted to
a T -equivariant one.

The effect of T on π0(Ext(B̂, B)) = Ext(B̂, B) is an involution τ = π0(T ) :

Ext(B̂, B)→ Ext(B̂, B), which sends an extension of B̂ by B to its dual. By factor-
ing through the natural identification of the double dual with B, the dual extension
becomes another extension of B̂ by B.

If we identify Hom(B̂, B) with the tensor square B⊗2, the effect of T on

π1(Ext(B̂, B)) becomes the permutation involution.

Remark 3.11. The above proposition gives an exact sequence

0 // Ext(B̂, B)τ0 // Ext(B̂, B)τ // H1(Z/2Z, B⊗2).

The last group is

H1(Z/2Z, B⊗2) = {α ∈ B⊗2 |τ(α) = −α}/{β − τ(β)| β ∈ B⊗2},
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with τ acting as the transposition of tensor factors. Define a map B2 → H1(Z/2Z,
B⊗2) by b 7→ b⊗ b (note that the condition 2b = 0 implies that τ(b⊗b) = −b⊗b). This
map is an isomorphism. Indeed the functor B 7→ H1(Z/2Z, B⊗2) is linear. By linearity
it suffices to see that B2 → H1(Z/2Z, B⊗2) is an isomorphism for a cyclic B. It is
obvious for B of odd order, since H1(Z/2Z, B⊗2) = 0 in this case. For B = Z/2ℓZ
we have Z1(Z/2Z, (Z/2ℓZ)⊗2) = (Z/2ℓZ)2 andB1(Z/2Z, (Z/2ℓZ)⊗2) = 0. Altogether,
this gives an exact sequence

0 // Ext(B̂, B)τ0 // Ext(B̂, B)τ // B2.

3.4. Comparing Lex(B) with Ext(B̂, B)

Define a functor F : Lex(B)→ Ext(B̂, B) by

F (A, q, ι) =
(
B

ι−→ A
π−→ B̂

)
,

where (π(a)) (x) = q(a+ ι(x))− q(a) for a ∈ A, x ∈ B. Note that F is monoidal with
the obvious monoidal structure.

The functor F induces a homomorphism of abelian groups ϕ : Lex(B)→Ext(B̂, B).
First we examine the image of ϕ.

Lemma 3.12. The extension F (A, q, ι) is T -equivariant.

Proof. Define f : A→ Â by f(a) = σ(a,−) for a ∈ A. Here, σ is the polarisation of q.
Such f makes the diagram

B
ι //

e
��

A
π //

f
��

B̂

̂̂
B

π̂
// Â

ι̂
// B̂

commute. Indeed, for x ∈ B and a ∈ A, we have (f(ι(x)))(a) = σ(ι(x), a) = (π(a))(x)
= e(x)(π(a)) = π̂(e(x))(a), and (π(a))(x) = σ(a, x) = (f(a))(x) = (ι̂(f(a)))(x). It is
straightforward to check that f is T -equivariant structure on F (A, q, ι).

Lemma 3.12 shows that the homomorphism ϕ lands in Ext(B̂, B)τ , with the image

of ϕ being precisely Ext(B̂, B)τ0 . Denote by K(B) and C(B) the kernel and the

cokernel, respectively, of the homomorphism ϕ : Lex(B)→ Ext(B̂, B)τ . Clearly, K
and C are functors from the category of finite abelian groups to itself that fit into
the exact sequence

0 // K(B) // Lex(B)
ϕ // Ext(B̂, B)τ // C(B) // 0.

As the first step in describing the functors K and C, we compute the polarisation
(see Appendix B) of the functor Lex. Note that for an extension

0 // B
ι // E

π // D̂ // 0

the embedding B ⊕D ↪→ E ⊕ Ê (the direct sum of ι and π̂ ◦ e−1) is a Lagrangian

subgroup of the quadratic group (E ⊕ Ê, qstd). In other words, (E ⊕ Ê, qstd) becomes

a Lagrangian extension of B⊕D. This defines a map υ : Ext(D̂, B)→ Lex(B ⊕D).
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Proposition 3.13. The sequence

0 −→ Ext(D̂, B)
υ−→ Lex(B ⊕D)

κ−→ Lex(B)⊕ Lex(D) −→ 0,

where κ : Lex(B ⊕D)→ Lex(B)⊕ Lex(D) is the canonical mapping, is exact.

Proof. By remark 3.9, κ maps the class of a Lagrangian extension (A, q, ι) (of B ⊕D)
into the pair of Lagrangian extensions

B ⊂ D⊥/D, D ⊂ B⊥/B.

For (A, q, ι) in the kernel of κ, we have

B ⊂ D⊥/D ≃ B ⊕ B̂, D ⊂ B⊥/B ≃ D ⊕ D̂,

where B (respectively D) is embedded as the first summand and is Lagrangian with

respect to the standard quadratic function on B ⊕ B̂ (respectively D ⊕ D̂). Now we

want to show that the Lagrangian extension (E ⊕ Ê, qstd) of B⊕D (the effect of

the map υ on an extension B → E → D̂) is always in the kernel of κ. Indeed, the

orthogonal complement of D in E ⊕ Ê has the form

D⊥ =
{
(e, ε) ∈ E ⊕ Ê

∣∣∣σstd((e, ε), (0, π̂(d))) = 0 ∀d ∈ D
}

= B ⊕ Ê.

Furthermore,

D⊥/D ≃ (B ⊕ Ê)/(0⊕ π̂(D)) ≃ B ⊕ B̂.

Analogous results hold for B⊥/B. This shows that im(υ) ⊆ ker(κ). To see that

im(υ) = ker(κ), we show that, for (A, q, ι) ∈ ker(κ), there exists an extension B
ι−→

E
π−→ D̂ such that

(A, q, ι) ≃
(
E ⊕ Ê, qstd, ι⊕ π̂

)
.

We start by extracting such E out of A. Since (A, q, ι) is in the kernel of κ, the
isotropic contraction along B is trivial as a Lagrangian extension of D: B⊥/B ≃
D ⊕ D̂. By lifting the corresponding projections p1 : B

⊥/B ↠ D, p2 : B
⊥/B ↠ D̂,

we obtain surjections p̃1 : B
⊥ ↠ D and p̃2 : B

⊥ ↠ D̂. Now define E to be ker(p̃1).
Since ker(p̃1) ∩ ker(p̃2) = B, the sequence

B
ι−→ E

p̃2−→ D̂ (15)

is short exact. Similarly, D⊥/D ≃ B ⊕ B̂, and so we have projections w1 : D
⊥/D ↠

B, w2 : D
⊥/D ↠ B̂ and corresponding surjections w̃1 : D

⊥ ↠ B, w̃2 : D
⊥ ↠ B̂. De-

fine E′ = ker(w̃1). We then have the analogous short exact sequence

D
ι′−→ E′ w̃2−→ B̂. (16)

By their definitions, E and E′ are subgroups of A. We show that A is their direct
sum. Since the orders of E and E′ square to the order of A, all we need to show
is that E ∩ E′ = 0. Let x ∈ E ∩ E′. Then x ∈ B⊥ ∩D⊥ = (B ⊕D)⊥ = B ⊕D since
B ⊕D is Lagrangian in A. Since p̃1|B⊕D is the second projection and w̃1|B⊕D is the
first, p̃1(x) = w̃1(x) = 0 implies that x = 0.

Now we show that E and E′ are Lagrangian subgroups of the quadratic group A.
Together with the decomposition E⊕E′ = A, that will give us a non-degenerate
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pairing between E and E′, identifying E′ with Ê. What we are actually going to
show is that E is isotropic (this is sufficient, since |E|2 = |A|). Recall that the kernel
of the restriction of q to B⊥ is B, so for any x ∈ B⊥ we have q(x) = qB⊥/B(x̄), where
x̄ is the coset of x modulo B. Now for x ∈ E = ker(p̃1), the coset x̄ lies in ker(p1),
which is an isotropic subgroup of B⊥/B. Hence q(x) = qB⊥/B(x̄) = 0. Similarly for

E′. The last thing we need to check is that, upon identification between E′ and Ê,
the extension (16) is the dual of (15). In other words, we need ι̂ = w̃2 and ι̂′ = p̃2,
which follows immediately from the definitions.

Corollary 3.14. The functors K and C are additive.

Proof. The polarisation of the functor B 7→ Ext(B̂, B)τ is Ext(D̂, B). Moreover, the
natural transformation ϕ induces an isomorphism of polarisations. Finally, note that
K(0) = C(0) = 0.

Next, we describe the kernel functor K.

Lemma 3.15. The functor K fits into the exact sequence

0 // ∧2B // B⊗2 // Q(B̂,Q/Z) // K(B) // 0,

where ∧2B is the subgroup of antisymmetric elements of B⊗2.

Proof. Let (A, q, ι) ∈ K(B). Then, as an abelian group, A can be identified with

B × B̂. Moreover, under this identification, ι becomes the canonical inclusion. Fur-
thermore, the quadratic function q is such that q(b+ b′, χ)− q(b′, χ) = π(b′, χ)(b) =

χ(b). Denote by q̃ the restriction of q to B̂. Then for b ∈ B,χ ∈ B̂, we have q(b, χ) =

χ(b) + q̃(χ) Noting that χ(b) = qstd(b, χ), one can write (A, q, ι) ≃ (B × B̂, qstd + q̃, ι)

as Lagrangian extensions of B. In other words, the map Q(B̂,Q/Z)→ K(B) given

by q̃ 7→ (B × B̂, qstd + q̃, ι) is an epimorphism of groups. Note that the kernel of the

map Q(B̂,Q/Z)→ K(B) is the image of the map B⊗2 → Q(B̂,Q/Z) sending r to
the quadratic function q(χ) = (χ⊗χ)(r). Clearly such q is zero iff τ(r) = −r, where
τ : B⊗2 → B⊗2 is the transposition automorphism.

Corollary 3.16. The functor K is isomorphic to the functor B 7→ B/2B.

Proof. Define a map Q(B̂,Q/Z)→ B/2B by assigning to q an element x ∈ B/2B
such that 2q(χ) = χ(x) for all χ ∈ B̂/2B. It is straightforward that this map is zero

on the image of B⊗2 → Q(B̂,Q/Z), thus giving the map K(B)→ B/2B. Finally, by
looking at the effect on a cyclic 2-group B, we can see that the map K(B)→ B/2B
is an isomorphism.

In the rest of the section, we examine the cokernel functor C.

Remark 3.17. Note that C(Z/2ℓZ) ≃ Z/2Z. Indeed, a generator of Ext(Z/2ℓZ,
Z/2ℓZ) ≃ Z/2ℓZ has the form

Z/2ℓZ −→ Z/22ℓZ −→ Z/2ℓZ.

Example 3.7 shows that Z/22ℓZ is not realizable as a Lagrangian extension of Z/2ℓZ.
Thus the map Lex(Z/2ℓZ)→ Ext(Z/2ℓZ,Z/2ℓZ) is not surjective. Note also that any
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extension of the form

Z/2ℓZ −→ Z/22ℓ−1Z× Z/2Z −→ Z/2ℓZ (17)

is twice a generator of Ext(Z/2ℓZ,Z/2ℓZ) ≃ Z/2ℓZ. Now, example 3.7 shows that the
middle term of (17) is realizable as a Lagrangian extension of Z/2ℓZ, and moreover,
that the image of the map Lex(Z/2ℓZ)→ Ext(Z/2ℓZ,Z/2ℓZ) is 2Z/2ℓZ. Thus the
cokernel of the map Lex(Z/2ℓZ)→ Ext(Z/2ℓZ,Z/2ℓZ) must be isomorphic to Z/2Z.

Lemma 3.18. The functor C is isomorphic to the functor B 7→B2 = {b∈B | 2b=0}.

Proof. Since the image of ϕ coincides with Ext(B̂, B)τ0 , we have a short exact se-
quence

0 // Ext(B̂, B)τ0 // Ext(B̂, B)τ // C(B) // 0.

Thus the homomorphism Ext(B̂, B)τ → H1(Z/2Z, B⊗2) defined in section 3.3 factors
through an embedding C(B)→ H1(Z/2Z, B⊗2). By remark 3.11, this is a natural
transformation of linear functors in B. To show that it is an isomorphism, it suffices
to check it for cyclic B. It is obvious for B of odd order. Remark 3.11 says that
H1(Z/2Z, B⊗2) is isomorphic to Z/2Z. Finally, remark 3.17 shows that C(Z/2ℓZ) is
also isomorphic to Z/2Z, making the map C(B)→ H1(Z/2Z, B⊗2) an isomorphism.

Finally, we summarise the results of this section in the following theorem.

Theorem 3.19. For any finite abelian group B, the following sequence is exact:

0 −→ B/2B −→ Lex(B)
ϕ−→ Ext(B̂, B)τ −→ B2 −→ 0.

Appendix A. Lagrangian algebras in pointed categories

Here, we describe the homomorphism Lex(L)→ H3(Â, k∗) explicitly by giving a

3-cocycle β ∈ Z3(Â, k∗) representing the Lagrangian extension (A, q, ι). We do it by
computing the associator of the pointed category C(A, q)R of modules over an etale
(i.e. indecomposable separable commutative) algebra R.

Simple objects I(a) of C(A,α, c) are labeled by elements of A. We fix fusion iso-
morphisms ιa,b : I(a)⊗ I(b)→ I(a+ b) for a, b ∈ A. By going around the diagram

I(a)⊗ I(b)⊗ I(c)
ιa,b⊗1 //

1⊗ιb,c
��

I(a+ b)⊗ I(c)

ιa+b,c

��
I(a)⊗ I(b+ c)

ιa,b+c

// I(a+ b+ c)

clockwise, we obtain an automorphism of the simple object I (a+ b+ c) ∈ C(A,α, c);
namely, α(a, b, c) · 1I(a+b+c). The braiding in C(A,α, c) is given by (8). As in sec-
tion 3.1, we write the category C(A,α, c) as C(A, q), where q ∈ Q(A, k∗) is the (unique)
quadratic function corresponding to the pair (α, c).
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An indecomposable separable algebra R in C(A, q) is supported by a subgroup
B ⊂ A. Let R(B) ∈ C(A, q) be the object given by

R(B) =
⊕
b∈B

I(b) .

The multiplication map µ on R(B) has a form µ(b, b′) = η(b, b′) · ιb,b′ for η ∈C2(B, k∗)
such that ∂η = α|B. The coboundary condition on η makes this multiplication asso-
ciative. The algebra R(B) is commutative if and only if η(b, b′) = c(b, b′)η(b′, b) for all
b, b′ ∈ B. In terms of the quadratic function q, commutativity is equivalent to isotropy
of the subgroup B ⊂ A. In this case the multiplication on R(B) is defined uniquely
up to an isomorphism.

The free module functor gives a tensor equivalence C(A, q)R(B) → V(A/B, β) for

some β ∈ H3(A/B, k∗). Here we compute the associator β explicitly.
Let J : C(A, q)→ C(A, q)R(B) be the free module functor J(X) = X ⊗R(B). The

functor J is tensor with the tensor structure JX,Y : J(X)⊗R(B) J(Y )→ J(X ⊗ Y )
given by the composition

X⊗R(B)⊗Y⊗R(B)
1X⊗cR(B),Y ⊗1R(B) // X⊗Y⊗R(B)⊗R(B)

1X⊗1Y ⊗µ // X⊗Y⊗R(B).

We also fix an isomorphism J(I) ≃ R(B) given by the right unit isomorphism in
C(A, q).

All simple R(B)-modules are induced from simple objects of C(A, q). For a ∈ A,
denote J(I(a)) by J(a), and define a map of R(B)-modules ϕa,b : J(a)⊗R(B) J(b)→
J(a+ b) as the composition:

J(I(a))⊗R(B)J(I(b))
JI(a),I(b) // J(I(a)⊗I(b))

J(ιa,b) // J(I(a+ b)).

Note that the clockwise composition of the diagram

J(a)⊗R(B)J(b)⊗R(B)J(c)
ϕa,b⊗1 //

1⊗ϕb,c

��

J(a+ b)⊗R(B)J(c)

ϕa+b,c

��
J(a)⊗R(B)J(b+ c)

ϕa,b+c

// J(a+ b+ c)

(18)

is α(a, b, c) · 1J(a+b+c).
For ℓ ∈ B, define θℓ : I(ℓ)⊗R(B)→ R(B) by θℓ = ⊕ℓ′∈B(η(ℓ, ℓ′) · ιℓ,ℓ′). This gives

an isomorphism θℓ : J(ℓ)→ J(0) of right R(B)-modules. The collection of θℓ allows us
to define, for any a ∈ A and any ℓ ∈ B an isomorphism of R(B)-modules ϑa,ℓ : J(a+
ℓ)→ J(a)

J(a+ ℓ)
ϑa,ℓ // J(a)

J(a)⊗R(B)J(ℓ)

ϕa,ℓ

OO

1⊗θℓ
// J(a)⊗R(B)R(B).

The collection of ϑs establishes that up to isomorphism, simple R(B)-modules are
labeled by elements of the quotient group A/B.
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Similarly, define ϑ′ℓ,a : J(ℓ+ a)→ J(a) by the diagram

J(ℓ+ a)
ϑ′
ℓ,a // J(a)

J(ℓ)⊗R(B)J(a)

ϕℓ,a

OO

θℓ⊗1
// R(B)⊗R(B)J(a)

Commutativity of addition implies that the maps ϑa,ℓ and ϑ′ℓ,a differ by a nonzero
scalar. More precisely, ϑ′ℓ,a = c(a, ℓ) · ϑa,ℓ.

Choose a set-theoretic section s : A/B → A of the canonical projection. Define
γ : A/B ×A/B → L by γ(x, y) = s(x) + s(y)− s(x+ y), and define

Jx,y : J(s(x))⊗R(B)J(s(y))→ J(s(x+ y))

as the composition

J(s(x))⊗R(B)J(s(y))
ϕs(x),s(y) // J(s(x) + s(y))

ϑs(x+y),γ(x,y) // J(s(x+ y)).

The tensor category C(A, q)R(B) of right R(B)-modules is equivalent to V(A/B, β)
for some β ∈ Z3(A/B, k∗). The clockwise composition of the arrows of the diagram

J(s(x))⊗R(B)J(s(y))⊗R(B)J(s(z))
Jx,y⊗1 //

1⊗Jy,z

��

J(s(x) + s(y))⊗R(B)J(z)

Jx+y,z

��
J(s(x))⊗R(B)J(s(y + z))

Jx,y+z

// J(s(x+ y + z))

(19)

is β(x, y, z) · 1J(s(x+y+z)), and so we need to compute this composition to see the
value of the associator β(x, y, z).

We now expand the diagram (19). In doing so, we will suppress the tensor product
symbols. We will also suppress labels on identity morphisms. Moreover, we will write
R instead of R(B) where applicable.

J(s(x))J(s(y))J(s(z))
ϕs(x),s(y)1 //

1ϕs(y),s(z)

��

J(s(x)+s(y))J(s(z))
ϑs(x+y),γ(x,y) //

ϕs(x)+s(y),s(z)

��

J(s(x+y))J(s(z))

ϕs(x+y),s(z)

��
J(s(x))J(s(y)+s(z))

ϕs(x),s(y)+s(z) //

1ϑs(y+z),γ(y,z)

��

J(s(x)+s(y)+s(z))
ϑs(x+y)+s(z),γ(x,y) //

ϑs(x)+s(y+z),γ(y,z)

��

J(s(x+y)+s(z))

ϑs(x+y+z),γ(x+y,z)

��
J(s(x))J(s(y+z))

ϕs(x),s(y+z)

// J(s(x)+s(y+z))
ϑs(x+y+z),γ(x,y+z)

// J(s(x+y+z))

(20)

It is straightforward to see that the clockwise reading of the upper left cell of the
diagram (20) contributes a factor of α(s(x), s(y), s(z)).

Lemma A.1. The lower left cell of the diagram (20) contributes a factor of α(s(x),
s(y + z), γ(y, z))−1.
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Proof. Let a = s(x), b = s(y + z), ℓ = γ(y, z). Consider the diagram

J(a)J(b+ ℓ)

1ϑb,ℓ

��

ϕa,b+ℓ // J(a+ b+ ℓ)

ϑa+b,ℓ

��

J(a)J(b)J(ℓ)
ϕa,b1 //

1ϕb,ℓ

hh

11θℓ

��

J(a+ b)J(ℓ)

ϕa+b,ℓ

77

1θℓ

��
J(a)J(b)R

ϕa,b1
// J(a+ b)R

J(a)J(b)
ϕa,b

// J(a+ b)

All cells except the top one commute. By (18), the clockwise composition of the top
cell gives α(a, b, ℓ)−1.

Lemma A.2. The upper right cell of the diagram (20) contributes a factor of

α(γ(x, y), s(x+ y), s(z))c(s(x+ y) + s(z), γ(x, y))

c(s(x+ y), γ(x, y))
.

Proof. Let ℓ = γ(x, y), a = s(x+ y), and b = s(z), and consider the diagram

J(ℓ+ a)J(b)
ϑ′
ℓ,a1 //

ϕℓ+a,b

��

J(a)J(b)

ϕa,b

��

J(ℓ)J(a)J(b)

1ϕa,b

��

θℓ11 //
ϕℓ,a1

hh

RJ(a)J(b)

1ϕa,b

��
J(ℓ)J(a+ b)

θℓ1
//

ϕℓ,a+b

vv

RJ(a+ b)

J(ℓ+ a+ b)
ϑ′
ℓ,a+b

// J(a+ b)

The rightmost and the centre cells commute on the nose. The leftmost cell contributes
a factor of α(ℓ, a, b). The bottom cell is the definition of ϑ′ℓ,a+b. Similarly, the top cell is
the definition of ϑ′ℓ,a. Now, in the diagram (20), ϑ′s do not appear. Instead, ϑs appear.

Comparing ϑ′ with ϑ gives factors of c(a+ b, ℓ) from the bottom cell and c(a, ℓ)−1

from the top cell. The inverse appears in the second factor due to the orientation
being reversed relative to the definition of ϑa,ℓ.

Lemma A.3. The lower right cell of the diagram (20) contributes a factor of

η(γ(x, y + z), γ(y, z))

η(γ(x+ y, z), γ(x, y))
.
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Proof. We split the lower right cell of the diagram (20) into two triangles as follows:

J(s(x) + s(y) + s(z))
ϑs(x+y)+s(z),γ(x,y) //

ϑs(x+y+z),γ(x,y,z)

))

ϑs(x)+s(y+z),γ(y,z)

��

J(s(x+ y) + s(z))

ϑs(x+y+z),γ(x+y,z)

��
J(s(x) + s(y + z))

ϑs(x+y+z),γ(x,y+z)

// J(s(x+ y + z))

(21)

Let us now consider the expanded general form of such triangles:

J(a+ ℓ+ ℓ′)
ϑa,ℓ+ℓ′ //

ϑa+ℓ,ℓ′

��

J(a)

J(a)J(ℓ+ ℓ′)

ϕa,ℓ+ℓ′

kk

1θℓ+ℓ′ // J(a)R

J(a+ ℓ)J(ℓ′)

ϕa+ℓ,ℓ′

``

1θℓ′

��

J(a)J(ℓ)J(ℓ′)

1ϕℓ,ℓ′

OO

ϕa,ℓ1
oo

11θℓ′

��
J(a+ ℓ) J(a)J(ℓ)R

ϕa,ℓ1
oo J(a)R

J(a)J(ℓ)

ϕa,ℓ

ss

1θℓ

88

J(a+ ℓ)
1J(a+ℓ)

// J(a+ ℓ)

ϑa,ℓ

OO

All of the cells in this diagram commute except for the right-centre cell, which con-
tributes a factor of η(ℓ, ℓ′). Therefore, the lower triangle of (21) contributes a fac-
tor of η(γ(x, y + z), γ(y, z)), and the upper triangle contributes a factor of η(γ(x+
y, z), γ(x, y))−1.

Thus we have the following:

Theorem A.4. The category C(A, q)R(B) of right modules over an etale algebra
R(B) ∈ C(A, q) is tensor equivalent to the category V(A/B, β) of A/B-graded vec-
tor spaces, where the associator β ∈ Z3(A/B, k∗) is given by the formula

β(x, y, z) =

α(s(x), s(y), s(z))α(γ(x, y), s(x+ y), s(z))c(s(x+ y) + s(z), γ(x, y))η(γ(x, y + z), γ(y, z))

α(s(x), s(y + z), γ(y, z))c(s(x+ y), γ(x, y))η(γ(x+ y, z), γ(x, y))
.

(22)
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Recall that Lagrangian algebras in a non-degenerate braided pointed category
C(A, q) correspond to Lagrangian subgroups of A. For a Lagrangian L ⊂ A, the pro-

jection π : A→ B̂ (from section 3.4) gives an isomorphism A/B ≃ B̂, which in turn

gives an isomorphism H3(A/B, k∗) ≃ H3(L̂, k∗).

Corollary A.5. The homomorphism Lex(L)→ H3(L̂, k∗) sends a Lagrangian exten-
sion L ⊂ A into the class of β given by (22) transported along the isomorphism

H3(A/B, k∗) ≃ H3(L̂, k∗).

Appendix B. Polynomial functors

Let A,B ∈ Ab, and let P : Ab→ Ab be a functor. The diagram of canonical pro-
jections and injections

A1
&& !!

A⊕B
!!

__ B 1
xx

``

gives rise to a (right) splitting of its image under P :

P (A⊕B)
''

P (A)⊕ P (B)
gg

Define δP (A,B) to be the complement of this splitting, so that

P (A⊕B) ≃ P (A)⊕P (B)⊕δP (A,B).

This defines a functor δP : Ab×Ab→ Ab which we call the polarisation of P .
We call a constant functor polynomial of degree zero. For n > 0, a functor P is said

to be polynomial of degree n if its polarisation δP is polynomial of degree n− 1 in
each of its arguments.

Remark B.1. An additive functor P : Ab→ Ab is polynomial of degree 1. Conversely,
a polynomial of degree 1, P , such that P (0) = 0, is additive.
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